
Chapter 2

Plotting with R

An important part of scientific computing and data analysis is graphical visualiza-
tion, an area in which R is very strong. R has many specialized graph types, some of
which we will explore later. However, for many scientific purposes just a few types
will suffice. We note especially graphs for data, functions, and histograms. We’ll
show simple examples of these first, and then show how they can be customized.
For details on R graphics, see the book by Murrell [47].

2.1 Some common plots

2.1.1 Data plot

Graphing is particularly useful in descriptive statistics, to get an initial idea of how
the data are distributed, whether their distribution is normal, etc. R makes it easy to
do this.

We begin by generating a vector x of numbers from 0 to 100, and a vector y =
3x−2, and then plotting y vs. x.

> x = seq(0,100, by=10)
> y = 3*x-2
> plot(x,y)

The simple plot command gives us a default graph with open circles as points,
the names of the x and y variables as axis labels, and no title. To plot data with a
line, instead of points, use plot(x,y,type="l"). See Section 2.2.2 for more
variations on this theme.

A straight-line plot more relevant to biochemistry is the Lineweaver-Burk plot of
Michaelis-Menten enzyme kinetics:

> Vmax = 10; Km=0.1 # Concentration in millimolar
> # Substrate concentrations

23

© Springer Science + Business Media, LLC 2009

V. Bloomfield, Computer Simulation and Data Analysis in Molecular Biology and Biophysics,
Biological and Medical Physics, Biomedical Engineering, DOI: 10.1007/978-1-4419-0083-8_2,

24 2 Plotting with R

0 20 40 60 80 100

0
5
0

1
5
0

2
5
0

x

y

Fig. 2.1 Default data plot

> S = c(.01,.02,.05,.1,.2,.5,1,2,5)
> v = Vmax*S/(Km+S) # Reaction velocity
> plot(1/S, 1/v) # Lineweaver-Burk transformation

0 20 40 60 80 100

0
.2

0
.6

1
.0

1/S

1
/v

Fig. 2.2 Lineweaver-Burk data plot

2.1 Some common plots 25

2.1.2 Bar plot

Another common way of plotting data is a bar chart, which is known in R as a
barplot. In the previous chapter we defined a matrix drug.test which gave the per-
centage survivors in two treatment groups after three time periods.

> drug.test = matrix(c(80, 70, 55, 70, 50, 35),
nrow=2, ncol=3, byrow=TRUE,
dimnames = list(c("Drug","Placebo"),c("1","2","3")))
> drug.test

1 2 3
Drug 80 70 55
Placebo 70 50 35

We construct a barplot from this matrix with the following commands:

> barplot(drug.test,beside=TRUE,legend.text=TRUE,
ylim=c(0,100),

main="Drug Test",xlab="Months",ylab="% Survival")

1 2 3

Drug

Placebo

Drug Test

Months

%
 S

u
rv

iv
a
l

0
2
0

4
0

6
0

8
0
1
0
0

Fig. 2.3 Barplot of drug.test data

We have customized this plot by giving it a title with the main command, la-
beling the axes with xlab and ylab, and setting explicit limits on the y axis. We
have also said that we wanted a plot in which the two treatment groups are plotted
beside each other (the default, beside = FALSE), gives stacked bars; and that
we wanted a legend (the default is legend.text = NULL). See ?barplot
and Chapter 13 to see other options for barplot, as well as some more elaborate
examples.

26 2 Plotting with R

2.1.3 Function plot

To graph a function we use the curve function.

> curve(x*sin(x),-10,10, main="Function Plot")

-10 -5 0 5 10

-4
-2

0
2

4
6

8
Function Plot

x

x
 *

 s
in

(x
)

Fig. 2.4 Function plot of xsin(x) vs x

The expression to be graphed must be a function of x, or the name of the function
to be plotted. The -10,10 arguments are the from, to limits of the range. If they
are in positions 2 and 3, just after expr in position 1, they don’t need to be named
explicitly. By default, curve evaluates the function at n = 101 points; that number
can be changed as one of the options of curve().

2.1.4 Histogram

Histograms are important to visually inspect the distribution of repeated measure-
ments. For example, we generate 100 normally-distributed random numbers with
mean = 2 and standard deviation = 0.2, and plot them using the hist function

> y = rnorm(100,mean=2, sd=.2)
> hist(y)

The title “Histogram of y” is automatically added by the hist function. You can
specify a different title with main = "Desired Title".

2.1 Some common plots 27

Histogram of y

y

F
re
q
u
e
n
c
y

1.4 1.6 1.8 2.0 2.2 2.4

0
5

1
0

1
5

2
0

Fig. 2.5 Histogram of 100 normally-distributed random numbers

2.1.5 Three-dimensional plot

Sometimes we want to plot a dependent variable as a function of two independent
variables. The R function persp gives such a plot with a customizable perspective
that enables us to get the most informative view. A good example (simplified a bit
to print in black and white) is given in R Help for persp. We first view z from the
front as a function of x and y, and then rotate it by 30 degrees in the horizontal and
vertical directions. (User-defined functions will be discussed in the next chapter.)

x = seq(-10, 10, length= 30)
y = x
f = function(x,y) { r = sqrt(xˆ2+yˆ2); 10 * sin(r)/r }
z = outer(x, y, f) # Forms matrixz using function f
par(mfrow = c(1,2))
persp(x,y,z)
persp(x,y,z,theta = 30, phi = 30)

Consult R Help to learn the many options available to customize the appearance of
the plot produced by persp.

The value of z as a function of x and y can also be visualized by a contour map or
a two-dimensional image colored according to the value of z, as in a topographical
map. See contour and image in R Help for information on these functions.

28 2 Plotting with R

x

y

z

x

y

z

Fig. 2.6 Perspective plots. (left) Front view; (right) rotated by 30 degrees about θ and φ angles

2.2 Customizing plots

2.2.1 Different plot characters

By default, R plots points with open circles, but many other symbols are available.
For example, to plot with closed circles, use pch=16, where pch stands for “plot
character”. Here’s a Lineweaver-Burk plot with closed circles.

> plot(1/S, 1/v, pch=16)

Other point types are available using pch values between 0 and 25. The default
(open circles) is pch = 1. Here is some code (don’t worry if you don’t understand it
now) that shows the various point characters (pch) and line types (lty) available.

> plot.new()
> plot.window(xlim=c(-.5,26.5),ylim=c(0,8), asp=1)
> k = 0:25
> zero = 0*k
> text(k,8+zero, labels=k)
> points(k,7+zero,pch=k,cex=2)
> i = 6:1
> abline(h=7-i,lty=i)
> axis(2,at=1:8,labels=c(paste("lty =",i),"pch","k"), las=2)

In most circumstances you would use the simplest plot characters, 1–3 and 15–
17.

2.2 Customizing plots 29

0 20 40 60 80 100

0
.2

0
.6

1
.0

1/S

1
/v

Fig. 2.7 Lineweaver-Burk plot with filled circles as data points

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

lty = 6

lty = 5

lty = 4

lty = 3

lty = 2

lty = 1

pch

k

Fig. 2.8 Plot symbols and line types

The size of the plot characters can be controlled with cex. The default size is
cex=1. Point sizes can be halved with cex=0.5, or made 50% larger with cex=1.5,
etc.

> x = seq(0,100, by=10)
> y = 3*x-2
> plot(x,y, pch=17, cex=2)

2.2.2 Plotting data with a line

To plot with a line, use type = "l". (To plot with points, you can also explicitly
specify type = "p".) To get both points and a line, type = "o" (for over-
strike), or type = "b" for both.

30 2 Plotting with R

0 20 40 60 80 100

0
5
0

1
5
0

2
5
0

x

y

Fig. 2.9 Enlarged plot characters

> par(mfrow=c(1,2))
> plot(x,y,pch=16, type="o")
> plot(x,y,pch=16, type="b")

0 20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

x

y

0 20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

x

y

Fig. 2.10 Combining points and lines. (left) “o”; (right) “b”

In either data plots or function curves, you can specify the line type with
lty = n, where n ranges from 1 to 6 (see above). You specify the line width
with lwd. For example, here’s a plot of the initial velocity of an enzyme according
to Michaelis-Menten kinetics. . You can thicken the line , or plot with dots rather
than a solid line.

> Vmax = 10; Km = 0.1 # Concentration in millimolar
> S = c(.01,.02,.05,.1,.2,.5,1,2,5)
> v = Vmax*S/(Km+S)

2.2 Customizing plots 31

> plot(S,v,type="l")
> plot(S,v,type="l",lwd=2) # Thicker line
> plot(S,v,type="l",lty=3) # Dotted line

0 1 2 3 4 5

2
4

6
8

1
0

S

v

0 1 2 3 4 5

2
4

6
8

1
0

S

v

0 1 2 3 4 5

2
4

6
8

1
0

S

v

Fig. 2.11 Plotting data points with a (left) line, (center) thicker line, (right) dotted line

2.2.3 Adding title and axis labels

To put a title on the graph, use "main". (If a subtitle below the graph is desired, add
it with "sub".) To change the x- and y-axis labels from the defaults, use "xlab"
and "ylab". (We already did this for the barplot example above.) Be sure to
surround the names with quotation marks.

> plot(S,v,main="Michaelis-Menten Kinetics",
xlab="S/mM", ylab="v/(mM/s)")

If a graph can be produced without title, subtitle, legend, or axis labels, these
items can be added later (while the graph is still active) with the title command.
See ?title in R Help for details.

2.2.4 Adding colors

To change the colors of points or lines, use the col command:

> x = 1:10
> y = xˆ3-2*xˆ2+4*x-1
> plot(x,y,pch=16,cex=1.3,col="red")

Since this book is printed in black and white, we do not show the resulting colored
graph.

You can specify colors either by name (in quotes) or by number. The first four are
(1) "black", (2) "red", (3) "green", and (4) "blue". You can learn more

32 2 Plotting with R

0 1 2 3 4 5

2
4

6
8

1
0

Michaelis-Menten Kinetics

S/mM

v
/(
m
M
/s
)

Fig. 2.12 Placing a title above the graph

about the colors available in R, and how to use them, by typing ?colors. Note
that in a typical graph for publication, you would generally stick to black and white,
distinguishing data series by point or line type. However, for a poster or computer-
based presentation, colors are helpful.

To customize colors or shading of barplots, as well as many other barplot fea-
tures, see ?barplot in the R help system.

2.2.5 Adding straight lines to a plot

You can add straight lines to a plot with the abline function. This can take several
forms. If you want to draw a line with specified intercept a and slope b (hence the
name), use abline(a,b). For example, to draw a horizontal dashed line (slope
b = 0) on the function plot at the beginning of this chapter, to estimate where the
function crosses the y axis (intercept a = 0):

> curve(x*sin(x),-10,10, main="Function Plot")
> abline(0,0,lty=2)

Note that you add the line to the already drawn basic curve. This method of
sequentially adding details to a graph, rather than specifying everything at once
initially, is standard in R. But the graph must be “open”, the latest one drawn.

Another variation on abline is to use it to draw a vertical or horizontal line,
using “v” and “h”, respectively. For example, to draw a vertical line through the
value of S corresponding to the Michaelis constant Km, and a horizontal line through
the value of v corresponding to the half-maximum velocity Vmax/2:

> # Kinetic parameters
> Vmax = 10; Km = .001

2.2 Customizing plots 33

-10 -5 0 5 10

-4
0

4
8

Function Plot

x

x
 *

 s
in

(x
)

Fig. 2.13 Adding a line to the graph with abline

> # Substrate concentrations
> S = c(.0001,.0003,.001,.002,.005,.01,.02)
> v = Vmax*S/(Km+S) # Calculated velocities
> plot(S,v,type="b")
> abline(v=Km,lty=3) # Vertical line at Km
Don’t confuse v here, which means "vertical",
with the enzyme velocity
> abline(h=Vmax/2, lty=3) # Horizontal line at Vmax/2

0.000 0.005 0.010 0.015 0.020

2
4

6
8

S

v

Fig. 2.14 Adding horizontal and vertical lines with abline to locate the half-maximum velocity
and Michaelis constant

34 2 Plotting with R

2.2.6 Adjusting the axes

R automatically sets the upper and lower limits of the horizontal and vertical
axes. Sometimes you may want to use different limits, which you can do with
xlim=c(xlo,xhi) and ylim=c(ylo,yhi). For example, in the Lineweaver-
Burk plot of the simulated data above,

> plot(1/S, 1/v, pch=16, main="Lineweaver-Burk Plot",
ylim=c(0,1.2))

Draw line corresponding to intercept and slope of
Lineweaver-Burk plot
> abline(1/Vmax,Km/Vmax, lty=3)

0 2000 6000 10000

0
.0

0
.4

0
.8

1
.2

Lineweaver-Burk Plot

1/S

1
/v

Fig. 2.15 Lineweaver-Burk plot with axes adjusted and line added to show slope and intercept

2.2.7 Customizing ticks and axes

By default, R draws the axis ticks outside the graph. Most commonly in scientific
journals, the ticks are inside. This can be set by a command like tck=0.03, where
the positive value of tck means ticks inside the graph, and 0.03 is the length of the
ticks relative to the graph.

> plot(1/S, 1/v, pch=16, tck=0.03,
main="Lineweaver-Burk Plot",ylim=c(0,1.2))

> abline(1/Vmax,Km/Vmax, lty=3)

R’s choice of ticks on the axes is usually adequate. To learn how to customize,
call ?axis in the R help system. The axis documentation will also tell you,
among other things, how to draw additional axes on the top- or right-hand side of

2.2 Customizing plots 35

0 2000 6000 10000

0
.0

0
.4

0
.8

1
.2

Lineweaver-Burk Plot

1/S

1
/v

Fig. 2.16 Graph with customized ticks

the plot, using the side option. This would be useful, for example, if you wanted
to plot two variables which had significantly different magnitudes. The right-hand
axis (4) could show the scale for the second variable.

2.2.8 Setting default graph parameters

Rather than setting graph parameters individually for each graph, if you have a pre-
ferred style you can set it with the par command. For example, to generate default
plots with ticks inside and filled circles, use

> par(tck=0.03, pch=16)

Every graph that you draw from then on until you quit the session will use these
defaults, unless you change or override them. Of course, settings for a particular
graph can be changed as above. par has many options, as you can see from reading
R Help, that enable you to customize many aspects of a plot layout.

2.2.9 Adding text to a plot

You may wish to annotate a plot by adding text within it. For example, you can place
labels indicating the intercept 1/Vmax and slope Km/Vmax on the Lineweaver-Burk
plot from the data at the beginning of this chapter as follows:

> text(15,0.5,"1/Vmax")
> text(60,0.5,"Km/Vmax")

To add text in the margins of a plot, rather than within the plotting area, use
mtext; see R Help for details. If there are several data series or symbols in a graph,

36 2 Plotting with R

Fig. 2.17 Graph with added text and customized graph parameters

one can annotate with a legend. We’ll see examples of this below. Plots can also
be annotated with mathematical symbols and expressions. To learn about this, call
?plotmath in R.

2.2.10 Adding math expressions and arrows

R has useful capabilities for adding mathematical symbols and expressions to a plot,
and for pointing out significant features with arrows. As a simple example, we plot
the function sin(x)/x which appears in x-ray diffraction, give the equation within
the plot, and draw an arrow to indicate a significant maximum.

> x = seq(-20,20,by=0.1)
> y = sin(x)/x
> plot(x,y, type = "l")
> text(-15,0.7,expression(frac(sin(x),x)))
> arrows(11,0.3,8,0.15, length=0.1)
> text(11,0.45,"2nd\nmaximum") # \n means "newline"

For details, see plotmath, demo(plotmath), and arrows. As we’ll see in
the section on error bars at the end of this chapter, arrows are also used to draw error
bars.

l

l

l

l

l
ll

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Lineweaver−Burk Plot

1/S

1/
v

1/Vmax

Km/Vmax

2.2 Customizing plots 37

-20 -10 0 10 20

-0
.2

0
.2

0
.6

1
.0

x

y

sin(x)

x
2nd

maximum

Fig. 2.18 Plot with added math expressions and arrows

2.2.11 Constructing a diagram

Sometimes you will want to construct a block diagram, organization chart, or sim-
ilar figure composed mainly of straight lines, arrows, and text. R, with its large
number of graphic constructs, enables you to do this fairly readily. As an example,
we consider the code used to construct the diagram for countercurrent distribution
in Chapter 8. Comparing the commented code with the diagram should illuminate
most of the steps, but several points are worth noting.

• It is useful to define variables that specify the dimensions, so that sizes and pro-
portions can be changed in one place rather than in each line of code.

• The plot.new() function defines a new plot without axes, labels, or outlining
box. The plot.window() function sets the horizontal and vertical scales.

• The segments(x0,y0,x1,y1) function draws straight lines from x0,y0
to x1,y1. It uses the same syntax as the arrows function, but does not include
arrowhead length and angle. Note the use of for... loops to place repetitive
vertical lines.

• Subscripts in plotted text are indicated by square brackets. See plotmath,
expression, and substitute in R Help for details and other possibilities
for math notation. The tH and tL functions are defined for brevity and conve-
nience in writing the commands to place text on the high and low levels.

Assume cells with square sides of length 1
Assign variables to the dimensions in the diagram.
lmarg = 1; rmarg = 1 # Margins for text and arrows
n1 = 4; n2 = 1.5; n3 = 2 # Lengths of horizontal walls
nv = 0.3 # Lengths of vertical walls
pw = lmarg + n1 + n2 + n3 + rmarg # Plotwidth
ph = 2 # Plotheight

38 2 Plotting with R

Prepare a new, empty plot and dimension its window
plot.new()
plot.window(c(0,pw),c(0,ph))

Draw straight lines using segments
Lower horizontals
Lower left
segments(lmarg,0,lmarg + n1,0)
Lower middle
segments(lmarg + n1,0,lmarg + n1 + n2,0,lty=2)
Lower right
segments(lmarg + n1 + n2,0,lmarg + n1 + n2 + n3,0)
Upper horizontals
Upper left
segments(lmarg,2,lmarg + n1,2)
Upper middle
segments(lmarg + n1,2,lmarg + n1 + n2,2,lty=2)
Upper right
segments(lmarg + n1 + n2,2,lmarg + n1 + n2 + n3,2)
Middle horizontals
Middle leftsegments(lmarg,1,lmarg + n1,1, lty=3)
Middle middle
segments(lmarg + n1,1,lmarg + n1 + n2,1,lty=2)
Middle right
segments(lmarg + n1 + n2,1,lmarg + n1 + n2 + n3,1,

lty=3)
Left verticals
for (i in 1:(n1+1)){
segments(lmarg + i -1,2,lmarg + i -1,2-nv)
segments(lmarg + i -1,1+nv,lmarg + i -1,1-nv)
segments(lmarg + i -1,nv,lmarg + i -1,0)
}
Right verticals
for (i in 1:(n3+1)){
segments(lmarg + n1 + n2 + i -1,2,

lmarg + n1 + n2 + i -1,2-nv)
segments(lmarg + n1 + n2 + i -1,1+nv,

lmarg + n1 + n2 + i -1,1-nv)
segments(lmarg + n1 + n2 + i -1,nv,

lmarg + n1 + n2 + i -1,0)
}

Annotate diagram with text, including subscripts
For brevity, define functions for high and low text
tH = function(x,i) text(x, 1.5, substitute(H[i]))

2.3 Superimposing data series in a plot 39

tL = function(x,i) text(x, 0.5, substitute(L[i]))
Upper
tH(lmarg-0.8,"in"); tH(pw-rmarg+0.8,out)
tH(1.5,1); tH(2.5,2); tH(3.5,3); tH(4.5,4)
tH(n1+n2+1.5,n-1); tH(n1+n2+2.5,n)
Lower
tL(lmarg-0.8,out); tL(pw-rmarg+0.8,"in")
tL(1.5,1); tL(2.5,2); tL(3.5,3); tL(4.5,4)
tL(n1+n2+1.5,n-1); tL(n1+n2+2.5,n)

Draw arrows for in- and out-flows
arrows(lmarg-0.4,1.5,lmarg,1.5,.1,30)
arrows(pw-rmarg,1.5,pw-rmarg+0.4,1.5,.1,30)
arrows(lmarg,0.5,lmarg-0.4,0.5,.1,30)
arrows(pw-rmarg+0.4,0.5,pw-rmarg,0.5,.1,30)

2.3 Superimposing data series in a plot

Often you’ll want to plot two sets of data on the same graph, or two functions, or
data points and a function. To do this, graph one of the series first, then the other.
You can then add a legend to identify the series. It’s important to note that, for this to
work, the axis limits of the first-drawn graph must be large enough to accommodate
the subsequent series. For example,

> x = 1:10
> y1 = xˆ2-3*x+2
> y2 = xˆ2-2*x+3
> plot(x,y1, pch=16)
Use points(), not plot(), to add the second series
> points(x,y2,pch=1)

The problem with this graph (Figure 2.19) is that the highest value of y2 is
greater than the axis limit set by y1, so the last point is cut off. To avoid this, first
test the minima and maxima of the series using range(), then set the axis limits
accordingly. Note also that the y axis is labeled “y1”, which probably should be
changed to the generic “y”.

> range(y1)
[1] 0 72
> range(y2)
[1] 2 83
> plot(x,y1,ylim=c(0,90), ylab="y",pch=16)
> points(x,y2,pch=1)

A more general way to set ylim would be to use min(c(y1,y2)) for the
minimum value (or perhaps min(c(0,y1,y2)) if you wanted the plot to start at 0

40 2 Plotting with R

2 4 6 8 10

0
2
0

4
0

6
0

x

y
1

2 4 6 8 10

0
2
0
4
0
6
0
8
0

x

y
Fig. 2.19 Plotting two data sets on the same graph. (left) original, (right) after adjustment of y
axis limits

and knew that no y values were below 0), and max(c(y1,y2)) for the maximum
value. Combining,
ylim = c(min(c(0,y1,y2)),max(c(y1,y2))).

The function matplot provides a more concise way to superimpose data series.
matplot plots the columns of a matrix individually as a function of x. The matrix
can be assembled using cbind. Using the example above, cbind(y1,y2) is a
10×2 matrix, and x is a length-10 column vector. If you simply enter the command
matplot(x,cbind(y1,y2)) you will get a graph in which the points in the
two data series are denoted by the numbers 1 or 2, and in which 1 is printed in black
(col=1) and 2 in red (col=2). (Try it.) To get a plot like the one above, all in black
and with point characters, you must use something like

> matplot(x,cbind(y1,y2),type="p",pch=c(16,1),
col=c(1,1), ylab="y")

or

> y = cbind(y1,y2)
> matplot(x,y,type="p",pch=c(16,1),col=c(1,1))

Note that matplot automatically sets ylim to include both data series.
To identify the series, add a legend with the legend function, which specifies

the x and y coordinates of the legend, its text, accompanying symbols or line types,
and whether the legend is surrounded by a box. To suppress the box, use bty="n"
where bty stands for “box type”.

> legend(1,85,legend=c("y1","y2"),pch=c(16,1),bty="n")

To plot a line (for example, a fitting function) on a data plot, first plot the points,
then the line with the function lines, then the legends. You may have to experi-
ment a bit to get the legends located properly.

2.3 Superimposing data series in a plot 41

2 4 6 8 10

0
2
0

4
0

6
0

8
0

x

y

y1

y2

Fig. 2.20 Matplot with legend

> x = 1:10
> y1 = xˆ2-3*x+1 +rnorm(10,0,5)
> plot(x,y1)
> lines(xˆ2-3*x+1)
> legend(2,60,legend="y1",pch=16,bty="n")
> legend(1.5,50,legend="fit",lty=1,bty="n")

2 4 6 8 10

0
2
0

4
0

6
0

x

y
1

y1

fit

Fig. 2.21 Data plot with superimposed fitting curve

To plot two or more curves, use the add = TRUE option to the second and later
curve command. For example,

> curve(xˆ3-3*xˆ2+2*x-4,-10,10,

42 2 Plotting with R

ylim=c(-1500,1500),ylab="f(x)")
> curve(xˆ3+3*xˆ2+2*x-100,-10,10,

lty=2, add=TRUE)
> legend(-9,1000,legend=c("f1(x)","f2(x)"),bty="n",
+ lty=c(1,2))
"+" is line continuation in R

-10 -5 0 5 10

-1
5
0
0

0
1
0
0
0

x

f(
x
)

f1(x)

f2(x)

Fig. 2.22 Two superimposed curves with legend

2.4 Placing two or more plots in a figure

R provides several methods for placing several plots in a single figure. The most
common method is par(mfrow=c(nr,nc)) where nr is the number of rows
of plots and nc is the number of columns. mf stands for “multiple figures”. With
mfrow, the plots are successively filled in row order. The alternative mfcol fills
the plots in column order.

For example, consider Michaelis-Menten enzyme kinetics with values of the re-
action velocity v calculated from the substrate concentration S and the kinetic pa-
rameters Vmax and Km. We plot v vs. S and the three common linear transformations
of the data in a single figure as follows.

> S = c(0.1,0.2,0.5,1,2,5,10,20)*1e-6
> Km = 2e-6
> Vmax = 10
> v = Vmax*S/(Km+S)
> par(mfrow=c(2,2)) # Set up 2 x 2 plot figure
> plot(S,v,type="o", main="Michaelis-Menten")

2.4 Placing two or more plots in a figure 43

> plot(1/S,1/v, type="o", main="Lineweaver-Burk")
> plot(v/S,v,type="o", main="Eadie-Hofstee")
> plot(S,S/v, type="o", main="Hanes-Woolf")
> par(mfrow=c(1,1)) # Return to single plot

0.0e+00 1.0e-05 2.0e-05

2
4

6
8

Michaelis-Menten

S

v

0e+00 4e+06 8e+06

0
.5

1
.0

1
.5

2
.0

Lineweaver-Burk

1/S

1
/v

1e+06 2e+06 3e+06 4e+06

2
4

6
8

Eadie-Hofstee

v/S

v

0.0e+00 1.0e-05 2.0e-05

5
.0
e
-0
7

1
.5
e
-0
6

Hanes-Woolf

S

S
/v

Fig. 2.23 Four plots in the same figure

Note that at the end we used par(mfrow=c(1,1)) to return the graphic pa-
rameters to a single plot format. This is necessary since par commands stay in
effect until changed.

There is a good deal of space between the plots in this figure. It might be desired
to compress this space, especially if the individual plots did not have titles. This can
be done with the mar option to par. As explained in R Help for par, mar is “A
numerical vector of the form c(bottom, left, top, right) which gives the number of
lines of margin to be specified on the four sides of the plot. The default is c(5, 4, 4,
2) + 0.1.” To compress the space between the plots, these values could be decreased.

44 2 Plotting with R

mfrow and mfcol divide the figure into equal-sized regions; all plots are the
same size. If it is desired to have different-sized plots, R provides the functions
layout and split.screen. Consult R Help to see how these work.

2.5 Error bars

We use error bars in graphs to denote statistical variability or uncertainty. To add
error bars, we use the arrows function in R. According to the documentation for
that function in the help system,

Sample usage:

arrows(x0, y0, x1, y1, length = 0.25, angle = 30)

Arguments:

x0, y0: coordinates of points from which to draw.
x1, y1: coordinates of points to which to draw.
length: length of the edges of the arrow head (inches).
angle: angle from the shaft of the arrow to the edge

of the arrow head.

There are several other arguments that we won’t need. Here’s an example of a
plot of ten uniformly distributed numbers, with error bars equal to ±10 % of the y
value:

> x = 1:10
> y = runif(10)
> plot(x,y)
> arrows(x,y,x,y+.1*y,.05,90); arrows(x,y,x,y-.1*y,

.05,90)

Here’s an example of a bar chart with error bars, with data from six uniformly
distributed random numbers between 0 and 1. This example also shows how to
generate cross-hatching of the bars at a density of 15 lines per inch and a black color
(medium gray is the default), to set the counterclockwise angle of the hatching to
45 degrees, and to show error bars only above the top of the bar, as is the common
convention.

> x = runif(6)
> bar = barplot(x, names.arg = month.abb[1:6],
+ density = 15, angle = 45, col="black", ylim=c(0,1.1))
> stdev = x/10
> arrows(bar, x, bar, x + stdev, length=0.1,

angle = 90)

2.6 Locating and identifying points on a plot 45

2 4 6 8 10

0
.0

0
.4

0
.8

x

y

Fig. 2.24 Data plot with error bars

Jan Feb Mar Apr May Jun

0
.
0

0
.
4

0
.
8

Fig. 2.25 Bar chart with cross-hatching and error bars

The labels are generated from the built-in R values for the three-letter abbrevia-
tions for the months (month.abb). The only other R built-in constants are the full
names of the months (month.name), the upper-case (LETTERS) and lower-case
(letters) letters, and pi.

2.6 Locating and identifying points on a plot

R has functions that enable identifying and placing points on a plot, and might be
useful for digitizing a plot. The function locator, which “reads the position of

46 2 Plotting with R

the graphics cursor when the (first) mouse button is pressed” can usefully serve as
a digitizer for a plot. For example, the command xy = locator(10) followed
by ten mouse clicks on an experimental curve or set of points, will yield a set of 10
(x,y) coordinates, which can be accessed by xy$x and xy$y. If desired, locator
will put a point at each point clicked, or draw a line between clicked points.

A related function is identify. According to the R documentation, “identify
reads the position of the graphics pointer when the (first) mouse button is pressed.
It then searches the coordinates given in x and y for the point closest to the pointer.
If this point is close enough to the pointer, its index will be returned as part of the
value of the call.”

See R Help for details on how to apply these functions.

2.7 Problems

1. The BOD data in the R “datasets” package gives biological oxygen demand
(mg/l) vs time (days) in an evaluation of water quality.

time = c(1, 2, 3, 4, 5, 7)
demand = c(8.3, 10.3, 19.0, 16.0, 15.6, 19.8)

Plot demand vs time, using filled black circles as the points. Give the plot an
appropriate title.

2. Repeat Problem 1, with the following modifications: Change the minimum value
of the y-axis to 0. Change the x-axis label to “days” and the y-axis label to
“BOD”. Move the ticks to the inside of the graph. Connect the black points with
a solid red line.

3. Assume that the demand measurements have ±10% error. Repeat Problem 2,
with error bars on the points.

4. Assume that the water was treated to reduce BOD, and a second set of measure-
ments gave the following results:

time = c(1, 2, 3, 4, 5, 6, 7, 8)
treated = c(5.1,7.7,10.2,12.3,14.0,13.3,15.5,13.9)

Assume ±10% error for these data as well. Plot both untreated and treated data
sets on the same graph, using different point and line types and/or colors for each
plot. Add a legend (unboxed) that labels the data.

5. Add horizontal lines to the plot in Problem 4 to represent the mean values of
the BODs in the two measurements. Make the line types the same as those that
connect the points.

6. You guess that an approximate functional approximation to the data in Problem
4 is

treated = 5 + 8*time/(2 + time)

Add this line to a plot of the treated data.

2.7 Problems 47

7. Plot the untreated and treated BOD data as a barplot, with appropriate legend and
title. Since data for 6 and 8 days are missing from the untreated set, use NA for
those values. Make the untreated data solid blue, and the treated data solid red.
See ?barplot in R Help.

8. Modify the plot in Problem 7 to make the untreated bars shaded gray at 45 de-
grees counterclockwise, and the treated bars 45 degrees clockwise. Add error
bars to both sets of bars.

9. Generate a vector rn of 1000 normally distributed random numbers with mean
0 and standard deviation 1. Use the command par(mfcol=c(1,2)) to tell R
to plot two graphs side-by-side. (See R Help on ?par.) In the left-hand graph
plot the histogram of rn; in the right-hand graph plot hist(rn, freq=F).
Note the difference in ordinate.

10. While still placing two graphs side-by-side, compare hist(rn, breaks=10)
with hist(rn, breaks=20). Put a title on each graph so you can tell them
apart. Do you see a difference in the number of breaks? Consult R Help about
?hist to learn how to control the number of breaks. Repeat the two graphs using
that approach. Remember to reset the graphing system to one row, one column
when you are done.

http://www.springer.com/978-1-4419-0084-5

