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Abstract Previous research has identified broad metric classes for human-
automation performance in order to facilitate metric selection, as well as understand-
ing and comparing research results. However, there is still a lack of a systematic
method for selecting the most efficient set of metrics when designing evaluation
experiments. This chapter identifies and presents a list of evaluation criteria that can
help determine the quality of a metric in terms of experimental constraints, com-
prehensive understanding, construct validity, statistical efficiency, and measurement
technique efficiency. Based on the evaluation criteria, a comprehensive list of poten-
tial metric costs and benefits is generated. The evaluation criteria, along with the list
of metric costs and benefits, and the existing generic metric classes provide a foun-
dation for the development of a cost-benefit analysis approach that can be used for
metric selection.

2.1 Introduction

Human-automation teams are common in many domains, such as command and
control operations, human-robot interaction, process control, and medicine. With
intelligent automation, these teams operate under a supervisory control paradigm.
Supervisory control occurs when one or more human operators intermittently pro-
gram and receive information from a computer that then closes an autonomous con-
trol loop through actuators and sensors of a controlled process or task environment
[1]. Example applications include robotics for surgery and geologic rock sampling,
and military surveillance with unmanned vehicles.

A popular metric used to evaluate human-automation performance in supervisory
control is mission effectiveness [2, 3]. Mission effectiveness focuses on performance
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as it relates to the final output produced by the human-automation team. How-
ever, this metric fails to provide insights into the process that leads to the final
mission-related output. A suboptimal process can lead to a successful completion of
a mission, e.g., when humans adapt to compensate for design deficiencies. Hence,
focusing on just mission effectiveness makes it difficult to extract information to
detect design flaws and to design systems that can consistently support successful
mission completion.

Measuring multiple human-computer system aspects such as workload and situ-
ation awareness can be valuable in diagnosing performance successes and failures,
and in identifying effective training and design interventions. However, choosing
an efficient set of metrics for a given experiment still remains a challenge. Many
researchers select their metrics based on their past experience. Another approach
to metric selection is to collect as many measures as possible to supposedly gain a
comprehensive understanding of the human-automation team performance. These
methods can lead to insufficient metrics, expensive experimentation and analysis,
and the possibility of inflated type I errors. There appears to be a lack of a prin-
cipled approach to evaluate and select the most efficient set of metrics among the
large number of available metrics.

Different frameworks of metric classes are found in the literature in terms of
human-autonomous vehicle interaction [4–7]. These frameworks define metric tax-
onomies and categorize existing metrics into high-level metric classes that assess
different aspects of the human-automation team performance and are generalizable
across different missions. Such frameworks can help experimenters identify sys-
tem aspects that are relevant to measure. However, these frameworks do not include
evaluation criteria to select specific metrics from different classes. Each metric set
has advantages, limitations, and costs, thus the added value of different sets for a
given context needs to be assessed to select an efficient set that maximizes value
and minimizes cost.

This chapter presents a brief overview of existing generalizable metric
frameworks for human-autonomous vehicle interaction and then suggests a set of
evaluation criteria for metric selection. These criteria and the generic metric classes
constitute the basis for the future development of a cost-benefit methodology to
select supervisory control metrics.

2.2 Generalizable Metric Classes

For human-autonomous vehicle interaction, different frameworks of metric classes
have been developed by researchers to facilitate metric selection, and understand-
ing and comparison of research results. Olsen and Goodrich proposed four metric
classes to measure the effectiveness of robots: task efficiency, neglect tolerance,
robot attention demand, and interaction effort [4]. This set of metrics measures
the individual performance of a robot, but fails to measure human performance
explicitly.



2 Evaluation Criteria for Human-Automation Performance Metrics 23

Human cognitive limitations often constitute a primary bottleneck for human-
automation team performance [8]. Therefore, a metric framework that can be gen-
eralized across different missions conducted by human-automation teams should
include cognitive metrics to understand what drives human behavior and cognition.

In line with the idea of integrating human and automation performance metrics,
Steinfeld et al. [7] suggested identifying common metrics in terms of three aspects:
human, robot, and the system. Regarding human performance, the authors discussed
three main metric categories: situation awareness, workload, and accuracy of men-
tal models of device operations. This work constitutes an important effort towards
developing a metric toolkit; however, this framework suffers from a lack of metrics
to evaluate collaboration effectiveness among humans and among robots.

Pina et al. [5] defined a comprehensive framework for human-automation team
performance based on a high-level conceptual model of human supervisory control.
Figure 2.1 represents this conceptual model for a team of two humans collaborat-
ing, with each controlling an autonomous platform. The platforms also collaborate
autonomously, depicted by arrows between each collaborating unit. The operators
receive feedback about automation and mission performance, and adjust automa-
tion behavior through controls if required. The automation interacts with the real
world through actuators and collects feedback about mission performance through
sensors.

Based on this model, Pina et al. [5] defined five generalizable metric classes:
mission effectiveness, automation behavior efficiency, human behavior efficiency,
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Table 2.1 Human supervisory control metric classes [9]

Metric classes

Mission effectiveness (e.g., key mission performance parameters)

Automation behavior efficiency (e.g., usability, adequacy, autonomy, reliability)

Human Behavior Efficiency
– Attention allocation efficiency (e.g., scan patterns, prioritization)
– Information processing efficiency (e.g., decision making)

Human behavior precursors
– Cognitive precursors (e.g., situational awareness, mental workload)
– Physiological precursors (e.g., physical comfort, fatigue)

Collaborative metrics
– Human/automation collaboration (e.g., trust, mental models)
– Human/human collaboration (e.g., coordination efficiency, team mental model)
– Automation/automation collaboration (e.g., platform’s reaction time to situational events that

require autonomous collaboration)

human behavior precursors, and collaborative metrics (Table 2.1). Mission effec-
tiveness includes the previously discussed popular metrics and measures concerning
how well the mission goals are achieved. Automation and human behavior efficiency
measure the actions and decisions made by the individual components of the team.
Human behavior precursors measure a human’s internal state, including attitudes
and cognitive constructs that can be the cause of and influence a given behavior.
Collaborative metrics address three different aspects of team collaboration: collab-
oration between the human and the automation, collaboration between the humans
that are in the team, and autonomous collaboration between different platforms.

These metric classes can help researchers select metrics that result in a com-
prehensive understanding of the human-automation performance, covering issues
ranging from automation capabilities to human cognitive abilities. A rule of thumb
is to select at least one metric from each metric class. However, there still is a lack
of a systematic methodology to select a collection of metrics across these classes
that most efficiently measures the performance of human-automation systems. The
following section presents a preliminary list of evaluation criteria that can help
researchers evaluate the quality of a set of metrics.

2.3 Metric Evaluation Criteria

The proposed metric evaluation criteria for human supervisory control systems con-
sist of five general categories, listed in Table 2.2. These categories focus both on
the metrics, which are constructs, and on the associated measures, which are mech-
anisms for expressing construct sizes. There can be multiple ways of measuring
a metric. For example, situational awareness, which is a metric, can be measured
based on objective or subjective measures [10]. Different measures for the same
metric can generate different benefits and costs. Therefore, the criteria presented
in this section evaluate a metric set by considering the metrics (e.g., situational
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Table 2.2 Metric evaluation criteria

Evaluation criteria Example

Experimental constraints Time required to analyze a metric

Comprehensive understanding Causal relations with other metrics

Construct validity Power to discriminate between similar constructs

Statistical efficiency Effect size

Measurement technique efficiency Intrusiveness to subjects

awareness), the associated measures (e.g., subjective responses), and the measur-
ing techniques (e.g., questionnaires given at the end of experimentation).

The costs and benefits of different research techniques in human engineering
have been previously discussed in the literature [11, 12]. The list of evaluation cri-
teria presented in this chapter is specific to the evaluation of human-automation per-
formance and was identified through a comprehensive literature review of different
metrics, measures, and measuring techniques utilized to assess human-automation
interaction [9]. Advantages and disadvantages of these methods, which are dis-
cussed in detail in Pina et al. [9], fell into five general categories that constitute
the proposed evaluation criteria.

These proposed criteria target human supervisory control systems, with influ-
ence from the fields of systems engineering, statistics, human factors, and psychol-
ogy. These fields have their own flavors of experimental metric selection including
formal design of experiment approaches such as response surface methods and fac-
tor analyses, but often which metric to select and how many are left to heuristics
developed through experience.

2.3.1 Experimental Constraints

Time and monetary costs associated with measuring and analyzing a specific metric
constitute the main practical considerations for metric selection. Time allocated for
gathering and analyzing a metric also comes with a monetary cost due to man-
hours, such as time allocated for test bed configurations. Availability of temporal
and monetary resources depends on the individual project; however, resources will
always be a limiting factor in all projects.

The stage of system development and the testing environment are additional fac-
tors that can guide metric selection. Early phases of system development require
more controlled experimentation in order to evaluate theoretical concepts that can
guide system design. Later phases of system development require a less controlled
evaluation of the system in actual operation. For example, research in early phases
of development can assess human behavior for different proposed automation levels,
whereas research in later phases can assess the human behavior in actual operation
in response to the implemented automation level.

The type of testing environment depends on available resources, safety con-
siderations, and the stage of research development. For example, simulation
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environments give researchers high experimental control, which allows them the
ability to manipulate and evaluate different system design concepts accordingly. In
simulation environments, researchers can create off-nominal situations and mea-
sure operator responses to such situations without exposing them to risk. However,
simulation creates an artificial setting and field testing is required to assess system
performance in actual use. Thus, the types of measures that can be collected are con-
strained by the testing environment. For example, responses to rare events are more
applicable for research conducted in simulated environments, whereas observational
measures can provide better value in field testing.

2.3.2 Comprehensive Understanding

It is important to maximize the understanding gained from a research study. How-
ever, due to the limited resources available, it is often not possible to collect all
required metrics. Therefore, each metric should be evaluated based on how much it
explains the phenomenon of interest. For example, continuous measures of work-
load over time (e.g., pupil dilation) can provide a more comprehensive dynamic
understanding of the system compared to static, aggregate workload measures col-
lected at the end of an experiment (e.g., subjective responses).

The most important aspect of a study is finding an answer to the primary research
question. The proximity of a metric to answer the primary research question defines
the importance of that metric. For example, a workload measure may not tell much
without a metric to assess mission effectiveness, which is what the system design-
ers are generally most interested in understanding. However, this does not mean that
the workload measure fails to provide additional insights into the human-automation
performance. Another characteristic of a metric that is important to consider is the
amount of additional understanding gained using a specific metric when a set of
metrics are collected. For example, rather than having two metrics from one met-
ric class (e.g., mission effectiveness), having one metric from two different metric
classes (e.g., mission effectiveness and human behavior) can provide a better under-
standing of human-automation performance.

In addition to providing additional understanding, another desired metric quality
is its causal relations with other metrics. A better understanding can be gained if a
metric can help explain other metrics’ outcomes. For example, operator response to
an event, hence human behavior, will often be dependent on the conditions and/or
the operator’s internal state when the event occurs. The response to an event can
be described in terms of three set of variables [13]: a pre-event phase that defines
how the operator adapts to the environment; an event-response phase that describes
the operator’s behavior in accommodating the event; and an outcome phase that
describes the outcome of the response process. The underlying reasons for the oper-
ator’s behavior and the final outcome of an event can be better understood if the ini-
tial conditions and operator’s state when the event occurs are also measured. When
used as covariates in statistical analysis, the initial conditions of the environment
and the operator can help explain the variability in other metrics of interest. Thus,
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in addition to human behavior, experimenters are encouraged to measure human
behavior precursors in order to assess the operator state and environmental condi-
tions, which may influence human behavior.

High correlation between different measures, even if they are intended to assess
different metrics, is another limiting factor in metric/measure selection. A high cor-
relation can be indicative of the fact that multiple measures can assess the same
metric or the same phenomenon. Hence, including multiple measures that are highly
correlated with each other can result in wasted resources and also bring into question
construct validity, which is discussed next.

2.3.3 Construct Validity

Construct validity refers to how well the associated measure captures the metric or
construct of interest. For example, subjective measures of situational awareness ask
subjects to rate the amount of situational awareness they had on a given scenario
or task. These measures are proposed to help in understanding subjects’ situational
awareness [10, 14]. However, self-ratings assess meta-comprehension rather than
comprehension of the situation: it is unclear whether operators are aware of their
lack of situational awareness. Therefore, subjective responses on situational aware-
ness are not valid to assess actual situational awareness, but rather the awareness of
lack of situational awareness.

Good construct validity requires a measure to have high sensitivity to changes
in the targeted construct. That is, the measure should reflect the change as the con-
struct moves from low to high levels [15]. For example, primary task performance
generally starts to break down when the workload reaches higher levels [15, 16].
Therefore, primary task performance measures are not sensitive to changes in the
workload at lower workload levels, since with sufficient spare processing capacity,
operators are able to compensate for the increase in workload.

A measure with high construct validity should also be able to discriminate
between similar constructs. The power to discriminate between similar constructs
is especially important for abstract constructs that are hard to measure and difficult
to define, such as situational awareness or attentiveness. An example measure that
fails to discriminate two related metrics is galvanic skin response. Galvanic skin
response is the change in electrical conductance of the skin attributable to the stim-
ulation of the sympathetic nervous system and the production of sweat. Perspiration
causes an increase in skin conductance, thus galvanic skin response has been pro-
posed and used to measure workload and stress levels (e.g., [17]). However, even
if workload and stress are related, they still are two separate metrics. Therefore,
galvanic skin response alone cannot suggest a change in workload.

Good construct validity also requires the selected measure to have high inter-
and intra-subject reliability. Inter-subject reliability requires the measure to assess
the same construct for every subject, whereas intra-subject reliability requires the
measure to assess the same construct if the measure was repeatedly collected from
the same subject under identical conditions.
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Intra- and inter-subject reliabilities are especially of concern for subjective mea-
sures. For example, self-ratings are widely utilized for mental workload assessment
[18, 19]. This technique requires operators to rate the workload or effort experi-
enced while performing a task or a mission. Self-ratings are easy to administer,
non-intrusive, and inexpensive. However, different individuals may have different
interpretations of workload, leading to decreased inter-subject reliability. For exam-
ple, some participants may not be able to separate mental workload from physical
workload [20], and some participants may report their peak workload, whereas oth-
ers may report their average workload. Another example of low inter-subject relia-
bility is for subjective measures of situational awareness. Vidulich and Hughes [10]
found that about half of their participants rated situational awareness by gauging the
amount of information to which they attended; while the other half of the partici-
pants rated their SA by gauging the amount of information they thought they had
overlooked. Participants may also have recall problems if the subjective ratings are
collected at the end of a test period, raising concerns on the intra-subject reliability
of subjective measures.

2.3.4 Statistical Efficiency

There are three metric qualities that should be considered to ensure statistical effi-
ciency: total number of measures collected, frequency of observations, and effect
size.

Analyzing multiple measures inflates type I error. That is, as more dependent
variables are analyzed, finding a significant effect when there is none becomes more
likely. The inflation of type I error due to multiple dependent variables can be han-
dled with multivariate analysis techniques, such as Multivariate Analysis of Vari-
ance (MANOVA) [21]. However, it should be noted that multivariate analyses are
harder to conduct, as researchers are more prone to include irrelevant variables in
multivariate analyses, possibly hiding the few significant differences among many
insignificant ones. The best way to avoid failure to identify significant differences
is to design an effective experiment with the most parsimonious metric/measure set
that specifically addresses the research question.

Another metric characteristic that needs to be considered is the frequency
of observations required for statistical analysis. Supervisory control applications
require humans to be monitors of automated systems, with intermittent interaction.
Because humans are poor monitors by nature [22], human monitoring efficiency is
an important metric to measure in many applications. The problem with assessing
monitoring efficiency is that, in most domains, errors or critical signals are rare,
and operators can have an entire career without encountering them. For that rea-
son, in order to have a realistic experiment, such rare events cannot be included in
a study with sufficient frequency. Therefore, if a metric requires response to rare
events, the associated number of observations may not enable the researchers to
extract meaningful information from this metric. Moreover, observed events with a
low frequency of occurrence cannot be statistically analyzed unless data is obtained
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from a very large number of subjects, such as in medical studies on rare diseases.
Conducting such large scale supervisory control experiments is generally cost-
prohibitive.

The number of subjects that can be recruited for a study is especially limited
when participants are domain experts such as pilots. The power to identify a sig-
nificant difference, when there is one, depends on the differences in the means of
factor levels and the standard errors of these means, which constitute the effect size.
Standard errors of the means are determined by the number of subjects. One way
to compensate for limited number of subjects in a study is to use more sensitive
measures that will provide a large separation between different conditions, that is, a
high effect size. Experimental power can also be increased by reducing error vari-
ance by collecting repeated measures on subjects, focusing on sub-populations (e.g.,
experienced pilots), and/or increasing the magnitude of manipulation for indepen-
dent variables (low and high intensity rather than low and medium intensity). How-
ever, it should also be noted that increased experimental control, such as using sub-
populations, can lead to less generalizable results, and there is a tradeoff between
the two.

2.3.5 Measurement Technique Efficiency

The data collection technique associated with a specific metric should not be intru-
sive to the subjects or to the nature of the task. For example, eye trackers are used for
capturing operators’ visual attention [23, 24]. However, head-mounted eye trackers
can be uncomfortable for the subjects, and hence influence their responses. Wearing
an eye-tracker can also lead to an unrealistic situation that is not representative of
the task performed in the real world.

Eye trackers are an example of how a measurement instrument can interfere with
the nature of the task. The measuring technique itself can also interfere with the
realism of the study. For example, off-line query methods are used to measure oper-
ators’ situational awareness [25]. These methods are based on briefly halting the
experiment at randomly selected intervals, blanking the displays, and administering
a battery of queries to the operators. This situational awareness measure assesses
global situational awareness by calculating the accuracy of an operator’s responses.
The collection of the measure requires the interruption of the task in a way that is
unrepresentative of real operating conditions. The interruption may also interfere
with other metrics such as operator’s performance and workload, as well as other
temporal-based metrics.

2.4 Metric Costs vs. Benefits

The evaluation criteria discussed previously can be translated into potential cost-
benefit parameters as seen in Table 2.3, which can be ultimately used to define cost
and benefit functions of a metric set for a given experiment. The breakdown in
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Table 2.3 Representative cost-benefit parameters for metric selection

Costs

Data gathering Preparation Time to setup
Expertise required

Data collection Equipment
Time
Measurement error likelihood

Subject recruitment Compensation
IRB preparation and submission
Time spent recruiting subjects

Data analysis Data storage/transfer Equipment
Time

Data reduction Time
Expertise required
Software

Statistical analysis Error proneness given the required expertise
Time
Software
Expertise

Benefits

Comprehensive understanding Proximity to primary research question
Coverage – Additional understanding given

other metrics
Causal relations to other metrics

Construct validity Sensitivity
Power to discriminate between similar

constructs
Inter-subject reliability
Intra-subject reliability

Statistical efficiency Effect size Difference in means
Error variance

Frequency of observations
Total number of measures collected

Measurement technique efficiency Non-intrusiveness to subjects
Non-intrusiveness to task nature

Appropriateness for system development phase/testing environment

Table 2.3 is based on the ability to assign a monetary cost to an item. Parameters
listed as cost items can be assigned a monetary cost, whereas the parameters listed as
benefit items cannot be assigned a monetary cost but nonetheless can be expressed
in some kind of a utility function. However, some of the parameters listed under
benefits can also be considered as potential costs in non-monetary terms, leading to
a negative benefit.

It should be noted that the entries in Table 2.3 are not independent of each other,
and tradeoffs exist. For example, recruiting experienced subjects can enhance con-
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struct validity and statistical efficiency, however, this may be more time consuming.
Figure 2.2 presents results of an experiment conducted to evaluate an automated
navigation path planning algorithm in comparison to manual path planning using
paper charts in terms of time to generate a plan [26]. Two groups of subjects were
recruited for this experiment: civilian and military. The variability of responses of
the military group was less than the civilian group, resulting in smaller error vari-
ance and larger effect size. However, recruiting military participants requires more
effort as these participants are more specialized. Such tradeoffs need to be evaluated
by individual researchers based on their specific research objectives and available
resources.
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In order to demonstrate how metrics, measures, and measurement techniques
can be evaluated using Table 2.3 as a guideline, the following sections present two
human behavior metrics, i.e., mental workload and attention allocation efficiency,
as examples for evaluating different measures.

2.4.1 Example 1: Mental Workload Measures

Workload is a result of the demands a task imposes on the operator’s limited
resources. Thus, workload is not only task-specific, but also person-specific. The
measurement of mental workload enables, for example, identification of bottlenecks
in the system or the mission in which performance can be negatively impacted. Men-
tal workload measures can be classified into three main categories: performance,
subjective, and physiological (Table 2.4). This section presents the limitations and
advantages associated with each measure guided by Table 2.3. The discussions are
summarized in Table 2.5.
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Table 2.4 Example measures of mental workload

Measures Techniques

Performance Speed or accuracy for the primary
task

Primary task

Time to respond to messages
through an embedded chat
interface

Secondary task

Subjective (self-ratings) Modified Cooper-Harper Scale for
workload

Unidimensional
questionnaires

NASA TLX Multidimensional
questionnaires

Physiological Blink frequency Eye tracking
Pupil diameter Eye tracking
Heart rate variability coefficient Electrocardiogram
Amplitudes of the N100 and P300

components of the event-related
potential

Electroencephalogram

Skin electrical conductance Galvanic skin response

2.4.1.1 Performance Measures

Performance measures are based on the principle that workload is inversely related
to the level of task performance [27]. Primary task performance should always be
studied in any experiment, thus, utilizing it to assess workload comes with no addi-
tional cost or effort. However, this measure presents severe limitations as a mental
workload metric, especially in terms of construct validity. Primary task performance
is only sensitive in the “overload” region, when the task demands more resources
from the operator than are available. Thus, it does not discriminate between two
primary tasks in the “underload” region (i.e., the operator has sufficient reserve
capacity to reach perfect performance). In addition, primary task performance is
not only affected by workload levels, but also by other factors such as correctness
of the decisions made by the operator.

Secondary task performance as a workload measure can help researchers assess
the amount of residual attention an operator would have in case of an unexpected
system failure or event requiring operator intervention [28]. Therefore, it provides
additional coverage for understanding human-automation performance. Secondary
task measures are also sensitive to differences in primary task demands that may not
be reflected in primary task performance, so have better construct validity. However,
in order to achieve good construct validity, a secondary task should be selected with
specific attention to the types of resources it requires. Humans have different types
of resources (e.g., perceptual resources for visual signals vs. perceptual resources for
auditory signals) [20]. Therefore, workload resulting from the primary task can be
greatly underestimated if the resource demands of the secondary task do not match
those of the primary task.
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Table 2.5 Evaluation of workload measures

Measures Advantages Limitations

Primary task
performance

Cost:
– Can require major cost/effort.

However, no additional
cost/effort required if already
collected to assess mission
effectiveness.

Comprehensive Understanding:
– High proximity to primary

research question

Construct Validity:
– Insensitive in the “underload”

region
– Affected by other factors

Secondary task
performance

Comprehensive Understanding:
– Coverage (assesses the residual

attention an operator has)
Construct Validity:
– Sensitivity

Cost:
– Some level of additional

cost/effort
Measurement Technique

Efficiency:
– Intrusive to task nature (if not

representative of the real task)

Subjective measures Cost:
– Cheap equipment, easy to

administer
Measurement Technique

Efficiency:
– Not intrusive to subjects or the

task

Cost:
– More expertise required for data

analysis
– More subjects required to

achieve adequate power
Construct Validity:
– Inter-subject reliability
– Intra-subject reliability
– Power to discriminate between

similar constructs
Statistical Efficiency:
– Large number of observations

required

Physiological
measures

Comprehensive Understanding:
– Continuous, real-time measure

Cost:
– High level of equipment cost and

expertise required
– Data analysis is time consuming

and requires expertise
– Measurement error likelihood
Construct Validity:
– Power to discriminate between

similar constructs
Measurement Technique

Efficiency:
– Intrusive to subjects and task

nature
Appropriateness for system

development phase:
– Typically appropriate only for

laboratory settings
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Some of the secondary tasks that have been proposed and employed include
producing finger or foot taps at a constant rate, generating random numbers, or
reacting to a secondary-task stimulus [27]. Secondary tasks that are not represen-
tative of operator’s real tasks may interfere with and disrupt performance of the
primary task. However, problems with intrusiveness can be mitigated if embedded
secondary tasks are used. In those cases, the secondary task is part of operators’
responsibilities but has lower priority in the task hierarchy than the primary task. For
example, Cummings and Guerlain used a chat interface as an embedded secondary
task measurement tool [29]. Creating an embedded secondary task resolves the
issues related to intrusiveness, however, it also requires a larger developmental cost
and effort.

2.4.1.2 Subjective Measures

Subjective measures require operators to rate the workload or effort experienced
while performing a task or a mission. Unidimensional scale techniques involve ask-
ing the participant for a rating of overall workload for a given task condition or
at a given point in time [18, 30]. Multidimensional scale techniques require the
operator to rate various characteristics of perceived workload [19, 31], and gen-
erally possess better diagnostic abilities than the unidimensional scale techniques.
Self-ratings have been widely utilized for workload assessment, most likely due
to their ease of use. Additional advantages are their non-intrusive nature and low
cost. Disadvantages include recall problems, and the variability of workload inter-
pretations between different individuals. In addition, it is unclear whether subjects’
reported workload correlates with peak or average workload level. Another poten-
tial problem is the difficulty that humans can have when introspectively diagnosing
a multidimensional construct, and in particular, separating workload elements [20].
Moreover, self-ratings measure perceived workload rather than actual workload.
However, understanding how workload is perceived can be sometimes as important
as measuring actual workload.

Self-ratings are generally assessed using a Likert scale that generates ordinal
data. The statistical analysis appropriate for such data (e.g., logistic regression, non-
parametric methods) requires more expertise than simply conducting analysis of
variance (ANOVA). Moreover, the number of subjects needed to reach adequate
statistical power for this type of analysis is much higher than it is for ANOVA.
Thus, even if subjective measures are low cost during the experimental preparation
phase, they may impose substantial costs later by requiring additional expertise for
data analysis as well as additional data collection.

2.4.1.3 Physiological Measures

Physiological measures such as heart rate variability, eye movement activity, and
galvanic skin response are indicative of operators’ level of effort and engagement,
and have also been used to assess operator workload. Findings indicate that blink
rate, blink duration, and saccade duration all decrease with increased workload,
while pupil diameter, number of saccades, and the frequency of long fixations all
increase [32]. Heart rate variability is generally found to decrease as workload
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increases [33]. The electroencephalogram (EEG) has been shown to reflect subtle
shifts in workload. However, it also reflects subtle shifts in alertness and attention,
which are related to workload, but can reflect different effects. In addition, signifi-
cant correlations between EEG indices of cognitive state changes and performance
have been reported [34–36]. As discussed previously, galvanic skin response (GSR)
can be indicative of workload, as well as stress levels [17].

It is important to note that none of these physiological measures directly assess
workload. These measures are sensitive to changes in stress, alertness, or attention,
and it is almost impossible to discriminate whether the physiological parameters
vary as a consequence of mental workload or due to other factors. Thus, the con-
struct validity of physiological measures to assess workload is questionable.

An advantage of physiological measures is the potential for a continuous, real-
time measure of ongoing operator states. Such a comprehensive understanding of
operator workload can enable researchers to optimize operator workload, using
times of inactivity to schedule less critical tasks or deliver non-critical messages
so that they do not accumulate during peak periods [37]. Moreover, this type of
knowledge could be used to adapt automation, with automation taking on more
responsibilities during high operator workload [38].

Some additional problems associated with physiological measures are sensor
noise (i.e., high levels of measurement error likelihood), high equipment cost, intru-
siveness to task nature and subjects, and the level of expertise as well as additional
time required to setup the experiment, collect data, and analyze data. Moreover,
due to the significant effort that goes into setting up and calibrating the equipment,
physiological measures are very difficult to use outside of laboratory settings.

2.4.2 Example 2: Attention Allocation Efficiency Measures

In supervisory control applications, operators supervise and divide their attentive-
ness across a series of dynamic processes, sampling information from different
channels and looking for critical events. Evaluating attention allocation efficiency
involves not only assessing if operators know where to find the information or the
functionality they need, but also if they know when to look for a given piece of
information or when to execute a given function [39]. Attention allocation mea-
sures aid in the understanding of whether and how a particular element on the
display is effectively used by the operators. In addition, attention allocation effi-
ciency measures also assess operators’ strategies and priorities. It should be noted
that some researchers are interested in comparing actual attention allocation strate-
gies with optimal strategies; however, optimal strategies might ultimately be impos-
sible to know. In some cases, it might be possible to approximate optimal strategies
via dynamic programming or some other optimization technique [40]. Otherwise,
the expert operators’ strategy or the best performer’s strategy can be used for
comparison.

As shown in Table 2.6, there are three main approaches to study attention allo-
cation: eye movements, hand movements, and verbal protocols. Table 2.7 presents
the limitations and advantages associated with different measures in terms of the
cost-benefit parameters identified in Table 2.3.
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Table 2.6 Example attention allocation efficiency measures

Measures Techniques

Proportion of time that the visual gaze is within each
“area of interest” of an interface

Eye tracking

Average number of visits per min to each “area of
interest” of an interface

Human interface-inputs

Switching time for multiple tasks Human interface-inputs

Information used Human interface-inputs

Operators’ task and event priority hierarchies Verbal protocols

Extensive research has been conducted with eye trackers and video cameras
to infer operators’ attention allocation strategies based on the assumption that the
length and the frequency of eye fixations on a specific display element indicate
the level of attention on the element [39, 41]. Attention allocation metrics based
on eye movement activity can be dwell time (or glance duration) and glance fre-
quency spent within each “area of interest” of the interface. While visual resources
are not the only human resources available, as information acquisition typically
occurs through vision in supervisory control settings, visual attention can be used
to infer operators’ strategies and the employment of cognitive resources. Eye track-
ing to assess attention allocation efficiency comes with similar limitations to phys-
iological measures used for workload assessment, which have been discussed in
Section 2.4.1.

The human interface-inputs reflect operators’ physical actions, which are the
result of the operators’ cognitive processes. Thus operators’ mouse clicking can
be used to measure operators’ actions, determine what information was used, and
to infer operators’ cognitive strategies [23, 42]. A general limitation with capturing
human interface-inputs is that directing attention does not necessarily result in an
immediate action, so inferring attention allocation in this manner could be subject
to missing states.

Verbal protocols require operators to verbally describe their thoughts, strategies,
and decisions, and can be employed simultaneously while operators perform a task,
or retrospectively after a task is completed. Verbal protocols are usually videotaped
so that researchers can compare what subjects say, while simultaneously observing
the system state through the interface the subjects used. This technique provides
insights into operators’ priorities and decision making strategies, but it can be time
consuming and is highly dependent on operators’ verbal skills and memory. More-
over, if the operator is interrupted while performing a task, verbal protocols can be
intrusive to the task.

2.5 Discussion

Supervisory control of automation is a complex phenomenon with high levels
of uncertainty, time-pressure, and a dynamic environment. The performance of
human-automation teams depends on multiple components such as human behavior,
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Table 2.7 Evaluation of different attention allocation efficiency measures

Measures Advantages Limitations

Eye movements (eye
tracking)

Comprehensive Understanding:
– Continuous measure of visual

attention allocation

Cost:
– High level of equipment cost and

expertise required
– Data analysis is time consuming

and requires expertise
– Measurement error likelihood
Construct Validity:
– Limited correlation between

gaze and thinking
Measurement Technique

Efficiency:
– Intrusive to subjects and task

nature
Appropriateness for System

Development Phase:
– Appropriate for laboratory

settings
Interface clicks

(human
interface-inputs)

Comprehensive Understanding:
– Continuous measure of subjects’

actions

Cost:
– Time consuming during data

analysis
Construct Validity:
– Directing attention does not

always result in an immediate
interface action

Subjective measures
(verbal protocols)

Comprehensive Understanding:
– Insight into operators’ priorities

and decision making strategies

Cost:
– Time intensive
Construct Validity:
– Inter-subject reliability

(dependent on operator’s verbal
skills)

– Intra-subject reliability (recall
problems with retrospective
protocols)

Measurement Technique
Efficiency:

– Intrusive to task nature
(interference problems with
real-time protocols)

Appropriateness for System
Development Phase:

– Appropriate for laboratory
settings

automation behavior, human cognitive and physical capabilities, team interactions,
etc. Because of the complex nature of supervisory control, there are many differ-
ent metrics that can be utilized to assess performance. However, it is not feasible to
collect all possible metrics. Moreover, collecting multiple metrics that are correlated
can lead to statistical problems such as inflated type I errors.
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This chapter presented a list of evaluation criteria and cost-benefit parameters
based on the criteria for determining a set of metrics for a given supervisory control
research question. Thus, a limitation of this list of evaluation criteria is that it is not
comprehensive enough to address all issues relevant to assessing human-technology
interactions. The most prominent issues for assessing human-automation interaction
were identified through a comprehensive literature review [9] and were populated
under five major categories: experimental constraints, comprehensive understand-
ing, construct validity, statistical efficiency, and measurement technique efficiency.
It should be noted that there are interactions between these major categories. For
example, the intrusiveness of a given measuring technique can affect the construct
validity for a different metric. In one such case, if situational awareness is measured
by halting the experiment and querying the operator, then the construct validity for
the mission effectiveness or human behavior metrics become questionable. There-
fore, the evaluation criteria presented in this chapter should be applied to a collec-
tion of metrics rather than each individual metric, taking the interactions between
different metrics into consideration.

The list of evaluation criteria and the relevant cost-benefit parameters presented
in this chapter are guidelines for metric selection. It should be noted that there is
not a single set of metrics that are the most efficient across all applications. The
specific research aspects such as available resources and the questions of interest
will ultimately determine the relative metric quality. Moreover, depending on the
specific research objectives and limitations, the cost-benefit parameters presented
in Table 2.3 can have different levels of importance. Thus, these parameters can
receive a range of weights in cost-benefit functions created for different applica-
tions. Identifying the most appropriate technique for helping researchers to assign
their subjective weights is under investigation as part of an ongoing research effort.
Thus, future research will further develop this cost-benefit analysis approach, which
will systematically identify an efficient set of metrics for classifications of research
studies.

Acknowledgments This research was funded by the US Army Aberdeen Test Center. The authors
would like to thank Dr. Heecheon You for reviewing the manuscript.

References

1. T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control. Cambridge, MA:
The MIT Press, 1992.

2. J. Scholtz, J. Young, J. L. Drury, and H. A. Yanco, “Evaluation of human-robot interaction
awareness in search and rescue,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA). New Orleans, 2004.

3. N. J. Cooke, E. Salas, P. A. Kiekel, and B. Bell, “Advances in measuring team cogni-
tion,” in Team Cognition: Understanding the Factors that Drive Process and Performance,
E. Salas and S. M. Fiore, Eds. Washington, D.C.: American Psychological Association, 2004,
pp. 83–106.

4. R. O. Olsen and M. A. Goodrich, “Metrics for evaluating human-robot interactions,” in Pro-
ceedings of NIST Performance Metrics for Intelligent Systems Workshop, 2003.



2 Evaluation Criteria for Human-Automation Performance Metrics 39

5. P. E. Pina, M. L. Cummings, J. W. Crandall, and M. Della Penna, “Identifying generalizable
metric classes to evaluate human-robot teams,” in Proceedings of Metrics for Human-Robot
Interaction Workshop at the 3rd Annual Conference on Human-Robot Interaction. Amster-
dam, The Netherlands, 2008.

6. J. W. Crandall and M. L. Cummings, “Identifying predictive metrics for supervisory control
of multiple robots,” IEEE Transactions on Robotics – Special Issue on Human-Robot Inter-
action, vol. 23, pp. 942-951, 2007.

7. A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz, and M. A. Goodrich,
“Common metrics for human-robot interaction,” in Proceedings of the 1st Annual IEEE/ACM
Conference on Human Robot Interaction (Salt Lake City, Utah). New York, NY: ACM
Press, 2006.

8. C. D. Wickens, J. D. Lee, Y. Liu, and S. G. Becker, An Introduction to Human Factors Engi-
neering, 2nd ed. Upper Saddle River, New Jersey: Pearson Education, Inc., 2004.

9. P. E. Pina, B. Donmez, and M. L. Cummings, Selecting Metrics to Evaluate Human Super-
visory Control Applications, MIT Humans and Automation Laboratory, Cambridge, MA
HAL2008-04, 2008.

10. M. A. Vidulich and E. R. Hughes, “Testing a subjective metric of situation awareness,” in
Proceedings of the Human Factors Society 35th Annual Meeting. Santa Monica, CA: The
Human Factors and Ergonomics Society, 1991, pp. 1307–1311.

11. A. Chapanis, Research Techniques in Human Engineering. Baltimore: The Johns Hopkins
Press, 1965.

12. M. S. Sanders and E. J. McCormick, Human Factors in Engineering and Design. New York:
McGraw-Hill, 1993.

13. B. Donmez, L. Boyle, and J. D. Lee, “The impact of distraction mitigation strategies on driving
performance,” Human Factors, vol. 48, pp. 785–804, 2006.

14. R. M. Taylor, “Situational awareness rating technique (SART): the development of a tool
for aircrew systems design,” in Proceedings of the NATO Advisory Group for Aerospace
Research and Development (AGARD) Situational Awareness in Aerospace Operations Sym-
posium (AGARD-CP-478), 1989, p. 17.

15. F. T. Eggemeier, C. A. Shingledecker, and M. S. Crabtree, “Workload measurement in system
design and evalution,” in Proceeding of the Human Factors Society 29th Annual Meeting.
Baltimore, MD, 1985, pp. 215–219.

16. F. T. Eggemeier, M. S. Crabtree, and P. A. LaPoint, “The effect of delayed report on subjec-
tive ratings of mental workload,” in Proceedings of the Human Factors Society 27th Annual
Meeting. Norfolk, VA, 1983, pp. 139–143.

17. S. Levin, D. J. France, R. Hemphill, I. Jones, K. Y. Chen, D. Ricard, R. Makowski, and
D. Aronsky, “Tracking workload in the emergency department,” Human Factors, vol. 48,
pp. 526–539, 2006.

18. W. W. Wierwille and J. G. Casali, “A validated rating scale for global mental workload mea-
surement applications,” in Proceedings of the Human Factors Society 27th Annual Meeting.
Santa Monica, CA, 1983, pp. 129–133.

19. S. G. Hart and L. E. Staveland, “Development of NASA-TLX (Task Load Index): results of
empirical and theoretical research,” in Human Mental Workload, P. Hancock and N. Meshkati,
Eds. Amsterdam, The Netherlands: North Holland B.V., 1988, pp. 139–183.

20. R. D. O’Donnell and F. T. Eggemeier, “Workload assessment methodology,” in Hand-
book of Perception and Human Performance: Vol. II. Cognitive Processes and Performance,
K. R. Boff, L. Kaufmann, and J. P. Thomas, Eds. New York: Wiley Interscience, 1986,
pp. 42-1–42-49.

21. R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 5th ed. NJ:
Pearson Education, 2002.

22. T. B. Sheridan, Humans and Automation: System Design and Research Issues. New York, NY:
John Wiley & Sons Inc., 2002.

23. M. E. Janzen and K. J. Vicente, “Attention allocation within the abstraction hierarchy,” Inter-
national Journal of Human-Computer Studies, vol. 48, pp. 521–545, 1998.



40 B. Donmez et al.

24. B. Donmez, L. Boyle, and J. D. Lee, “Safety implications of providing real-time feedback to
distracted drivers,” Accident Analysis & Prevention, vol. 39, pp. 581–590, 2007.

25. M. R. Endsley, B. Bolte, and D. G. Jones, Designing for Situation Awareness: An Approach
to User-Centered Design. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2003.

26. M. Buchin, “Assessing the impact of automated path planning aids in the maritime com-
munity,” in Electrical Engineering and Computer Science M.Eng. Cambridge, MA: Mas-
sachusetts Institute of Technology, 2009.

27. C. D. Wickens and J. G. Hollands, Engineering Psychology and Human Performance, 3rd ed.
New Jersey: Prentice Hall, 1999.

28. G. D. Ogden, J. M. Levine, and E. J. Eisner, “Measurement of workload by secondary tasks,”
Human Factors, vol. 21, pp. 529–548, 1979.

29. M. L. Cummings and S. Guerlain, “Using a chat interface as an embedded secondary task-
ing tool,” in Proceedings of the 2nd Annual Human Performance, Situation Awareness, and
Automation Technology Conference. Daytona Beach, FL, 2004.

30. A. H. Roscoe and G. A. Ellis, A Subjective Rating Scale for Assessing Pilot Workload in
Flight: A Decade of Practical Use, Royal Aeronautical Establishment, Farnborough, England
TR90019, 1990.

31. G. B. Reid and T. E. Nygren, “The subjective workload assessment technique: a scaling
procedure for measuring mental workload,” in Human Mental Workload, P. Hancock and
N. Meshkati, Eds. Amsterdam, The Netherlands: North Holland, 1988, pp. 185–218.

32. U. Ahlstrom and F. Friedman-Berg, Subjective Workload Ratings and Eye Movement
Activity Measures, US Department of Transportation, Federal Aviation Administration
DOT/FAA/ACT-05/32, 2005.

33. A. J. Tattersall and G. R. J. Hockey, “Level of operator control and changes in heart rate
variability during simulated flight maintenance,” Human Factors, vol. 37, pp. 682–698, 1995.

34. C. Berka, D. J. Levendowski, M. Cventovic, M. M. Petrovic, G. F. Davis, M. N. Lumicao,
M. V. Popovic, V. T. Zivkovic, R. E. Olmstead, and P. Westbrook, “Real-time analysis of
EEG indices of alertness, cognition, and memory acquired with a wireless EEG headset,”
International Journal of Human Computer Interaction, vol. 17, pp. 151–170, 2004.

35. J. B. Brookings, G. F. Wilson, and C. R. Swain, “Psychophysiological responses to changes in
workload during simulated air-traffic control,” Biological Psychology, vol. 42, pp. 361–377,
1996.

36. K. A. Brookhuis and D. De Waard, “The use of psychophysiology to assess driver status,”
Ergonomics, vol. 36, 1993.

37. S. T. Iqbal, P. D. Adamczyk, S. Zheng, and B. P. Bailey, “Towards an index of opportunity:
understanding changes in mental workload during task execution,” in Proceedings of the ACM
Conference on Human Factors in Computing Systems. Portland, Oregon, 2005, pp. 311–320.

38. R. Parasuraman and P. A. Hancock, “Adaptive control of mental workload,” in Stress, Work-
load, and Fatigue, P. A. Hancock and P. A. Desmond, Eds. Mahwah, New Jersey: Lawrence
Erlbaum Associates, Publishers, 2001, pp. 305–320.

39. D. A. Talluer and C. D. Wickens, “The effect of pilot visual scanning strategies on traffic
detection accuracy and aircraft control,” in Proceedings of the 12th International Symposium
on Aviation Psychology. Dayton, OH, 2003.

40. M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. New
Jersey: Wiley, 2005.

41. C. D. Wickens, J. Helleberg, J. Goh, Xu, X., and W. J. Horrey, Pilot Task Management: Testing
and Attentional Expected Value Model of Visual Scanning, NASA Ames Research Center,
Moffett Field, CA ARL-01-14/NASA-01-7, 2001.

42. S. Bruni, J. Marquez, A. S. Brzezinski, and M. L. Cummings, “Visualizing operators’ cog-
nitive strategies in multivariate optimization,” in Proceedings of the Human Factors and
Ergonomics Society’s 50th Annual Meeting. San Francisco, CA, 2006.



http://www.springer.com/978-1-4419-0491-1


