Chapter 12

Dryland Rivers: Processes and Forms

D. Mark Powell

Introduction

Dryland alluvial rivers vary considerably in charac-
ter. In terms of processes, high energy, sediment-laden
flash floods in upland rivers contrast dramatically with
the low sediment loads and languid flows of their low-
land counterparts while from a form perspective, the
unstable wide, shallow and sandy braid plains of pied-
mont rivers are quite different from the relatively sta-
ble, narrow, deep and muddy channels of anastomosing
systems (Nanson et al. 2002). It is also apparent that
few, if any, morphological features are unique to dry-
land rivers. The variety of dryland river forms and the
absence of a set of defining dryland river characteristics
makes it difficult to generalise about dryland rivers and
raises questions about whether it is necessary (or even
desirable) to consider dryland river systems separately
from those in other climatic zones. Indeed, as noted in
the introduction to this volume, the recent shift away
from the study of morphogenesis within specific cli-
matic regimes (e.g. Tricart and Cailleux 1972) towards
the study of geomorphological processes per se (e.g.
Bates et al. 2005) has largely undermined the distinc-
tiveness of desert geomorphology. This is not to say
rivers draining different climatic regions do not differ
in aspects of their behaviour. They clearly do, as ex-
emplified in several reviews of tropical (Gupta 1995),
periglacial (McEwen and Matthews 1998) and dry-
land (Graf 1988; Knighton and Nanson 1997; Reid
and Frostick 1997; Tooth 2000a) fluvial geomorphol-
ogy. However, given the diversity of dryland river mor-
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phologies, and the fact that many of the forms are
shared by rivers that drain other climatic zones, it is far
from clear how far dryland rivers can be categorised as
a distinctive group and whether such a categorisation
provides a suitable basis for developing an understand-
ing of them. On this basis, rather than attempt to under-
stand dryland rivers as a distinctive and definable group
of rivers, this chapter seeks explanations for the charac-
ter (the diversity, distinctiveness and, in some cases, the
uniqueness) of dryland rivers in terms of the operation
of geomorphological processes as they are mediated by
the climatic regime. Because the multivariate and in-
determinate nature of river channel adjustment makes
it difficult to describe directly the three-dimensional
subtleties of channel form, the chapter follows the ap-
proach of Ferguson (1981) and concentrates on three
separate two-dimensional views in turn: the channel
cross-section (size and shape), planform geometry and
longitudinal profile. Adjustments to the configuration
of channel bed sediments are also considered. Since
the form of alluvial rivers evolves in response to the
movement of bed material, the chapter starts by con-
sidering the dynamics of solute/sediment transport in
dryland rivers. A discussion of dryland river hydrology
can be found in the preceding chapter.

Solute and Sediment Transport

Although the geomorphological effectiveness of
fluvial activity in dryland environments is widely
recognised (e.g. Graf 1988; Bull and Kirkby 2002),
our understanding of key processes is far from com-
plete. Relatively little is known about the transport of
solutes in dryland streams. The paucity of information
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on water chemistry reflects the limited importance
of solution to dryland denudational processes (Mey-
beck 1976) and the fact that solute transport has little
effect on channel form and stability. Recent work,
however, has highlighted a growing awareness of
the importance of floodwater chemistry for aquatic
ecology (Grimm et al. 1981; Davies et al. 1994;
Costelloe et al. 2005; Smolders et al. 2004), the cy-
cling of nutrients (Sheldon and Thoms 2006) and the
properties of alluvial soils (Jacobson et al. 2000a) and
geochemical sediments (McCarthy and Ellery 1995;
Khadkikar et al. 2000; Nash and McLaren 2003) in
dryland environments. Much more is known about the
transport of sediments. In terms of the movement of
bed material, a basic distinction can be made between
sand- and gravel-bed rivers (Parker 2008, p. 178-182).
In general, sand-bed rivers are dominated by high
excess shear stresses and suspended sediment transport
while gravel-bed rivers are dominated by low excess
shear stresses and bedload transport. Most work in
dryland streams has focussed on understanding the
dynamics of suspended sediment transport. Direct
measurements of bedload are notoriously difficult
to make and the logistical and practical difficulties
are enhanced considerably by the uncertainty, unpre-
dictability and infrequency of rainfall and runoff in
dryland environments. Consequently there are few data
sets documenting the dynamics of bedload transport in
dryland rivers.

Dissolved Load

Since dissolved materials mix readily in turbulent
flow, solute concentrations in streams and rivers are
conventionally determined from a single, mid-stream
sample. Solute monitoring programmes usually adopt
discrete sampling methods (either manual or auto-
matic) although an increasing number of water-quality
parameters can be measured continuously in sifu.
Concentrations of total dissolved solids, for example,
are routinely derived from measurements of electrical
conductivity (specific conductance SC; nS em™h)
which are converted to ionic concentrations with
the aid of ion-specific calibration curves. Since the
relationship between electrical conductivity and ionic
concentration is temperature dependent, conductance
values are usually adjusted to a standard temperature

of 25°C. Concentrations are expressed in units of
mass per volume (mgl~') or mass per mass (parts
per million; ppm). The units are usually used inter-
changeably even though a density correction should be
applied to account for variations in fluid density due
to temperature and solute concentration (USGS 1993).
The unit of micro moles per litre (wmol17) is used
for chemical mass-balance calculations.

The relationship between solute concentration (Cc;
mg 17") and discharge (Q; m? s™!) is usually modelled
as the power function

Cec =aQ® (12.1)
in which the empirical coefficients a and b are fitted
by ordinary least squares regression. Typically, b < 0
indicating that solute concentrations decrease with dis-
charge (Walling and Webb 1983) reflecting the dilu-
tion effect by stormflow of low ionic status. Classic di-
lution effects have been observed in dryland settings.
Hem (1985) for example attributed a decline in electri-
cal conductance in the San Francisco River, Arizona
to stormflow dilution of heavily mineralised peren-
nial spring waters (Fig. 12.1a). A mixing model utilis-
ing mass balance equations for three sources of runoff
(spring water, baseflow and storm runoff) provides a
good fit to the observed data. Dilution concepts may,
however, be less useful in ephemeral streams due to the
absence of base flow and the high velocities of overland
flow which limit the length of time runoff has to react
to near-surface rock and soil minerals. In the ephemer-
ally flowing Nahal Eshtemoa in Southern Israel, for
example, marked variations in solute concentrations
are only observed during the rising stages of the flood
pulse and are attributed to the flushing of solutes from
the watershed at the onset of the event (Fig. 12.1b).
Thereafter, the ionic concentrations and composition
of rainfall and runoff are broadly comparable. Similar
flushing effects have been observed in the Gila River
near Fort Thomas in Arizona (Hem 1948) and may
explain the chemical changes observed during flash
floods in Sycamore Creek (Fig. 12.1c) and KR Wash,
also in Arizona (Fisher and Minckley 1978; Fisher and
Grimm 1985). The data from Sycamore Creek also
highlights the contrasting behaviour of different solutes
during flood events.

In a spatial context, solute concentrations in dryland
rivers have been found to increase downstream due
to flow attenuation by transmission losses (Jacobson
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Fig. 12.1 Chemical characteristics of flood waters in (a) San
Fransisco River, Arizona (after Hem 1985), (b) Nahal Eshtemoa,
Israel (after Alexandrov 2005) and (¢) Sycamore Creek, Arizona

et al. 2000b). In terms of organics, several authors
have noted that dryland rivers transport high concentra-
tions of dissolved and particulate organic matter (Jones
et al. 1997; Jacobson et al. 2000b). The comparatively
high organic matter loadings of dryland streams have
been attributed to lower mineralisation rates, limited
sorption of dissolved organic matter in sandy soils and
the rapid concentration of runoff into channels (Mul-
holland 1997).

Suspended Sediment

The properties of suspended sediment are usually mea-
sured using extracts of water-sediment mixtures (Ed-
wards and Glysson 1999) but they can also be mea-
sured in situ using optical sensors (Gippel 1995). There
are significant spatial and temporal heterogeneities in
suspended sediment concentrations so measurements
must be made within an appropriate sampling frame-

T T T
11:00 12:00 13:00 14:00
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(after Fisher and Minckley 1978). The curve in (a) represents the
fit of a three-source mixing model to the data

work to prevent sampling bias (Meade et al. 1990;
Hicks and Gomez 2003).

Although suspended sediment loads reflect a wide
range of climatic, topographic, lithological and anthro-
pogenic controls (Lvovich et al. 1991), rivers drain-
ing areas of low precipitation are frequently distinc-
tive in terms of high suspended sediment concentra-
tions (Walling and Kleo 1979; Alexandrov et al. 2003).
One of the most sediment-laden rivers on Earth is
Rio Puerco in semi-arid New Mexico. Concentrations
in excess of 600,000 ppm are routinely measured at
the USGS gauging station near Bernardo and the 50-
year average annual suspended sediment concentra-
tion of 113,000 ppm ranks fourth highest in a global
comparison of sediment load data for selected world
rivers (Gellis et al. 2004). In fact, the transport of hy-
perconcentrations of suspended sediment (defined as
those in excess of 400,000 ppm) is a frequent occur-
rence in many dryland rivers (Lane 1940; Beverage
and Culbertson 1964; Gerson 1977; Stoddart 1978;
Walling 1981; Lekach and Schick 1982; Xu 1999).
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As for solutes, the relation between concurrent
measurements of suspended sediment concentration
(Cs; mgl~! or ppm) and discharge is convention-
ally modelled by a power function (Equation 12.1).
Unlike the solute case, however, the exponent (b) is
typically greater than zero indicating that suspended
sediment concentrations increase with discharge
(Fig. 12.2).

Frostick et al. (1983) note that suspended sediment
rating curves for dryland streams are associated with
higher coefficients (a) and lower exponents (b) than
those derived for humid-temperate streams. The dif-
ference in coefficients is indicative of the transport
of larger suspended sediment loads at low discharges.
The difference in exponents indicates that dryland sus-
pended sediment concentrations are less sensitive to
changes in discharge. In fact, sediment concentrations
in dryland environments increase at a rate less than
a proportionate increase in discharge (b < 1) which
is in contrast to humid-temperate streams for which
b normally lies in the range 2-3 (Leopold and Mad-
dock 1953).

Measurements of suspended sediment incorporate
both wash load and suspended bed material load. The
former is fine-grained sediment, typically fine sands,
silts and clays, delivered to the channel with hillslope
runoff. The latter comprises coarser material sourced
from the instream sediments. Although the two com-
ponents cannot be separated unequivocally, an arbitrary
distinction can often be made on the basis of sediment
size by comparing bed material and suspended sedi-
ment grain size distributions (Fig. 12.3).
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Fig. 12.2 Suspended sediment rating curve for the Katiorin
catchment, central Kenya (after Sutherland and Bryan 1990).
is the coefficient of determination of the fitted rating relation

Suspended Bed Material Load

It has long been appreciated that bed material is sus-
pended into the flow by the action of coherent turbulent
flow structures or eddies (e.g. Sutherland 1967; Jack-
son 1976). More recent work has illuminated the hy-
drodynamics of particle suspension in considerable de-
tail. Over smooth boundaries (e.g. planar beds of sand-
sized sediment), eddies originate as hairpin vortices
from alternate zones of high and low speed within the
viscous sublayer (see review by Smith 1996). Similar
structures are observed in flows over gravel-sized sed-
iment and over bedforms due to the shedding of wakes
from individual clasts (Kirkbride 1993) and from the
shear layer that forms due to flow separation down-
stream of bedform crests (McLean et al. 1996). Of par-
ticular importance to the suspension of bed material is
the violent ejection of low momentum fluid from the
bed during turbulent motions (Lapointe 1992; Garcia
et al. 1996). These flow ejection events, or ‘bursts’, lift
particles into the flow and oppose the tendency for the
uplifted grains to settle under the influence of gravity.

According to this model, a particle will remain sus-
pended in the flow providing the vertical turbulent ve-
locity fluctuations exceed the particle’s fall velocity.
Consequently, the competence of a turbulent flow to
transport sediment in suspension is commonly defined
by the criterion

Voo > 1 (12.2)

in which v’ is the maximum root-mean-square verti-
cal turbulent velocity fluctuation (m s~!) and w, is the
mean settling velocity of the suspended sediment (m
s~1). For shear turbulence, there is abundant experi-
mental evidence that the upward components of ver-
tical velocity fluctuations (vu,,’ ;m s_l) are, on aver-
age, greater than the downward components (vg,"; m
s~ 1) and that v’ is proportional to the shear velocity, u,
(m s~'; McQuivey and Richardson 1969; Kreplin and
Eckelmann 1979). Using the assumptions v,," = 1.6v’
and v = 0.8u,, Bagnold (1966) expressed Equa-
tion 12.2 in terms of Shields’ dimensionless bed shear
stress, T,

T
(os — pr)gD

*

T = (12.3)

where © = bed shear stress (N m—2), ps = density of
sediment (kg m™?), pf = density of flow (kg m™3),
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Fig. 12.3 Using grain size to distinguish between wash mate-
rial and bed material in suspended sediments. (a) Bed material
and suspended sediment size distributions in the Rio Grande at
Otowi Bridge, New Mexico (after Nordin and Beverage 1965).
Suspended sediment finer than 0.125 is not represented in the bed
and is assumed to be wash load. (b) Wash load and suspended
sediment concentrations in the Paria River at Lees Ferry, Ari-
zona 1954-1965 (after Gregory and Walling 1973). Wash load

g acceleration due to gravity (m s~2) and D
particle size (m) to give a suspension threshold, 7.

2
* 0)0

‘L’S =
1.56 (ps/pf — 1)gD

(12.4)

concentrations frequently depart from simple bivariate rating re-
lations (Equation 12.1) because of catchment controlled vari-
ations in sediment supply. (c¢) Vertical distribution of different
sediment sizes in the Mississippi River at St Louis, Montana (af-
ter Colby 1963). Vertical concentration gradients are commonly
uniform for wash load and steeply decreasing away from the bed
for suspended bed material load. Values of the Rouse number (Z)
from Allen (1997 p. 197)

For grain and flow densities of 2750 and
1000kgm™3 respectively, the expression simpli-
fies to

*

0.4 w?
TS D
g

(12.5)
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Fig. 12.4 Plot of the Bagnold (1966) suspension criterion along
with the Shields bedload entrainment function (after Leeder
et al. 2005). Alternative suspension criteria are reviewed by Gar-
cia and Parker (1991)

The Bagnold suspension criterion (Equation 12.5)
is plotted in Fig. 12.4 along with the Shields curve for
the initiation of bedload movement as defined by Miller
et al. (1977). Taken together, the two competence crite-
ria define four fields of sediment transport. Fields 1-3
relate to the transport of bed material. Field 4 relates
to the transport of material already held in suspension
(i.e. the wash load). Since the transport of wash load
is dependent on rates of sediment supply from catch-
ment hillslopes rather than the competence of the flow,
a functional understanding of the suspended bed mate-
rial load in relation to channel hydraulics is restricted
to field 3 (Vetter 1937; Einstein and Chien 1953).

Methods for predicting the transport rate of sus-
pended bed material from flow and sediment charac-
teristics are based on models for the vertical concen-
tration and velocity profile in steady uniform flow (e.g.
Einstein 1950; van Rijn 1984; Fig. 12.5).

The suspended sediment transport rate per unit
width (qg) is given by

Y
qs :/uCS(Sy
y/

where u = flow velocity (m s~!); y is a near-bed ref-
erence height (m), Y = flow depth (m) and y = height
above the bed (m). The vertical velocity profile for a
steady uniform flow is given by

()
— = —loge | —
Uy K Yo

(12.6)

12.7)

\/
Y
Cs(y)

Fig.12.5 Sketch of velocity (u; m s~!') and sediment concentra-
tion profiles in steady, uniform open-channel flows (after Wright
and Parker 2004a). The vertical profiles of velocity and sediment
concentration can be modelled by the law of the wall (Equa-
tion 12.7) and the Rouse equation (Equation 12.8) respectively.
Y and y are flow depth (m) and height above bed (m) respectively
and x is distance downstream (m)

where uy = velocity at height y (m s71), uy = shear
velocity (m s~1), k is Von Karman’s constant (= 0.4)
and y, is the roughness length (m). Notwithstanding
recent advances in the dynamics of sediment suspen-
sions outlined above, models for the vertical suspended
sediment concentration profile rely on classical diffu-
sion theory. The Rouse equation balances the down-
ward settling of grains under gravity with their upward
diffusion due to turbulence to yield (Rouse 1937):

lay=-n-y)
Csy o y v/

(12.8)

where Csy is the concentration at height y (mg 1=,
Csy is the concentration at height y" (mg 171 and Z
is a dimensionless suspension parameter known as the
Rouse number. Since

Z = wo/PKus (12.9)

where P is the sediment diffusion coefficient (com-
monly assumed =~ 1), the Rouse number models the
concentration gradient by expressing the interaction
between the upward-acting turbulent forces and the
downward-acting gravitational forces. As shown in
Fig. 12.3c, low values of Z model the near-uniform
concentrations that result from fine particles (low
o) and high flow intensities (high u,). Conversely,
higher values of Z model the stronger concentration
gradients generated by larger particles and lower flow
intensities.
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Application of Equation 12.8 requires definition of
Csy/, a reference concentration at height y’ above the
bed. In the formulation of Einstein (1950), Csy is de-
fined at a distance y’ = 2D using the Einstein bed-
load equation. This, however, has been shown to over-
predict near-bed concentrations (Samaga et al. 1986).
A number of alternative entrainment functions have
subsequently been developed. Of these, Garcia and
Parker (1991) conclude that the functions of Smith and
McLean (1977) and van Rijn (1984), together with
their newly developed relation, performed best when
tested against a standard set of data.

Significant improvements to the models for uy
and Csy (Equations 12.7 and 12.8) have resulted
from a consideration of density stratification and
bedform effects (e.g. McLean 1991; 1992; Wright and
Parker 2004a,b). Sediment-induced density gradients
dampen turbulence and reduce the flux of mass and
momentum within the water column. The result is an
increase in mean flow velocity and a decrease in mean
sediment concentration. Since the concentration effect
dominates, the net effect is a reduction in transport
rate. Stratification also results in finer distributions of
suspended sediment because the largest sizes have the
strongest concentration gradients and are affected the
most by the reduction in vertical mixing. Bedform ef-
fects reflect the hydraulic consequences of form drag.
For a given mean flow velocity, form drag increases
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the total drag (and hence the carrying capacity of the
flow) while decreasing skin friction (the ability of the
flow to entrain sediment). Because the former usually
dominates, the net effect is also a reduction in transport
rate. In the suspended load equation of Wright and
Parker (2004b), density stratification effects in both
velocity and concentration profiles and the effects
of bedforms on flow resistance are addressed using
relations based on Wright and Parker (2004a) and
Engelund and Hansen (1967) respectively. Estimates
of near-bed sediment concentrations are made using a
modified version of the entrainment function presented
in Garcia and Parker (1991). The relation was tested
using the data of Toffaleti (1968). Although the model
yields reasonably good predictions of suspended
sediment concentrations and size distributions, the
test is restricted to relatively low concentrations (Cs
<600mgl~!). It remains to be seen whether the
equation can successfully predict the higher suspended
sediment concentrations commonly found in dryland
fluvial systems. One model that has been tested in a
dryland environment is that due to Laursen (1958).
The model was tested by Frostick et al. (1983) in
the Il Kimere, a sand-bed stream in the semi-arid
province of northern Kenya. The semi-empirical rela-
tion makes good predictions of suspended sediment
concentrations for those size classes that make up
the bed material (Fig. 12.6a). Applications of the

—
102 108 104

Predicted suspended sediment concentration, mgl—1

1 101

Fig. 12.6 Relations between observed and predicated concen-
trations of suspended bed material in (a) Il Kimere Kenya (after
Frostick et al. 1983) and (b) Walnut Gulch, Arizona (after Re-
nard and Laursen 1975). Predictions due to Laursen (1958). Fig-
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ure 12.6b shows the sensitivity of the predicted concentrations
to variations in bed material size (as modelled by the mean (D)
and standard deviation (o) of the size distribution) and channel
roughness (as modelled by Manning’s roughness coefficient; n)
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model in Walnut Gulch in SE Arizona were also
reasonable, (Fig. 12.6b) though the model is very
sensitive to poorly constrained input parameters
such as bed material size distribution and channel
roughness.

It is worth noting that several sediment- and
hydraulic-related phenomena of particular relevance
to dryland fluvial systems have yet to be incorporated
into models of suspended sediment transport. For
example, dryland flow events are often unsteady and
commence as a flood bore travelling over a dry bed.
Recent research into the turbulence characteristics
of unsteady flows has demonstrated that turbulence
is higher on the rising limb of a hydrograph than it
is on the falling limb (Song and Graf 1996; Nezu
et al. 1997) with potential consequences for differ-
ential suspension of bed material during rising and
falling flood stages. Other workers have highlighted
the potential for turbulence-induced scouring at the
front of advancing bores (Capart and Young 1998).
This may explain the finding that peak suspended
sediment concentrations in floods that propagate over
a dry bed are often associated with the bore rather
than the peak discharge (e.g. Frostick et al. 1983;
Dunkerley and Brown 1999; Jacobson et al. 2000b).
If so, it suggests that the increase in turbulence at the
bore is more than sufficient to counteract any reduction
in transport capacity due to the entrainment of air
into the bore and the consequent reduction in relative
sediment density (Chanson 2004). Finally, Dunkerley
and Brown (1999) speculate that the infiltration of
sediment suspensions into unsaturated porous bed
material may be an important mechanism controlling
suspended sediment concentrations in dryland rivers.
Confirmation of this phenomenon and elucidation of
the controls requires careful study of the infiltration
of sediment suspensions into unsaturated porous bed
materials.

Wash Load

Since a considerable proportion of the sediment
carried in suspension by dryland rivers is fine-grained
wash load, the suspended sediment dynamics of
many dryland streams are complicated by issues
pertaining to the availability of sediment on hillslopes.
Figure 12.7, for example, shows the variation in
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Fig. 12.7 Variations in suspended sediment concentrations dur-
ing four storms in Walnut Gulch, Arizona (after Renard and
Laursen 1975). Compare with Fig. 12.6b

suspended sediment concentrations with discharge
during four storm events in Walnut Gulch in south
eastern Arizona. It is apparent that concentrations
vary by almost an order of magnitude at any specified
discharge. Since suspended sediment concentrations
for individual events are higher during rising stages
than they are at similar discharges during falling
stages, much of the scatter can be attributed to clock-
wise hysteresis in flood-period suspended sediment
transport.

Similar storm-period variations in dryland sus-
pended sediment concentrations have been observed
in Upper Los Alamos Canyon, New Mexico (Malmon
et al. 2004), several central Kenyan rivers (Syrén 1990;
Sutherland and Bryan 1990; Ondieki 1995), the
Nahal Eshtemoa, Israel (Alexandrov et al. 2003;
2006), Sycamore Creek, Arizona (Fisher and Minck-
ley 1978) and the Burdekin River, Queensland (Amos
et al. 2004) and have been attributed to the flushing
and subsequent depletion of the most readily mo-
bilised sediment following the generation of runoff
on hillslopes and in channels. Sediment supply issues
are also important at longer-time scales. Khan (1993)
attributed the seasonal decline in suspended sediment
concentrations in the Sukri and Guhiya Rivers in
western Rajasthan, India to the progressive exhaustion
of fine grained sediment deposited on catchment hill-
slopes by aeolian processes during the preceeding dry
season (see also Amos et al. 2004). Time-conditioned
processes of sediment accumulation and subsequent
depletion have also been shown to control suspended
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sediment concentrations in the hyper-arid Nahal Yael
in southern Israel (Lekach and Schick 1982). In this
case, much of the sediment load is sourced from the
products of hillslope weathering rather than aeolian
deposition.

In many of these studies, the inter- and intra-event
time-dependencies in suspended sediment concen-
trations are strongest for, or even exclusive to, the
fine fractions sourced from outside the channel (i.e.
the wash load). In other dryland streams, however,
hydrologic control has been shown to extend across
the full range of grain sizes so that the behaviour of
wash and suspended bed material is not so different.
In I Kimere, for example, suspended sediment con-
centrations for individual size classes, including wash
material, show good correlations when rated against
discharge (Frostick et al. 1983; Fig. 12.8a). Since
coarser fractions are associated with progressively
steeper rating relations, the suspended sediment size
distribution changes systematically with the flow (Reid
and Frostick 1987; Fig. 12.8b).

The hydraulic control of overall suspended sedi-
ment concentrations and grain size in Il Kimere is at-
tributed to the combined influence of abundant and
readily transportable sediment of all sizes on sparsely
vegetated hillslopes and in unarmoured sandy channel
fills and the efficiency and effectiveness by which over-
land flow routes sediment into the channel network.
Similar factors were invoked by Belperio (1979) to ex-
plain the high correlation observed between wash load
concentration and discharge in the Burdekin River,
Australia.

Notwithstanding these studies, the general implica-
tion of the work discussed above is that catchment-
controlled sediment supply issues are significant con-
trols on suspended sediment behaviour in dryland en-
vironments. As illustrated by Alexandrov et al. (2003;
2006) an improved understanding of suspended sed-
iment dynamics in dryland streams requires the de-
velopment of supply-based models that account for
the distribution of sediment sources and the spatio-
temporal complexity of rainfall-runoff patterns within
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progressive shift and change in shape with decreasing flow ve-
locity reflects the dropping-out of coarse bed-material entrained
by turbulent suspension at peak flows and the increasing domi-
nance of finer sediment generated by wash processes on catch-
ment hillslopes
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dryland catchments. Such models should also account
for drainage net influences on water and suspended
sediment delivery which have been shown to control
the sedimentological character of channel fills (Fro-
stick and Reid 1977) and the type of hysteretic pat-
tern exhibited by suspended sediment rating curves
(Heidel 1956).

Bedload Transport

A wide variety of indirect and direct approaches have
been used to study bedload transport processes in dry-
land rivers. Indirect approaches, including reservoir
sedimentation studies and particle tracing programmes,
are useful in that they do not require personnel to be
onsite during flow events. This is of considerable ad-
vantage given the ephemeral discharge regime of many
dryland fluvial systems. They also provide data that in-
tegrate hydrologic, hydraulic and sedimentolgical re-
sponses over a wider range of spatial and temporal
scales than is usually possible using direct methods.
As a consequence, however, much detail relating to
the hydrodynamics of bedload transport processes is
lost which can compromise understanding (Schick and
Lekach 1993). Such information can be gained from
direct and contemporaneous measurements of bedload
transport rates and hydraulic parameters during flow
events. Although this is an onerous and difficult un-
dertaking in environments where floods are infrequent
and unpredictable and where access may be restricted,
many of the practical and logistical constraints can be
overcome by using automated sampling technologies.

Indirect Measurement Methods

Reservoirs are effective sediment traps and con-
ventional terrestrial and/or bathymetric surveys of
reservoir sedimentation provide a well-tested method-
ology for assessing sediment delivery processes
and yields in dryland catchments (Laronne 2000;
Haregeweyn et al. 2005; Griffiths et al. 2006). Al-
though most studies do not distinguish between
sediment delivered as bedload and as suspended
load, such a distinction can often be made since the
coarser bedload is generally deposited in prograding

deltaic lobes at the reservoir entrance whilst the finer
suspended sediment disperses and settles throughout
the reservoir. A reservoir survey was used to quantify
the bedload yield of Nahal Yael in the hyper arid
southern Negev Desert (Schick and Lekach 1993). The
volume of sediment stored within the reservoir delta
over a 10-year period was equivalent to a bedload
yield of 116 t km~2 yr—! which represented two-thirds
of the total sediment yield for the 0.5 km? catchment.
Although bedload is commonly believed to be more
significant in dryland environments than it is in humid-
temperate environments (Schumm 1968), the ratio of
bedload to suspended load is generally less than 0.5
(Graf 1988 p. 139; Powell et al. 1996). The dominance
of the bedload contribution to Nahal Yael’s sediment
yield can be attributed to high magnitude events,
steep hillslopes and channels, an abundant supply of
coarse-grained sediment on debris-mantled hillslopes
and in channel bars and strong hillslope-channel
coupling.

Particle tracing techniques (Hassan and Erginzinger
2003) can be used with relative ease in ephemeral
rivers because the nature of the discharge regime
facilitates tracer relocation and recovery after flood
events. Most work has focused on the movement
of gravel-sized sediment because of the technical
difficulties associated with tagging and tracing finer
particles. Detailed tracer-studies of bedload movement
in gravel-bed dryland streams have been undertaken in
the Negev and Judean Deserts of Israel (Hassan 1990,
1993; Hassan et al. 1991). The results indicate that
the travel distances of individual particles during
individual events are not correlated with particle size
(Fig. 12.9a). Although this conclusion is consistent
with field studies in humid temperate environments
(e.g. Stelczer 1981) and reflects the stochastic nature of
sediment transport (Einstein 1937), it should be noted
that the narrow tracer distributions rather precludes
an examination of the relative mobility of different
sizes. In terms of mean travel distances, the data
conform to models of size selective bedload transport
in which mean travel distances of particles in the
ith size class (L;, m) decrease with increasing mean
particle size of that class (Dgj, m), though significant
departures are observed from the simple L; oc 1/ Dg;
relation that arises from traditional force balance
analyses (Fig. 12.9b). In particular, particle travel
distances for the finer sizes are relatively insensitive
to particle size. This result has been confirmed by
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bron, Israel. (b) Relation between scaled travel distance ((L;) =
L /ZDSO) and scaled particle size ((D;) = Dg;/Dys0 for gravel-

Wilcock (1997) and Ferguson and Wathen (1998) and
is attributed to the trapping-action of the bed-surface
pocket geometry which principally affects the finer
sizes (Einstein 1950).

Distributions of particle travel distances were
found to conform to the Poisson-based model of
Einstein (1937) and Sayre and Hubbell (1965; EHS)
and to the two parameter gamma function (Fig. 12.10).
The former yielded skew-peaked distributions, whilst
the latter gave monotonic (Fig. 12.10a—c) and skew-
peaked distributions (Fig. 12.10d-h). The monotonic
distributions were associated with relatively small
events in which a large number of particles moved
only a short distance. The skew-peaked distributions
were generated by the larger events in which particle
movements were more significant. The skewed models
did not fit the data as well as the monotonic models.
It is suggested, therefore, that the distributions are
only suitable for modelling the local dispersion of
sediment. More complex models are required to model
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bed rivers from a range of hydroclimatic regimes. EDso is the
mean distance of movement for the particle size group that in-
cludes the median size of the surface bed material (Dsg; m) and
Dysp is the median grain size of the subsurface material (m)

the longer travel distances of large events because
of complex bedload-bedform interactions such as
the movement of sediment into storage within bars
(see also Leopold et al. 1966; Hassan et al. 1999).
Particle travel distances are also affected by the sedi-
mentological environment: particles locked within the
surface layer, or buried within the subsurface material,
travel, in general, shorter distances than unconstrained
particles (Hassan 1993).

Tracers are often buried (e.g. Hassan 1990; Hassan
and Church 1994) as a result of scour and fill of the
stream-bed. Although scour and fill are characteristic
of all alluvial rivers, they are of particular significance
in many dryland environments where there is often an
unlimited supply of sand and fine gravel that is readily
entrained by infrequent, but intense flooding (Leopold
and Maddock 1953; Colby 1964; Foley 1978). Per-
haps the most extensive study of scour and fill in a
dryland channel is due to Leopold et al. (1966) who
measured stream-bed scour and fill at 51 cross-sections
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Fig. 12.10 Distributions of particle travel distances in two
gravel-bed streams in Israel (after Hassan et al. 1991). Travel
distances (L; m) have been normalised by the mean distance of

within a 10 mile section of a predominantly sand-
bedded arroyo in New Mexico. The results suggest that
the bed was scoured extensively during flood events
(mean scour depths varied with the square root of dis-
charge per unit channel width) but that compensat-
ing fill maintained the channel in approximate balance.
More intensive investigations into the variability and
pattern of stream-bed scour and fill at channel-reach
scales were conducted by Powell et al. (2005, 2006,
2007). These studies deployed dense arrays of scour
chains in three low-order channels of the Walnut Gulch
catchment in SE Arizona. Detailed statistical analyses
demonstrated that mean depths of scour increased with
event magnitude and that many populations of scour
depths were exponentially distributed (Fig. 12.11a).
Exponential model parameters (a; cm™!) collapse onto
a general trend when rated against shear stress in ex-

movement (L; m). n is the number of data. Only those particles
that moved are considered. Similar results are obtained for the
full data set

cess of a threshold shear stress for entrainment (t.),
thereby providing a means to estimate depths of scour
in comparable streams (Fig. 12.11b). In terms of spa-
tial patterns, active bed reworking at particular loca-
tions within the reaches resulted in downstream pat-
terns of alternate shallower and deeper area of scour
(Fig. 12.11c). During each event, compensating fill re-
turned the streams to preflow elevations indicating that
the streams were in approximate steady state over the
period of the study (Fig. 12.11d). The results support
the suggestion of Butcher and Thornes (1978) that sed-
iment storage does not exert a significant control on
sediment transfers through steep headwaters of dryland
channels.

Because of the ephemeral discharge regime, the
beds of dryland streams are readily accessible and post-
event measurements of particle travel distances and
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Fig. 12.11 Changes in stream bed elevations during individ-
ual events in a low order tributary of Walnut Gulch, Arizona
(the main channel of Powell et al. 2005). (a) Distributions of
scour depths for six events (after Powell et al. 2005). The events
are ordered by peak discharge (Qp; m? s~!). Distributions are
modelled using the one parameter exponential model. (b) Least
squares relationship between exponential model parameter and
excess shear stress (after Powell et al. 2005). The relationship
incorporates data from two additional channels and provides a
means to estimate depths of scour in similar streams. (¢) Spatial

patterns of stream-bed scour and fill for four flow events (after
Powell et al. 2006). Cross-section and scour chain locations are
shown in the top illustration. The dashed line shows the locus
of the maximum depth of scour. (d) Cumulative patterns of vol-
umetric scour (Vs; m?), fill (Vf; m?), net change (Vn=Vs—Vf;
m?) and average change in stream-bed elevation (z; m) at the
end of three flood seasons (after Powell et al. 2007). Aggrada-
tion and degradation fluctuated with no persistent temporal trend
so that sediment transfers did not lead to significant and progres-
sive change to the volume of sediment stored within the reach
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depths of stream-bed scour provide an attractive and
relatively inexpensive means to quantify rates of bed
material movement. The method utilises the relation

Qom = Up zs(1 — P)ps (12.10)
where qpm is the mass transport rate of bed material
(kg m~! s71), uy is the virtual rate of particle travel
(m s_l), z¢ and wy are the active depth and width of
the stream bed respectively (m), and p is the poros-
ity of the sediment (Hassan et al. 1992; Haschenburger
and Church 1998). Data from the Nahal Yatir in south-
ern Israel (see below) have been used to evaluate the
method in a dryland environment. Post-event estimates
of bedload yield based on the displacement of gravel-
tracers and the depth of scour and fill obtained by scour
chains are found to be very similar to that derived from
a bedload rating relation derived by direct monitoring
(Laronne pers comm.).

Direct Measurement Methods

Direct monitoring during flood events provides nu-
merous opportunities to develop further insights into
the dynamics of bedload transport in dryland envi-
ronments. Of particular significance are the studies
undertaken in Nahal Yatir and Nahal Eshtemoa, two
neighbouring upland gravel-bed rivers in the Northern
Negev Desert, Israel. In these streams, contemporane-
ous measurements of bedload discharge (qp; kg m™!
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Fig. 12.12 Monitoring bedload transport in Nahal Eshtemoa, Is-
rael. (a) Schematic diagram of the automatic sediment transport
monitoring station (after Powell et al. 1999). (b) View upstream
through the sediment transport monitoring station (after Powell
et al. 2003). Note the five Birkbeck-type bedload samplers in-

s~1) and shear stress during flash floods have been
obtained using automatic sediment transport monitor-
ing stations comprising a number of Birkbeck-type slot
samplers (Reid et al. 1980; Laronne et al. 1992) and
stage recorders (Fig. 12.12).

The studies show that the two streams are subject
to intense bedload activity (Fig. 12.13a). Maximum
recorded channel average transport rates are about
7kg m~! s~! (Reid et al. 1995, 1998) while rates as
high as 12.6kg m~' s~! are recorded at individual
samplers in Nahal Eshtemoa (Powell et al. 1999). The
high transport rates reflect the high transport stages
(= 1t/tc) generated by the flash floods. In Nahal
Eshtemoa, for example, all but three of the 19 flow
events monitored over a four-year study period gener-
ated transport stages of three or more and over 50%
generated transport stages greater than five (Powell
et al. 2003). As shown in Fig. 12.13a, the relationships
between channel-average shear stress and contempo-
rary channel average shear stress for nine events in
Nahal Eshtemoa and four events in Nahal Yatir are
unusually well defined. Moreover, the predictions of
several engineering formulae correspond closely to the
observed data suggesting that the measured transport
rates approximate the transport capacity of the flow
(Reid et al. 1996; Powell et al. 1999). The transport
of capacity loads and the simplicity and consistency
of the bedload response recorded in these two dryland
streams is in marked contrast to that observed in many
humid-temperate perennial streams. The differences
may be explained by the fact that the beds of Nahal
Eshtemoa and Nahal Yatir are not armoured (see

stalled across the width of the channel beneath the bridge and
the stage recorders extending up the approach reach. (¢) Flood
bore advancing over the bedload samplers in Nahal Eshtemoa
(after Powell et al. 2003)
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the equivalence of bedload and bed material grain size distribu-
tions at t/t. > 4 is indicative of partial transport (Wilcock and
McArdell 1993), size selective transport (Ashworth et al. 1992)
and equal mobility (Parker and Toro-Escobar 2002) respectively.
(c) Bed material and bedload grain size distributions in Nahal
Eshtemoa (fop; after Powell et al. 2003) and Nahal Yatir (bot-
tom; after Reid et al. 1995). The bedload size distribution in Na-
hal Eshtemoa represents the calibre of the material transported
out of the catchment over a four year period estimated using the
transport relation of Powell et al. (2001). The bedload size distri-
bution in Nahal Yatir represents the sediment that accumulated
in the centre sampler during four events as reported in Laronne
et al. (1994). The terms ‘bar’ and ‘flat’ refer to contrasting sedi-
mentary units within the reach (see Fig. 12.22a)
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below) which reduces well known sedimentological
constraints on sediment mobility and availability
(Laronne et al. 1994; Reid and Laronne 1995).

It is worth noting that other dryland streams demon-
strate more complex bedload responses to changes in
flow strength. In Nahal Yael in southern Israel, for ex-
ample, coarse grained sediment waves were found to
migrate through the measuring section every 40-50
min (Fig. 12.14). The origin of the waves is not known,
but may be related to catchment and network controls
on sediment delivery to the channels. Other workers
have highlighted the effect that unsteady flows have on
bedload transport rates due to the inability of the bed
to adjust as quickly as the flow (e.g. Plate 1994; Lee
et al. 2004). The implications of this and related work
for sediment transport in flashy dryland streams awaits
evaluation.
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Fig. 12.14 Variation in (a) water discharge, (b) concentration
of sediment load and (¢) median particle size of sediment load
during the event of 20 February 1970 in Nahal Yael, Israel (after
Lekach and Schick 1983). Bedload transport occurred as a series
of waves that formed independently of the pulses in discharge

In Nahal Eshtemoa, the bedload is fine grained at
low flow but coarsens with increasing shear stress,
converging with the grain size distribution of the bed
at high flows (Fig. 12.13b). The shift in bedload grain
size distribution with increasing flow strength accords
with the widely held view that transport is partial
and size selective at low excess shear stresses but
approaches a condition of equal mobility at high levels
of excess shear stress (see review by Gomez 1995).
Since flow duration increases with decreasing flow
magnitude, Wilcock and McArdell (1997) suggest that
partial transport is the dominant transport regime in
gravel-bed rivers and results in sediment loads that
are considerably finer than the bed material (see also
Leopold 1992; Lisle 1995). In Nahal Eshtemoa, partial
and size selective transport occurs for 73% of the
time the channel is competent to transport bedload.
The size distribution of the bedload modelled over
a four year period, however, is only slightly finer
than that of the bed material (Powell et al. 2001,
2003; Fig. 12.13c). Even though partial and size
selective transport conditions dominate and produce
bedload size distributions that are finer than the size
distribution of the bed material for the majority of
the time the stream is geomorphologically active, the
rate of transport of the coarser fractions that occurs
at high transport stages almost serves to compensate,
rendering the size distribution of the annual bedload
not that much finer than the bed material. A similar
evolution in bedload grain size is observed in Nahal
Yatir though the finer bed material ensures that the
partial transport domain is largely absent and that the
bed is fully mobilised for a greater proportion of time.
As a consequence, bed material and bedload grain
size distributions also show a close correspondence
(Laronne et al. 1994; Fig. 12.13c). A similar dynamic
is observed in Goodwin Creek, a seasonal stream in
north-central Mississippi (Kuhnle and Willis 1992).

Several authors have questioned whether there
are differences in the dynamics of bedload transport
between ephemeral and perennial rivers (e.g. Almedeij
and Diplas 2003, 2005). Reid et al. (1995) compared
bedload transport rates recorded in a number of
perennial and ephemeral/seasonal rivers (Fig. 12.15a).
They noted that Oak Creek (Oregan, USA; peren-
nial), Turkey Brook (England, UK; perennial) and
Nahal Yatir (Israel; ephemeral) define a relatively
consistent relation, but that data from East Fork River
(Wyoming, USA; perennial), Torlesse Stream (New
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Fig. 12.15 Dimensionless bedload transport rates as a function
of dimensionless shear stress in (a) one ephemeral (Yatir), one

Zealand; perennial) and Goodwin Creek (Mississippi,
USA; seasonal) are shifted to the right, suggesting
a different dynamic. However, Goodwin Creek and
East Fork River contain significant amounts of sand
which can be expected to augment transport rates in a
non-linear manner (Wilcock et al. 2001; Wilcock and
Crowe 2003). After accounting for the effect of sand on
gravel transport rates, Wilcock and Kenworthy (2002)
demonstrate that Oak Creek, Goodwin Creek and
the East Fork River collapse onto a single curve.
The implication of these comparisons is that bedload
transport rates measured in perennial and ephemeral
rivers fall on different parts of a single continuum that
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seasonal (Goodwin Creek) and four perennial streams (after Reid
et al. 1995) and (b) Nahal Yatir, Nahal Eshtemoa and Oak Creek

represents that the bedload-shear stress response of
gravel-bed rivers, a conclusion further supported by
the fact that the data from Nahal Eshtemoa (Israel,;
ephemeral) dovetails with the data from Oak Creek,
Turkey Brook and Nahal Yatir (Fig. 12.15b). This
issue is considered further in the context of stream-bed
armours (see below).

Channel Morphology

The morphology of alluvial channels develops through
spatially and temporally variable patterns of erosion,
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transport and deposition. Much of the research on
alluvial channel forms has been conducted in humid-
temperate rivers and is based on the identification and
analysis of equilibrium channel forms. Four aspects
of channel morphology are usually considered: (i)
the shape and size of the channel cross-section; (ii)
the configuration of the channel bed; (iii) the river
longitudinal profile and slope and (iv) the channel
pattern. This conceptual framework is adopted here
though it is recognised that our ability to make rational
generalisations about dryland river forms is hampered
by that fact that many dryland rivers fail to exhibit
equilibrium behaviour.

Channel Equilibrium and Formative
Events

Equilibrium concepts are relevant to medium
timescales over which, it is reasoned, rivers develop
a relatively stable and characteristic morphology
that allows them to transmit the imposed water and
sediment discharges (Mackin 1948; Leopold and
Bull 1979). Explanations for the form of channels in
equilibrium are usually sought in terms of a single
‘dominant’ or ‘formative’ discharge, a statistically-
or morphologically-based construct that replaces
the frequency distribution of flows. Wolman and
Miller (1960) defined the dominant discharge as the
flow which cumulatively transports the most sediment.
They argued that the geomorphological effectiveness
of a particular discharge magnitude is the product of

a

Fig. 12.16 (a) Generalised
magnitude-frequency
relationships of Wolman and

Magnitude or frequency

the sediment transported by an event of that magnitude
and its frequency of occurrence. Using a sediment
transport law and flood frequency distribution pa-
rameterised for humid-temperate conditions, they
demonstrated that the most effective flood is defined
by an event of moderate magnitude and frequency
(Fig. 12.16a). Other workers have defined dominant
discharge in terms of the flow that determines partic-
ular channel parameters such as the cross-sectional
capacity of the flow (Wolman and Leopold 1957)
or the wavelength of meander bends (Ackers and
Charlton 1970).

The extensive debate that surrounds the concepts
of dominant discharge and equilibrium adjustment is
beyond the scope of this review (see Phillips (1992)
and other papers from the 23rd Binghampton Sym-
posium; Thorn and Welford 1994; Bracken and
Wainwright 2006). It is worth noting, however, that the
explanatory power of the two concepts in dryland envi-
ronments is often questioned. The hydrological regime
of many dryland rivers generates large differences
between high and low flows and pronounced spatial
and temporal discontinuities in process operation
which makes the definition of formative discharges
and the recognition of equilibrium forms difficult
(Thornes 1980; Schick et al. 1987; Bourne and
Pickup 1999; Hooke and Mant 2000; Coppus and Ime-
son 2002). Moreover, many dryland rivers appear not
to exhibit equilibrium behaviour. As explained below,
this contrast between dryland and humid-temperate
river behaviour is due to fundamental differences in
magnitude-frequency relationships (Baker 1977) and
relaxation times (Wolman and Gerson 1978; Brunsden
and Thornes 1979).

Miller (1960). (b)
Modifications to the
magnitude-frequency
relationships of Wolman and
Miller (1960). After

Baker (1977)

Applied stress

Applied stress

—— Rate of transport
——— Frequency of flood occurence
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Baker (1977) re-evaluated Wolman and Miller’s
(1960; Fig. 12.16a) magnitude-frequency analysis in
a dryland context by arguing that in dryland environ-
ments, the mode of the flood frequency distribution
shifts left (because the ratio of high to small flow
events is larger) and that the sediment transport law
shifts to the right (because the sediments are generally
coarser and have higher entrainment thresholds). The
resultant increase in the magnitude and decrease in the
frequency of the flow that transports the most sedi-
ment implies that the rare catastrophic event is more
important in shaping dryland streams (Fig. 12.16b).
Moreover, Wolman and Gerson (1978) recognised that
the geomorphological effectiveness of high magnitude
flows is further enhanced in dryland rivers by the
limited occurrence of high frequency/low magnitude
flows and the absence of sediment-trapping vegetation
that facilitates channel recovery in humid-temperate
environments (Fig. 12.17a—c). Although active chan-
nels may show some short-term adjustment to the
prevailing hydrological regime, these equilibrium
channels are often superimposed on a palimpsest
disequilibrium morphology produced by more infre-
quent, higher magnitude events (Rhoads 1990) while
in hyper-arid environments, channel recovery may be
virtually non-existent such that successively larger
floods leave permanent imprints on the landscape
(Fig. 12.17d).

These climatically controlled contrasts in river be-
haviour can be characterised by the transient form ratio
(TF) defined as the ratio of the mean relaxation time
to the mean recurrence interval of significant channel
disturbing events (Brunsden and Thornes 1979). Flu-
vial systems for which TF < 1 can develop equilibrium
channel forms because they adjust to new conditions or
recover from flood-induced channel change before the
next major disturbance occurs (Fig. 12.17a,b). Many
dryland rivers, however, may be characterised by TF
> | with the result that channel forms display either
dis-equilibrium or non-equilibrium behaviour (Stevens
et al. 1975; Rhoads 1990; Bourne and Pickup; 1999;
Beyer 2006). As defined by Renwick, (1992), the for-
mer represents instances when the development of an
equilibrium state is precluded by long relaxation times
(Fig. 12.17c) while the latter occurs when systems
display no net tendency toward an equilibrium state
(Fig. 12.17d).

Tooth and Nanson (2000a) argue that non- or
dis-equilibrium channel behaviour is not a character-
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Fig. 12.17 Temporal changes in channel width in rivers from
different hydro-climatic regimes showing relaxation (recovery)
times following storm disturbances (after Wolman and Ger-
son 1978). Channel recovery following major flood distur-
bances occurs in response to sedimentation during frequent low-
magnitude restorative flows and occurs most rapidly and effec-
tively in humid-temperate environments. TF is the transient form
ratio of Brunsden and Thornes (1979). Equilibrium terminology
after Renwick (1992)

istic of all dryland rivers. They suggest that that the
potential for dryland rivers to develop an equilibrium
channel form is a function of local hydrological,
geomorphological and sedimentological conditions.



352

D.M. Powell

High energy environments with low erosion thresholds
(steep, low-order rivers subject to short-lived high
magnitude flash floods carrying large amounts of
coarse bedload) favour the development of non- (dis-)
equilibrium channels whilst lower energy environ-
ments with higher erosion thresholds (medium -
large low gradient rivers with resistant, confining
banks subject to long duration floods) favour the
development of equilibrium forms. The latter con-
ditions typify the medium-large sized catchments of
the Northern Plains and Channel Country of central
Australia where channels meet several criteria said to
characterise equilibrium conditions (stability despite
the occurrence of large floods, sediment transport con-
tinuity, strong correlations between channel form and
process; an adjustment to maximise sediment transport
efficiency).

Cross-Sectional Form

The dominant control on the cross-sectional dimen-
sions of a river is discharge. This is perhaps best
illustrated by Ferguson’s (1986) observation that
channel width and depth increase systematically with
increasing bankfull discharge as it varies over nine
orders of magnitude from small laboratory channels to
the world’s largest rivers. Empirical geomorphological
investigations of the relationships between channel
geometry and stream discharge have traditionally fol-
lowed the downstream hydraulic geometry approach of
Leopold and Maddock, (1953) in which downstream
changes in width (w; m), depth (y; m) and velocity
(u; m s~!) are expressed as power functions of an
assumed dominant discharge (a discharge at a specified
frequency of occurrence (Qy; m3 s~

w = aQ,"” (12.11)
y =cQ,f (12.12)
u=kQ™ (12.13)

The exponents b = 0.5, f = 0.4 and m = 0.1
defined for streams in the American Midwest using the
mean annual flood are often used to characterise the
downstream adjustment of humid temperate perennial
streams to increasing discharge. The exponent set
indicates that width increases faster than depth (gener-

ating downstream changes in channel shape as indexed
by the width:depth ratio) and that velocity increases
downstream (contradicting traditional Davisian as-
sumptions). Although comparative data from dryland
environments are sparse, compilations of hydraulic
geometry exponents suggest some regional variation
according to climatic regime (Park 1977; ASCE 1982).
A study of the downstream adjustment of ephemeral
channels in New Mexico, USA shows that although
the increase in width is about the same as that observed
in humid-temperate perennial rivers, the increase in
velocity is more rapid and the increase in depth is
less rapid (Leopold and Miller 1956; Fig. 12.18).
The different response of the ephemeral channels is
attributed to a downstream increase in suspended sedi-
ment concentrations that decreases turbulence and bed
erosion.

The erodibility of channel banks exerts important
secondary controls on cross-sectional adjustment.
Since dryland weathering processes do not produce
significant amounts of cohesive silts and clays, bank
materials often lack the strength to resist processes of
bank erosion. As a result, channels tend to respond
to floods by widening, rather than deepening, their
cross-section. Schumm (1960), for example, showed
that width:depth ratios are negatively correlated
with the silt-clay content of perimeter sediments
(an index of bank shear strength and erodibility;
Fig. 12.19).

Merritt and Wohl (2003) examined the downstream
adjustment of Yuma Wash in SW Arizona to an
event with a discharge estimated at c. 20% of the
maximum probable flood. They found that increases
in width were substantial (b = 0.78) whereas the
increases in depth and velocity were modest (f = 0.15
and m = 0.14). They attributed the rapid increase
in channel width to the low cohesion of the bank
material which comprised less than 3% silt and clay.
The behaviour of Yuma wash contrasts with channels
in the northern Negev Desert which are able to
maintain relatively deep and narrow cross-sections
despite the high transport stages generated by flash
floods (Laronne and Reid 1993; Reid et al. 1998;
Fig. 12.12b). The absence of significant bank retreat
in these channels has been attributed to the cohesive
properties of the loess-rich soils (Powell et al. 2003).
In non-cohesive sediments, flood-induced increases
of channel width can be dramatic. Schumm and
Lichty (1963) describe how a major flood in 1914
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in SW Kansas began a process of channel widening
that increased the average width of the Cimarron
River from 15m in 1874 to 366 m by 1939. Similar
transformations of channel width have been observed
in other sand-bed rivers of the SW USA including
Plum Creek, a tributary of the South Platte River,
Colorado (Osterkamp and Costa 1987), the Santa Cruz
River in Arizona (Parker 1993) and the Gila River
in SE Arizona (Burkham 1972; Huckleberry 1994;
Hooke 1996; Fig. 12.20).

Bank stability is also controlled by vegetation. Al-
though vegetation is generally sparse in semi-arid en-
vironments, many dryland rivers support dense stands
of riparian vegetation which influence bank stability
through mechanical and hydrological effects (Simon
and Collinson 2002; Simon et al. 2004). The latter are

likely to be particularly important in semi-arid envi-
ronments where banks are typically unsaturated and
susceptible to changes in soil moisture levels (Katra
et al. 2007). Stabilising effects include root-binding
of sediment which increases the tensile strength and
elasticity of soils and helps to distribute shear stresses
rather like the bars in reinforced concrete or the fibres
in a carbon fibre material (Tal et al. 2003) and enhanced
canopy interception and evapotranspiration which re-
sults in better drained bank materials with reduced bulk
weight and lower positive porewater pressures. Ripar-
ian vegetation also increases flow resistance, thereby
decreasing flow velocities and the shear stress available
for erosion (Thornes 1990; Wilson et al. 2005). Desta-
bilising effects of vegetation include bank loading by
the weight of trees and higher near-surface moisture
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Fig. 12.19 Relation between width:depth ratio (F) and weighted
mean percent silt-clay content in the channel boundary (M; after
Schumm 1960)

contents after rainfall due to increased soil infiltration
capacities. Vegetation plays an important role in nar-
rowing channels after they have been widening by ma-
jor flood events. The effects of vegetation on channel
recovery are discussed below in the context of channel
planform adjustment.

In a spatial context, Wolman and Gerson (1978)
demonstrate that the rate of change of channel width
with increasing drainage is more rapid in dryland
rivers than it is in humid-temperate rivers, at least in
catchments up to about 100 km? (Fig. 12.21a). Inter-
estingly, dryland channels draining larger catchments
maintain near constant widths. This has been attributed
to various factors including an imposition of an upper
limit on stream discharge caused by the limited areal
extent of storm events (Sharon 1972, 1981; Renard
et al. 1993; Goodrich et al. 1995) and/or transmission
losses (see Chapter 11) and in hyper-arid environ-
ments, the lack of channel recovery between events
(Fig. 12.17d). Where transmission losses exceed
tributary inflows, the resultant downstream decrease
in discharge downstream can lead to concomitant
reductions in channel width and depth (e.g. Dunker-
ley 1992; Fig. 12.21b) leading to the termination of
channelised flow and bedload transport in broad low
gradient surfaces known as floodouts (Tooth 1999;
Fig. 12.21c). It is not known whether the hydraulic
geometry exponents that model the downstream

increase in channel dimensions under conditions of
increasing discharge (Fig. 12.18) also describes the
downstream decrease in channel dimensions observed
under conditions of decreasing discharge.

The complexity of channel width adjustment in
large dryland rivers is demonstrated by Tooth (2000b)
who documented changes in channel character along
the length of the Sandover, Bundey (Sandover-
Bundey) and Woodforde Rivers in central Australia
(Fig. 12.20c¢). In all three rivers, distinct form-process
associations define four contrasting fluvial environ-
ments: confined upland, piedmont, lowland zones and
unconfined floodout zones. Channel widths tend to
increase throughout the upland and piedmont zones
where integrating channel networks cause discharge
to increase downstream. In the lowland zone, trans-
mission losses exceed tributary recharge and widths
and depths decrease downstream until the flows and
sediments dissipate in the floodout zone. Although the
rivers exhibit variable patterns of downstream channel
change and several unusual channel characteristics
(e.g. anabranching and aggrading floodout zones),
Tooth (2000b) concludes from a qualitative review
of channel pattern parameters that many aspects of
channel form (including channel width) are ‘strongly
correlated to and sensitively adjusted to tributary
inputs of water and sediment” (Tooth 2000b p. 200).

Where systematic relationships between cross-
section channel geometry and discharge exist, they
suggest a functional adjustment of channel form to
the imposed discharge, the nature of which should
be amenable to rational explanation using hydraulic
and sediment transport principles. The development
of deterministic solutions for the geometry of river
cross-sections is hampered by the fact that the degrees
of freedom for alluvial channel adjustment exceed
the number of available equations. The traditional
approach is to assume that width, depth, velocity
and either slope or sediment load adjust to the other
of these two variables plus discharge and grain size
(Ferguson 1986) such that a solution is provided by
solving the flow continuity relationship, a flow resis-
tance law, a sediment transport equation and assuming
either (i) a threshold channel, (ii) maximum efficiency
criterion in conjunction with a bank stability criterion
or (iii) by fitting an empirical relation to one variable
(see Ferguson 1986 for a review of approaches). The
relative merits of the different approaches are subject
to some debate in part, because they all fail to account
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Fig. 12.20 Discharge records and changes in channel width
in the Gila River, Arizona, USA (a) 1875-1968 near Safford
(after Burkham 1972) and (b) 1993—-1993 near Florence (after

for a variety of real-world complications (Eaton and
Millar 2004; Millar 2005). However, they all have the
same qualitative outcome in which the steady-state
morphology is associated with a characteristic value
of dimensionless shear stress (Ferguson 1986). The
explanatory power of the approach has yet to be tested
in a dryland river showing regularity in cross-section
adjustment.

There remains considerable uncertainty as to how
channels adjust their cross-sections. Much is known

January 1993

Huckleberry 1994). Note that the channel did not widen appre-
ciably during the 1983 flood

about the geotechnical and hydraulic forces that con-
trol bank stability and retreat, and attempts have been
made to couple models of specific bank erosion pro-
cesses (fluvial entrainment and mass wasting of bank
materials and the downstream transport of failed bank
materials) to predict cross-section adjustment in allu-
vial channels (e.g. Simon et al. 2000). Further work,
however, is needed better to understand how hydraulic
and gravitational processes interact to control rates of
bank retreat and channel widening and to incorporate
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Fig. 12.21 (a) Changes in channel bankfull width with increas-
ing drainage area in different climatic settings (after Wolman
and Gerson 1978). (b) Downstream changes in channel width
in Fowler and Sandy Creeks, western NSW, Australia (after

this understanding into existing models of flow, sedi-
ment transport and morphological change (e.g. Darby
et al. 2002).

Bed Configuration and Texture

Bed configuration and texture represent two of the
most adjustable components of channel form with

Dunkerley 1992). (¢) Downstream changes in channel width in
the Bundey (Sandover-Bundey) River in the northern plains of
central Australia (after Tooth 2000b)

potential for regulating the short-term and mutual
adjustment of water flow, sediment supply and grain
size at a range of spatial and temporal scales. The com-
plex relationships between flow, sediment transport
and bedform geometry that facilitate this adjustment
are beyond the scope of this review. Comment is
therefore restricted to some important aspects of
the bed morphology and sedimentology of dryland
streams.
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Bed Configuration

In humid-temperate environments, single-thread chan-
nels with coarse heterogeneous sediments on low—
moderate slopes (< 2%) often develop an alternating
pattern of coarse-grained topographic highs (riffles)
and finer-grained topographic lows (pools) with a
wavelength of about 5-7 channel widths (Keller
and Melhorn 1978). On steeper slopes, the bedform
evolves to a step-pool sequence with a wavelength
of about 2 channel widths (Chin 2002). Riffles and
steps are significant sources of flow resistance that
concentrate energy losses at particular locations along
the course of a river (Church and Jones 1982; Abra-
hams et al. 1995; Chin and Phillips 2007). Since the
development of riffles-pools and steps-pools reflects
a significant aspect of channel adjustment, they are
widely regarded as equilibrium channel forms.

The undulating topography of the pool-riffle
sequence is conspicuously absent from many single-
thread dryland rivers though their sediments still
appear to be distributed in patterns associated with
a typical sequence. Reid et al. (1995) for example,
describe how the bed material of Nahal Yatir, a
gravel-bed river in the Northern Negev Desert, is
characterised by an alternating pattern of compar-
atively coarse ‘bars’ (Dsp = 20mm) and longer,
planar, finer ‘flats’ (D59 = 6 mm; Fig. 12.22a). These
bedforms have little or no topographic expression
and their positions are stable over time, despite the

Fig. 12.22 Sedimentary units in dryland streams in southern
Israel. (a) Longitudinal alternation of coarse channel bars (‘b’
placed on the adjacent channel bank) and finer ‘flats’ in Nahal

passage of competent floods. The neighbouring Nahal
Hebron has a comparable sedimentology comprising
a ‘barely discernible alternation of gravel bars and
granular-sandy pools’ (Hassan 1993, p. 109). Similar
patterns of sediment sorting appear in mixtures of
sand and gravel. Local concentrations of gravel on
otherwise planar, sandy beds have, for example, been
described in the arroyos of northern New Mexico
(Leopold et al. 1966, Fig. 151) and in the channels of
the East Rudolf sedimentary basin in Northern Kenya
(Frostick and Reid 1977, p. 2). Comparable alternating
sequences of coarser and finer sediments have been
identified in steeper channels that might have been
expected to form steps and pools (Bowman 1977,
Fig. 12.22b).

Intriguingly, the gravel accumulations of Leopold
et al. (1966) have a spacing of five-seven times the
channel width and are likened to riffles that formed
as a kinematic wave. Little was known about steps
and pools at the time of Bowman’s (1977) work, but
his descriptions indicate that although the channels
lack the stair-case morphology of a conventional step-
pool system, the coarser segments share many other
characteristics including a wavelength of about twice
the channel width, steep gradients, high roughness,
gravelly-bouldery composition and an association with
infrequent discharges and near- or super-critical flow
(Montgomery and Buffington 1997). These obser-
vations suggest that single-thread ephemeral stream
channels develop distinct patterns of longitudinal
sediment sorting that are analogous to the pool-riffle
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and step-pool sequences of their perennial counter-
parts. However, the sedimentary characteristics and
dynamics of semi-arid fluvial systems have not been
widely studied and the extent to which dryland rivers
develop symmetrically repeating bed configurations,
the origin, form and function of which can be likened
to, or distinguished from, the continuum of channel
morphologies identified in humid-temperate streams
(e.g. Montgomery and Buffington 1997) is not known.

Small-Scale Bedforms in Sand-
and Gravel-Bed Channels

Alluvial rivers develop a wide range of smaller scale
bedforms that provide additional sources of flow
resistance and also reduce particle mobility. They
include ripples, dunes, and antidunes in sand-sized
sediments and particle clusters, transverse ribs and
bedload sheets in gravels and in mixtures of sands
and gravels (Allen 1982; Best 1996). The occurrence
of different bedforms is usually determined using
bedform phase diagrams. These are largely based
on laboratory experiments, heavily biased towards
sand-sized sediments and define equilibrium bedform
regimes in terms of sediment mobility (grain size or
fall velocity) and flow intensity (velocity, shear stress,
stream power). Such diagrams need to be applied
with caution in dryland streams for two reasons. First,
research has shown that bedforms in sand-bed rivers
have a minimum relaxation time in which they are
able to respond to changes in flow conditions (Simons
and Richardson 1963; Allen 1973). The implication of
this work is that equilibrium bedforms are unlikely to
develop in dryland rivers with flashy discharge regimes
(Jones 1977). Second, most research conducted on
gravel bedforms is either conducted under, or guided
by, field conditions observed in humid-temperate
rivers in which the majority of sediment transport
occurs under the regime of partial transport during
perennial flows (Hassan and Reid 1990; Hassan
and Church 2000; Wittenberg and Newson 2005;
Oldmeadow and Church 2006). Compared to our
understanding of sediment sorting and the autogenetic
modification of bed surface grain size (see below) very
little is known about the structural sedimentology of
gravelly beds, and the extent to which the ephemeral
discharge regime and the high rates of sediment

supply and transport restricts the development of
bed structures in dryland streams remains to be
assessed. In this context, it is interesting to note that
Hassan (2005) found little evidence of imbrication or
other surface structures such as stone cells or particle
clusters on the surfaces of channel bars in Nahal Zin
in the Negev Desert, Israel. Marked contrasts in the
structural sedimentology of dryland ephemeral and
humid-temperate perennial rivers were also recorded
by Wittenberg (2002).

Bed Texture Adjustment in Gravel-Bed
Rivers

Most gravel-bed rivers develop a coarse surface
armour layer that overlies finer subsurface material
(Fig. 12.23a). Several workers, however, have noted
that the surface and subsurface sediments of many
dryland, gravel-bed rivers are not markedly different
(Schick et al. 1987; Laronne et al. 1994; Hassan 2005;
Laronne and Shlomi 2007; Hassan et al. 2006,
Fig. 12.23b). The weakly- or un-armoured nature of
alluvial gravels in dryland environments has been
attributed to high rates of sediment supply and bedload
discharge, the limited duration of flash flood recession
limbs and, of course, the absence of baseflow (Laronne
et al. 1994). Some of these issues are explored below.
Since the surface of a gravel-bed stream becomes
finer with increasing transport stage, eventually ap-
proaching the grain size of the substrate in the limit
of large t/t. (Andrews and Parker 1987), the weak ar-
mouring of many dryland channels is consistent with
the high transport stages they sustain. Parker (2008) il-
lustrates the dynamic with reference to the unarmoured
Nahal Yatir and Sagehen Creek, a perennial stream in
the Sierra Nevada of California with a well armoured
bed. In the following discussion, fy;, Dyg, Dps0, Dbg,
15, and T}, denote the fraction of subsurface material
in the ith grain size range, the subsurface mean grain
size (m), the median bedload grain size (m), the mean
bedload grain size (m), the dimensionless shear stress
for Dsq and the critical dimensionless shear stress for
Dsp respectively. The analysis uses ACRONYM?2 of
Parker (1990a,b) to predict the surface size distribu-
tion and shear velocity required to transport a given
bedload size distribution and transport rate. The in-
put bedload size distribution for both streams was ap-
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Fig. 12.23 Contrasts in surface armouring between (a) River Wharfe (humid-temperate perennial river, England, UK) and (b) Nahal

Yatir (dryland ephemeral river, Israel)

proximated by the subsurface size distribution of Sage-
hen Creek since in the normalised form of f; versus
Dygi/Dyg, the grain size distribution also approximates
that of Nahal Yatir. The simulation was conducted us-
ing a range of transport rates. The predicted values of
the ratio D50/Dpso and the predicted grain size distri-
butions of the static and mobile armours at different
values of t5, are shown in Fig. 12.24, together with es-
timates of t* at bankfull flows in Sagehan Creek and
at low and high flows in Nahal Yatir. D5p/Dysg ratios
in Sagehan Creek show little change with increasing
dimensionless shear stress and the mobile armour is
considerably coarser than the bedload at bankfull di-
mensionless shear stresses (t* = 0.059). In contrast,
the mobile armour in the Yatir has become much closer
to the bedload than the static armor at t5, = 0.1 and
the armouring has vanished relative to the bedload at
15, = 0.3. The evolution and convergence of the sur-
face grain size distribution from a static armour at low

transport rates (when 13, ~ t7,) to that of the bed-
load at very high transport rates (when 13, >> t%s)
is clearly shown in Fig. 12.24b. It is worth highlight-
ing that the model assumes that the bedload size dis-
tribution is constant and approximates the subsurface
size distribution. Parker (2008) notes that this is gen-
erally not the case (e.g. Fig. 12.13b) and that the bed-
load grain size dependence on shear stress will reduce
the convergence of bedload and bed surface size distri-
butions. Nevertheless, the clear implication is that the
lack of armour in dryland streams represents a dynamic
sedimentological response to high transport rates gen-
erated by high dimensionless shear stresses.

This explanation for the lack of a coarse surface
layer dryland river gravels is based on a view of sed-
iment transport dynamics that regards armouring to be
a natural consequence of the transport of sediment mix-
tures at values of shear stresses that prevail in most
gravel-bed rivers. Dietrich et al. (1989), however, view
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Fig. 12.24 (a) Modelled variation in ratio of median surface
grain size (Dsp) to median bedload grain size (Dys0) with tg‘o, (b)
Normalised bedload grain size distribution (assumed) and pre-

surface coarsening to be related to the balance between
rates of sediment supply and transport. They argue that
transport rates in excess of sediment supply induce se-
lective erosion and surface coarsening (e.g. as seen
downstream of dams in regulated rivers) while a sur-
plus of sediment forces the deposition of the finer frac-
tions and a consequent reduction in surface grain size
(Lisle and Hilton 1992). As a result, surface grain size
can be used as an indicator of sediment supply (Buff-
ington and Montgomery 1999). From this perspective,
the near equivalence of surface, subsurface and bed-
load size distributions in dryland channels reflects the
high rates of sediment supply from the sparsely vege-
tated hillslopes. Data collected by Hassan et al. (2006)
from arid and humid-temperate streams with a range of
sediment supply regimes confirms that many dryland
streams are weakly armoured and that sediment supply
is a first order control on surface texture and the devel-
opment of a coarse surface layer. They also suggest that
hydrograph shape plays a secondary role. Flume ex-
periments conducted to investigate the influence of hy-
drograph characteristics on the development of channel
armours demonstrate the importance of flow duration
and hydrograph symmetry for the development of ar-
moured surfaces.

Channel Pattern

Although rivers exhibit spatial and temporal transi-
tions in channel pattern in response to variations in the

dicted size distributions for static and mobile armours at values
of t§0 shown in the legend. After Parker (2008)

magnitude, frequency and sequencing of flood events,
they are often classified by their planform geometry
into single-thread (straight and meandering) or multi-
thread (braided and anabranching) forms. Straight
and anabranching channels are relatively uncommon
which suggests that they develop under a restricted set
of environmental conditions. The former, for example,
tend only to occur in locations where channel align-
ment is forced by geological controls as illustrated by
the drainage of Walnut Gulch in SE Arizona (Murphy
et al. 1972). Walnut Gulch and its tributaries drain
alluvial fills of Tertiary and Quaternary age and are
characterised by wide, shallow, sinuous single- and
multi-thread courses. However, the channels are es-
sentially straight where they are bounded by outcrops
of caliche and traverse resistant conglomerates with
marked and abrupt changes of direction signalling
entrenched, fault-controlled drainage. Meandering
is the most frequently occurring channel planform
at the global scale (Knighton 1998, p. 231). Within
dryland environments, however, braided channels are
more common than meandering channels (Graf 1988,
p. 201). Braided rivers are characterised by frequent
shifts in channel position and those in drylands are
no exception (Graf 1981, 1983). As a result, the
braided channel form has often been regarded as dis-
equilibrium aggradational response to high sediment
loads. However, even though individual channels
may be transient, the fact that braiding appears to
be favoured by particular environmental conditions
(high and variable discharges, steep slopes, dominant
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Fig. 12.25 Compilation of field and laboratory data showing the
dependency of channel pattern on slope and discharge (after Fer-
guson 1987). Note that thresholds for meandering in various lab-

bedload transport and erodible banks) suggests that it
represents a valid equilibrium form.

Field and laboratory data suggest that channel pat-
tern is controlled by discharge and slope (Leopold and
Wolman 1957; Schumm and Khan 1972). The com-
pilation of data shown in Fig. 12.25 indicates firstly,
that a channel with a given discharge and bed mate-
rial has one threshold slope (S; m m~!) above which it
will meander and a higher threshold slope above which
it will braid and secondly, that the threshold slopes
decrease as discharge increases. These inverse slope-
discharge thresholds have been widely interpreted as
thresholds of specific stream power (w; W m™2) de-
fined as the time rate of potential energy expenditure
per unit bed area:

o = prgQS/w (12.14)

Ferguson (1981) and Carson (1984) substituted for
w using the downstream hydraulic relation w = aQ®?
(Equation 12.11) to show that the meandering-braided
threshold corresponds to a constant stream power of
30-50 W m™? (the exact value depends on the value of
a). Begin (1981) similarly demonstrated that the slope-
discharge threshold also represents a constant shear
stress.

The dependency of channel pattern on stream power
provides an explanation for the common occurrence
of braided rivers in dryland environments. Although
flood events in dryland environments are relatively
infrequent, they often generate high stream powers as

oratory models match well and a parallel, higher threshold for
braiding is consistent with the experimental results and the data
from sand-bed rivers at mean discharge

a result of steep slopes and high discharges. In terms
of slope, many dryland streams have high gradients
because they flow down pediments and alluvial fans
which are steep in comparison to the gradients of
valley- and basin-floors. In terms of discharge, high
magnitudes are favoured by the effectiveness and
efficiency by which rainfall is converted to runoff and
concentrated into channels in dryland environments
(Baker 1977; Osterkamp and Friedman 2000). In fact,
the magnitudes of infrequent flood events in dryland
rivers are often much greater than those found in
rivers draining humid-temperate catchments of similar
size (Costa 1987). Beard (1975), for example, used a
flood potential index to demonstrate that the dryland
regions of the southwest USA are more susceptible
to high magnitude flood events than more humid
central and eastern regions. A similar conclusion was
reached by Crippen and Bue (1977) who compiled
envelope curves for potential maximum flood flows
for 17 flood regions of the coterminous USA though
their generalisation does not hold for medium-large
basins (> 2,600 kmz) in which the larger rainfall
amounts of more humid regions generate larger floods
(Graf 1988, p.90). The tendency for small-medium
sized basins in arid and semi-arid environments to
have larger floods than similar sized basins in more
humid environments is evident in a comparison of
flood frequency curves from different climatic regions
(Baker 1977; Farquharson et al. 1992; Fig. 12.26).
Channel pattern also reflects sedimentary controls.
For example, Schumm (1963) found that channel sinu-
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Fig. 12.26 Compilation of flood-frequency relations for rivers
from diverse climates showing the more variable flood regime
of arid and semi-arid rivers compared to their humid counter-
parts (after Knighton and Nanson 1997). Note that the magni-
tude of the mean annual flood (Q) event in semi-arid environ-
ments is only a few percent of the rare event whereas mean an-
nual events in humid temperate environments are much closer to
the rare event. (The mean annual event has a recurrence interval
of 2.33 years if the distribution conforms to the EV1 Gumbel
distribution)

osity of sand-bed rivers in the Great Plains of the USA
increased with the percentage slit clay in the bed and
banks and Kellerhalls (1982) and Carson (1984) found
that sand-bed rivers braid at lower slopes than gravel-
bed rivers with similar discharges. In these studies,
grain size is being used as a surrogate for bank strength
(as in studies of cross-sectional adjustment discussed
earlier) with the implication that channel pattern is de-
pendent on the erodibility of the channel banks as well
as the erosivity of the flow (Fig. 12.27).

As already noted, dryland sediments are not gener-
ally rich in cohesive silts and clays and unless riparian
vegetation is sufficient to stabilise the channel banks
and/or discourage the formation of new channels,
channel widening will promote the development of
a braided channel pattern through the instability of
sediment transport in wide channels (Parker 1976).
Indeed, Murray and Paola (1994) regard the braided
channel form as the inevitable consequence of un-
constrained flow over a non-cohesive bed. As such,

vegetation is a primary determinant of channel pattern
in dryland environments. The importance of vege-
tation in controlling dryland channel patterns can
be illustrated by reference to the introduction and
spread of Tamarisk throughout the SW USA. Tamarisk
(commonly known as Saltcedar) was introduced into
the SW USA from the Mediterranean basin in the mid
1800s. Because of its competitive advantages over
native riparian species (Brotherson and Field 1987,
Howe and Knopf 1991), Tamarisk colonised and
spread rapidly along riparian corridors and by the late
1990s, had became established in nearly every semi-
arid drainage basin within the SW USA (Randall and
Marinelli 1996). The result was a marked decrease in
channel geometry throughout the SW USA typified by
a 27% reduction in the average width of major streams
of the Colorado plateau (Graf 1978). Moreover, in
rivers widened and destabilised by large flood events,
vegetation regrowth and encroachment (including
the invasion of tamarisk) resulted in channel narrow-
ing, floodplain reconstruction and the conversion of
multi-thread rivers to single-thread forms (Schumm
and Lichty 1963; Burkham 1972; Eschner et al. 1983;
Martin and Johnson 1987; Friedman et al. 1996;
VanLooy and Martin 2005). Although the mechanisms
underlying these channel adjustments have not been
demonstrated directly in the field, it is generally
reasoned that vegetation first colonises and stabilises
the surfaces of flood deposits such as channel bars
and dunes and which then grow by vertical and lateral
accretion of sediment during low magnitude events.
Rates of accretion are enhanced by the increased
roughness of the vegetated surfaces which reduce flow
velocities and encourage sedimentation. In the absence
of destructive high flows, these areas of incipient flood
plain grow and coalesce, leading to the aggradation
and abandonment of the surrounding channels. Over
time, a new floodplain develops that is composed of a
mosaic of coalesced islands, abandoned channels and
areas of floodplain that build up adjacent to the low
water channel.

This model of channel evolution is supported by
laboratory (Tal and Paola 2007) and cellular (Tal
et al. 2003) models of braided rivers which demon-
strate how channels choked by vegetation and/or
vegetation-induced sedimentation cause reductions in
channel width, braiding index and channel mobility
(Fig. 12.28). Ultimately, vegetation eliminates weak
flow paths, thereby concentrating water into a single
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Fig. 12.27 Influence on bank strength on the thresholds of chan-
nel pattern (after Ferguson 1987). (a) Threshold of constant
stream power (traditional slope-discharge threshold). (b) Antici-
pated shift in threshold according to bank strength. (¢) Empirical
relationships between channel pattern, stream power and bank
strength. Schumm and Khan (1972) = unvegetated sandy lab-

dominant channel. Progressive reductions in total
channel width leads to the establishment of a new
self-organised steady state in which the flow removes
vegetated areas as fast as they are produced. The
results also suggest that colonisation by vegetation is
not easily reversible so that the morphological effects
are likely to be long-lived. This concurs with the
findings of several field studies conducted in dryland
environments that suggest that vegetation encroach-
ment raises the threshold for channel adjustment with
the result that subsequent floods are not able to widen
the channel as they might have previously (Eschner
et al. 1983; Hooke 1996). The decreased ability of the
channels to adjust to large flood events may lead to
increases in the magnitude and frequency of overbank
flooding and floodplain sedimentation resulting in
further increases in the stability of the channel form
through positive feedback (Graf 1978).

Braiding can also be understood as a response to
maintain transport competence in relation to the im-
posed grain size (e.g. Henderson 1961; Carson 1984)
and/or transport capacity in relation to the im-
posed sediment load (e.g. Kirkby 1977; Bettess and
White 1983; Chang 1985). From these perspectives,
the common occurrence of braided rivers in dryland
environments reflects the availability of large amounts
of coarse sediment and its movement as bedload. Such
approaches provide important links with the underly-
ing causes of braiding, namely local aggradation (often
linked to the stalling of bedload sheets, channel bars
or loss of competence in flow expansions), bar growth
(by vertical and lateral accretion) and subsequent
dissection (Ashmore 1991).

Stream power, Wm2

oratory channels; Osterkamp (1978) = sand bed channels with
some silt and clay and riparian vegetation; Schumm (1963) chan-
nels with variable silt and clay; Leopold and Wolman (1957)
mixture of sand- and gravel-bed channels; Ferguson (1981) =
well vegetated banks of gravel and/or cohesive sediments

Anabranching channels differ from braided chan-
nels in that the system of multiple channels is sepa-
rated by vegetated or otherwise stable islands which are
emergent at stages up to the bankfull discharge (Nan-
son and Knighton 1996). They form a diverse range of
channel forms that are associated with flood-dominated
channel regimes, resistant banks and mechanisms that
induce channel avulsion (Makaske 2001). Low energy,
fine grained anabranching systems known as anasto-
mosing channels are found in the Lake Eyre basin (also
known as the Channel Country) of east-central Aus-
tralia (Nanson et al. 1988; Gibling et al. 1998) and in
the Red Desert of Wyoming (Schumann 1989). The
type is well-represented by Cooper Creek in the Lake
Eyre Basin which maintains an active belt of anas-
tomosed channels up to 10 km wide for distances of
several hundred kilometres. The floodplain is made up
of a well integrated primary system of one-four chan-
nels supplemented by subsidiary channels that become
active at progressively higher discharges. Anastomo-
sis serves to concentrate stream flow and maximise the
transport of bed sediments in regions where there is lit-
tle opportunity to increase channel gradients (Nanson
and Huang 1999; Jansen and Nanson 2004). In other
parts of central and northern Australia, channel forms
are dominated by ridge-forming anabranching rivers
(Tooth and Nanson 2000b). These channels are charac-
terised by a low sinuosity belt of subparallel channels
separated by narrow, flow-aligned, sandy ridges veg-
etated by teatrees (Melaleuca glomerata). The ridges
develop as a result of spatial patterns of erosion and
sedimentation induced by the growth of teatrees within
the channel.
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Fig. 12.28 Changes in braiding index (a), channel width (b) and
bed topography correlation coefficient (¢) with vegetation in the
braided Waitaki River, New Zealand, a laboratory flume and a
cellular automata model (after Tal et al. 2003). Vegetation in the
field, flume and cellular model is represented by fractional vege-
tation cover of the braid plain, the density of alfalfa stems and a
vegetation strength parameter respectively. The bed topography
covariance is measure of the channel mobility rate; higher values
of covariance indicate lower channel mobility rates

Channel Gradient and the Longitudinal
Profile

The longitudinal profile represents the final aspect of
channel adjustment to be considered. Longitudinal
profiles are typically upwardly concave. It is generally
recognised, however, that the long profiles of many
dryland rivers are less concave than their humid-
temperate counterparts (e.g. Langbein 1964) and may
even be linear or upwardly convex (Schumm 1961;
Vogel 1989; Fig. 12.29). These differences can be
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Fig. 12.29 Longitudinal profiles of three rivers in the Namib
Desert (after Vogel 1989)

explained by considering the effect of tributary inputs
of water and sediment on profile concavity.

In perennial rivers, sediment concentrations usually
decrease downstream because tributary inputs increase
the supply of water more than they increase the supply
of sediment. As a result, stream slopes reduce by inci-
sion and an upwardly concave profile tends to develop
(Gilbert 1877; Wheeler 1979; Hey and Thorne 1986).
In dryland channels, however, the ratio of sediment to
streamflow often increases downstream due to trans-
mission losses (e.g. Leopold and Miller 1956). Since
sediment is carried by progressively less flow, there
is a tendency for aggradation and the development
of a convex profile. Profile concavity due to tributary
inputs has been modelled by Sinha and Parker (1996).
Although Sinha and Parker’s model cannot be tested
due to a lack of data concerning rates of tributary
water and sediment input along river profiles, it does
confirm that under conditions of high transport rates,
a downstream declining concentration of bed material
load is a necessary condition for profile concavity and
that convex profiles develop if sediment concentrations
increase downstream. The form of the long profile is
also a function of sediment calibre and profile concav-
ity has long been associated with the streamwise fining
of sediment (Hack 1957; Ikeda 1970; Cherkauer 1972;
Parker 1991a,b). However, since downstream fining is
the result of particle abrasion and sorting, grain size
can control (e.g. Shulits 1941; Yatsu 1955; Sinha and
Parker 1996), and be controlled by (e.g. Hoey and
Ferguson 1994) profile concavity. The downstream
trends of particle size in dryland streams have not
been widely studied (notable exceptions include the
work of Frostick and Reid 1980; Rhoads 1989).
Research in humid-temperate streams has, however,



12 Dryland Rivers

365

demonstrated that sediment inputs from tributary
inputs and non-alluvial sources often preclude the
development of systematic downstream fining trends
(e.g. Ferguson et al. 2006). Since high drainage
densities and easily erodible banks are characteristic
of many dryland rivers, it is quite possible that they
may be typified by random grain size variations. Such
conditions can be expected to inhibit the development
of profile concavity as illustrated by the work of
Rice and Church (2001) who studied the profile form
of sedimentary links, reaches of river unaffected by
inputs of water and sediment. Their results show that
under conditions of constant downstream discharge,
links with a strong downstream fining trend exhibit
concave profile forms (the greater the rate of grain
size diminution, the greater the concavity) whilst
links exhibiting a weak or no downstream fining trend
exhibit convex profile forms.

Summary

As shown by this review, our understanding of dryland
rivers has been transformed in recent years through
detailed field, laboratory and modelling studies of
contemporary runoff and sediment transport processes.
However, fundamental questions remain as to how
channel morphology and change is related to the time
distribution of flow events, variations in sediment
supply and their interactions with channel boundary
conditions (topography, sedimentology and vegeta-
tion) over longer time scales. These questions are not
new (e.g. Douglas 1982; Lane and Richards 1997)
nor are they restricted to dryland environments (e.g.
Kirkby 1999) but they lie at the heart of developing
an integrated theory of dryland river behaviour that
combines explanations for processes and forms as
well as morphological change (Graf 1988). Much
work remains to be done to reconcile a kinematic
understanding of channel evolution with a dynamic
understanding of process mechanics at scales larger
than the channel reach and longer than the duration of
individual flow events.
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