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Linear Algebra

The FT is a linear operator defined, for our purposes, on finite-
dimensional inner product spaces. Given a finite Abelian group G,
we will define the FT (in Chapter 4) to be a linear operator on
a finite-dimensional inner product space associated with G. More
generally, in this chapter, we define an association of sets with
inner product spaces. We also define dual bases and a special type
of linear operator, i.e., a type of operator that carries orthonormal
bases to orthonormal bases. These operators are then formulated
in terms of orthonormal bases and the dual of these bases.

The following definition will be used throughout this book: For
any nonempty set S and any complex-valued function f defined
on S, the complex conjugate of f , denoted by f̄ , is defined, for
s ∈ S, by f̄(s) = f(s).

2.1 Inner Product Spaces

Let V be a complex vector space, i.e., a vector space over the
field of complex numbers C. An inner product in V is a function
〈·, ·〉 : V × V
perties: for x, y, z ∈ V and c ∈ C,

〈x, y〉 = 〈y, x〉 (conjugate symmetric),

〈x, x〉 > 0 if x �= 0 (positive),

〈x, x〉 = 0 ⇒ x = 0 (definite),

〈cx + y, z〉 = c〈x, z〉 + 〈y, z〉 (linear in the first variable).
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→ C which is required to satisfy the following pro-
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24 2 Linear Algebra

A vector space in which an inner product is defined is called an
inner product space.

Example 2.1.1. The complex Euclidean vector space C
n is an inner

product space with the inner product defined by

〈x, y〉 =

n∑
j=1

xj ȳj,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors in C
n.

Suppose that V is a complex inner product space. The norm
(or length) of a vector x ∈ V , denoted by ‖x‖, is defined to be the
(nonnegative) number

√〈x, x〉. Two vectors x and y in V are said
to be orthogonal or perpendicular (in symbols, x ⊥ y) if 〈x, y〉 = 0.
The linear, positive and definite properties of the inner product
imply that the zero vector is the only vector that is orthogonal
to every vector in V . Consequently, the norm of the zero vector is
equal to zero. A nonzero vector x is called a unit vector if ‖x‖ = 1.
A subset E of V is called an orthonormal set if every vector in
E is a unit vector and if every vector in E is orthogonal to every
other vector in E. If, in addition to being an orthonormal set, E
is a basis of V , then E is called an orthonormal basis.

There is a very useful inequality which guarantees that the
absolute value of the inner product of two vectors is never greater
than the product of the norms of the vectors involved. The men-
tioned inequality is known as Schwarz’s inequality. Although we
will use only Schwarz’s inequality (in the remark at the end of
Section 2.2 below, and in Sections 5.2 and 5.3), we also list other
well-known inequalities and identities involving norm of vectors in
the following theorem.

Theorem 2.1.1. Suppose that V is a complex inner product space.
The following inequalities and identities hold: for any x, y ∈ V ,

(i) (Bessel’s inequality) if {ej | j = 1, . . . , k} is an orthonormal
subset of V , then

k∑
j=1

|〈x, ej〉|2 ≤ ‖x‖2,

equality holds if and only if x =
∑k

j=1〈x, ej〉ej;
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(ii) (Schwarz’s inequality) |〈x, y〉| ≤ ‖x‖‖y‖, furthermore, if y �=
0, then equality holds if and only if x = cy, where c =
〈x, y〉/‖y‖2;

(iii) (Triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖, furthermore, if
y �= 0, then equality holds if and only if x = cy for some
nonnegative constant c;

(iv) (Pythagorean theorem) ‖x + y‖2 = ‖x‖2 + ‖y‖2 if x ⊥ y;
(v) (Parallelogram law) ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Proof. (i) For the Bessel inequality, we note that

0 ≤
∥∥∥x −

k∑
s=1

〈x, es〉es

∥∥∥2

= ‖x‖2 −
k∑

s=1

〈x, es〉〈es, x〉 −
k∑

s=1

〈x, es〉〈x, es〉

+
k∑

s, t=1

〈x, es〉〈x, et〉〈es, et〉

= ‖x‖2 −
k∑

s=1

|〈x, es〉|2.

(ii) The Schwarz inequality holds trivially if y = 0. For y �= 0 it
is a special case of the Bessel inequality, in which the orthonormal
set is taken to be the set {y/‖y‖} consisting of only one vector.

(iii) We use the Schwarz inequality to prove the triangle
inequality. Denote the real part of a complex number z by Re z.
Since

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉 (2.1)

≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉| (by the fact that Re z ≤ |z|)
(2.2)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ (by the Schwarz inequality)
(2.3)

= (‖x‖ + ‖y‖)2,

the triangle inequality follows.
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If y �= 0, then ‖x+y‖ = ‖x‖+‖y‖ if and only if we have equal-
ity in (2.2) and (2.3) or, equivalently, Re〈x, y〉 = 〈x, y〉 = ‖x‖‖y‖.
By the Schwarz inequality, the latter equality is equivalent to
x = cy, where c = 〈x, y〉/‖y‖2 ≥ 0.

The remaining statements (iv) and (v), that is, the Pythagorean
theorem and the parallelogram law, follow from (2.1).

There is a simple geometric interpretation of the Bessel inequal-
ity. Since the sum

∑k
j=1〈x, ej〉ej is the orthogonal projection of x in

the subspace spanned by the orthonormal vectors ej , j = 1, . . . , k,
the Bessel inequality states that the norm of any vector x is always
greater than the norm of its orthogonal projection in any finite-
dimensional subspace, unless the subspace in consideration con-
tains x, in which case x and its orthogonal projection are identical.

Remark. We shall use the same notation for inner products in all
inner product spaces; consequently, we shall use the same notation
to denote norms in all inner product spaces.

Let Λ : V → W be a linear operator, where W is also a complex
inner product space. The operator Λ is said to be an operator on
V if W = V , a linear functional if W = C, and an isometry if it
is one-to-one, onto, and preserves the inner product, i.e.,

〈Λ(x), Λ(y)〉 = 〈x, y〉

for all x, y ∈ V . It is easy to verify that the inverse of an isometry
is also an isometry. Hence, we can speak of an isometry between
two inner product spaces. Two complex inner product spaces V
and W are said to be isometric (in symbols, V � W ) if there is
an isometry between them.

2.2 Linear Functionals and Dual Spaces

Suppose that V is a complex inner product space (not necessarily
finite-dimensional). The set V ∗ of linear functionals on V is a
complex vector space with respect to the pointwise definition of
addition and scalar multiplication defined as follows: for f, g ∈ V ∗
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and c ∈ C, the sum of f and g, denoted by f + g, and the scalar
multiplication of f by c, denoted by cf , are defined by

(f + g)(x) = f(x) + g(x)

cf(x) = c(f(x))

for all x ∈ V . The vector space V ∗ is called the dual space of V .
To exhibit some elements of V ∗, for each y ∈ V , we define the

function �y : V → C by setting �y(x) = 〈x, y〉. Since the inner
product is linear in the first variable, �y is a linear functional on
V , that is, �y ∈ V ∗. In fact, every linear functional on V can be
obtained in this way if V is finite-dimensional. This is the main
content of the next theorem, which is a special case of a famous
theorem known as the Riesz representation theorem.

Theorem 2.2.1. Let V be a finite-dimensional complex inner
product space. The function � : V → C is a linear functional if
and only if there is a unique vector y in V such that �(x) = 〈x, y〉
for all x in V .

Proof. It remains to show only that if � is a linear functional on
V , then there is a unique y ∈ V such that �(x) = 〈x, y〉 for every
x ∈ V . Let n = dim V and let {bj}n

j=1 be an orthonormal basis for
V . If x ∈ V , then x can be written uniquely as

x =

n∑
j=1

〈x, bj〉bj .

Since � is linear, we have

�(x) =
n∑

j=1

〈x, bj〉�(bj)

=

n∑
j=1

〈x, �̄(bj)bj〉

=

〈
x,

n∑
j=1

�̄(bj)bj

〉

= 〈x, y〉,
where y =

∑n
j=1 �̄(bj)bj . To prove the uniqueness of y, assume

that there is another y′ ∈ V such that �(x) = 〈x, y′〉 for all x in
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V . It follows that 〈x, y − y′〉 = 0 for every vector x in V , whence
y − y′ = 0 or y = y′.

By Theorem 2.2.1, there is a one-to-one correspondence between
V and V ∗, which is given by v ↔ �v, where �v(x) = 〈x, v〉 for all
x ∈ V . Since

�cv = c̄�v and �v+v′ = �v + �v′ , (2.4)

for all v, v′ ∈ V and c ∈ C, the correspondence v ↔ �v, which is
conjugate linear, induces an inner product in V ∗ defined in terms
of the inner product in V by the equation

〈�v, �v′〉 = 〈v, v′〉. (2.5)

Consequently, the relation ‖�v‖ = ‖v‖ holds for every v ∈ V ;
i.e., every linear functional on V has finite norm or, equivalently,
bounded.

For each v ∈ V , the linear functional �v, called the dual of v, is
often denoted by v∗. With this notation, we have

v∗(x) = 〈x, v〉. (2.6)

In general, bases of V induce bases of V ∗. Furthermore, ortho-
normal bases induce orthonormal bases. A special case is illus-
trated next. Suppose that n = dim V and E = {ej | j = 1, . . . , n}
is an orthonormal basis for V . Since every element of V ∗ is of the
form v∗ for some

v =

n∑
j=1

〈v, ej〉ej ∈ V,

by (2.4) we have

v∗ =

n∑
j=1

〈v, ej〉 e∗j .

It follows that the set E∗ = {e∗j | j = 1, . . . , n} spans the space
V ∗. Moreover, the relation (2.5) implies that E∗ is an ortho-
normal set, hence it is an orthonormal basis of V ∗. Consequently,
we have dim V = dim V ∗. The basis E∗ is called the dual basis
of E.
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Remark. As mentioned, Theorem 2.2.1 is the finite-dimensional
case of the Riesz representation theorem. The main conclusion of
Theorem 2.2.1 is that every linear functional � is given in terms
of the inner product. Consequently, � is bounded. Observe that
any linear functional � defined in terms of the inner product as
�(x) = 〈x, y〉 for some fixed y is bounded regardless of the dimen-
sion of V . That is, |�(x)| ≤ ‖x‖‖y‖ for all x. This fact follows
from the Schwarz inequality. Thus, to modify the statement of
Theorem 2.2.1 to get a general version of the Riesz theorem for
infinite-dimensional Hilbert spaces we must add the hypothesis
that � is bounded. For a beautiful introduction to the topic of
Hilbert spaces and a nice proof of the Riesz representation theo-
rem see [4].

2.3 A Special Class of Linear Operators

It is simpler to define a general family of operators of which the
FT is a member than to define the FT itself. This is what we do
in this section.

Let S be any nonempty finite set and let VS be the set of all
complex-valued functions defined on S. Then VS is a complex vec-
tor space with respect to the pointwise definition of addition and
scalar multiplication. Furthermore, VS becomes an inner product
space with an inner product defined by setting

〈f, g〉 =
∑
s∈S

f(s)ḡ(s).

With this definition, it is simple to construct an orthonormal basis
for VS. For each s ∈ S, let δs : S → C be the function defined by

δs(t) =

{
1 if s = t,

0 if s �= t.

Then it is obvious that the set ΔS = {δs | s ∈ S} is an orthonormal
basis for VS, called the standard basis . Since S is a finite set, VS is a
finite-dimensional complex inner product space. In fact, VS � C

n,
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where n = |S|. Hence, S can serve as an index set for any basis
of VS.

Suppose, in addition to ΔS, that BS = {Bs | s ∈ S} is
another orthonormal basis of VS. Since every x ∈ VS can be written
uniquely as

x =
∑
s∈S

〈x, Bs〉Bs =
∑
s∈S

BsB
∗
s (x),

the identity operator on VS can be expressed uniquely in terms of
the basis BS and its dual B∗

S as

I =
∑
s∈S

BsB
∗
s . (2.7)

In terms of the dual basis Δ∗
S, we have

B∗
s =

∑
t∈S

〈B∗
s , δ

∗
t 〉δ∗t =

∑
t∈S

〈δt, Bs〉δ∗t ,

whence
I =

∑
s, t∈S

〈δt, Bs〉Bsδ
∗
t .

It follows that the image of any x ∈ VS under any linear operator
Λ on VS is given by

Λ(x) =
∑

s, t∈S

〈δt, Bs〉Λ(Bs)δ
∗
t (x).

Hence,

Λ =
∑

s, t∈S

〈δt, Bs〉Λ(Bs)δ
∗
t . (2.8)

In equation (2.8), for each s ∈ S, Λ(Bs) can be any vector in VS.
Now we single out an operator that maps Bs to the unique element
of the basis ΔS that is associated with Bs in a very natural way:
for a fixed s ∈ S, by (2.7),

Bs =
∑
t∈S

BtB
∗
t (Bs) =

∑
t∈S

δs(t)Bt. (2.9)

The uniqueness of this expression (of Bs in the basis BS) induces
a one-to-one correspondence Bs ↔ δs, which is independent of any
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enumeration (or indexing of elements) of the basis BS. Through
this correspondence, we define a linear operator F on VS by setting
F(Bs) = δs for every s ∈ S.

The next theorem follows from the definition of F and equa-
tion (2.8).

Theorem 2.3.1. Assume the following:

(a1) S is a nonempty finite set and VS is the associated inner
product space of complex-valued functions on S;

(a2) ΔS = {δs | s ∈ S} and BS = {Bs | s ∈ S} are two ortho-
normal bases of VS, where ΔS is the standard basis;

(a3) F is the linear operator on VS such that F(Bs) = δs for every
s ∈ S, where δs is the unique vector in ΔS associated with Bs

by equation (2.9).

Then

(c1) F =
∑

s, t∈S〈δt, Bs〉δsδ
∗
t ,

(c2) F is an isometry, and
(c3) Ff(s) = 〈f, Bs〉, for any f ∈ VS. (Here we write Ff for

F(f).)

The complex number 〈f, Bs〉 is called the s-coefficient of f in
the orthonormal basis BS.

If G is a finite Abelian group, the FT on G is the linear operator
F described in Theorem 2.3.1 with respect to a particular ortho-
normal basis BG, which we will define in the next chapter.

Exercises.

.5 Let V be a complex vector space, not necessarily finite-
dimensional. Is every non-identically zero linear functional
on V surjective?

.6 Let V be a finite-dimensional complex vector space, not
necessarily an inner product space.

(i) Assume that f and g are linear functionals on V and
that f(x) = 0 whenever g(x) = 0. Show that f = cg for
some constant c.
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(ii) Let {b1, . . . , bn} be a basis of V and let {c1, . . . , cn} be
any set of constants. Show that there is a unique linear
functional f on V such that f(bj) = cj for j = 1, . . . , n.

(iii) Let x be a nonzero vector in V . Prove that there is a
linear functional f on V such that f(x) = 1.

(iv) Let f be a nonzero linear functional on V . Prove that
there is at least one vector x ∈ V such that f(x) = 1.

(v) Let f1, . . . , fn be linear functionals on V , where n <
dim V . Prove that there is a nonzero vector x ∈ V such
that fj(x) = 0 for j = 1, . . . , n.

.7 Let V be an inner product space, not necessarily finite-
dimensional, with the underlying field of scalars F, where
either F = R or F = C. Let x and y be two vectors in V ,
prove the following statements:

(i) If F = R and ‖x‖ = ‖y‖, then (x + y) ⊥ (x − y).
(ii) If F = R, then x ⊥ y if and only if ‖x+y‖2 = ‖x‖2+‖y‖2.
(iii) If F = C, then x ⊥ y if and only if ‖x + cy‖2 = ‖x‖2 +

‖cy‖2 for every complex number c.

.8 Let F−1 denote the inverse of F . For f ∈ VS, prove that

f =
∑
s∈S

〈Ff, δs〉Bs and F−1f =
∑
s∈S

〈f, δs〉Bs.
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