Chapter 2
Optimization Methods in Banach Spaces

Michael Ulbrich

Abstract In this chapter we present a selection of important algorithms for opti-
mization problems with partial differential equations. The development and analysis
of these methods is carried out in a Banach space setting. We begin by introduc-
ing a general framework for achieving global convergence. Then, several variants
of generalized Newton methods are derived and analyzed. In particular, necessary
and sufficient conditions for fast local convergence are derived. Based on this, the
concept of semismooth Newton methods for operator equations is introduced. It
is shown how complementarity conditions, variational inequalities, and optimal-
ity systems can be reformulated as semismooth operator equations. Applications to
constrained optimal control problems are discussed, in particular for elliptic partial
differential equations and for flow control problems governed by the incompressible
instationary Navier-Stokes equations. As a further important concept, the formula-
tion of optimality systems as generalized equations is addressed. We introduce and
analyze the Josephy-Newton method for generalized equations. This provides an
elegant basis for the motivation and analysis of sequential quadratic programming
(SQP) algorithms. The chapter concludes with a short outline of recent algorithmic
advances for state constrained problems and a brief discussion of several further
aspects.

2.1 Synopsis

The aim of this chapter is to give an introduction to selected optimization algo-
rithms that are well-suited for PDE-constrained optimization. For the development
and analysis of such algorithms, a functional analytic setting is the framework of
choice. Therefore, we will develop optimization methods in this abstract setting and
then return to concrete problems later.

Optimization methods are iterative algorithms for finding (global or local) solu-
tions of minimization problems. Usually, we are already satisfied if the method can
be proved to converge to stationary points. These are points that satisfy the first-
order necessary optimality conditions. Besides global convergence, which will not
be the main focus of this chapter, fast local convergence is desired. All fast converg-
ing optimization methods use the idea of Newton’s method in some sense. There-
fore, our main focus will be on Newton-type methods for optimization problems in
Banach spaces.
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Optimization methods for minimizing an objective function f: W — R on a
feasible set W,q C W, where W is a Banach space, generate a sequence (w*) ¢ W
of iterates. Essentially, as already indicated, there are two desirable properties an
optimization algorithm should have:

1. Global convergence:

There are different flavors to formulate global convergence. Some of them
use the notion of a stationarity measure. This is a function ¥ : W — Ry with
Y (w) =0 if w is stationary and X' (w) > 0, otherwise. In the unconstrained
case, i.e., Wag = W, a common choice is X (w) := || f/(w) ||yy«- The following is
a selection of global convergence assertions:
(a) Every accumulation point of (w*) is a stationary point.
(b) For some continuous stationarity measure X (w) there holds

lim X wk) =0.
k—o00

(c) There exists an accumulation point of (w®) that is stationary.
(d) For the continuous stationarity measure X' (w) there holds

liminf X (w*) = 0.
k—00

Note that (b) implies (a) and (c) implies (d).
2. Fast local convergence:
These are local results in a neighborhood of a stationary point w:
There exists § > 0 such that, for all w® € W with [Jw® — w|lw < 8, we have

wk — w and

||u)k+1 —wlly = o(||wk — w|lw) (g-superlinear convergence),

or even, for o > 0,

14«

k+1 - k -
lw** " = by = O(lw* — @y )

(g-superlinear convergence with order 1 + «).

The case 1 4+ o =2 is called g-quadratic convergence.

We begin with a discussion of globalization concepts. Then, in the rest of this chap-
ter, we present locally fast convergent methods that all can be viewed as Newton-
type methods.

Notation If W is a Banach space, we denote by W* its dual space. The Fréchet-
derivative (F-derivative) of an operator G : X — Y between Banach spaces is
denoted by G’ : X — L(X,Y), where L(X,Y) are the bounded linear operators
A : X — Y. In particular, the derivative of a real-valued function f : W — R is de-
noted by f': W — W*. In case of a Hilbert space W, the gradient V.f : W — W is
the Riesz representation of f/, i.e.,

(Vfw),v)w = (f'(w),v)w=w YveW.
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Here (f'(w),v)w=w denotes the dual pairing between the dual space W* =
L(W,R) and W and (-, -)w is the inner product. Note that in Hilbert space we can
do the identification W* = W via (-, -)w+ w = (-, -)w, but this is not always done.

2.2 Globally Convergent Methods in Banach Spaces

2.2.1 Unconstrained Optimization

For understanding how global convergence can be achieved, it is important to look
at unconstrained optimization first:

min f(w

min f (w)

with W a real Banach space and f : W — R continuously F-differentiable.

The first-order optimality conditions for a local minimum w € W are well-
known:

w € W satisfies

f'(@) =0.

We develop a general class of methods that is globally convergent: Descent methods.
The idea of descent methods is to find, at the current (kth) iterate wkew,a

direction s¥ € W such that o (1) & f(wk + tsk) is decreasing at t = 0:
¢ (0) = ("W)., s )wew <0.
Of course, this descent can be very small. However, from the (sharp) estimate
3 0) = (f' @), s Ywew = =1L @Ol ls llw
it is natural to derive the following quality requirement (“angle” condition)

(F' by, s5ywe w < —=nllf/ @ Ly IsE 1y (2.1)

for the descent direction. Here n € (0, 1) is fixed.
A second ingredient of a descent method is a step size rule to obtain a step size
o > 0 such that

i (or) < ¢ (0).

k+1

Then, the new iterate is computed as w = wk + aksk. Overall, we obtain:

Algorithm 2.1 (General descent method)
0. Choose an initial point w® € W.

Fork=0,1,2,...:
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. If f/(w*) =0, STOP.

. Choose a descent direction s¥ € W: ( f"(w*), sk)w+ w <0.

. Choose a step size ox > 0 such that f(wk + oksk) < f(wk).
Set wkt! .= wk + gy sk,

AW

In this generality, it is not possible to prove global convergence. We need addi-
tional requirements on the quality of the descent direction and the step sizes:

1. Admissibility of the search directions:

(f'(w*), s*Ywew k- .
T —°>°0 = IIf’(w")||W* —°>°0.
w

2. Admissibility of the step sizes:
f(wk + aksk) < f(wk) Vk and

(@), sFhwew koo
s llw

k—o00
f@f+ost) — fFwhH' =0 =
These conditions become more intuitive by realizing that the expression

4 k k * . . . .
% is the slope of f at wX in the direction s*:
w

—_— w
dt’ lIs* 1l

Therefore, admissible step sizes mean that if the f-decreases become smaller and
smaller then the slopes along the s¥ have to become smaller and smaller. And ad-
missible search directions mean that if the slopes along the s* become smaller and
smaller then the steepest possible slopes have to become smaller and smaller.

With these two conditions at hand, we can prove global convergence.

(S b, sF e w

1=0 lls* 1l w

Theorem 2.2 Let f be continuously F-differentiable and (w), (s%), (o) be gener-
ated by Algorithm 2.1. Assume that (o}) and (sk) are admissible and that (f(wk))
is bounded below. Then

lim f'(wk)=0. (2.2)
k— 00
In particular, every accumulation point of (w¥) is a stationary point.

Proof Let f* =infy>o f(w¥) > —o0o. Then, using f(w* 4 oxs%) — f(w*) <0, we
see that f(wk) — f* and

F@®) = =3 "(f@h) = F@) =1 f @k + ors®) = Fb)l.

k=0 k=0
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This shows f(w* + oxs%) — f(w¥) — 0. By the admissibility of (o}), this implies

@O, O wew ko0
%[l w '

Now the admissibility of (s¥) yields

k—
L W)y =3 0.

Next, consider the situation where w is an accumulation point of (w*). Then there
exists a subsequence (w*)x — w and due to monotonicity of f (w*) we conclude
f(w*) > f(w) for all k. Hence, we can apply the first part of the theorem and obtain
(2.2). Now, by continuity,

f(w) = klim f'(w*) =0.

There are two questions open:

(a) How can we check in practice if a search direction is admissible or not?
(b) How can we compute admissible step sizes?

An answer to question (a) is provided by the following Lemma:

Lemma 2.1 If the search directions (s*) satisfy the angle condition (2.1) then they
are admissible.

Proof The angle condition yields

! k k )
L )y < —lw
n Ils* |l w

A very important step size rule is the

2.2.1.1 Armijo Rule

Given a descent direction s of f at w*, choose the maximum oy, € {1, 1/2,1/4, ...}
for which

F@* + o) = f ) < yor(f' @), s wew.
Here y € (0, 1) is a constant. The next result shows that Armijo step sizes exist.
Lemma 2.2 Let f’ be uniformly continuous on Né) ={w+s: fw) < fw?),

Isllw < p} for some p > 0. Then, for every ¢ > 0, there exists 6 > 0 such that for
all w* € W with f(w*) < f(w°) and all s* € W that satisfy

@S s Ywew
sl =
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there holds
Fw* +os8) — fh) <yo (@), s wew VYo el0,8/1s5wl.
Proof We have, with appropriate 7, € [0, o],
F* +o55) — fFh) = o (f/(WF + 1555, s5)wew
<o (f' (Wb, s ywe w+ ol f Wk + 1,55
— L @we s Iy
=yo (f (Wb, s Ywe w + pr(0),
where
o (@) i= (1= Y)a (' Wb, s5 ) we w + oL/ (wF + 555 — F/ @)y lls“ Ny
Now we use the uniform continuity of f” to choose § € (0, p) so small that
If/(w* 4 755%) — F/ () lys < A —y)e Vo €[0,8/ls5 ]

This is possible since
k k
Itos™ lw <olls"llw <.

Then

o) = (1 =)o (f' k), sEywew + o |Lf/ W + 7555 — F/ @) s 1551w

< (1= p)ealls“ly + (1 = y)ealls“lly =0.
Next, we prove the admissibility of Armijo step sizes under mild conditions.

Lemma 2.3 Ler f' be uniformly continuous on Né) ={w+s: f(w) < fw?,
Isllw < p} for some p > 0. We consider Algorithm 2.1, where (o) is generated by
the Armijo rule and the descent directions s* are chosen such that they are not too
short in the following sense:

<fthhww>

lls* 1l w

mwwz¢<—

where ¢ : [0, 00) — [0, 00) is monotonically increasing and satisfies ¢ (t) > 0 for
all t > 0. Then the step sizes (oy) are admissible.

Proof Assume that there exist an infinite set K and ¢ > 0 such that

(f"(wky, sy e w

T <—¢ VkeKk.
lls* 1l w
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Then
(f (w"), s%ywew

lls* 1l w

||Sk||W2¢(— >2¢>(8)=:n>0 Vk e K.

By Lemma 2.2, for k € K we have either o = 1 or o3 > §/(2|Is*||). Hence,
oxlls*lly = min{8/2, 7} VkeK.
This shows

T(wkY ok Y o
F @t 4 orsb) = F ) < yol £/ @8, sEy e = poplsHly L LW (w”s),;; i
w
< —ymin{§/2,n}e VkeKk.

Therefore

fw* 4 ops®) — f(wk) 4 0.

In the Banach space setting, the computation of descent directions is not
straightforward. Note that the negative derivative of f is not suitable, since W* >
[y ¢ w.

In the Hilbert space setting, however, we can choose W* = W and (-, -)w* w =
(-, )w by the Riesz representation theorem. Then we have f’ WhH=VfwHew
and —V f (w¥) is the direction of steepest descent, as we will show below.

Certainly the most well-known descent method is the steepest descent method.
In Banach space, the steepest descent directions of f at w are defined by s = tdsq,
t > 0, where d;q solves

”dfﬁlvivnzl(f (w), d)w=w.

Now consider the case where W = W* is a Hilbert space. Then
VW)
IV f)lw

In fact, by the Cauchy-Schwarz inequality,

sd =

”drﬁlviVn:l(f (w), d)w+w = udlﬁlvivnzl(vf(w)’d)w = =[IVf)liw

=<Vf(w),— V f(w) ) .
w

IV f ) llw

Therefore, —V f(w) is a steepest descent direction. This is the reason why the steep-
est descent method is also called gradient method.

It should be mentioned that the steepest descent method is usually very ineffi-
cient. Therefore, the design of efficient globally convergent methods works as fol-
lows: A locally fast convergent method (e.g., Newton’s method) is used to generate
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trial steps. If the generated step satisfies a (generalized) angle test ensuring admissi-
bility of the step, the step is selected. Otherwise, another search direction is chosen,
e.g., the steepest descent direction.

2.2.2 Optimization on Closed Convex Sets

We now develop descent methods for simply constrained problems of the form
min f(w) st weS 2.3)

with W a Hilbert space, f : W — R continuously F-differentiable, and S C W
closed and convex.

Example 2.1 A scenario frequently found in practice is
W=1%82), S= {u € L2(2) :a(x) < u(x) < b(x) a.e. on 9}

with L*°-functions a, b. It is then very easy to compute the projection Pg onto S,
which will be needed in the following:

Ps(w)(x) = Pla(x),p(x)) (w(x)) = max(a(x), min(w(x), b(x))).

The presence of the constraint set S requires to take care that we stay feasible with
respect to S, o—if we think of an infeasible method—that we converge to feasibil-
ity. In the following, we consider a feasible algorithm, i.e., wk € § for all k.

If w¥ is feasible and we try to apply the unconstrained descent method, we have
the difficulty that already very small step sizes o > 0 can result in points w* + o s*
that are infeasible. The backtracking idea of considering only those o > 0 for which
wX 4 os* is feasible is not viable, since very small step sizes or even o3 = 0 might
be the result.

Therefore, instead of performing a line search along the ray {w* 4+ s : 0 > 0},
we perform a line search along the projected path

{Ps(wk —i—ask) 10> 0} ,
where Pg is the projection onto S. Of course, we have to ensure that along this path
we achieve sufficient descent as long as w* is not a stationary point. Unfortunately,
not any descent direction is suitable here.

Example 2.2 Consider

S:{weRzzwle, w1+w223}, f(w)=5w12+w%.
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Then, at w* = (1,2)T, we have Vf(wk) = (10,4)T. Since f is convex quadratic
with minimum w = 0, the Newton step is

d¥=—wk=—(1,2)T.
This is a descent direction, since
v f(wTdk =—18.

But, for o > 0, there holds

Ps(uk —od¥) = Ps((1-0)(1,2)") = (1 —a)@ +a<3/2> _ (1> +

3/2 2
Vf(wk)T(_ll) =6

we see that we are getting ascent, not descent, along the projected path, although d*
is a descent direction.

From

The example shows that care must be taken in choosing appropriate search di-
rections for projected methods. Since the projected descent properties of a search
direction are more complicated to judge than in the unconstrained case, it is out of
the scope of this chapter to give a general presentation of this topic. In the finite di-
mensional setting, we refer to [84] for a detailed discussion. Here, we only consider
the projected gradient method.

Algorithm 2.3 (Projected gradient method)
0. Choose w’ € S.
Fork=0,1,2,3,...:

1. Set sk = —V f(wk).
2. Choose oy by a projected step size rule such that f(Pg(wk + crksk)) < f(wk).
3. Set w¥t .= Py(w* + oy55).

For abbreviation, let

wk = wk —UVf(wk).

N =
We will prove global convergence of this method. To do this, we need the facts about
the projection operator Pg collected in Lemma 1.10.

The following result shows that along the projected steepest descent path we
achieve a certain amount of descent:

Lemma 2.4 Let W be a Hilbert space and let f : W — R be continuously F-
differentiable on a neighborhood of the closed convex set S. Let w* € S and assume
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that V f is a-order Holder-continuous with modulus L > 0 on
i(l — Hwk +1Pg(wk):0<r < 1} ,

for some o € (0, 1]. Then there holds

1 o
F(Ps(uh)) = fwh) < — | Ps(f) - w5 + LI Ps(wk) — wk 7.

Proof
F(Ps(wh)) — fFwh) = (V) Pswk) —wb)w
= (Vf(wh), Pswk) — wh)w
+ (V@) = V@b, Pswh) — wbyw

with appropriate vX € {(1 — f)wk +1Ps(wk):0 <t <1}.

Now, since w(’; —wk=0gsk= —an(wk) and wk = PS(wk), we obtain

—o (Vf (W), Pswk) —wbyw = wk —w*, Ps(wh) —wh)w
= (wk — Ps(wk), Ps(wk) — Ps(w*)w
= (Ps(w*) — Ps(w"), Ps(wk) — Ps(w*)w

+ (wk — Ps(wh), Ps(wk) — Ps(wb))w

>0

> (Ps(wk) — Ps(w®), Ps(wk) — Ps(wb))w

2
= || Ps(wk) — w*Iy,.

Next, we use

k_ ok k k
[vg — wlly < [1Ps(wg) —w™ [l

Hence,

(VFE) = V@), Psb) —ww < IVF@E) = V@)l I Pswh) — whily,

ko ky® k k
< Lljvy —w” |yl Ps(wg) —w"[ly,

14+
< L||Ps(wk) —wk|3, .

We now consider the following
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2.2.2.1 Projected Armijo Rule

Choose the maximum oy € {1, 1/2, 1/4, ...} for which
2
F(Pswk +osb)) — fub) < —Ulk 1 Ps(w* + o) — w3

Here y € (0, 1) is a constant.
In the unconstrained case, we recover the classical Armijo rule:

F(Ps(wr +osb)) — fFh) = fr +orsh) — Fwh,

4 k k k(2 Y k2 k2
——[Ps(w” +oxs™) —w" [lyy = ——lloxs" Iy = —yorls™lw
Ok Of

= yor(V f(wh), s)w.

As a stationarity measure X' (w) = || p(w)||w we use the norm of the projected gra-
dient

p(w) = w = Ps(w — V f(w)).
In fact, the first-order optimality conditions for (2.3) are
wesS, (Vfw),v—w)w=>=0 VveSs.
By Lemma 1.10, this is equivalent to
w— Ps(w—V f(w))=0.

As a next result we show that projected Armijo step sizes exist.

Lemma 2.5 Let W be a Hilbert space and let f : W — R be continuously F-
differentiable on a neighborhood of the closed convex set S. Then, for all w* € S
with p(w*) # 0, the projected Armijo rule terminates successfully.

Proof We proceed as in the proof of Lemma 2.4 and obtain (we have not assumed
Holder continuity of V f here)

-1 2
F(Ps(wg)) = (W) = —[IPs(wg) = whlly + ol Ps(wg) — wlly).
It remains to show that, for all small o > 0,

y —1 2
——I1Pswg) = whlly + ol Ps(wg) = w'lly) <0.
But this follows easily from (Lemma 1.10(e)):

y—1 2
7||Ps<w§> —wh iy < (7 = DIp@S NIy 1 Ps(wk) — whily,.

<0
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Theorem 2.4 Let W be a Hilbert space, f : W — R be continuously F-differentia-
ble, and S C W be nonempty, closed, and convex. Consider Algorithm 2.1 and as-
sume that f(wk) is bounded below. Furthermore, let V [ be a-order Holder contin-
uous on

NG =[wts: Faw) < 7, sl <o)

for some o > 0 and some p > 0. Then

lim || p(w")|ly =0.
k—o00

Proof Set p*¥ = p(wk) and assume p¥ -4 0. Then there exist ¢ > 0 and an infinite
set K with ||pk||W >¢forallk € K.

By construction we have that f (w*) is monotonically decreasing and by assump-
tion the sequence is bounded below. For all k € K, we obtain

Y 2 2
fw*) — fFty > G—knPs(wk +osh) — wh |y = vorll phly = yore?,

where we have used the Armijo condition and Lemma 1.10(e). This shows (o%)x —
0 and (|| Ps(w* 4 oxs*) — w|y)x — 0.

For large kK € K we have oy < 1/2 and therefore, the Armijo condition did not
hold for the step size o = 20%. Hence,

_r
20y

< f(Ps(w* +205%)) — f(wh)

2
| Ps(w* + 2035%) — wh|y,

1 2 1+
< —27k||Ps<w" +20155) — w¥ |l + LI Ps(w* 4 2035%) — wk|ly, .

Here, we have applied Lemma 2.4 and the fact that by Lemma 1.10(e)

K>k
| PswF + 2015%) — wk |y < 211 Ps(w* + oxs®) — wkly, " 250,

Hence,

1 _
= Y| Ps(wk + 20155y — w1}, < LY Ps(w* + 20xs%) — w¥ ||y~
Ok

From this we derive

1+
(1= PE Iy I Pswk + 2005%) — wk |1y < L) Ps(w* + 2015%) — w1y, .

Hence,

o K3k—o00

(1—y)e < L|| Ps(w* + 2035%) — wk |3, < L2%) Ps(w* 4 oxs®) — w¥ |3, = 2570,

This is a contradiction.
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A careful choice of search directions will allow to extend the convergence the-
ory to more general classes of projected descent algorithms. For instance, in finite
dimensions, g-superlinearly convergent projected Newton methods and their glob-
alization are investigated in [14, 84]. In an L? setting, the superlinear convergence
of projected Newton methods was investigated by Kelley and Sachs in [85].

2.2.3 General Optimization Problems

For more general optimization problems than we discussed so far, one usually glob-
alizes by choosing step sizes based on an Armijo-type rule that is applied to a suit-
able merit function. For instance, if we consider problems of the form

ngn fw) st e(w)=0, c(w) e,

with functions f: W - R, e: W — Z,and c: W — R, where W, Z, and R are
Banach spaces and IC C R is a closed convex cone, a possible choice for a merit
function is

mp(w) = f(w) + plle(w)llz + p dist(c(w), K)

with penalty parameter p > 0. In the case of equality constraints, a global conver-
gence result for reduced SQP methods based on this merit function is presented in
[82]. Other merit functions can be constructed by taking the norm of the residual of
the KKT system, the latter being reformulated as a nonsmooth operator equation,
see Sect. 2.5. This residual-based type of globalization, however, does not take into
account second-order information.

2.3 Newton-Based Methods—A Preview

To give an impression of modern Newton-based approaches for optimization prob-
lems, we first consider all these methods in the finite dimensional setting: W = R”.

2.3.1 Unconstrained Problems—Newton’s Method

Consider
min f(w) (2.4)
weR”?

with f : R" — R twice continuously differentiable.
From analysis we know that the first-order optimality conditions are:

Vfw)=0. (2.5)
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Newton’s method for (2.4) is obtained by applying Newton’s method to (2.5).
This, again, is done by linearizing G = V f about the current iterate w* and
equating this linearization to zero:

Gw") + G whsk =0,  wt!=wk 4+~

It is well-known—and will be proved later in a much more general context—that
Newton’s method converges g-superlinearly if G is C! and G’(w) is invertible.

2.3.2 Simple Constraints
Let f:R” — R be C? and let S C R” be a nonempty closed convex set.

We consider the problem

min f(w) st weSs.
weR"

The optimality conditions, written in a form that directly generalizes to a Banach
space setting, are: w = w solves

weS, Viw@w—w)>0 Vves. (2.6)

This is a Variational Inequality, which we abbreviate VI(V f, §).

Note that the necessity of VI(V f, §) can be derived very easily: For all v € §,
the line segment {w + ¢ (v — w) : 0 <t < 1} connecting w and v is contained in S
(convexity) and therefore, the function

¢@) = f(w+1(v—w))
is nondecreasing at t = 0:
0=¢'(0)=Vf@) (v—w).
Similarly, in the Banach space setting, we will have that w = w solves
weS, (ff(w),v—w)ww>0 VYveS$

with § C W closed, convex and f': W — W*.
Note that if S =R”, then (2.6) is equivalent to (2.5).

2.3.2.1 Nonsmooth Reformulation Approach and Generalized Newton
Methods

In the development of projected descent methods we already used the important fact
that the VI (2.6) is equivalent to

w — Pg(w — 0V f (w)) =0, 2.7)
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where 6 > 0 is fixed.

Example 2.3 1f S is a box, i.e.,
S=lai, b1l x -+ X [an, byl,
then Pg(w) can be computed very easily as follows:
Ps(w); = max(a;, min(w;, b;)).

It is instructive (and not difficult) to check the equivalence of (2.6) and (2.7) by
hand.
The function
D(w):=w— Ps(w — 0V f(w))

is locally Lipschitz continuous (Ps is non-expansive and V f is C!), but cannot be
expected to be differentiable. Therefore, at a first sight, Newton’s method is not
applicable.

However, a second look shows that @ has nice properties if S is sufficiently nice.
To be more concrete, let

S=lai,bi] x -+ x [an, by]

be a box in the following. Then @ is piecewise continuously differentiable, i.e., it
consists of finitely many Cl—pieces @/ :R" - R", j=1,...,m. More precisely,
every component @; of @ consists of three pieces:

w; — aj, w; — b;, w; — (w; — OV f(w);) =0V f(w);,

hence @ consists of (at most) 3" pieces @/ .
Denote by

A(w) = {j L@ (w) =<p(w)}
the active indices at w and by
Iw)=1j: @/ w) £ o)

the set of inactive indices at w.
By continuity, /(w) D I (w) in a neighborhood U of w. Now consider the fol-
lowing
Algorithm 2.5 (Generalized Newton’s method for piecewise C! equations)
0. Chose w? (sufficiently close to ).

Fork=0,1,2,...:
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1. Choose My € {(®7) (w¥): j € A(w®)} and solve
Mys* = —@ (w").
2. Set wht! = wk + s*.

For w* close to W, we have A(w*) C A(w) and thus s* is the Newton step for
the C! equation

@k (w) =0,

where ji € A(wX) C A(w) is the active index with My = (@) (wk).
Therefore, if all the finitely many Newton processes for

@/ (w)=0, jeAw)

converge locally fast, our generalized Newton’s method converges locally fast, too.
In particular, this is the case if f is C? and all (&7 (w), j € A(w), are invertible.

2.3.2.2 SQP Methods

A further appealing idea is to obtain an iterative method by linearizing V f in
VI(V f, S) about the current iterate w¥ € S:

wes, (Vfw)+ViwhHw—w)w—w)>0 Vves.

The solution w**! of this VI is then the new iterate. The resulting method, of course,
can just as well be formulated for general variational inequalities VI(F, §) with C!-
function F : R" — R”". We obtain the following method:

Algorithm 2.6 (Josephy-Newton method for VI(F, S))
0. Choose w? € S (sufficiently close to the solution w of VI(F, S)).
Fork=0,1,2...:

1. STOP if w¥ solves VI(F, S) (holds if w* = wk—1).
2. Compute the solution w**! of

VI(F(w*) + F' (w5 (- —wb), $) :
wesS, (Fw)+F@w-wN@w-—w >0 Yves
that is closest to w*.

In the case F =V f, it is easily seen that VI(Vf(wk) + sz(wk)(~ —wk), $)is
the first-order necessary optimality condition of the problem

min Vf(wk)T(w—wk)+%(w—wk)TVZf(wk)(w—wk) st. weS.
welR”"
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The objective function is quadratic, and in the case of box constraints, we have a
box-constrained quadratic program.
This is why this approach is called sequential quadratic programming.

Algorithm 2.7 (Sequential Quadratic Programming for simple constraints)
0. Chose w? e R” (sufficiently close to w).
Fork=0,1,2,...:

1. Compute the first-order optimal point s* of the QP
1
m}%n Vf(wk)Ts + ESTVZf(wk)s st. wh+seS
seR”

that is closest to 0.
2. Set wkH = wk 4 k.

The local convergence analysis of the Josephy-Newton method is intimately con-
nected with the locally unique and Lipschitz-stable solvability of the parameter-
ized VI

VI(F () + F'(0)(- — W) — p, S) :
wes, (F)+F@w-w)—pl@w-—w)>0 VYves.

In fact, if there exist open neighborhoods U, C R" of 0, U,, C R" of w, and a
Lipschitz continuous function U, 3 p = w(p) € Uy, such that w(p) is the unique
solution of VI(F (w) + F'(w)(- — w) — p, S) in Uy, then VI(F, §) is called strongly
regular at w.

As we will see, strong regularity implies local g-superlinear convergence of the
above SQP method if f is C2.

In the case S = R” we have

VI(F,R"): F(w)=0.

Hence, the Josephy-Newton method for VI(F,R") is Newton’s method for
F (w) = 0. Furthermore, from

VI(F(w) + F'(w)(- —w) + p,R"): F(w)+ F(w)(w—w)+p=0

we see that in this case strong regularity is the same as the invertibility of F’(w).

2.3.3 General Inequality Constraints

We now consider general nonlinear optimization in R":

m%l fw) st e(w)=0, c(w) <0, (2.8)
we n
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where f:R" > R, e : R" - R”, and ¢ : R" — R are C? and < is meant
component-wise.
Denote by

Lw,x, 1) = fw)+rTc(w) +u’e(w)

the Lagrange function of problem (2.8).
Under a constraint qualification (CQ), the first-order optimality conditions (KKT
conditions) hold at (w, A, ft):

VoL@, 4, 1) =V )+ @) A+ @) =0,
2>0, VaL. b z-2)=c@)(z—=2) <0 vz>0, (2.9
VL@, A, ji) = e() = 0.

Remark 2.1

(a) An easy way to remember these conditions is the following: (w, A, ji) is a first-
order saddle point of L on R"” x (R x R”).
(b) The second equation can be equivalently written in the following way:

2>0, c()<0, cTr=0.

The KKT system consists of two equations and the variational inequality
VI(—c(w), RY). This is a VI w.r.t. A that is parameterized by w. Also, since equa-
tions are special cases of variational inequalities, we have that (2.9) is in fact the
same as VI(=VL,R" x R’} x RP).

We now can use the same techniques as for simple constraints.

2.3.3.1 Nonsmooth Reformulation Approach and Generalized Newton
Methods

Using the projection, we rewrite the VI in (2.9) as a nonsmooth equation:
@(w, ) :=A— Ppn(r+0c(w)) =0,
where 6 > 0 is fixed. The reformulated KKT system

Vi) +c )i+
G(w, A, ) := D (w, ) =0
e(w)

is a system of n 4+ m + p equations in n + m + p unknowns.

The function on the left is C!, except for the second row which is piecewise
C!. Therefore, the generalized Newton’s method for piecewise smooth equations
(Algorithm 2.5) can be applied. It is q-superlinearly convergent if (G/)’ (i, A, 1) is
invertible for all active indices j € A(w, X, ).
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2.3.3.2 SQP Methods

As already observed, the KKT system is identical to VI(—V L, R" x ]Rﬁ x RP).
The SQP method for (2.8) can now be derived as in the simply constrained case

by linearizing —V L about the current iterate x* := (w*, A, 1%): The resulting sub-

problem is VI(=VL(x%) = VL5 (- = x%), R" x R% x R?), or, in detail:

VLX) + Vi L) (x = x5 =0
2>0, (cwb+dWw—uwNTEz—2<0 Vvz>0, (2.10)
e(w®) + ¢ (Wb —wh) =0.
As in the simply constrained case, it is straightforward to verify that (2.10) is equiv-
alent to the KKT conditions of the following quadratic program:
r%nVfuﬁﬂkw—4M)+%ou—thvwﬂm%xw-—wh

st e(wb) + e WhHw —w*) =0, c(w®y + ¢ (W) (w — wk) <0.

2.4 Generalized Newton Methods

We have seen in the previous section that we can reformulate KKT systems of finite
dimensional optimization problems as nonsmooth equations. This also holds true for
PDE-constrained optimization with inequality constraints, as we will sketch below.
In finite dimensions, we observed that a projection-based reformulation results in
a piecewise C!-function to which a Newton-type method can be applied. In order
to develop similar approaches in a function space framework, it is important to find
minimum requirements on the operator G : X — Y that allow us to develop and
analyze a Newton-type method for the (possibly nonsmooth) operator equation

G(x)=0. (2.11)

2.4.1 Motivation: Application to Optimal Control

We will show now that the optimality conditions of constrained optimal control
problems can be converted to nonsmooth operator equations.
Consider the following elliptic optimal control problem:

min TG00 Lyl Sl
yeH (@) uel?(@) 2 L2+ ")

S.t. Ay=u, B <u<Pp.
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Here, y € Hé (£2) is the state, which is defined on the open bounded domain
2 c R", and u € L2(£2) is the control. Furthermore, A : HO1 2)—> H ()=
HOl (£2)* is a (for simplicity) linear elliptic partial differential operator, e.g.,
A=—-A.

The control is subject to pointwise bounds 8; < 8. The objective is to drive the
state as close to y; € L?(£2) as possible. The second part of the objective function
penalizes excessive control costs; the parameter o > 0 is typically small.

We eliminate the state y via the state equation, i.e., y = y(u) = A~ 'u, and obtain
the reduced problem

min Jw 1600 A~ vl + S
sit. B <u<p.
The feasible set is
S:{ueLz(.Q):ﬂlSug/S,}
and the optimality conditions are given by

VI(VJ,$): ueS, (Vi@),v—u)g =0 Yves.

Using the projection Ps(u) = Pg,,g,1(u(-)) onto S, this can be rewritten as

) u— P g —0VIiu) =0,

where 6 > 0 is fixed. This is a nonsmooth operator equation in the space L>(£2).
Hence, we were able to convert the optimality system into a nonsmooth operator
equation.

2.4.2 A General Superlinear Convergence Result

Consider the operator equation (2.11) with G : X — Y, X, Y Banach spaces.
A general Newton-type method for (2.11) has the form

Algorithm 2.8 (Generalized Newton’s method)

0. Choose x° € X (sufficiently close to the solution X).

Fork=0,1,2,...:

1. Choose an invertible operator My € L(X,Y).
2. Obtain s* by solving

Mys = —G(xb), (2.12)

and set x¥ 1 = xk 4 sk,
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We now investigate the generated sequence (x) in a neighborhood of a solution
xeX,ie., G(x)=0.

For the distance d* := x*

— x to the solution we have
Mid* = M — ) = M (K + 55 — %) = Mpd* — G5
= G (%) + Myd* — G(x5).

Hence, we obtain:
1. (x*) converges q-linearly to X with rate y € (0, 1) iff

1M (G(x +d5) — G(E) — Mkd®) I <y lld*llx Yk with [|@¥||x suff. small.
(2.13)
2. (x¥) converges g-superlinearly to ¥ iff

1M, (G(E +dY) — GE) — Myd") |l = o(lld¥||x)  for |d¥|lx — 0. (2.14)

3. (x*) converges with g-order 1 4+« > 1 to X iff

_ _ _ 1+
1M (G @E +dY) — GE) — Myd") = 0(lad* ") for [d¥ ]Iy — 0. (2.15)

In 1., the estimate is meant uniformly in &, i.e., there exists §,, > 0 such that
1M (G @& +d*) — GE) — Mrd)lly < ylld*lly Yk with [d¥|lx <8, .

In 2., o(||dk||X) is meant uniformly in £, i.e., for all n € (0, 1), there exists 8, > 0
such that

1M (GG +dY) — GGE) — Medd) |y < mlldlly Yk with [|d[|x <8,

The condition in 3. and those stated below are meant similarly.
It is convenient, and often done, to split the smallness assumption on

1M (G (E +d*) — GE) — Mid) I

in two parts:
1. Regularity condition:

1M,y <C Yk=0. (2.16)
2. Approximation condition:
IG@E +d") — G(x) — Myd*|ly = o(ld* | x) for [|d*[x — O (2.17)
or

_ _ 1
IGE +d*) — GE) — Mpd*ly = 0(lld* |l ™) for |d¥|lx — 0. (2.18)

‘We obtain
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Theorem 2.9 Consider the operator equation (2.11) with G : X — Y, where X
and Y are Banach spaces. Let (x*) be generated by the generalized Newton method
(Algorithm 2.8). Then:

1. Ifx¥ is sufficiently close to X and (2.13) holds then x* — X g-linearly with rate y .

2. Ifxo is sufficiently close to x and (2.14) (or (2.16) and (2.17)) holds then xk > x
q-superlinearly.

3. If x¥ is sufficiently close to X and (2.15) holds (or (2.16) and (2.18)) then x* — x
q-superlinearly with order 1 4+ «.

Proof 1. Let § > 0 be so small that (2.13) holds for all x* with ||d¥||y < §. Then,
for x° satisfying [x° — % lx <38, we have

Ix! = Zlx = lld"'Ilx = 1My (GG +d°) — GG) — Mod®) ||, < v 11d°llx
=ylx® - x|y <8.
Inductively, let xk — x| x < 6. Then
I =Xy = 1d" )y = 1M (G@E +dY) — GG — Med®) |l
<vylld“lx =ylx* —%lx <.

Hence, we have

I = Flly <yl =Xlx V=0,

2. Fix y € (0,1) and let 6 > O be so small that (2.13) holds for all x* with
IEA lx <é. Then, for x0 satisfying || x0 — X||x < 8, we can apply 1. to conclude
x¥ — X with rate y.

Now, (2.14) immediately yields
I = F g = 18 Iy = MG E +d5) = GE) — Mkd )l = o(ld¥ 1 x)
=o(x* —Xly) (k— 00).

3. As in 2, but now

_ _ _ _ 1+
I —Fly = 1 )y = 1M (G @E + a5 — GE) — Med)Il, = 0(ld* 1)

—0(I* —3ly™) (k= o).

We emphasize that an inexact solution of the Newton system (2.12) can be in-
terpreted as a solution of the same system, but with M} replaced by a perturbed
operator M. Since the condition (2.14) (or the conditions (2.16) and (2.17)) remain
valid if M is replaced by a perturbed operator M and the perturbation is suffi-
ciently small, we see that the fast convergence of the generalized Newton’s method
is not affected if the system is solved inexactly and the accuracy of the solution
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is controlled suitably. The Dennis-Moré condition [36] characterizes perturbations
that are possible without destroying g-superlinear convergence.

We will now specialize on particular instances of generalized Newton methods.
The first one, of course, is Newton’s method itself.

2.4.3 The Classical Newton’s Method

In the classical Newton’s method, we assume that G is continuously F-differentiable
and choose M}, = G’ (x%).
The regularity condition then reads

IG5 y_x<C Yk=>o0.

By Banach’s Lemma (asserting continuity of M > M~!), this holds true if G’ is
continuous at x and

G'(x) e L(X,Y) is continuously invertible.

This condition is the textbook regularity requirement in the analysis of Newton’s
method.
Fréchet differentiability at x means

IG@E +d") — G(x) — G'@d*|ly = o(lld" | ).
Now, due to the continuity of G’,
IG @& +d") — G(x) — Myd" |y
=IGE +d*) — GE) — G'(x +dbd |y
<IGGE+dY) — GGE) — G'@d |ly + (G () — G'(x +d*)d* |y
<o(ld"x) + 1G' () — G' & +d") I x—ylld" I x
=o(lld"|lx) for |d*|x — .

Therefore, we have proved the superlinear approximation condition.

If G’ is a-order Holder continuous near x, we even obtain the approximation
condition of order 1 + «. In fact, let L > O be the modulus of Holder continuity.
Then

IG (& 4 d*) — G(x) — Md" ||y
=G(E +d") - GE) — G'(x +d")d Iy

1
- H/ (G' (% +td*) — G'(x + d*))d* dt
0

Y
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1
< / 1G' G +1d") — GG +dY)lx oy dt 0¥
0

1 L 1+ 1+
< L/ (1 —n¥d| S dr 1d¥ |1y = 1—||dk||x “=o(d" Iy ).
0 +«

Summarizing, we have proved the following

Corollary 2.1 Let G : X — Y be a continuously F-differentiable operator between
Banach spaces and assume that G’ (X) is continuously invertible at the solution X.
Then Newton’s method (i.e., Algorithm 2.8 with My = G’(xk) for all k) converges
locally g-superlinearly. If, in addition, G’ is a-order Holder continuous near X, the
order of convergence is 1 4 a.

Remark 2.2 The choice of M in the classical Newton’s method, My = G'(x%), is
point-based, since it depends on the point x*.

2.4.4 Generalized Differential and Semismoothness

If G is nonsmooth, the question arises if a suitable substitute for G’ can be found. We
follow [134, 136] here; a related approach can be found in [87] and [69]. Thinking
at subgradients of convex functions, which are set-valued, we consider set-valued
generalized differentials 0G : X = L(X, Y). Then we will choose M}, point-based,
ie.,

My € 3G (x5).

If we want every such choice M, to satisfy the superlinear approximation condition,
then we have to require

sup  [|G(x+d)—G(x)— Md|y=o(ldllx) forl|dlx— 0.
MedG(E+d)

This approximation property is called semismoothness [134, 136]:

Definition 2.1 (Semismoothness) Let G : X — Y be a continuous operator between
Banach spaces. Furthermore, let be given the set-valued mapping 0G : X = Y with
nonempty images (which we will call generalized differential in the sequel). Then

(a) G iscalled dG-semismooth at x € X if

sup  [G(x +d) = G(x) —Md|y =o(||d|x) for|d|ly — 0.
MedG (x+d)

(b) G is called dG-semismooth of order @ > 0 at x € X if

sup [|G(x +d) — G(x) — Md|ly = O(l|d|I ™) for |ld||x — 0.
MedG(x+d)
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Lemma 2.6 If G : X — Y is continuously F-differentiable near x, then G is {G'}-
semismooth at x. Furthermore, if G' is a-order Holder continuous near x, then
G is {G'}-semismooth at x of order a. Here, {G'} denotes the setvalued operator
(G} : X = L(X,Y), {G'}(x) ={G'(x)}.

Proof

IG(x +d) — G(x) — G'(x +d)dly
<IG(x+d) = G(x) = G'dlly + 1G'(x)d = G'(x +d)d|ly
<o(lldllx) + IG' (x) = G'(x + D) x v ldll x = o(lld ]l x)-

Here, we have used the definition of F-differentiability and the continuity of G'.
In the case of a-order Holder continuity we have to work a little bit more:

IG(x +d) — G(x) = G'(x +d)dlly

1
= H/ (G'(x +1d) — G'(x +d))d dt
0

Y

1 1
S/O IG"(x +td) — G'(x + d)llx—y dt IIdIIxffo LA =nlldlkdtlld|lx

L
— d I-HYZO d 1+a .
—1+(x” x (ldlx™)

Example 2.4 For locally Lipschitz-continuous functions G : R” — R, the standard
choice for aG is Clarke’s generalized Jacobian:

3G (x) = conv {M -xk 5 x. G'(x*) = M, G differentiable at xk} . (2.19)

This definition is justified since G’ exists almost everywhere on R” by Rademacher’s
theorem (which is a deep result).

Remark 2.3 The classical definition of semismoothness for functions G : R” — R™
[105, 113] is equivalent to 9! G -semismoothness, where 9/ G is Clarke’s general-
ized Jacobian defined in (2.19), in connection with directional differentiability of G.

Next, we give a concrete example of a semismooth function:

Example 2.5 Consider ¢ : R — R, ¥ (x) = Pl 5)(x), a < b, then Clarke’s general-
ized derivative is

{0} x<aorx>b,
3y x) =4 {1} a<x<b,
conv{0,1} =[0,1] x=aorx=>h.
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The 3¢/ -semismoothness of ¥ can be shown easily:

For all x ¢ {a, b} we have that ¥ is continuously differentiable in a neighborhood
of x with 3¢/¢ = {'}. Hence, by Lemma 2.6, ¥ is 9</¢/-semismooth at x.

For x = a, we estimate explicitly: For small d > 0, we have a¢! Yx) =
{y/'(a +d)} = {1} and thus

sup [Y(x+d)—y(x)—Mdl=a+d—a—1-d=0.
Medcly (x+d)

For small d < 0, we have 3/ (x) = {¢'(a + d)} = {0} and thus

sup  [YW(x+d)—y(x)—-Mdl=a—a—-0-d=0.
Medely (x+d)

Hence, the semismoothness of ¥ at x = a is proved.
For x = b we can do exactly the same.

The class of semismooth operators is closed with respect to a wide class of oper-
ations, see [134]:
Theorem 2.10 Let X, Y, Z, X;, Y; be Banach spaces.

(a) If the operators G; : X — Y; are 0Gj-semismooth at x then (G1,G3) is
(0G1, 0G)-semismooth at x.

® IfGi: X —Y,i=1,2, are 0G;-semismooth at x then G1 + G is (0G| +
0Gr)-semismooth at x.

(c) Let G1: Y — Z and G : X — Y be dG;-semismooth at Go(x) and x, respec-
tively. Assume that 0G| is bounded near y = Go(x) and that G, is Lipschitz
continuous near x. Then G = G1 o Gy is 0G-semismooth with

G (x) ={M1M>: M| € 0G1(G2(x)), Ma € dGa(x)}.

Proof Parts (a) and (b) are straightforward to prove.

Part (¢):

Let y = G2(x) and consider d € X. Let h(d) = G2(x + d) — y. Then, for ||d| x
sufficiently small,

Ay =1G2(x +d) — Ga(x) |y < Lalld]lx-
Hence, for M1 € 0G1(G2(x + d)) and M, € dG>(x + d), we obtain
1G1(Galx +d)) — Gi1(G2(x)) — Mi Mad| z
=[G1(y+h(d) —Gi1(y) — Mih(d) + M1 (G2(x +d) — Ga(x) — Mad)|

<1Gi1(y +h(d) - Gi(y) = Mih(d)llz
+IMilly-zIIG2(x +d) — Ga(x) — Mad|ly.



2 Optimization Methods in Banach Spaces 123

By assumption, there exists C with ||M||y_, < C if ||d||x is sufficiently small.
Taking the supremum with respect to M, M> and using the semismoothness of G
and G, gives

sup IGx+d)—G(x)— Md|,
MedG(x+d)

< sup 1G1(y +h(d) —Gi(y) — Mih(d)ll,
M1€0G(y+h(d))

+C  sup  [|Ga(x +d) — Ga(x) — Mad|ly
MpedGo(x+d)

=o(|h(dlly) +o(lldl x) = o(lld] x).

2.4.5 Semismooth Newton Methods

The semismoothness concept ensures the approximation property required for gen-
eralized Newton methods. In addition, we need a regularity condition, which can be
formulated as follows:

There exist constants C > 0 and § > 0 such that

IMly_x<C VYMedGkx) VxeX, [x—xly<S. (2.20)

Under these two assumptions, the following generalized Newton method for semi-
smooth operator equations is g-superlinearly convergent:

Algorithm 2.11 (Semismooth Newton’s method)
0. Choose x” € X (sufficiently close to the solution x).
Fork=0,1,2,...:
1. Choose My € 3G (x").
2. Obtain s* by solving
Mksk = —G(xk),
and set xkt1 = xk 4 gk

The local convergence result is a simple corollary of Theorem 2.9:

Theorem 2.12 Let G : X — Y be continuous and dG-semismooth at a solution
X of (2.11). Furthermore, assume that the regularity condition (2.20) holds. Then
there exists § > 0 such that for all x° € X, |x° — X||x < 8, the semismooth Newton
method (Algorithm 2.11) converges g-superlinearly to x.

If G is 0G-semismooth of order « > 0 at X, then the convergence is of order
14+ «.

Proof The regularity condition (2.20) implies (2.16) as long as x is close enough
to x. Furthermore, the semismoothness of G at x ensures the g-superlinear approx-
imation condition (2.17).
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In the case of a-order semismoothness, the approximation condition (2.18) with
order 1 + « holds.
Therefore, Theorem 2.9 yields the assertions.

2.4.5.1 Semismooth Newton Method for Finite Dimensional KKT Systems

At the beginning of this chapter we have seen that we can rewrite the KKT condi-
tions of the NLP

min f(w) st e(w)=0, c(w) <0
in the following form:

VU)L(w’)\'vl'L)
G E [ A= Pro o+ cw)) | =0,
e(w)

where we have set x = (w, A, ). With the developed results, we now can show that
the function G on the left is semismooth. In fact, V, L is {V,,, L}-semismooth and
e is {e’}-semismooth.

Furthermore, as shown above, ¥ (¢) = Pr, (?) is 8dl/f—semismooth with

Myt =0}y <0, Mym=01} ¢>0. 37y =01
Hence, by the sum and chain rules from Theorem 2.10

¢ (w, ) E a = Pr, (i + ¢ (w)),

is semismooth with respect to
01 (w, ) = [ (—gici ), 1= gi) 1 g € 999 G + i)}

Therefore, the operator @ (w, L) =X — PRi (A + c(w)) is semismooth with respect
to

0 (w, 1) i= | (=Dycj(w), I = Dy) : Dy =ding(g), gi €W +ci(w))}.
This shows that G is semismooth with respect to
VuwL(x) ¢/ ()’ ¢ w)”
def

G E | -Dedw)I-=D, 0 |;
¢ (w) 0 0

Dy = diag(s1), i € 39 (i + ci(w))
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Under the regularity condition
IM~Y<C YMedGkx) Vx, |x—x| <3,

where X = (w, A, ji) is a KKT triple, Theorem 2.12 is applicable and yields the
g-superlinear convergence of the semismooth Newton method.

Remark 2.4 The compact-valuedness and the upper semicontinuity of Clarke’s gen-
eralized differential [34] even allows to reduce the regularity condition to

IM~'|<C VM eaGR).

Remark 2.5 We also can view G as a piecewise smooth equation and apply Algo-
rithm 2.5. In fact, it can be shown that Clarke’s generalized Jacobian is the convex
hull of the Jacobians of all essentially active pieces [123, 134]. We are not going
into details here.

2.4.5.2 Discussion

So far, we have looked at semismooth Newton methods from an abstract point of
view. The main point, however, is to prove semismoothness for concrete instances
of nonsmooth operators. In particular, we aim at reformulating KKT systems arising
in PDE-constrained optimization in the same way as we did this in finite dimensions
in the above section. We will investigate this in detail in Sect. 2.5.

It should be mentioned that the class of semismooth Newton method includes as
a special case the primal dual active set strategy, see [13, 69].

2.5 Semismooth Newton Methods in Function Spaces

In the finite dimensional setting we have shown that variational inequalities and
complementarity conditions can be reformulated as nonsmooth equations. We also
described how generalized Newton methods can be developed that solve these non-
smooth equations.

In Sect. 2.4.5 we introduced the concept of semismoothness for nonsmooth op-
erators and developed superlinearly convergent generalized Newton methods for
semismooth operator equations. We now will show that, similar to the finite dimen-
sional case, it is possible to reformulate variational inequalities and complementarity
conditions in function space.

2.5.1 Pointwise Bound Constraints in L?

Let £2 C R" be measurable with measure 0 < |£2| < co. If boundary spaces are con-
sidered, £2 can also be a measurable surface, e.g., the boundary of an open Lipschitz
domain, on which L”-spaces can be defined.
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We consider the problem

min  f(u) a<u<b ae.onSs2
uel?(2)
with f : L?(£2) — R twice continuously F-differentiable. We can admit unilateral
constraints (@ < u or u < b) just as well. To avoid distinguishing cases, we will focus
on the bilateral case a, b € L°(£2), b —a > v > 0 on £2. We also could consider
problems in L?(§2), p # 2. However, for the sake of compact presentation, we focus
on the case p = 2, which is the most important situation.
It is convenient to transform the bounds to constant bounds, e.g., via

. u—a
u .
b—a
Hence, we will consider the problem
min  f(u), pB<u<p ae.onf (2.21)

uel2(2)

with constants 8; < B. Let U = L%(2) and S = {u € L?(2) : By <u < B,}. We
choose the standard dual pairing (-, -)y*v = (-, ')L2(_Q) and then have U* =U =
L?(£2). The optimality conditions are

uesS, Vfw),v —u) 22 >0 VYves.
‘We now use the projection Ps onto S, which is given by
Ps(v)(x) = Pig,.,1(v(x)), x€82.
Then the optimality conditions can be written as
Pw):=u—Ps(u—0Vfu)=0, (2.22)

where 6 > 0 is arbitrary, but fixed. Note that, since Ps coincides with the pointwise
projection onto [f;, 8], we have

D (u)(x) =u(x) — Pg g 1ux) —0V f(u)(x)).

Our aim now is to define a generalized differential 0& for @ in such a way that @
is semismooth.

By the chain rule and sum rule that we developed, this reduces to the question
how a suitable differential for the superposition Pig, g.1(v(-)) can be defined.

2.5.2 Semismoothness of Superposition Operators

More generally than the superposition operator in the previous subsection, we look
at the superposition operator

U LP(2)" — L1(2), Y(w)(x)=v(wix),...,wy(x))

with 1 <g < p <o0.
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Here, ¢ : R — R is assumed to be Lipschitz continuous. Since we aim at semi-
smoothness of ¥, it is more than natural to assume semismoothness of . As dif-
ferential we choose Clarke’s generalized differential 3¢/¢#. Now it is reasonable to
define 0¥ in such a way that, for all M € 0¥ (w + d), the remainder

(W (u+d) —¥ —Md)(x)| =Y (wkx) +dx) — P (wx)) — (Md)(x)]

becomes pointwise small if |d(x)| is small. By semismoothness of v, this, again,
holds true if (Md)(x) € 3!y (w(x) + d(x))d(x) is satisfied.
Hence, we define:

Definition 2.2 Let ¢ : R — R be Lipschitz continuous and (¢! 4-) semismooth.
For 1 < g < p < 00, consider

U LP(2)" — L1(2), Y(w)x)=¢wi(x),..., wy(x)).
We define the differential
W LP(2)" = LILP(S2)™, L1(£2)),
W (w) = {M ‘Mu=gTv, g€ L®(2)", g(x) € 3y (w(x)) foraa. x .Q} .
The operator @ in (2.22) is naturally defined as a mapping from L2(£2) to
L%(£2). Therefore, since V f maps to L?(£2), we would like the superposition

v Pig g1(v(-)) to be semismooth from L?(£2) to L?(£2). But this is not true,
as the following Lemma shows in great generality.

Lemma 2.7 Let ¥ : R — R be any Lipschitz continuous function that is not affine
linear. Furthermore, let 2 C R" be nonempty, open and bounded. Then, for all
q €[1, 00), the operator

W LI(2)sur— y(u(-)) e L1(2)
is not oY -semismooth.

Proof Fix b € R and choose g5 € 9y (b) Since i is not affine linear, there exists
a € R with

V(a) # Y () + gp(a — D).
Hence,
p =¥ ) —¥(a)—gp(b—a)|>0.
Let xo € 2 and U, = (xg — he, x0 + he)", he = €'/" /2. Define
b—a xeU,,

=a, € 2, d =
u(x)=a, x o (x) 0 XU,
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1/q 1/q
el Lo =</ |d8<x>|‘1dx) =< |b—a|qu) =¢!/|p —al.
2 Ug

Choose some g, € 0y (a) and define

Then

gb er87

gs(x):{ga x¢ U,

Then M : L9(2) 2 vi+> g, - v € L9(82) is an element of 0¥ (u + d.). Now, for all
x €S2,

[ (u(x) +de (%)) — P (u(x)) — ge(x)de (x)]

_ W) —v¥(@-gb-al=p>0, xeU,
[V (a) —¥(a) — gala —a)| =0, x ¢ Ue.

Therefore,

W (u+de) — ¥ ) — Mde| g

1/q
= (/Q [V (u(x) 4 de (x)) — Y (u(x)) — ge(X)de (x)|7 dx)

1/q . 0
= f pldx) =e'lip= lldell za-
; |b—al

Note that the trouble is not caused by the nonsmoothness of i, but by the non-
linearity of .

Fortunately, Ulbrich [134, 136] proved a result that helps us. See also [69]. To
formulate the result in its full generality, we extend our definition of generalized dif-
ferentials to superposition operators of the form ¥ (G(-)), where G is a continuously
F-differentiable operator.

Definition 2.3 Let v : R” — R be Lipschitz continuous and (3¢/v/-) semismooth.
Furthermore, let 1 < g < p < oo be given, consider

VoY — L1(2), Ye()&)=¢¥(GH)MX),

where G : Y — LP(§2)™ is continuously F-differentiable and Y is a Banach space.
We define the differential

WG 1Y = L(Y, LY(R)),
WG (y) ={M: Mv=g" (G'(v), ge L¥(2)", (2.23)
g(x) € Y (G(y)(x)) foraa. x € 2}.
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Note that this is just the differential that we would obtain by the construction in
part (¢) of Theorem 2.10.
Now we can state the following semismoothness result.

Theorem 2.13 Let 2 C R" be measurable with 0 < |2| < co. Furthermore, let
¥ : R™ — R be Lipschitz continuous and semismooth. Let Y be a Banach space,
1 <gq < p < oo, and assume that the operator G : Y — L1(2)™ is continuously
F-differentiable and that G maps Y locally Lipschitz continuously to LP($2). Then,
the operator

VoY — L1(2), Ye())=¢¥(GH)X),

is 0Wg-semismooth, where W is defined in (2.23).
Addition: Under additional assumptions, the operator W is 0¥ -semismooth of
order o > 0 with a appropriate.

A proof can be found in [134, 136].

2.5.3 Pointwise Bound Constraints in L> Revisited

We return to the operator @ defined in (2.22). To be able to prove the semismooth-
ness of @ : L2(£2) — L%(£2) defined in (2.22), we thus need some kind of smooth-
ing property of the mapping

ur>u—0Vfu).
Therefore, we assume that V f has the following structure:

There exist « > 0 and p > 2 such that

Vfu)=au+ Hu),

) ) (2.24)
H : L“(£2) — L~(£2) continuously F-differentiable,
H: L2(.Q) — LP(£2) locally Lipschitz continuous.

This structure is met by many optimal control problems, as illustrated in Sect. 2.5.4.
If we now choose 6 = 1/«, then we have

D(u)=u— P, p1(u— (1/a)(au + B(u))) =u — Pg g1 (—(1/a) Bu)).

Therefore, we have achieved that the operator inside the projection satisfies the re-
quirements of Theorem 2.13. We obtain:

Theorem 2.14 Consider the problem (2.21) with B; < B, and let the continu-
ously F-differentiable function f : L*(§2) — R satisfy condition (2.24). Then, for
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0 = 1/a, the operator @ in the reformulated optimality conditions (2.22) is 0®-
semismooth with

AP : L*(2) = L(L*(2), L*(R)),
0wy ={M; M=1+ S H'w), ge L),
o

gx) e BdP[ﬂ,’ﬂr](—(l/oc)H(u)(x))for a.a.x € .Q}
Here,

{0} t<prort> P,
0 Pl =111} pr<t<p
[0,1] t=port=p,.
Proof Setting g =2, ¥ = Pig, g,1 and G = —(1/a)H, we can apply Theorem 2.13
and obtain that the operator ¥ : L2(.Q) — L2(.Q) is 0¥ -semismooth. Therefore,

@ =1—-Y;is (I —¥g)-semismooth by Theorem 2.10. Since 0@ = I — d¥g, the
proof is complete.

For the applicability of the semismooth Newton method (Algorithm 2.11) we
need, in addition, the following regularity condition:

IM ™20y 120y <C YM ed®) VYueL*(2), lu—iill 2 <8

Sufficient conditions for this regularity assumption in the flavor of second order
sufficient optimality conditions can be found in [134, 135].

2.5.4 Application to Optimal Control

Consider the following elliptic optimal control problem:

i def 1 2 o9
min J(y,u) = zlly —yall + —llull
yEH (2),ueL?(£2) 2 L2 * ")
s.t. Ay=r+ Bu, pi<u<=<S§B. (2.25)

Here, y € H(} (£2) is the state, which is defined on the open bounded domain 2 C
R”, and u € L2(£2,) is the control, which is defined on the open bounded domain
2. € R™, Furthermore, A : Hé 2)—> H(2) = HO1 (£2)* is a (for simplicity)
linear elliptic partial differential operator, e.g., A= —A, and r € H~1(£2) is given.

The control operator B : LP/(SZC) — H~1(£2) is continuous and linear, with
p’ €[1,2) (the reason why we do not choose p’ = 2 here will become clear later;
note however, that L2(£2,) is continuously embedded in LP/(QC)). For instance,
distributed control on the whole domain §2 would correspond to the choice £2, = 2
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and B:u e L”/(.Q) — u € H~1(£2), where p’ is chosen in such a way that HO1 (£2)

is continuously embedded in the dual space L?(£2), p = p'/(p' — 1), of L (£2).
The control is subject to pointwise bounds 8; < B;. The objective is to drive the
state as close to y; € L?(£2) as possible. The second part penalizes excessive control
costs; the parameter o > 0 is typically small.
We eliminate the state y via the state equation, i.e., y = y(u) = A~ (r + Bu),
and obtain the reduced problem

N def 1 2 a9
st. Bi<u=pB.

This problem is of the form (2.21).
For the gradient we obtain

(VI@W),d) 20y = (W) — ya. ¥y )d) 1200y + o, d) 2,
= (' @*(y(w) = ya) +au,d) 2,
Therefore,
VI ) =y @)* (yu) — ya) + au = B* (A" (A~ + Bu) — ya) + au
=au+ B A YA+ Bu) — yo) & au+ Hw).

Since B € L(L” (2,), H~'(£2)), we have B* € L(H}(£2),LP(£2.)) with p =
p'/(p’ — 1) > 2. Hence, the affine linear operator

H(u)=B*(A"Y*(A™'(r + Bu) — ya)

is a continuous affine linear mapping L2(2,) —> LP(2).
Therefore, we can apply Theorem 2.13 to rewrite the optimality conditions as a
semismooth operator equation

def
@ (u) = u — Pgy p,1(—(1/a)H(u)) = 0.
The Newton system reads
1
(1 + —gk. H’(uk)>sk =—du"), (2.26)
o
where g - H'(u) stands for v i— g - (H'(u)v) and g € L°(£2,) is chosen such that

=0 —(1/a)HW*)(x) ¢ 181, Br],
g i=1 —(1/a)H W) (x) € (B1, Br),
€l0,11 —(1/a)H@k)(x) € (B, Br}-
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The linear operator on the left has the form

S 1
M ok H W =1+ —gF- B*(A™1)*A71B.
o o

For solving (2.26), it can be advantageous to note that s¥ solves (2.26) if and only if
sk =d§ and (d¥, d¥ dl’j)T solves

v Su
I 0 A* dy 0
0 1 —legtprllat|=[-2wH]. (2.27)
k
A —-B 0 d 0

As we will see later in Sect. 2.8.2, this is system is amenable to multigrid methods.

2.5.5 General Optimization Problems with Inequality Constraints
in L?

We now consider problems of the form

min f(w) st e(w)=0, cj(w)<0 ae.onf;, j=1,...,m.
weW

Here W and Z are Banach spaces, f: W - R,e: W — Z,and¢; : W — LZ(.Qj)
are twice continuously F-differentiable. The sets £2; C R"/ are assumed to be mea-
surable and bounded.

This, in particular, includes control-constrained optimal control problems with
L2-control u and state y € Y

min J(y,u) st e(y,u)=0, a<u;j<b;, i=1,...,1,
yeY,ueL?(£2)

with y € Y denoting the state, u € L2(821) x --- x L2(§2)) denoting the controls,
and aj, bi € LOO(QZ').

In this case, we have

w:(yvu)v mzzlv Czi—l(ysu):ai_ui9

ciyv,u)=u; —b;, i=1,...,1
To simplify the presentation, consider the case m =1, i.e.,

mi‘?, fw) st e(w)=0, c(w)<0 ae.onf2. (2.28)
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The Lagrange function is given by
L:WxLXR)xZ" >R,
L(w, k1) = f(w) + (h, cw)) 2y + (1. e(w)) 2+ 2.

Assuming that a CQ holds at the solution w € W, thg KKT conditions hold:
There exist A € L(£2) and [ € Z* such that (w, A, 1) satisfies

Ly (i, 4, 1) =0, (2.29)
e(w) =0, (2.30)
c@) <0, 1>0, (& c());2) =0. (2.31)

The last line can equivalently be written as VI(—c(w), ) with K = {u € L>(2) :
u > 0} and this VI can again be rewritten using the projection onto X:

= Pc(h+0c()) =0

with fixed 8 > 0. Since Py (1) = Pjp,00)((-)), we again have to deal with a super-
position operator.

To make the whole KKT system a semismooth equation, we need to get a
smoothing operator inside of the projection.

We need additional structure to achieve this. Since it is not very enlightening to
define this structure in full generality without giving a motivation, we look at an
example first.

2.5.6 Application to Elliptic Optimal Control Problems

2.5.6.1 Distributed Control

Very similar as in Sect. 2.5.4, we consider the following control-constrained elliptic
optimal control problem

. def 1 2 a0
min J(y,u) = 5”)’ - yd”LZ(Q) + E”“”H(Q)

yeH} (2),ueL?(2) (2.32)

s.t. Ay=r+ Bu, u<bh.

Here £2 C R” is an open bounded domain and A : Hj (£2) — H~!'(£2) is a second
order linear elliptic operator, e.g., A = —A. Furthermore, b € L°°(£2) is an upper
bound on the control, » € H~!(£2) is a source term, and B € E(Lp/(.QC), H™ (),
p’ €[1,2) is the control operator. For a more detailed explanation of the problem
setting, see Sect. 2.5.4.
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We convert this control problem into the form (2.28) by setting
w=(y,u), W=YxU,  Y=Hj(R2), U=L*%Q),
Z=H (), e(y,u)=Ay — Bu—r, c(y,u)=u—b.
Note that e and ¢ are continuous affine linear operators. Hence,
ey(y,u) =A4A, eu(y,u) =—B, cy(y,u) =0, culy,u)=1.
The Lagrange function is
Ly, u, 2o ) =Ty u) + s ey, u)p20) + (s ey ) gt ) 5-1(02)-
We write down the optimality conditions:
Ly(y,u, ko) = Jy(y,u) +cy(y, ) A +ey(y,u)' u=y—ys+A*u=0,
Ly(y,u,dyp) = Ju(y,u) + cu(y, )2 + ey (y,u)* p =ou + 1 — B*n =0,
A >0, c(y,u)=u—>b=<0, (A,c(y,u))Lz(Q)=(k,u—b)Lz(Q)=0,
e(y,u)=Ay — Bu—r=0.
The second equation yields A = B*u — ou and inserting this, we arrive at

A= —(y — yq), (adjoint equation)
B*u—au>0, u<b, (B*M—au,u—b)Lz(mzo,
Ay =r + Bu. (state equation)

We can reformulate the complementarity condition by using the projection Pjg o)
as follows:

b—u— Pjo.ooy(b—u—0(B*u—oau)) =0.
If we choose 6 = 1/«, this simplifies to
D, ) :=u—b+ Pj,oc)(b— (1/a)B*) =0.
Since B* € L(Hj (22), LP(£2)) with p=p'/(p’ — 1) > 2, we see that
(u, ) € L*(2) x HY(2) > b — (1/a)B*ju € LP (£2)
is continuous and affine linear, and thus @ is d@®-semismooth w.r.t.
AP 1 L*(2) x HL(2) = LIL*(2) x H} (2), L*(2)),
AP (u, ) ={M; M=(,—(g/a)- B*), g € L(2),
glx) e BCIP[(),OO) (b(x) — (1/a)(B*u)(x)) fora.a. x € .Q}
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Here,
{0} t <0,
M Ppcoy®=1{1} >0, (2.33)
[0,1] ¢=0.

The semismooth Newton system looks as follows

I 0 A* Sy V& — ya + A*pk
0 I —(@a)-B* | |su|=—u*=b+ Po.ooyb— (1/a)B*1F)
A —-B 0 Su Ay* — BuF —r

(2.34)
It is important to note that this equation has exactly the same linear operator on the
left as the extended system in (2.27). In particular, the regularity condition for the
Newton system (2.34) is closely connected to the regularity condition for (2.26).

2.5.6.2 Neumann Boundary Control

We now consider a similar problem as before, but with Neumann boundary control:

i def 1 2 o9
min J(y,u) = =|ly — ya + —|lu
yEHl(.Q),uELZ(B.Q) y 2||y Y ”LZ(-Q) 2” ”LZ(BQ)

s.t. —Ay+cy=r in§2, (2.35)
9 .
D —u nee,
av
u<b inods2.

Here £2 C R” is an open bounded Lipschitz domain and ¢ € L*°(§2), ¢ > 0. Further-

more, b € L°°(d42) is an upper bound on the control and r € H'(£2)* is a source
term.

The weak formulation of the state equation including boundary condition is

f(Vy~Vv+cyv)dx=/ rvdx+/ uvdS(x) Yve HY(2),
2 2 082
which in operator form can be written as
Ay =r + Bu,
where
B e L(L*(382), H' (2)"), (Bu,v)yi oy i) = /m uvdS(x),

AeL(H (2), H' (£2)"),
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(Ay, ) oy, m (@) = f (Vy-Voteyv)dx VoeH'(Q).
2

The adjoint B* € L(H'(£2), L?(9£2)) of B is given by B*v = v|3g. In fact,

(B*U, w)LZ(BQ) = (Bu), v)H](Q)*,H](Q) = / wvdS(x) = (U, U))LZ(a_Q).
892
This control problem assumes the form (2.28) by setting

w=(y,u), W=YxU, Y =HY (), U=L*0%R),

Z=H'(92)*, e(y,u)=Ay — Bu—r, c(y,u)=u—b.

The operators e and ¢ are continuous and affine linear with derivatives

ey(yau)zA’ eu(y»“)z_Ba Cy(yvu)zoa Cu(y’u)zL

The Lagrange function reads

Ly u,a, ) =J(y,u) + A, ey, u)) 20y + (s ey, ) g0y v @)+

We write down the optimality conditions:
Ly(y,u, bypw) =Jy(y,u) +cy(y, w)* A+ ey(y,u)* =y = yas + A" =0,

Ly(y,u,a, ) =Ty (y,u) +cu(y, u) A +e (y, ) u=au+x1— B u=0,

A>0, c(y,u)=u—>b =<0, O\,C(y’u))LZ(aQ)Z()Hu_b)LZ(a_Q):Oa

e(y,u)=Ay — Bu—r=0.

The second equation yields A = B*u — «u and using this to eliminate A, we arrive
at

A*p=—(y — ya),

(adjoint equation)
B*u—oau>0, u<b,

(B —au,u —b) 250y =0,

(2.36)
Ay =r + Bu. (state equation)
Inserting Av = A*v = —Av + cv, B*v = v|yg, and the definition of B, we can

express this system as a coupled system of elliptic partial differential equations:

—Ap+cu=—(y—ys) in£2,

9
H_0 inan.
ov

oo —au>0, u<b, (ulpg—ou)(u—>b)=0 inds2,
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—Ay+4+cy=r in§2,

By_
v

u inds2.

Here, we have written the complementarity condition pointwise. Note that in the
adjoint equation we have homogeneous Neumann boundary conditions since a Neu-
mann boundary condition % = h would result in the term Bh on the right hand side
of the differential equation. Since no such term is present in the adjoint equation,
we must have 7 = 0.

We return to the more compact notation of (2.36) and reformulate the comple-
mentarity condition by using the projection P, as follows:

b—u— Poooy(b—u—0(B*u—oau))=0 inL(3£2).
If we choose 6 = 1/, this simplifies to
D@, ) :=u—b+ Pooccy(b—(1/a)B*u)=0 in L(3$2).

From B*v = v|35 we see that B* is a bounded linear operator from H!(£2) not only
to L2(9£2), but even to H/2(3£2). By the Sobolev embedding theorem, we can find
p > 2 with H'/2(8§2) < L?(352). We then have B* € L(H'(§2), L?(382)) with
p > 2. Hence,

(u, ) € L*(02) x H'(2) > b — (1/a)B* € LP(382)
is continuous and affine linear, and thus @ is d@®-semismooth w.r.t.
AP L*(32) x H'(2) = L(L*(32) x H' (), L*(32)),
9P (u, p) = {M; M =(I,—(g/a)- B*), g€ LX),
8(x) € 37 Pl,00) (b(x) — (1/a)(B*p)(x)) for a.a. x € 382}.

Here, 3¢ Pl0,00)(t) is as in (2.33). The semismooth Newton system then is

I 0 A* Sy V& — ya + A*pk
0 I —(@a) - B*||su|=—uF—b+ Poooy— (1/a)B*u¥)
A -B 0 Sy Ay* — Buk —r

(2.37)

2.5.7 Optimal Control of the Incompressible Navier-Stokes
Equations

We now discuss how an optimal control problem governed by the 2d incompress-
ible instationary Navier-Stokes equations can be solved by a semismooth Newton
method. We use exactly the notation of Sect. 1.8. In particular, £2 C R? is the open
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bounded flow domain and / = [0, T'] is the time horizon. By V we denote the clo-
sure of {y € C(‘)’Q(.Q)2 :V.-y=0}in HO1 (§2)% and by H its closure in L?(£2)%. Given
the resulting Gelfand triple V < H < V* we can write the state equation of the
flow control problem as follows: The velocity field y € W (I) satisfies

Ye—VvAy+(y-V)y=Bu inL*(I;V*),
‘ ‘ (2.38)
Yli=o=yo inH.

Here, B € L(U, L>(I; V*)) is the control operator and U is a Hilbert space of con-
trols. To be more concrete, we will consider time-dependent control on the right
hand side on a subdomain §2. of the flow domain §2. We achieve this by choosing
B e L(LA(I x 20)%, L2(I; V¥)),

(Bu, w) 21y, 12(1;v) = W W L2122

This is well defined, since L(I; L2(£2)) = L>(I x £2).
We consider an objective function of the form

Lt 2 X2
J(y,“)zz 0 ||Ny_qd||L2(Qd)2dt+EHMHLZ(IXQC)Z'

Here, N € £L(V, L2(£27)?) is an operator that maps the velocity field to the cor-
responding observation on the set £2; C £2. For instance, N = [ or N = curl are
possible choices. On the control we will pose a pointwise constraint

ueC onl x $2.,

where C C R? is a closed convex set such that the projection Pc onto C is semi-
smooth.
We thus consider the problem

min J(y,u) st (y,u)satisfy (2.38) and wueC onl x £2,.
v

The analysis of this problem was discussed in Sect. 1.8. In particular, for any
u € U the state equation possesses a unique solution y(u) € W(I) and the oper-
ator u — y(u) is infinitely F-differentiable. Since the objective function J(y, u)
is continuous and quadratic, it is infinitely F-differentiable. Therefore, the reduced
objective function J (u) = J(y(u), u) is infinitely F-differentiable. The gradient of
J(u) can be represented using the adjoint state in the form

VJiw) =au — B*py,

where p; = pi1(u) € L>(I; V) is the adjoint state corresponding to (y,u) =
(y(u), u) given by the weak solution of the adjoint equation

—(p1)e = (- V)p1 + (VY p1 —vAp1 = —N*(Ny —qq) inl x £2,
pili=r =0 in £.
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Due to the structure of B we see that
(Bu, w)Lz(I,V*),Lz(I,V) = (M, w)LZ(IXQC)Z = (M, B*w)L2(1XQc)2.

Therefore, B*w = w|;xg,-

Since N € L(V, L*(24)%) , we have N* € L(L?*(£24)>, V*) and thus the right
hand side —N*(Ny(u) — qq) maps u € U = L>(I x £2.)*> = L*>(I, L*(£2.)?) infi-
nitely F-differentiable to L2(I; V*). From the imbedding L*(I; V*) — W(I)* N
L*3(I; v*) and Theorem 1.58 we conclude that the operator

uel pi(u) e WY3()

is well-defined and Lipschitz continuous on bounded sets.
Furthermore, it can be shown, see [134, 137], that

7
W43 (1) LI(I x 2)?, V1<gq< 5

Thus fixing g € (2, 7/2) we obtain that
ueUr pi(w) e LI(I x £2)

is well-defined and Lipschitz continuous on bounded sets.
We collect what we have found so far

e J:U—>Ris infinitely F-differentiable.
e The reduced gradient has the following structure:

Vf(u) =ou+ Hu)

with
H(@u)=—B*pi(u) = —p1(wlixo..

where p1(u) € L2(I; V) is the adjoint state.
e The operator u € U — p1(u) € L3(I; V) is infinitely F-differentiable. Further-
more, the operator

uelU pi(u) e W3 — LI(I x 2)

is Lipschitz continuous on bounded sets for g € (2,7/2). From this, it follows
that H : U — U is infinitely F-differentiable and that the operator

ueUwr H(u)e L1(I x £2.)

is Lipschitz continuous on bounded sets.

We can write the first order optimality conditions in the form

u— Pe(u—0VJwu)=0
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with 6 > 0 fixed. Choosing ¢ = 1/« and inserting the adjoint representation of
VJ (i), we obtain

u— Pe(=(1/a)H (u)) = 0. (2.39)

We made the assumption that Pc is semismooth. Due to the properties of the op-
erator H it now follows from Theorem 2.13 that the operator in equation (2.39) is
semismooth from U to U. Hence, a semismooth Newton’s method can be applied
to this optimal control problem. For further details, we refer to [134, 137].

2.6 Sequential Quadratic Programming

2.6.1 Lagrange-Newton Methods for Equality Constrained
Problems

We consider
min f(w) st e(w)=0 (2.40)
weW
with f: W — R and e : W — Z twice continuously F-differentiable.
If w is a local solution and a CQ holds (e.g., ¢/(w) is surjective), then the KKT

conditions hold:
There exists a Lagrange multiplier & € Z* such that (w, 1) satisfies

Ly, ) = f'(w) + €' (w)*a =0,
L,(w, ) =e(w)=0.
Setting

=0,  Gw )= (Lw(“” “)),

e(w)
the KKT conditions form a nonlinear equation
G(x)=0.
To this equation we can apply Newton’s method:
G'(x")sh = -G ().

Written in detail,

k ok T k L k o,k
e (w") Sy, e(w”)
The resulting method is called Lagrange-Newton method. We need a regularity con-
dition:
(wa(u_), n e w)*

¢ (i0) 0 ) is boundedly invertible. (2.42)
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Theorem 2.15 Let f and e be twice continuously F-differentiable. Let (w, i) be a
KKT pair of (2.40) at which the regularity condition (2.42) holds. Then there exists
8 > 0 such that, for all (w®, u°) € W x Z* with || (w®, u®) — (0, @@)|ly « z+ < 8, the
Lagrange-Newton iteration converges g-superlinearly to (w, [t).

If the second derivatives of f and e are locally Lipschitz continuous, then the
rate of convergence is q-quadratic.

Proof We just have to apply the convergence theory of Newton’s method.
If the second derivatives of f and e are locally Lipschitz continuous, then G’ is
locally Lipschitz continuous, and thus we have g-quadratic convergence.

So far, it is not clear what the connection is between the Lagrange-Newton
method and sequential quadratic programming.

However, the connection is very close. Consider the following quadratic pro-
gram:

SQP subproblem:

. 1
min (f'(w*), d)wew 4 = (Lyw W5, 15)d, dyws w
dew 2 (2.43)

st e(wb) +ewhHd =o.

The constraint is linear with derivative e’(wk). As we will show below, e’(wk) is
surjective for w* close to w if ¢’ () is surjective.

Therefore, at a solution d¥ of (2.43), the KKT conditions hold:

There exists ,u’;p € Z* such that (d*, M];p) solves

f ") + Ly, 1*)d* + &' ) uf, =0
(2.44)
e(w*) + ' (whd* = 0.

It is now easily seen that (d*, u’;p) solves (2.44) if and only if (sX, sﬁ) = (d*¥, u’;p —
uk) solves (2.41).

Hence, locally, the Lagrange-Newton method is equivalent to the following
method:
Algorithm 2.16 (SQP method for equality constrained problems)
0. Choose (w?, ,uo) (sufficiently close to (w, it)).
Fork=0,1,2,...:

1. If (w*, k) is a KKT pair of (2.40), STOP.
2. Compute the KKT pair (d*, u**1) of

. 1
min (f' (w*), d)wew + = (Luw @5, u5)d, d)ws w
dew 2

st e(wh) +ewhHd =0,
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that is closest to (0, ,uk).
3. Set wkt! = wk 4 gk,

For solving the SQP subproblems in step 2, it is important to know if for w* close
to w, the operator ¢’ (w*) is indeed surjective and if there exists a unique solution to
the QP.

Lemma 2.8 Let W be a Hilbert space and Z be a Banach space. Furthermore, let
e: W — Z be continuously F-differentiable and let ¢’ (w) be surjective. Then e’ (w)
is surjective for all w close to w.

Proof We set B = ¢'(w), and B(w) = ¢'(w), and do the splitting W = Wy LW,
with Wy = Kern(B). We then see that B|w, € L(W], Z) is bijective and thus con-
tinuously invertible (open mapping theorem). Now, by continuity, for w — w we
have B(w) — B in £L(W, Z) and thus also B(w)|w, — Blw, in L(W1, Z). There-
fore, by the Lemma of Banach, B(w)|w, is continuously invertible for w close to w
and thus B(w) is onto.

Next, we show a second-order sufficient condition for the QP.

Lemma 2.9 Let W be a Hilbert space and Z be a Banach space. Furthermore,
let f:W — Rande:W — Z be twice continuously F-differentiable. Let e(w) =
0 and assume that e'(w) is surjective. In addition, let the following second-order
sufficient condition hold at (w, [L):

(d, Ly (0, )d)w.w+ > alld|}, Vd € W with ¢ (0)d =0,

where o > 0 is a constant. Then, there exists § > 0 such that for all (w, u) € W x Z*
with ||(w, ) — (W, ()|l wxz+ <8 the following holds:

(d, Lyw(w, w)d)w.w+ > %||d||%v Vd € W with ¢ (w)d = 0.

Proof Set B = ¢'(w), B(w) = ¢’ (w), Wy = Kern(B) and split W = Wy LW,. Re-
member that B|w, € L(W, Z) is continuously invertible.

For any d € Kern(B(w)) there exist unique dy € Wy and d; € W with d =
do + d;. Our first aim is to show that d; is small. In fact,

|Bdillz =1Bdllz = I(B —Bw))dllz <II1B—Bw)llwzIdlw.
Hence,

ldillw = 1(Blw) ™" Bdillw < |(Blw,) ™ lz—w,|B = Bw)llw—zlldlly

e w)lld|lyy-
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Therefore, setting x = (w, u),
(Luw@)d. d)w=w
= (Luw@d, d)yw+w + ((Luww ) = Lyw(©)d, d)w+w
= (Luww(®)do. do) w+w + (Luww()(d + do). d1) w+w
+ ((Lww () = Lyw()d. d)w=w
> aldollfy — | Luw )l we(ldllw + Idollw) i lly
— 1L ww () = Luw® llw— w4115
> (ar(1 = £2(w)) = 2] Loy (©) [l we& ()
— ILww @) = Luw@®llw_w Il
=t a)lld|}.

By continuity, «(x) — « for x — x.
A sufficient condition for the regularity condition (2.42) is the following:

Lemma 2.10 Let W be a Hilbert space, let €' (W) be surjective (this is a CQ), and
assume that the following second order sufficient condition holds:

(d, Ly (i, )d)w,w+ = alld|ly, Vd € W with ¢'()d =0,

where a > 0 is a constant. Then the regularity condition (2.42) holds.

Proof For brevity, set A = Ly, (W, ft) and B = ¢’ (w). We consider the unique solv-

ability of
<A B*) <w> <r1>
B 0 " - 1) ’

Denote by Wy the null space of B and by W its orthogonal complement. Then
W = Wy LW; and Wy, W are Hilbert spaces.

Since B is surjective, the equation Bw = r» is solvable and the set of all solutions
is wy(r2) + Wo, where w1 (r2) € W1 is uniquely determined.

We have

(d, Ad)w.w+ > a||d|ly, ¥d € Wo.

Hence, by the Lax-Milgram Lemma 1.8, there exists a unique solution wo(ry, 2) €
Wo to the problem

wo € Wo,  (Awo, d)w+w = (r1 — Awi(r2), dyw=w Vd € Wp.
Since B is surjective, we have for all z* € Kern(B*):

(25, Z) 7%, 7 = (2", BW) 2+ 7z = (B*Z", W)w+ w = ({0}, W)w+ w = {0}.
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Hence, Kern(B*) = {0} and thus B* is injective. Also, since BW = Z is closed, the
closed range theorem yields

B*Z* =Kern(B): = W".
Here, for SC X
St={x eX*:(x,s)xx=0VseS}.

By construction, r1 — Awg(r1, r2) — Awi(rp) € Wd‘. Hence, there exists a unique
u(ry, r2) € Z* such that

B*u(ri,r) =ri — Awo(ri, r2) — Awi(r).

Therefore, we have found the unique solution
(w) _ (wo(m, )+ wl(r2)>
u wu(ry,r2) '
2.6.2 The Josephy-Newton Method

In the previous section, we were able to derive the SQP method for equality-
constrained problems by applying Newton’s method to the KKT system.

For inequality constrained problems this is not directly possible since the KKT
system consists of operator equations and a variational inequality. As we will see,
such a combination can be most elegantly written as a

2.6.2.1 Generalized Equation

GE(G,N): 0eG(x)+ N(x).

Here, G : X — Y is assumed to be continuously F-differentiable and N : X =2 Y is
a set-valued mapping with closed graph.

For instance, the variational inequality VI(F, §), with F : W — W* and SC W
closed and convex, can be written as

0e F(w) + Ns(w),

where Ny is the normal cone mapping of S

Definition 2.4 Let S C W be a nonempty closed convex subset of the Banach
space W. The normal cone Ng(w) of § at w € W is defined by

{yeW*:(y,z—w)w=w=<0VzeS}, weS,

Nsw)=1g wes.
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This defines a set-valued mapping Ng : W = W*.
The Josephy-Newton method for generalized equations looks as follows:

Algorithm 2.17 (Josephy-Newton method for GE(G, N))
0. Choose x? € X (sufficiently close to the solution x of GE(G, N)).
Fork=0,1,2...:

1. STOP if x* solves GE(G, N) (holds if x¥ = x¥—1).
2. Compute the solution x¥*1 of

GE(G(xX) + G' M) (- = x%), N) :
0 GG + G GMx — x5+ Nx)
that is closest to x*.

In the classical Newton’s method, which corresponds to N (x) = {0} for all x, an
essential ingredient is the regularity condition that G’(x) is continuously invertible.
This means that the linearized equation

p=GX) +G'(X)(x —%)

possesses the unique solution x(p) =% + G’(X)~! p, which of course depends lin-
early and thus Lipschitz continuously on p € Y.
The appropriate generalization of this regularity condition is the following:

Definition 2.5 (Strong regularity) The generalized equation GE(G, N) is called
strongly regular at a solution x if there exist § > 0, ¢ > 0 and L > 0 such that,
forall peY, ||plly <3, there exists a unique x =x(p) € X with ||x(p) — X[y <€
such that

peGX)+G (X)(x —x)+ N(x)
and x (p) is Lipschitz continuous:
x(p1) =x(p)llx = Llipr = p2lly  Vp1,p2 €Y, lipillx <8, i=1,2.

It is a milestone result of Robinson [117] that then the following holds:

Theorem 2.18 Let X, Y, and Z be Banach spaces. Furthermore, let 7 € Z be fixed
and assume that X is a solution of

GE(G(z,-),N): 0e€G(z,x)+ N(x)

at which the GE is strongly regular with Lipschitz modulus L. Assume that G is
F-differentiable with respect to x near (z, x) and that G and G are continuous at
(z, x).
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Then, for every &€ > 0, there exist neighborhoods Z:(z) of z, X:(x) of x, and a
mapping x : Z¢(z) = X¢(X) such that, for all 7 € Z;(2), x(2) is the (locally) unique
solution of the generalized equation

0eG(z,x) + N(x), xeX.(x).
In addition,

[x(z1) —x(22)llx = (L + )16 (21, x(22)) = G(z2, x(z2))lly  Vz1.22 € Ze(2).

From this, it is not difficult to derive fast local convergence of the Josephy-
Newton method:

Theorem 2.19 Let X, Y be Banach spaces, G : X — Y continuously F-differentia-
ble, and let N : X 3 Y be set-valued with closed graph. If x is a strongly regular
solution of GE(G, N), then the Josephy-Newton method (Algorithm 2.17) is locally
g-superlinearly convergent in a neighborhood of . If, in addition, G’ is a-Holder
continuous near x, then the order of convergence is 1 + .

Proof For compact notation, we set Bs(x) ={y € X : ||y — x|y <d}.
Let L be the Lipschitz modulus of strong regularity. We set Z = X, z = x and
consider

G(z, x) défG(z) +G () (x —2).

Since G(Z, -) is affine linear, we have
G(Z,)+G (7, )(x—%)=GZ,x) =GR +G @) (x—7) = GE)+G (%) (x —X).

Therefore, GE(G(Z, -), N) is strongly regular at X with Lipschitz constant L. Theo-
rem 2.18 is applicable and thus, for ¢ > 0, there exist neighborhoods Z.(x) of 7 =x
and X, (x) of x such that, for all z € Z.(x),

0€G(z,x)+ Nx)=G(@)+ G (@) (x —2) + N(x), x€Xq(X)
has a unique solution x(z) that satisfies
V21,22 € Ze(2) = Ze(X) ¢

Ix(z1) — x(22)llx < (L +&)G(z1,x(22)) — G(z2, x(22)lly
=(L+8)G(z1) — G(z2) + G'(z1)(x(z2) — 21) — G'(z2) (x(22) — 22) Ily-

If we choose z; =z € Z.(x) and zo = x, we obtain x(z) = x and thus for all
7€ Z:(X):

Ix(z) = Xllx < (L+8)G (@)~ GE) + G ()(F —2) — G X E - Dy
=(L+8[6) - GE) -G @Dy
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<(L+8)GE) -GE) -G @) (z—Dly

+ (L +e)(G'® -G @NE—Dly

(L+8)G) —GEF) —G'@)(z— Dy

+(L+ )G (%) - G @llx-yllz = *lx

=o(lz—xllx) (z—X). (2.45)

IA

In the last estimate, we have used the F-differentiability of G and the continuity
of G'.

Now choose 6 > 0 such that Bs(x) C X¢(x) and Bss/2(x) C Z¢(x). By possibly
reducing 8, we achieve, using (2.45),

- 1 - -
Ix@) = %llx = Sllz = Xllx V2 € Bs(X).

In particular, this implies
x(z) € Bsj2(x) C Bs(x) Vz€ Bs(x).

Now observe that, for x¥ € Bs(%), the unique solution of GE(G (x*) + G’ (x*) (- —
x*), N)in X, (%) is given by x (x¥) € Bs/a(¥).
From

i} _ 8 3

o) =l < e () = Flly + 15 = 28llx < 5 +8=38

and Bss2(X) C X,(¥) we conclude that x(x¥) is the solution of GE(G(x¥) +
G’(xk)(- — x5, N) that is closest to x¥. Hence, for x* € Bs(¥), we have

_ _ 1 _
X =x(x*) € Bsp (%) € Bs(3), "t — %y < Ellxk —Xllx-

Thus, if we choose x° € Bs(x), we obtain by induction ik = x.

Furthermore, from (2.45) it follows that

I —Fly = 2 (") = Fllx = o(l* = Flx) (k= 0).

This proves the g-superlinear convergence.
If G’ is a-order Holder continuous near X with modulus L, > 0, then we can
improve the estimate (2.45):

Ix(z) = Xlx = (L + )G () = GE) — G'(2)(z = D)lly

1
—(Lte) /(G/(i+t(z—i))—G’(Z))(Z—i)dt
0

Y

1
=L+ 8)/0 IG' (X +1(z— %) = G'@lx-ydtlz—Xlx
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1
§(L+s)/ Lol =%z — £1% dt 1z - Ty
0

Lte —_p
sza”Z_x”X *

=0(lz - XX (- %).
Hence,

_ _ _ 1+
K = F g = x5 = Ellx = Ot =Xl ©) (k= 00).

2.6.3 SQP Methods for Inequality Constrained Problems

We consider the problem

mi‘141/ fw) st e(w)=0, c(w) e, (2.46)
we

with f: W —>R,e: W — Z, and c: W — R twice continuously F-differentiable.
Furthermore, W, Z, R are Banach spaces, R is reflexive (i.e., R** = R),and L C R
is a nonempty closed convex cone.

For this problem, we define the Lagrange function

L(w, A, p) = f(w) + (&, c(w)) g, g + (1, e(w)) 2+ z.
We will need the notion of the polar cone.

Definition 2.6 Let X be a Banach space and let I C X be a nonempty closed con-
vex cone. Then the polar cone of K is defined by

Ke={yeX":(y,x)x»x <0VxeK}.
Obviously, £° is a closed convex cone.

Recall also the definition of the normal cone mapping (Def. 2.4).

Under a constraint qualification, see Sect. 1.7.3.2, the following KKT conditions
hold:

There exist Lagrange multipliers A € K° and ji € Z* such that (i, A, f1) satisfies

c(w) e K, re ke, (A, c()) g+ g =0,
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The second condition can be shown to be equivalent to VI(—c(w), K°). This is a
VI w.r.t. A with a constant operator parameterized by w.

Now comes the trick, see, e.g., [5]:

By means of the normal cone Ny, it is easily seen that VI(—c(w), K°) is equiv-
alent to the generalized equation

0 € —c(w) + Nico (A).

Therefore, we can write the KKT system as a generalized equation:

Lw(wv)"a M) {0}
0e —cw) |+ [N ]. (2.47)
e(w) {0}
Setting
{0}

Nw,a, n)=| N1 |,
{0}
and noting Ly (w, A, u) = c(w), Ly(w, A, u) = e(w), we can write (2.47) very

compactly as GE(—L’, N).
The closed graph of the normal cone mapping is proved in the next lemma.

Lemma 2.11 Let X be a Banach spaces and S C X be nonempty, closed, and con-
vex. Then the normal cone mapping Ns has closed graph.

Proof Let graph(Ns) > (x¥, y¥) — (%, ). Then y* € Ng(x*) and thus x* € S, since
otherwise Ng(x*) would be empty. Since S is closed, x € S follows. Now, for all
z € S, by continuity

(7,2 — %) xex = lim (y*, z —xF)xs x <0,
k— 00— ————
<0

hence y € Ng(x). Therefore, (x, y) € graph(Ng).

If we now apply the Josephy-Newton method to (2.47), we obtain the following
subproblem (we set xk = (wk, 1k, 1k

Ly (x5 Lyw(®) @b &b\ (w—wk {0}
0| —cw® | +| - W) 0 0 A=2+ | Nee ()
e(wk) e’ (wk) 0 0 n— pk {0}
(2.48)

It is not difficult to see that (2.48) are exactly the KKT conditions of the following
quadratic optimization problem:
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2.6.3.1 SQP Subproblem

. 1ok _ ok
min (f"(w"), w—w")

st e(wh +eWHw—w)=0, c@h +cWHw—w) ek.

1 k k k
W*,W-l-E(wa(X Yw—w),w —w)wew

In fact, the Lagrange function of the QP is

L) = (' (@b, w — whhew + §<wa(xk)(w — by w— wh e

+ (b, e®) + ¢ @ W — w))wew

+ (., ewh) + € W W — wh)) 2+ 2.
Since

LI x) = f' ") + Ly @) (w = w) + ¢ @2 + ' )1
= L") + Luw ) w — w) + @ * 0 = 25 + ' ) (e = uh),
we see that writing down the KKT conditions for the QP in the form (2.47) gives
exactly the generalized equation (2.48).
We obtain:

Algorithm 2.20 (SQP method for inequality constrained problems)
0. Choose (w?, 19, 19 (sufficiently close to (0, A, j1)).
Fork=0,1,2,...:

1. If (w*, A%, %) is a KKT triple of (2.46), STOP.
2. Compute the KKT triple (d%, Ak+1 | 541y of

. 1
min (f'(w*), dyw+ w + = (Luw Wk, 25, 15, d)we w
dew 2
st. e(w®) +eWwd =0, c(Wwh) 4+ whd e K,

that is closest to (0, Ak, /,Lk).
3. Set wkt! = wk 4 gk,

Since this method is the Josephy-Newton algorithm applied to (2.47), we can de-
rive local convergence results immediately if Robinson’s strong regularity condition
is satisfied. This condition has to be verified from case to case and is connected to
second order sufficient optimality conditions. As an example where strong regular-
ity is verified for an optimal control problem, we refer to [56].
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2.6.3.2 Application to Optimal Control

For illustration, we consider the nonlinear elliptic optimal control problem

i def 1 2 o9
min J(y,uw) = =lly —yall + —llull
YEH] (2),ueL?(2) 2 L22) T "ILA(2)
s.t. Ay+y +y=u, u<b. (2.49)

Here, y € H(} (£2) is the state, which is defined on the open bounded domain 2 C
R", n <3, and u € L*(R2) is the control. Furthermore, A : H} (2) > H™'(22) =
HO1 (£2)* is a linear elliptic partial differential operator, e.g., A = —A. Finally b €
L*°(£2) is an upper bound on the control. We convert this control problem into the
form (2.46) by setting

Y = H} (), U=L1%0), Z=H (),
e(y,u)=Ay+y +y—u,  c(y,u)=u—b,

IC:{ueLz(Q):MSOa.e.on.Q}.

One can show (note n < 3) that the operator e is twice continuously F-differentiable
with

ey(y,u) =A+3y> I +1, eyy(y,u)(hi, ha) =6yhihy
(the other derivatives are obvious due to linearity). Therefore, given xk =
(yk, uk, Ak, uk), the SQP subproblem reads

. 1
‘gagi(yk — Yd» dy)LZ(_Q) + Ol(uk’ du)LZ(_Q) + B ||dy||iz(9)
1 k 72 o 2
+ E(,uk, 6)7 dy>Hol(.Q),H71(.Q) + EHduHLz('Q)
st A 4+ (9 + v —ub + Ady + 3059, +dy — d, =0,
ug + du <bh.

2.7 State-Constrained Problems

So far, we focused on optimization problems with control constraints. Only very
recently, advances in the analysis of Newton based algorithms for state constrained
problems have been made and much is to be done yet. We cannot go into a detailed
discussion of this topic here. Rather, we just briefly sketch a couple of promising
approaches that are suitable for state constrained optimization problems.
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2.7.1 SQP Methods

In the case of SQP methods, state constraints do not pose direct conceptual difficul-
ties, at least not at a first glance. In fact, sequential quadratic programming is ap-
plicable to very general problem settings. The constraints are linearized to generate
the QP subproblems, i.e., state constraints arise as linearized state constraints in the
subproblems and the difficulties of dealing with state constraints is thus transported
to the subproblems. However, the efficient solution of the QP subproblems is not
the only challenge. In fact, it is important to emphasize that second order optimality
theory is challenging in the case of state constraints. Second order sufficient opti-
mality conditions are closely linked to strong regularity of the generalized equation
corresponding to the KKT conditions. Therefore, proving fast local convergence of
SQP methods for problems with state constraints is challenging. Recent progress in
second order optimality theory, e.g., [31, 57] may help paving the ground for future
progress in this field.

2.7.2 Semismooth Newton Methods

The application of semismooth reformulation techniques for state constraints poses
principal difficulties. In fact, consider for illustration the following model problem:

in J 1 2 o2
rill,lun (yv Lt) = EHy - )’d”Lz(Q) + EHMHLZ(Q)

st. —Ay=u on§2, (2.50)
y=0 onas2,
y<b on§2.

Here, n < 3 and £2 C R” is open and bounded with C? boundary. Furthermore, b €
H*(2),b>0,a >0, and yg € L>(£2). From regularity results, see Theorem 1.28,
we know that for u € U := L*(£2) there exists a unique weak solution y € ¥ :=
HO1 (£2) N H2(2) = C(£2) of the state equation. The existence and uniqueness of
a solution (y, u) € Y x U is easy to show by standard arguments.

Similar to the analysis of problem (1.144) it can be shown, see, e.g., [12], that
the following optimality conditions hold at the solution: There exists a regular Borel
measure it € M(S£2) and an adjoint state p € L?(£2) such that

—Ay=iu onS$2, (2.51)
=0 onds, (2.52)
(P, —AV) 2@y + (I V) M2y, c) = Wa — V. W22y YV EY, (2.53)

y<b, (v = ) pm@).cy <0 YveC(2), v<b, (2.54)
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au—p=0 1in 2. (2.55)

The difficulty now is that the complementarity condition (2.54) between the function
y and the measure fi cannot be written in a pointwise fashion. Hence, nonsmooth
pointwise reformulations as needed for semismooth Newton methods are not possi-
ble.

To avoid this difficulty, several approaches were presented recently.

2.7.2.1 Moreau-Yosida Regularization

One possibility is to treat the state constraint by a Moreau-Yosida regularization. The
state constraint is converted to a penalty term, resulting in the following Moreau-
Yosida regularized problem:

. 1 2 o 2 1 N 2
min 5 ”y - )’d”Lz(_Q) + E”u”LZ(Q) + E ” maX(O, M + y(y - b))”LZ(_Q)

2.56
st. —Ay=u on§2, ( )

y=0 onds2.

Here y > 0 is a penalty parameter and /i > 0, L € L?(£2) is a shift parameter. For
this problem without inequality constraints, the optimality conditions are

—A§, =i, ong, (2.57)
5,=0 onds, (2.58)
~Apy =yd — Fy —max(0, i+ y(Gy — b)) on L2 (2.59)
Py =0 ondg, (2.60)
ity — py =0 on L. (2.61)

To make this system more similar to the optimality conditions (2.51)—(2.55), we
introduce

fiy =max(0, i +y (5, — b)).
We then can write the KKT conditions (2.57)—(2.61) in the form

—A§, =i, onS, (2.62)
¥y =0 ondf, (2.63)
—Apy+ iy =ys—y, ons2, (2.64)
py=0 onag, (2.65)
ity =max(0, it +y(y, —b)) on 2, (2.66)

au, —p, =0 on2. (2.67)
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For further discussion, we rewrite (2.66) as follows

0= fi, —max(0, i + y (5, — b))

_ _ - r. .
iy —max(O, /Ly+y(y,, —b+;(u—u,,))). (2.68)

If, just for an informal motivation, we suppose for a moment that (it — f,)/y be-
comes small for large y, then we can interpret (2.68) as an approximation of

fiy = max(0. fiy +y (Fy — b)). (2.69)
From earlier considerations we know that (2.69) is equivalent to
my >0, y,—b=<0, py,(y,—b)=0,

which can be interpreted as a strong formulation of (2.54). This demonstrates the
role of (2.66) as an approximation of (2.54).

We collect some results concerning the regularized solution tuple (y,, i,
Dy, ity), which we call primal dual path. The details can be found in [66, 67]:

For any yp > 0, the primal dual path y € [y, 00) = ()}, Uy, Py, i) can be
shown to be bounded in ¥ x U x L2(£2) x Y* and Lipschitz continuous. In
addition, y € (0,00) — @y, € L2() is locally Lipschitz continuous. Moreover
(3y, uy, py, Ly) converges weakly to (¥, u, p, 1) as y — oo and the convergence
(Vy,uy) — (y,u) iseven strongin ¥ x U.

The idea is now to apply a semismooth Newton method to (2.62)—(2.67) for solv-
ing (2.56) approximately and to drive y to infinity in an outer iteration. The analysis
of this approach was carried out in, e.g., [66, 67]. The adaption of the parameter y
can be controlled by models of the optimal value function along the path.

2.7.2.2 Lavrentiev Regularization

A second approach to state constrained problems is Lavrentiev regularization [103,
104]. We again consider the problem (2.50). The idea is to replace the constraint

y=<b
by
y+eu<b

with a parameter ¢ > 0. If we then introduce the new artificial control w =y +
eu, we have u = (w — y)/e and thus can express u in terms of w. The Lavrentiev
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regularized problem, transformed to w, then is given by

. 1 2 a 2
min J(y, w) = 5”)’ —}’d”Lz(Q) + @”w —)’||Lz(9)

st. —eAy+y=w on§2, (2.70)
y=0 onas2,

w<b on§.

Except for the modified L>-regularization, this problem has the form of a control-
constrained elliptic optimal control problem. It is not difficult to see that it is
uniquely solvable and can be handled by semismooth Newton techniques.

Under suitable assumptions, it can be shown, see [104], that the regularized so-
lution (¥, it¢) converges strongly to the solution (¥, i) of (2.50) as ¢ — 0T,

2.8 Further Aspects

2.8.1 Mesh Independence

For numerical computations, we have to discretize the problem (Finite elements,
finite differences, ...) and to apply the developed optimization methods to the dis-
cretized, finite dimensional problem. One such situation would be, for instance, to
apply an SQP method to the discretization (P) of the infinite dimensional prob-
lem (P). If this is properly done, we can interpret the discrete SQP method as an
inexact (i.e. perturbed) version of the SQP method applied to (P).

Abstractly speaking, we have an infinite dimensional problem (P) and an algo-
rithm A for its solution. Furthermore, we have a family of finite dimensional ap-
proximations (Pj) of (P), and discrete versions Ay, of algorithm A. Here 4 > 0 de-
notes the accuracy of discretization (with increasing accuracy as h — 0). Starting
from x and the corresponding discrete point x,(z), respectively, the algorithms A and
Ay, will generate sequences (x¥) and (x;’:), respectively. Mesh independence means
that the convergence behavior of (x*) and (x}’i ) become more and more alike as
the discretization becomes more and more accurate, i.e., as # — 0. This means, for
instance, that q-superlinear convergence of Alg. A on a §-neighborhood of the solu-
tion implies the same rate of convergence for Alg. A;, on a §-neighborhood of the
corresponding discrete solution as soon as # is sufficiently small.

Mesh independence results for Newton’s method were established in, e.g.,
[3, 44]. The mesh independence of SQP methods and Josephy-Newton methods was
shown, e.g., in [6, 45]. Furthermore, the mesh independence of semismooth Newton
methods was established in [68].
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2.8.2 Application of Fast Solvers

An important ingredient in PDE constrained optimization is the combination of op-
timization methods with efficient solvers (sparse linear solvers, multigrid, precon-
ditioned Krylov subspace methods, etc.). It is by far out of the scope of this chapter
to give details. Instead, we focus on just two simple examples.

For both semismooth reformulations of the elliptic control problems (2.25) and
(2.32), we showed that the semismooth Newton system is equivalent to

I 0 A* k k
1 Sy )

0 1 ——gk.Bx||sk|=]|r (2.71)
. o sk rk
A B 0 Iz 3

with appropriate right hand side. Here A € E(HO1 (£2), H~1(£2)) is an elliptic oper-
ator, B € L(L” ($2.), H~'(£2)) with p’ € [1,2), and gk € L (£2,) with g* € [0, 1]
almost everywhere. We can do block elimination to obtain

I A* 0

k k
1 s r
__ k., px* Yy 1
A BB Ok | gk gk
k k
0 _g__B* I Su )
o

The first two rows form a 2 x 2 elliptic system for which very efficient fast solvers
(e.g., multigrid [62]) exist.

Similar techniques can successfully be used, e.g., for elastic contact prob-
lems [139].

2.8.3 Other Methods

Our treatment of Newton-type methods is not at all complete. There exist, for in-
stance, interior point methods that are very well suited for optimization problems in
function spaces, see, e.g., [121, 122, 138, 140, 145].
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