Chapter 2

ATTRIBUTED TRANSLATIONS*

P. M. LEWIS, D. J. ROSENKRANTZ AND R. E. STEARNS
General Electric Company, Research and Development Center, Schenectady, NY 12345, USA

Reprinted from: J. Computer and System Sciences, Vol. 9, No. 3, Dec. 1974,
pp- 279-307. (© Elsevier

Abstract Attributed translation grammars are introduced as a means of specifying a trans-
lation from strings of input symbols to strings of output symbols. Each of these
symbols can have a finite set of attributes, each of which can take on a value
from a possibly infinite set. Attributed translation grammars can be applied in
depth to practical compiling problems.

Certain augmented pushdown machines are defined and characterizations are
given of the attributed translations they can perform both deterministically and
nondeterministically. Classes of attributed translation grammars are defined
whose translation can be performed deterministically while parsing top down
or bottom up.

Received August 30, 1973.

1. Introduction

The purpose of this paper is to develop the concept of an “attributed trans-
lation,” particularly attributed translations which can be described in a syntax-
directed manner. The theory is developed with a particular application in mind,
namely the specification of input-output relations of language processing de-
vices such as the lexical and syntax boxes of a compiler. This application
is reflected in our choice of mathematical terminology and in our illustrative
examples.

* A preliminary version of this paper was presented at the 1973 Fifth Annual ACM Symposium on the
Theory of Computing.

S.S. Ravi, S.K. Shukla (eds.), Fundamental Problems in Computing,
(© Springer Science + Business Media B.V. 2009

14

The concept underlying the mathematics of this paper is the concept of an
attributed symbol. A set of attributed symbols is specified by giving a finite
set of basic symbols, a finite set of attributes for each basic symbol, and a
set (possibly infinite) of values for each attribute. A particular attributed sym-
bol consists of a basic symbol together with an associated attribute value for
each attribute. Our customary notation is to display the attribute values as sub-
scripts of the basic symbol. Our customary interpretation is that the values are
“semantic” information associated with a particular occurrence of a basic sym-
bol. Suppose, for example, that one basic symbol is the symbol CONSTANT
specified to have one attribute and suppose it is specified that the attribute can
take any integer as its value. Then the attributed symbol consisting of the ba-
sic symbol CONSTANT with associated attribute value 37 would be written
CONSTANTS37. In a particular application, the subscript might be interpreted
as semantic information giving the numerical value of a constant. (In other
applications, an attribute might be interpreted as a pointer to a symbol table
entry.)

By an “attributed translation,” we mean a mapping of certain strings of
attributed “input symbols” (i.e. an input language) into strings of attributed
“action symbols.” The terminology “action symbol” is in deference to the in-
terpretation that an action symbol represents the performance of an arbitrary
semantic action. In the simple applications illustrating this paper, the semantic
actions are simply to emit a corresponding output. Thus for purposes of under-
standing this paper, it is satisfactory to think of the action symbols as “output
symbols.”

The attributed translations studied in this paper are translations that can be
described by a grammar we call an “attributed translation grammar,” which is a
generalization of context-free grammar. The generalization is achieved in two
steps. First a context-free grammar is generalized to a “translation grammar”
describing translations without attributes. Then the attributes are added.

After considering attributed translation grammars as a means of specifying
translations, we concentrate on performing these translations with augmented
pushdown machines. Characterizations are given of the attributed translations
that can be performed by both nondeterministic and deterministic augmented
pushdown machines. Certain classes of attributed translation grammars are
defined whose specified translation can always be performed by a deterministic
augmented pushdown machine while parsing top down or bottom up.

Attributed translations are based on the ideas of attributed grammars [10]
and syntax directed translations [7, 12]. The computation of attributes is also
considered in [1]. Other relevant concepts are property grammars and table ma-
chines [14], attributed grammars with relations [3], and affix grammars [2, 11].

Attributed Translations 15

2. Translation Grammars

We begin by introducing a new mechanism, called a translation grammar.
The translation grammar concept is introduced as a way of specifying transla-
tions of input strings (without attributes) into action or output symbol strings
(without attributes).

A translation grammar is a context free grammar in which the set of ter-
minal symbols is partitioned into a set of input symbols and a set of action
symbols. The strings in the language generated by a translation grammar are
called activity sequences. The input grammar of a translation grammar is the
grammar obtained by deleting all action symbols from the productions of the
given grammar.

Given an activity sequence of input and action symbols, we use the term
input part to refer to the sequence of input symbols obtained from the activity
sequence by deleting all action symbols and we use the term action part to
refer to the sequence of action symbols obtained from the activity sequence by
deleting all input symbols. For each activity sequence, the action part is called
a translation of the input part.

Given a translation grammar, each activity sequence in the language defined
by that grammar pairs an input part with an action part. The set of all pairs that
can be obtained in this way is called the syntax directed translation defined by
that translation grammar.

The set of translations defined by translation grammars is exactly the same
set as defined by the simple syntax directed transductions of [12], because
the translation grammar provides an alternate notation for indicating “simple
transduction elements.” However, the activity sequence is a new mathemati-
cal object amenable to theoretical study. In practice, an activity sequence can
be interpreted as a scenario specifying the operation of a language processor.
An occurrence of an input symbol in an activity sequence can be interpreted
(roughly) as the reading of that symbol by the processor. The occurrence of
an action symbol in an activity sequence can be interpreted as the emitting of
that symbol by the processor. Alternatively, the action symbols can be inter-
preted as the names of action (or semantic) routines that are to be called while
processing the input sequence. The activity sequence can thus be interpreted as
specifying both the sequence of action routine calls (or emitting of symbols)
corresponding to the input sequence, and the timing of these action routine
calls with respect to reading the input symbols.

The primary use of translation grammars in this paper is as a vehicle for
describing translations.

16

3. Attributed Translations

We now start the study of translations where the input and action symbols
have associated attributes. As an aid to understanding the objectives of the
theory, we begin with an English description of a particular language processor.

The input set of the processor is the set

{G),+ % C}

where C represents a constant. Furthermore, each occurrence of input C' pre-
sented to the processor is accompanied by information giving the value of that
constant. The processor accepts input sequences which constitute valid arith-
metic expressions and emits the numerical value of the input expression.

To model the input of this processor as a string of attributed input symbols,
we simply treat the value of the constant as an attribute. Under our convention
that attributes are shown as subscripts, one of the permissible attributed input
strings is

(C2 + Cs5) * (C11 + Cs)

To model the output activity of the processor, we invent the symbol AN-
SWER to represent the action of emitting the answer. We let ANSWER have
an attribute which is to be the numerical answer emitted. The action sequence
corresponding to the above input sequence would therefore be

ANSWERgg

In the next section, we present a method of describing certain attributed
translations in a grammatical way. It will then be possible to replace the above
English description of a processor with a precise grammatical specification of
its input-output relation. In later sections, we show how suitable grammatical
specifications can be used to obtain processors for performing the specified
attributed translation.

4. Attributed Translation Grammars

We now generalize translation grammars to accommodate attributes. Each
symbol in the translation grammar (input, nonterminal or action symbol) is al-
lowed to have attributes. Rules are then given by which values for the attributes
of all the symbols on a derivation tree can be computed.

An attributed translation grammar is a translation grammar for which the
following additional specifications are made.

1. Each input, nonterminal, and action symbol has an associated finite set
of attributes, and each attribute has a (possibly infinite) set of permissible
values.

Attributed Translations 17

2. Each nonterminal and action symbol attribute is classified as being either
inherited or synthesized.

3. Rules for inherited attributes are specified as follows.

(a) For each occurrence of an inherited attribute on the right-hand side
of a given production, there is an associated rule which says how
to compute a value for that attribute as a function of certain other
attributes of symbols occurring in the left- or right-hand sides of
the given production.

(b) An initial value is specified for each inherited attribute of the start-
ing symbol.

4. Rules for synthesized attributes are specified as follows.

(a) For each occurrence of a synthesized nonterminal attribute on the
left-hand side of a given production, there is an associated rule
which says how to compute a value for that attribute as a function
of certain other attributes of symbols occurring in the left- or right-
hand sides of the given production.

(b) For each synthesized action symbol attribute, there is an associ-
ated rule which says how to compute a value for that attribute as a
function of certain other attributes of the action symbol.

Attributed translation grammars are to be used to define attributed derivation
trees and then attributed activity sequences and attributed translations. The
basic idea is as follows.

1. An unattributed derivation tree is constructed from the underlying trans-
lation grammar.

2. For each occurrence of an input symbol in the derivation tree, arbitrary
permissible values are assigned to its attributes.

3. The attribute rules are then employed wherever possible in an attempt
to supply attribute values for all the attributes of all the occurrences of
non-terminal and action symbols in the derivation tree.

Before discussing the ramifications of Step 3, we first discuss and interpret
the attributed translation grammar definition.

Part 1 of the definition simply says that the input, nonterminal, and action
symbols are to be attributed symbols.

In part 2, a distinction is made between inherited and synthesized attributes
to indicate whether their values are to be computed by rules specified by part 3
or by rules specified by part 4. The terms “inherited” and “synthesized” were

18

introduced in [10], as was the term “attribute.” A more detailed comparison
with [10] is given at the end of this section.

Part 3 states what rules are needed to compute values for inherited attributes
in a derivation tree. Each symbol in a derivation tree is either associated with
the right-hand side of a production (i.e. the production which attaches the
symbol to its parent in the tree) or is designated as the root of the tree (in
which case the symbol is an occurrence of the starting symbol). These two
cases account for the two sections A and B of part 3.

Section A says that each inherited attribute associated with a right-hand
occurrence has a rule for computing its value based on some of its parent’s
attribute values, some of its sibling’s attribute values, and even some of its own
attribute values. The term “inherited” is suggestive of the idea that the rule is
based on information obtained from the parent. The evaluation of the attribute
rule can of course only be performed if the attribute values on which the rule
depends have previously been computed.

Section B of part 3 says that initial values must be supplied for inherited
attributes of the root of the derivation tree.

Part 4 states what rules are needed to compute values for synthesized at-
tributes in a derivation tree. The case of a nonterminal attribute and an action
symbol are treated separately.

Section A of part 4 deals with the nonterminal case. Because each nontermi-
nal node in a derivation tree is associated with a left-hand side of a production,
namely the production applied to that node, Section A ensures that there is a
rule for each non- terminal synthesized attribute. The rule computes a value
using some of the attribute values of the nonterminal’s immediate descendants
and possibly some of the non- terminal’s own attribute values. The term “syn-
thesized” is suggestive of the idea that a value is synthesized from the attributes
of the descendants.

Section B of part 4 deals with the action symbol case. Here the rule is
associated with the symbol itself (because the action symbol is not a left-hand
side) and the rule is based solely on other attributes of the symbol (because
the action symbol has no descendants). Synthesized action symbol attributes
are almost completely neglected in the rest of the paper since an equivalent
formulation with only inherited action symbol attributes can always be found
for purposes of specifying a translation. Nevertheless, we believe it natural to
include such attributes in modeling compilers.

Now we return to the problem of adding nonterminal and action symbol
attributes to a derivation tree for which input symbol attribute values have been
supplied. As a first step, values can be assigned to the inherited attributes of
the root in accordance with the initial values required by Section 3B. Then
perhaps rules can be found which depend only on the input attributes or the
inherited attributes of the root, and the resulting values can be added to the tree.

Attributed Translations 19

Hopefully, as attribute values are added to the tree, the arguments of additional
rules will be available, and still more values can be added until finally every
attribute of each symbol on the derivation tree has an assigned value.

We say that an attributed translation grammar is well defined if and only if,
for any derivation tree obtained from the underlying translation grammar, the
process described above can be used to compute a value for each attribute of
each symbol occurring in the derivation tree. This concept of “well defined”
was introduced in [10], and the test given in [10] can be used with straightfor-
ward extensions to test an attributed translation grammar for the “well defined”
condition. For application purposes, we are only interested in well defined at-
tributed translation grammars, and our examples are all from this class.

Given an attributed translation grammar and given a derivation tree obtained
from the grammar, the sequence of attributed input and action symbols ob-
tained from the derivation tree is an attributed activity sequence. The attributed
action part of this activity sequence is called a translation of the attributed in-
put part. The set of attributed input part and action part pairs obtainable from
the given grammar is called the attributed translation specified by the gram-
mar. If an attributed translation grammar has an unambiguous input grammar,
then each attributed input sequence has only one derivation tree and only one
attributed translation.

Comparing the attributed translation grammars presented here with those
of Knuth in [10], the principal difference is that we permit and require a cer-
tain class of terminal symbols (namely the input symbols) to have attributes
whose values are not given by rules. There are also two minor differences.
Knuth restricts terminals to have inherited attributes whereas we also permit
synthesized attributes for our action terminals. Knuth also restricts the starting
symbol to synthesized attributes only whereas we permit initialized inherited
attributes. These two differences are minor in the sense that given any at-
tributed translation grammar, the translation can be specified by an equivalent
attributed translation grammar with all action symbol attributes inherited and
all starting symbol attributes synthesized.

S. Examples

EXAMPLE 1. As a first example, we give an attributed translation grammar
specifying the translation of expressions over constants mentioned previously.

The nonterminals (E), (T'), and (P), each have an integer valued synthe-
sized attribute. The input symbol C' has one integer valued attribute and the
action symbol ANSWER has an inherited integer valued attribute. The start-
ing symbol is (S).

1. (S) — (E), ANSWER,

b—a

20
2. (B)a— (E)e +(T)y

d—e+f

(E)g — (T)n
gh

AT = (T)j = (Pk

(T)m — (P)n

(P)p — ((E)q)
p—4q

7. (P), — (C)s

T < S

»

o

b

a

The notation used to describe the rules for computing attributes is that each
attribute of a symbol in a production is given a name and the rules are written
below the productions in terms of these names. For instance the rule

d—e+f

below production 2 specifies that attribute d is computed by evaluating the sum
e+ f.

In any derivation tree obtained from this grammar, the value of the attribute
of each nonterminal (E), (T') and (P) equals the numerical value of the subex-
pression generated by that nonterminal. The value of the attribute of ANSWER
is the numerical value of the entire expression.

The input sequence

(C2 + Cs) * (C11 + C3)

has the attributed derivation tree shown in Fig. 2.1. The activity sequence
corresponding to the tree is

(CQ + C5) * (Cu + C3)ANSWER98

and the action sequence is
ANSWERgs.

To see that the attribute values in Fig. 2.1 are in fact obtainable by suc-
cessive applications of attribute rules, observe that the values can be added to
the unattributed tree simply by computing the values in a bottom up order. In

Attributed Translations 21

<S>\
ANSWER gg
<E> 98
<T> 98
<T>7 % <P> 14
<P>- /<E> 14
<E>7 <E>qq <T>3
<E>> + <T>5 <T> 14 <P> 3
<T>» <P>5 <P> 44 Cs
<P>, Cs C11
Coz
Figure 2.1.

other words, each nonterminal attribute can be computed as soon as the at-
tribute values have been determined for the symbols below it, so its value can
be computed by starting from the terminal attributes and working up the tree.
The value of action ANSWER can be computed as the final step.

EXAMPLE 2. To show how an attributed translation grammar might be used
in a compiler design, we consider the processing of declarations in a hypo-
thetical programming language. The translation is one that the syntax box of
a compiler might be required to perform. The input set consists of the three
symbols:

1. REAL
2.1
3.,

22

where [represents an identifier having one attribute. The value of this attribute
is to be a pointer to a table entry for the identifier. The input language consists
of the word REAL followed by a sequence of identifiers separated by com-
mas. For each identifier, an action routine named ALLOCATE is to be called.
This action routine is to fill in the table entry for the identifier with the run
time location corresponding to the identifier. The identifiers are to be allocated
consecutive locations beginning at location 50. Routine ALLOCATE has two
parameters: a pointer to the table entry for the identifier and the value of the run
time location. To represent the act of calling this routine, we use ALLOCATE
as an action symbol with two inherited attributes, which take on the values of
the routine’s parameters.

The grammar has two nonterminals, (DECLARATION) and (IDENTIFIER
LIST), of which the first is the starting symbol. Each nonterminal has two
pointer-valued attributes, of which the first is inherited and the second is syn-
thesized. The initial value of the inherited attribute of the starting symbol is 50.

The grammar is:

1. (DECLARATION),q .2 — REALIq1 ALLOCATE2 42 (IDENTIFIER LIST), 1

a2 «— al y—zxl+1
2 «— xl 22 «— z1

2. (IDENTIFIER LIST) 1,22 — Iq1 ALLOCATE2 72 (IDENTIFIER LIST), 1
a2 «+— al y—zl+1
T2 — xl 22— z1

3. (IDENTIFIER LIST), , — €
zZ T

The inherited attribute of each nonterminal equals the run time location
available for the first identifier generated from the nonterminal. The synthe-
sized attribute equals the next available runtime location after space has been
allocated to all the identifiers generated from the nonterminal. In this example,
the synthesized attributes do not affect the attributes of the action symbols, but
they might if this grammar were part of some larger grammar.

The input sequence

REAL I3, Iy, Io

has the derivation tree shown in Fig. 2.2. The activity sequence is
REAL I3 ALLOCATE;3; 50, [g ALLOCATEg 51, Io ALLOCATE 52

The attribute values shown in Fig. 2.2 were obtained by first computing the
inherited values and then the synthesized attributes. The inherited attributes
were evaluated starting with the initial value of the top node and evaluating
each attribute after those above and to the left were evaluated. The first synthe-
sized attribute evaluated was the one lowest on the tree and then the other syn-
thesized attributes were evaluated working up the tree. The order of evaluation

Attributed Translations 23

<DECLARATION>50 53

REAL I3 ALLOCATE;so <IDENTIFIER LIST>51 53

lo ALLOCATEg 51 <IDENTIFIER LIST>5553

|2 ALLOCATEgsg <IDENTIFIER LIST>53V53

Figure 2.2.

illustrates a technique of sending information down the tree using inherited at-
tributes and then sending it back up using synthesized attributes. Observe how
the downward information is turned back up with the application of produc-
tion 3.

EXAMPLE 3. As another example, we consider the translation of assignment
statements in a hypothetical programming language. The input set is

{(7)7+7*7I7:}

where [represents an identifier having one attribute whose value is to be a
pointer to a table entry for the identifier.
The set of action symbols is

{ADD, MULTIPLY, ASSIGN}

where ADD and MULTIPLY each have three inherited attributes and ASSIGN
has two inherited attributes. The attributes of ADD and MULTIPLY are to be
pointers to the table entries for the left operand, right operand, and result of the
operator. The attributes of ASSIGN are to be pointers to the table entries for
an identifier being assigned to and the expression which is being assigned to
the identifier.

The nonterminal set is

{(S), (E),(T), (P), (E-LIST), (T-LIST)}.

Nonterminal (S) has no attributes. Nonterminals (E), (T'), and (P) each have
one attribute, which is synthesized. This attribute is to be a pointer to the
table entry for the result of the subexpression generated by the nonterminal.

24

Nonterminals (E-LIST) and (T-LIST) each have two attributes, of which the
first is inherited and the second is synthesized.
The attributed grammar is the following, with starting symbol (S).

L. (S) — Iq1 = (E)p1 ASSIGN g2 52

a2 «+— al b2 «— bl
2. <E>b2 — <T>a1 <E—LIST>a27bl
a2 — al b2 «— bl

3. <E—LIST>a17d2 — +<T>b1ADDa2,b2,cl <E—LIST>62’d1
a2 «— al c2+—cl
b2 — bl d2 «— d1
cl «— GETNEW
4. (E-LIST)q1,02 — €
a2 «— al
5. <T>b2 — <P>a1 <T—LIST>a27b1
a2 — al b2 — bl
6. (T-LIST)q1,42 — *(P)p1 MULTIPLY g2 p2 1 (T-LIST) 2 41
a2 «— al c2+—cl
b2 «— bl d2 «— d1
cl «+— GETNEW

7. (T-LIST)q1.02 — €

a2 «— al
8. (P)a2 — la1

a2 «— al
9. (P)az — ({(E)a1)

a2 «+— al

GETNEW is assumed to be a parameterless function procedure which sup-
plies a pointer to some unused table entry that can be used to keep track of a
partial result. Because different calls on GETNEW return different answers,
GETNEW is not strictly speaking a function. Thus in using GETNEW, we are
taking a small liberty with our formal definition. As an alternative to using
GETNEW, extra attributes could be used to keep track of available table en-
tries. However, the use of GETNEW is simpler and would be the likely choice
in an actual design application.

Attributed Translations 25

Nonterminal (E-LIST) can be thought of as generating a list consisting of
+(T") ADD repeated zero or more times. The inherited attribute of (E-LIST)
corresponds to the left operand of the first + (if any) on the list. The syn-
thesized attribute of (E-LIST) corresponds to the result of the subexpression
obtained by appending the string generated from (E-LIST) to the string repre-
senting the left operand. Nonterminal (7-LIST) is similar to (E-LIST).

For illustrative purposes, assume that GETNEW supplies consecutive loca-
tions beginning with location 200. Then the input sequence

I =15+ 1% I3
has the derivation tree shown in Fig. 2.3. The activity sequence is
I7 = I5 + I % IsMULTIPLY 3 3 200 ADD5 200,201 ASSIGN7 201
and the action sequence is

MULTIPLY2,37200ADD57200,201 ASSIGN77201

<S>
I, = <E> 501 ASSIGN 7201
<T>s <E-LIST>5 201
<P>g <T-LIST>55 + <T>200 ADD 5,200,201 <E-LIST> 201,201
Is € €

<P>g <T-LIST>; 5

* <P>j3 MULTIPLY 2,3 200 <T-LIST> 200,200

|3 €

Figure 2.3.

The order of attribute evaluation in Fig. 2.3 is more complex than in the
previous two examples. The most systematic order is to evaluate the inherited

26

attributes of a given symbol before evaluating attributes of its descendants, to
evaluate the synthesized attributes of a symbol after evaluating attributes for
the descendants, and to evaluate all attributes of a left sibling before a right
sibling. The (E-LIST) and (T-LIST) portions of the tree again illustrate the
technique of sending down inherited information and then passing back up
synthesized information. Productions 4 and 7 are the productions which turn
this information around.

6. Attributed Pushdown Machines

We are interested in devices that “perform” the attributed translation speci-
fied by an attributed translation grammar. By a device performing an attributed
translation we mean the device reads the input symbols including their at-
tributes, verifies that the input sequence is in the language specified by the
input grammar and outputs the attributed action symbols specified by the ac-
tivity sequence corresponding to the input sequence.

We are particularly interested in performing attributed translations with at-
tributed pushdown machines. Attributed pushdown machines are similar to or-
dinary pushdown machines, except that the symbols and states of the machine
have attributes that can be manipulated during the moves of the machine. Infor-
mally, an attributed pushdown machine is the same as a conventional pushdown
machine except that:

1. Each input symbol, output symbol, state, and stack symbol has an asso-
ciated fixed number of attributes.

2. Associated with each move of the machine is a specification of the at-
tributes of the new state, the new top stack symbols (if the move is not
a pop) and the outputs (if any) as a function of the attributes of the old
state, top stack symbol and input symbol (if the move is not an e-move).

Formally, a (nondeterministic) attributed pushdown transducer is an 11-
tuple
(Q7I7Y7F757Q7 Zv A7 C,U,U)

where:

Q is a finite state of states.

I is a finite set of input symbols.

Y is a finite set of output symbols, disjoint from I.
I' is a finite set of stack symbols.

q in Q) is the initial state.

Attributed Translations 27

Z in T is the initial stack symbol.
A is the set of possible attribute values.

C' is a function from @ U I UY U T to the nonnegative integers, specifying
how many attributes each of these symbols have. We let C' denote the
extension of C'to (Q U I UY UT)* defined by C(e) = 0 and C(af3) =
C(a) + C(p) for a a single symbol.

u in AC@ is the attribute set of the starting state.
v in A®(?) s the attribute set of the starting stack symbol.

d is a mapping of @ x (I U {e}) x I into a finite set of 4-tuples such that if
0(r,a, B) contains (p,~,&, f) thenpisin @, yisinI'*, {isin Y*, and f
is a computable function from AC(M+C(@+CB) jno ACPHCMNHCE),
Furthermore each pair of 4-tuplets in d(r, a, 3) differs in at least one of
the first three components.

We say that an attributed pushdown transducer is deterministic if

1. For each r in @ and 8 in T, whenever 0(r, €, 3) is nonempty, then
o(r,a, 3) is empty for all a in I,

2. § never maps its argument into more than one element.

A configuration of an attributed pushdown translator is a 4-tuple (r, x, v, y)
where 7 is an attributed state, x is a string of attributed input symbols, v is a
string of attributed stack symbols, and y is a string of attributed output sym-
bols. If a configuration is of the form (74, apx, iy, y) where r is a state with
attributes ¢, a is in I U {e} and has attributes h, 3 is a stack symbol with at-
tributes 4, and 0(r, a, 3) contains (p,n, &, f) then we write (g, apx, Bi7y,y)
(p, x, 77y, y€) where p, 77, and £ are p, 7, and & respectively with attributes com-
puted by applying the function f to the attributes obtained by composing g, h,
and 7.

*
Let I denote the transitive reflexive closure of . Then if

(Qu>x, Zy, €) - (p,€, €,)

we say that y is a translation of x performed by the machine. The translation
performed by the machine is the set of all such pairs (z, y).

We say that a machine has an endmarker § for § in I if C'(f) = 0 and all
input sequences for which the machine performs a translation are of the form zf
where z is in (/ — f)*. Note that the machine reads the endmarker in producing
a translation. If a machine has endmarker £, then we say that the translation

28

performed using an endmarker by the machine is the set of pairs (z,y) such
that (zf, y) is in the translation performed by the machine.

Note that the set of translations performed by nondeterministic attributed
pushdown machines is identical to the set of translations performed using an
endmarker by nondeterministic attributed pushdown machines.

7. Performing Translations Nondeterministically

We define a subclass of attributed translation grammars and relate it to at-
tributed pushdown machines.

An attributed translation grammar is called L-attributed if and only if the
following three conditions hold.

1. For each attribute evaluation rule associated with an inherited attribute
of some given symbol in the right-hand side of some given production,
each argument of that rule is either an inherited attribute of the left-hand
side or an arbitrary attribute of some right-hand side symbol appearing
to the left of the given symbol.

2. For each attribute evaluation rule associated with a synthesized attribute
of the left-hand side of some given production, each argument of that
rule is either an inherited attribute of the given left-hand side or an arbi-
trary attribute of some right-hand side symbol.

3. For each attribute evaluation rule associated with a synthesized attribute
of an action symbol, each argument of that rule is an inherited attribute
of the given action symbol.

Comparing the above three conditions with the definition of attributed trans-
lation grammars, we see that 1, 2, and 3 above are restrictions on Sections 3A,
4A, and 4B, respectively. The only evaluation rules not constrained by the
above three conditions are the initialization rules of Section 3B.

The L in the name “L-attributed” refers to the restriction (in condition 1
of the definition) that a rule for the inherited attribute of a given symbol in a
production can use attributes of symbols to the left of the given symbol, but not
attributes of symbols to the right. The intent of condition 1 is that the inherited
attributes of a given node in the derivation tree should depend (either directly or
indirectly) only on those input symbol attributes occurring to left of the given
node, and be independent of the input symbol attributes below or to the right of
the given node. A consequence of this intent is that the synthesized attributes
of the given node should only depend on the input symbol attributes to the left
or below the given node, and be independent of input symbol attributes to the
right of the given node.

The purpose of conditions 2 and 3 is to ensure that the grammar is well
defined. Together, the three conditions ensure that given a production such as

Attributed Translations 29

A — BC, the attributes of A, B, and C' can be evaluated in the following
order:

1. Inherited attributes of A,
. Inherited attributes of B,

. Synthesized attributes of B,

2

3

4. Inherited attributes of C,

5. Synthesized attributes of C,
6

. Synthesized attributes of A.

THEOREM 1. Any translation specified by an L-attributed translation gram-
mar can be performed by a nondeterministic attributed pushdown machine.

Proof. We construct a one state machine which operates in a top down fashion.
Let the translation grammar have input set I, action set Y, and nonterminal
set N. If there are m productions, order them from 1 to m and let the :th
production in the translation grammar have n; symbols.

The machine is

{q}, LY, {Z}U{(i,j)|1 <i<mand 0 < j <mn;},d0,q,Z,A,C,u,v)

where q and Z are arbitrary new names, A is the set of values that the attributes
of the grammar can take us on, v is arbitrary, and C, v, and § will be specified
below.

For each symbol « in I UY, C(«) equals the number of attributes « has
in the grammar. For Z, C(Z) equals 0, and so v is trivially a null vector.
For g, C(q) equals the maximum number of attributes of any symbol in the
grammar. For each stack symbol of the form (i, 5), C((7,7)) is equal to the
sum of the number of attributes of the first j — 1 symbols on the right-hand
side of production 7 plus the number of inherited attributes of the left-hand
nonterminal.

The machine parses top down, with stack symbol (7, j) representing a pre-
diction of the rest of production ¢ after the first j symbols. The machine op-
erates so that when the top stack symbol is (i, j), the attributes of the stack
symbol equal the inherited attributes of the left-hand nonterminal of produc-
tion 7, and the attributes of the first j — 1 symbols on the right-hand side. Also,
when 7 > 0 an appropriate number of attributes of the state will equal the at-
tributes of the jth symbol on the right-hand side. Thus when (3, j) is on top of
the stack the inherited attributes of the left-hand side of production ¢ and all the
attributes of the first 7 symbols of the right-hand side are available as attributes
of the state and top stack symbol.

30

Stack symbol Z is used only to initialize the stack and disappears forever
with the first machine operation. The first operation is to predict the produc-
tion ¢ applied to the starting symbol and replace the Z with the corresponding
(7,0). Symbol (7,0) has an attribute for each inherited attribute of the starting
symbol (left-hand side of production ¢) and these are initialized with the values
specified as part of the grammar. Stated symbolically,

d(q,€,Z) = {(q, (3,0),€, f;) for all productions ¢ with the starting symbol
as left-hand side}

where f; assigns the initial starting symbol inherited attribute values to the
attributes of (4, 0) and assigns arbitrary values to attributes of ¢.

When the top stack symbol of the machine has the form (¢, j) where j = n;,
the machine predicts that an example of production ¢ is over. The machine
operation is to assign the attribute values of the left-hand side to a subset of
the state attributes and to pop the stack to the symbol below. The inherited
attributes of the left-hand side are immediately known since their values are
given by corresponding attributes of (7,j). The synthesized attributes must
now be computed, but this is easily done because of condition 2 of the L-
attributed definition which says they can be computed from attribute values of
the top stack symbol and the attributes of q.

d(q, €, (i,n;)) is the one element set { (g, €, €,)}

where f is a function computing the left-hand side attributes of production ¢
and assigning them to attributes of ¢ (and assigning arbitrary values to any
remaining state q attributes).

For a stack symbol of the form (4, j) where j < n; we consider three cases,
depending on whether the (j + 1)st symbol on the right-hand side production
iisin I, Y, or N. All three cases have the property that (¢, 7) is to be replaced
with (4,7 + 1) and that the attribute values for this replacement symbol are
already computed and are available as attributes of (i, j) and ¢. The actions
taken in each case must also provide that the attributes for the j’th symbol are
assigned to ¢, but the mechanism is different in each case. Letting o be the
(j + 1)st symbol of production 7, the three cases are as follows.

Case 1. « is an input symbol. In this case, the machine has an operation if
and only if predicted input symbol o matches the current input. The obligation
to make the attributes of state ¢ equal the attributes of « is met simply by
assigning the attributes of the machine input to ¢. Symbolically,

d(q, a, (i, 7)) is the one element set {(q, (i,7 + 1), €, f)}

where f fills in the values of (7,7 + 1) and ¢ as described above.

Attributed Translations 31

Case 2. « is an action symbol. Conditions 1 and 3 of the L-attributed
definition ensure that the attributes of o can be computed from the information
at hand and be assigned as attributes of the state. Condition 1 says that the
inherited attributes of o can be computed from the attribute values of top stack
symbol (i, 7) and the attributes of ¢q. Condition 3 says that the synthesized
attributes of o can then be computed from the inherited attributes. One other
action associated with « is to put out o with its attribute values. Symbolically,

d(q,¢€,(i,7)) is the one element set {(q, (7,5 + 1), o, f)}

where f fills in the values of stack symbol (i, j + 1), state ¢, and output « as
described above.

Case 3. « is a nonterminal symbol. Condition 1 of the L-attributed defin-
ition ensures that the inherited attributes can be computed from the attributes
of the state and top stack symbol. The machine predicts a production % that
generates the predicted occurrence of «, and places a symbol (k,0) on top
of the stack (above the (i,j + 1)) assigning to its attributes the inherited at-
tributes of . Later, when the symbol (7, j 4+ 1) is exposed (due to popping
a (k,ng)), the attributes of o will appear as attributes of the state thus fulfill-
ing the obligation to have (i,7 + 1) appear with the attributes of « as state
attributes. Symbolically,

0(q, €, (4,7)) equals {(q, (k,0)(¢,5 + 1), €, fx) for all productions & with
left-hand nonterminal o}

where fj, computes the attributes of (k,0) and (4, j + 1) and arbitrary values
for ¢ as described above.

This completes the construction. We have given arguments at each step
to show that appropriate attribute values are always available and computed.
The machine is otherwise a standard top down translator so we omit further
arguments that it performs the desired attributed translation. O

EXAMPLE 4. Consider the following L-attributed translation grammar with
input set {a, b}, action set {d}, nonterminal set {5, B}, and starting symbol S.
Symbols a and b each have one attribute; S and d each have one inherited
attribute; and B has two attributes, of which the first is inherited and the second
synthesized. The starting value of the attribute of S' is 4. The productions are

1. ST —>ath,udv
t<—1r+s V— 3*xu

2. an — bt

S+ 1rxt

32

The machine constructed by the procedure described above would have the
following sequence of configurations for input sequence a2bs. Wherever the
machine can specify an arbitrary value for an attribute, the value 0 has been
specified. The output sequence is dgg.

(qo,0, a2bs, Z, €) = (qo,0, a2bs, (1,0)4, €)
(42,0, b5, (1,1)4, €) = (qo,0, b5, (2,0)6(1,2)4,2, €)
F(g5,0,€ (2, 1)6 (1,2)4,2,€) - (g6,30 €, (1,2),2, €)
(990,05 €, (1,3)4,2,6,30, doo) I (qa,0, € €, doo)

THEOREM 2. Any translation performed by a nondeterministic attributed
pushdown machine can be specified by an L-attributed translation grammar.

Proof. We modify a standard technique for picking a grammar off a ma-
chine [6]. Let the machine be (Q,1,Y,T',4,q,Z, A,C,u,v). The grammar
has input set /, action set Y, and nonterminal set (Q x I' x Q) U {S} where
S is a new symbol and is also the starting nonterminal. The productions are of
two forms

1. S— (q,Z,p) foreach pin Q,

2. (T’, Aap) - aé(Qla By, q2)(Q2, By, q3) T (qmv B, C_Im+1) for each r,
41> Q2 - - - » @m+1 In Q where p = ¢p,+1, each a in I U {e}, and A, By,
Bs, ..., By, in T, such that §(r, a, A) contains (q1, B1Ba - - B, &, f).
(If m = 0 then q; = p, d(r, a, A) contains (p, €,, f) and the production
is (r, A, p) — af).

Each input and action symbol in the grammar has the same number of at-
tributes as the corresponding symbol in the machine, and all action symbol
attributes are inherited. Nonterminal S has no attributes. A nonterminal of
the form (r, A, p) has C(r) + C(A) inherited attributes and C'(p) synthesized
attributes.

For a form 1 production, the rules for the inherited attributes of (¢, Z, p) are
that they equal u and v.

For a form 2 production, the function f from the machine specifies the at-
tributes of ¢1, £ and BBy - - - B,, in terms of the attributes of 7, a, and A. The
rules associated with the production for computing the inherited attributes of £
are obtained from f, with the inherited attributes of the left-hand non-terminal
used instead of the attributes of the symbols 7 and A in the machine. If m = 0
the rules for computing the synthesized attributes of the left-hand nonterminal
are similarly obtained from f. If m > 0, the rules for the synthesized attributes
of the left-hand nonterminal specify that they equal the synthesized attributes
of (¢m, Bm, @m+1)- The rules for computing the inherited attributes of symbol

Attributed Translations 33

(¢, Bi, gi+1) use the rules from f to compute the attributes corresponding to
B;. For ¢ = 1, the rules for the inherited attributes corresponding to g; are
obtained from f. For ¢ > 1, the inherited attribute rules specify that these
attributes equal the synthesized attributes of the symbol (¢;—1, Bi—1,¢;). O

Note that the grammar is L-attributed.

THEOREM 3. There exists a translation specified by an attributed translation
grammar that cannot be performed by any nondeterministic attributed push-
down machine.

Proof. The proof uses the following grammar, which is not L-attributed. The
input set is {a, b, ¢}, action set is {1, 2, 3}, and starting nonterminal is S.

S — 1,Ac,
Y x
A — a2A
A — b3A
A— €

Suppose this translation can be performed by a nondeterministic machine
and that for some input string, the machine can produce the translation by
emitting the 1 before reading the ¢, i.e.,

*

(Q7 Sth, Z7 6)"(]), th, Vs 1j£)|_(r7 €€, 1]577)

But then for some other attribute &

*

*
(Q7 StCk-, Z7 6)|_(p, tCk, 7> 1j§)|_(7’, €€ 1]&”)

which is an incorrect translation.

If, on the other hand, 1 is never emitted before reading the ¢, then no output
is produced until all inputs are read (1 being the first output symbol and c
the last input symbol). Picking a grammar off this machine by the proof of
Theorem 2, the underlying translation grammar would generate the set

L = {welh(w)|win {a, b}*}

where h is the string homomorphism mapping a into 2 and b into 3. There
is a string homomorphism which maps L into {ww|w in {a,b}*}, which is
known to be not context free. Since context free languages are closed under
homomorphisms, L is not a context free language. We conclude that no such
grammar can be picked off a machine and hence no such machine can exist. O

34

8. Performing Translations Deterministically

In this section we study the attributed translations that can be performed
using an endmarker by deterministic attributed pushdown machines. First we
note that any translation that can be performed by a deterministic machine can
also be performed using an endmarker by a deterministic machine. However,
there are translations that can be performed using an endmarker by a determin-
istic machine, but that cannot be performed by a deterministic machine, simply
because more languages can be accepted when the endmarker is used [5]. First
we consider the case when the input grammar is LL(k) [12, 13], i.e., can be
parsed top down without backtrack.

THEOREM 4. Any translation specified by an L-attributed translation gram-
mar with an LL(k) input grammar can be performed using an endmarker by
a deterministic attributed pushdown machine.

Proof. First construction 1 of [13] can be applied to the grammar so that the in-
put grammar is strong LL(k). For this input grammar, the next & input symbols
always determine which production should be applied to a nonterminal [13].
Now a construction similar to that for Theorem 1 can be used to obtain the at-
tributed pushdown machine, assuming that the machine is capable of looking
ahead at the next k input symbols when selecting a move. The construction
is modified so that the next k input symbols are used to determine which pro-
duction to apply to a nonterminal. The resulting machine is deterministic and
performs the attributed translation.

Since attributed pushdown machines as defined in this paper are not capable
of lookahead, the standard lookahead machine must be simulated by the type
of machine defined in this paper. This can be done in a straightforward manner
using the machine state to remember k inputs and the attributes of the state to
remember the attributes of k inputs. The simulating machine needs an end-
marker and so the translation is performed using an endmarker by the resultant
deterministic machine. O

Note that Examples 2, 3, and 4 are all L-attributed and all have an LL(1)
input grammar.

L-attributed translations with an LL(k) input grammar can also be per-
formed using the method of recursive descent [4]. In this method there is
a procedure for recognizing each nonterminal in the grammar. To perform
an attributed translation, the procedure has a parameter for each attribute of
the corresponding nonterminal. In terms of ALGOL 60, the parameters cor-
responding to inherited attributes can be called by value, and the parameters
corresponding to synthesized values must be called by name. In the call of one
of the procedures, an actual parameter corresponding to an inherited attribute

Attributed Translations 35

is the value of the attribute, and an actual parameter corresponding to a syn-
thesized attribute is a variable to which the value of the synthesized attribute
should be assigned during the execution of the called procedure.

As an example, the following ALGOL-like program is a recursive descent
processor based on the grammar of Example 4, assuming the attribute values
are integers.

begin
procedure S(r); value r; integer r;
comment This procedure translates an example of nonterminal S.
All examples of S begin with input symbol a;
if input symbol = a
then begin integer s, t, u, v;
s := attribute of input symbol;
advance to next input symbol;
t:=r+s;
B (tv u);
vi= 3 *xu;
output (“d”, v)
end
else reject;
procedure B(r, s); value r; integer r, s;
comment This procedure translates an example of nonterminal B.
All examples of B begin with input symbol b;
if input symbol = b
then begin integer ¢;
t := attribute of input symbol;
advance to next input symbol;
§:=rx*t;
end
else reject;
comment execution starts here;
S(4);
if input symbol = end marker then accept else reject
end

Bochman [1] independently shows that, in his model, if the attribute rules
satisfy conditions similar to those in our definition of L-attributed grammars,
the attributes can be evaluated in a top down scan of a derivation tree by calling
recursive procedures.

We now study attributed translations that can be performed while parsing
bottom up. First we need the following definition.

36

An attributed grammar is called Polish if and only if all action
symbols occur only at the extreme right end of the right-hand sides
of productions.

Any unattributed translation specified by a Polish translation grammar with
an LR(k) input grammar can be performed using an endmarker by a deter-
ministic pushdown machine [12]. However this result does not hold when the
grammar is L-attributed.

THEOREM 5. There exists a translation specified by an L-attributed Polish
translation grammar with an LR(0) input grammar that cannot be performed
by any deterministic attributed pushdown machine.

Proof. Consider the following L-attributed grammar with input set {a, b, ¢, d},
action set {0, 1,2} and nonterminal set {S}. Nonterminal S has one inherited
attribute for which the initial value is 1. Action symbol 2 has an inherited
attribute.

Sy — aSy,c0
Y 2%
Sy — aSydl
y—2xx+1
Sy — b2y

Yy—

Suppose this translation can be performed by a deterministic machine. The
attribute of action symbol 2 cannot be determined by the machine until after the
entire input sequence has been read, and so the machine cannot produce any
output until after it reads the entire input sequence. The machine must there-
fore be able to read a sequence in {c,d}* and then output the same sequence
with ¢ replaced by zero and d by 1. However when the machine reaches the
end of the input string, the first part of its output string is determined by the
upper portion of its stack contents, and this upper portion can only reflect the
end of the sequence in {c, d}*. Therefore such a deterministic machine does
not exist. O

An L-attributed grammar is called S-attributed if and only if all
attributes of nonterminals are synthesized.

Many compilers that parse bottom up use a design method that only permits
the call of a “semantic action” when a production is recognized. If further-
more, the information available to the semantic action is associated with the
right-hand side of the recognized production, and the information returned by

Attributed Translations 37

the semantic action is associated with the left-hand side, the design method
corresponds to S-attributed Polish translation grammars.

THEOREM 6. Any translation specified by an S-attributed Polish translation
grammar with an LR (k) input grammar can be performed using an endmarker
by a deterministic attributed pushdown machine.

Proof. The machine is based on the standard LR (k) machine [6, 8] for recog-
nizing the unattributed version of the input grammar in a bottom up fashion.
Each stack symbol has a set of attributes equal to the attributes of the gram-
matical symbol it represents. When a production is recognized, the attributes
of the action symbols and left-hand nonterminal are computed, and the outputs
are emitted. O

However, S-attributed translation grammars cannot specify all translations
that deterministic attributed pushdown machines can perform using an end-
marker.

THEOREM 7. There exists a translation specified by an L-attributed transla-
tion grammar with an LL(1) input grammar that cannot be specified by any
S-attributed translation grammar.

Proof. Consider the following translation grammar with input set {a, b, c}, ac-
tion set {1, 2, 3}, and starting nonterminal S. Nonterminal A and action sym-
bol 2 each have one inherited attribute; and input a has one attribute. No other
symbols have attributes.

S — azAy
YT
Ay — blAyc3
y—x
Ay — d2y

y—x

Observe that the grammar is L-attributed and has an LL(1) input grammar.
The activity sequences generated by this grammar have input part a,b"dc™ and
action part 1"2,3" where n > 0 and the attribute of 2 equals the attribute of a.

Suppose this translation can be specified by an S-attributed translation
grammar. Then it can be shown (see for instance the proof of the “vvwzy”
theorem in [5]) that associated with the grammar there is an integer p such
that all activity sequences of length greater than p can be written in the form
uvwzxy where v and x are not both ¢, and there is a nonterminal A such that

38

the starting symbol of the grammar generates uAy and A = vAz = vwz. An
implication of this is that all sequences of the form uv™wx™y are generated
by the grammar. Since an activity sequence containing n + 2 input symbols
must contain exactly n + 1 action symbols, vz must contain an equal number
of input symbols and action symbols.

Now consider an activity sequence generated from the hypothetical
S-attributed grammar and having length greater than p. We wish to show that
the single occurrence of a from the input part must be part of v and the single
occurrence of 2 from the action part must be part of w.

The one occurrence of a cannot be in v or x because these sequences are
repeated. The a could not occur in y because then y would contain all the input
symbols and vz would contain only action symbols. Finally, the a cannot occur
in w, because then all the input symbols in vx would be in x, and vvvwzzy
would have an input part that is not of the form a,b"dc". We conclude that a
is in u.

The one occurrence of 2 cannot be in v or x because these sequences are
repeated. The 2 cannot occur in u, because then vz would contain action
symbol 3, but not action symbol 2. Similarly, 2 in y would imply that vz
contains action symbol 1, but not action symbol 3. We conclude that 2 is in w.

From the “uvwzy” theorem, we now conclude that there is a derivation of
an activity sequence where A = w and w contains 2, but not a. Since the
grammar is assumed to be S-attributed, the nonterminals have only synthe-
sized attributes. Therefore the attributes of any action symbols generated from
a nonterminal can only be computed in terms of the attributes of the input sym-
bols actually generated from that nonterminal. Since a is not generated from
nonterminal A, there is no way of specifying that the attribute of 2 equals the
attribute of a.

We now give a characterization of the translations that can be performed by
deterministic attributed pushdown machines, i.e., we define a class of attributed
translation grammars which specify exactly the set of attributed translations
that can be performed by deterministic attributed pushdown machines. The
characterization is in terms of an extension of strict deterministic grammars [5]
in which we take the attributes and action symbols into account.

An attributed translation grammar (with terminals and nonterminals V') is
called SD-attributed if and only if it is L-attributed and there exists a partition
7 on V such that

1. All input symbols are in the same block of 7.
2. For each action symbol y, {y} is a block of 7.

3. All the nonterminals in the same block of 7 have the same number of
inherited attributes.

Attributed Translations 39

4. The inherited attributes of each nonterminal can be ordered so that for
any nonterminals A and A’ in the same block of 7, if A — «a/ and
A’ — aff are productions («, 3, 4, in V*) then either

(a) both 8 and 3’ # €, in which case the first symbol of 3 and 3 are
in the same block of 7, and the rules for computing corresponding
inherited attributes of these symbols (in terms of the attributes of «
and corresponding inherited attributes of A and A’) are the same,
or

(b) =5 =cand A= A")

THEOREM 8. Any translation performed by a deterministic attributed push-
down machine can be specified by an SD-attributed translation grammar.

Proof. The grammar obtained from the machine by the construction used in
the proof of Theorem 2 is SD-attributed. To construct the partition whose
existence is required by the definition, place nonterminals of the form (7, A, p)
in the same block if and only if they have the same first two components. Then
place nonterminal S in a one element block, place the input symbols together
as a block, and put each action symbol in a separate one element block. The
attribute ordering required by condition 4 is then easily supplied. O

THEOREM 9. Any translation specified by an SD-attributed translation gram-
mar can be performed by a deterministic attributed pushdown machine.

Proof. We extend the construction in [5]. Let the grammar have partition 7 and
vocabulary V' consisting of input set I, action set Y, and nonterminal set V.
The machine is

(Q,I,KF,&,Z,A,C,U,U)

where Q = {¢; | 0 < j < maximum number of symbols in a block of 7}.
I' ={(Vi,a)| A — af for some A in block V; and «, 5 in V*}U{(V;, o, V)|
A— aBg for some A in block V;, nonterminal B in block V; and o, in V*}.
Z = (Vp, €) where V} is the block containing the starting nonterminal.

A is the set of values that the attributes of the grammar can take on.

C(a) for a in I U'Y equals the number of attributes @ has in the grammar.
C((Vi,«v)) equals the sum of the number of attributes of « in the grammar
and the number of inherited attributes of a symbol in V;. C((V;, o, V})) equals
the sum of the number of attributes of «, the number of inherited attributes
of a symbol in V;, and the number of inherited attributes of a symbol in V.
C(q) for ¢ in @) equals the maximum number of synthesized attributes of any
nonterminal.

40

u is arbitrary.
v equals the inherited attributes of the starting nonterminal.
& consists of the following five types of moves.
For any V;, V}, blocks of nonterminals, «in V*, ain I, y in Y, and ¢ in Q.

(i) d(qo,a,(Vi,a)) = {(qo, (Vi,aa),e, f)} if A — aaf for some A in 'V
and Bin V*.

(i) 8(qos €, (Viy)) = {(q0, (Vi ay), y, f)} if A — ayg for some A in V;
and B in V*.

(iii) 0(qo,¢€, (Vi, @) = {(q0, (Vk,€)(Vi, o, Vi), €,) } if A — aBg for some
A in V;, nonterminal B in V}, and 3 in V*.

(iv) 6(qo,€, (Vi,a)) = {(gj, €€, f)} if A — ais a production and A is the
jth nonterminal in its block.

v) 0(gj,a, (Vi,o, Vi) = {(qo, (Vi,aB),€, f)} if B is the jth nonterminal
in block V.

In case (iv), function f computes the synthesized attributes of A (from the
attributes of (V;, o)) and assigns them to ¢;. In all other cases, f assigns arbi-
trary values to the attributes of the new state.

In case (i), f assigns to (V;, ca) the attributes of (V;,) plus the attributes
of a. In case (ii), f computes the attributes of y. It assigns these attributes
to the output and (together with the attributes of (V;, «)) to (V;, ay). In case
(iii), f computes the inherited attributes of B. Because the grammar is SD-
attributed, all such B have the same rule for computing their attributes. Func-
tion f assigns these attributes to (Vi,€) and (together with the attributes of
(Vi, @) to (V;, o, V). In case (v), f assigns the attributes of ¢; and (V, o, V3,)
to (V;, aB). O

9. Performing Arbitrary Translations

In this section we show that if the attribute rules specify all the attribute
values in a derivation tree, the attributes can be computed on a random access
device in an amount of time proportional to the number of edges in the deriva-
tion tree. When the grammar is well defined, the attribute rules specify all the
attribute values in all derivation trees.

THEOREM 10. Given a derivation tree for which the attribute rules specify
all the attribute values, and assuming that one unit of time is charged for the
evaluation of an attribute rule, then the attributes can be computed in time
linear with the number of edges in the derivation tree.

Attributed Translations 41

Proof. Construct a directed graph containing a node for each attribute of each
node of the derivation tree. The graph contains an edge from node a to node
b if the rule for computing attribute b uses the value of attribute a. Since the
rules for computing attributes can only depend on other attributes in the same
production, the number of edges and nodes in the graph is bounded by some
constant (based on the attributed grammar) times the number of edges in the
derivation tree.

Since the attributed grammar specifies all the attributes of the tree (given the
values of the input symbol attributes and starting symbol inherited attributes)
the constructed graph has no cycles. Therefore a topological sort can be per-
formed on the graph, using an algorithm whose time is linear with the size of
the graph [9]. The attributes associated with the nodes of the graph can then
be evaluated in the order produced by the topological sort. Each attribute will
be evaluated after the attributes on which the rule for computing it depends. O

10. Summary

A grammatical method of specifying attributed translations has been pre-
sented. The traditional top down and bottom up pushdown translators have
been generalized to perform these translations. As with unattributed push-
down machines, the generalizations also operate in linear time (excluding the
time required to evaluate the attribute evaluation functions).

Generalizations of LL(k) and LR(k) grammars are L-attributed LL(k) and
S-attributed LR (k) grammars respectively. Neither of these grammars is suffi-
cient to characterize deterministic attributed pushdown translations since
LL(k) grammars do not have sufficient syntactic power and S-attributed gram-
mars do not have sufficient semantic power (Theorem 7). However, a charac-
terization of deterministic attributed pushdown translations can be obtained by
merging a top down attribute concept (L-attributed grammars) with a bottom
up grammatical concept (SD grammars of [5]).

Taken together, the results show that grammatical specification and transla-
tion techniques can be generalized in a natural way to handle attributed trans-
lations without significant increases in processing cost. Thus attributed trans-
lation grammars can be a suitable basis for a theory of formal semantics of
translation.

Acknowledgment

The authors wish to thank Professor Michael M. Hammer of the Massa-
chusetts Institute of Technology for many useful comments concerning the
presentation of this paper.

References

[1] G. V. Bochman. Semantics evaluated from left to right. Technical report,
Departement d’Informatique, Univ. de Montreal, 1973.
[2] D. Crowe. Generating parsers for affix grammars. Comm. Assoc. Com-
puting Mach., 15:728-734, 1972.
[3] K. Culik. Attributed grammars and languages. Technical report, Departe-
ment d’Informatique, Univ. de Montreal, 1969.
[4] D. Gries. Compiler Construction for Digital Computers. Wiley, New
York, 1971.
[5] M. A. Harrison and I. M. Havel. Strict deterministic grammars. J. Com-
put. System Sci., 7:237-277, 1973.
[6] J. E. Hopcroft and J. D. Ullman. Formal Languages and Their Relation
to Automata. Addison—Wesley, Reading, 19609.
[7] E. T. Irons. A syntax directed compiler for ALGOL 60. Comm. Assoc.
Comput. Mach., 4:51-55, 1961.
[8] D. E. Knuth. On the translation of languages from left to right. Informa-
tion and Control, 8:607-639, 1965.
[9] D. E. Knuth. The Art of Computer Programming: Fundamental Algo-
rithms, volume 1. Addison—Wesley, Reading, 1968.
[10] D.E. Knuth. Semantics of context free languages. Math. Systems Theory,
2:127-145, 1968.
[11] C. H. A. Koster. Affix grammars. In ALGOL 68 Implementation. North-
Holland, Amsterdam, 1971.
[12] P. M. Lewis and R. E. Stearns. Syntax directed transduction. J. Assoc.
Comput. Mach., 15:465-488, 1968.
[13] D.J. Rosenkrantz and R. E. Stearns. Properties of deterministic top-down
grammars. Information and Control, 17:226-256, 1970.
[14] R. E. Stearns and P. M. Lewis. Property grammars and table machines.
Information and Control, 14:524-549, 1969.

2 Springer
http://www.springer.com/978-1-4020-9687-7

Fundamental Problems in Computing

Essays in Honor of Professor Daniel . Rosenkrantz
Rawvi, 5.5.; Shukla, 5.K (Eds.)

2009, XXIl, 516 p., Hardcowver

ISBN: @78-1-4020-9687-7

	Attributed Translations
	Introduction
	Translation Grammars
	Attributed Translations
	Attributed Translation Grammars
	Examples
	Attributed Pushdown Machines
	Performing Translations Nondeterministically
	Performing Translations Deterministically
	Performing Arbitrary Translations
	Summary

	References

