Chapter 2
SYSTEM DESIGN METHODOLOGIES

In this chapter we will look at different design methodologies, or design
flows, for multi-processor systems. Design methodologies have evolved to-
gether with manufacturing technology, design complexity, and design automa-
tion. Improvements in technology have increased design complexity to the point
that designers are no longer capable of making complex designs manually. To
solve this problem, design automation tools, also known as computer-aided
design (CAD) tools, were introduced. In order to make CAD tools more effi-
cient and design algorithms more manageable, design-automation researchers
as well as tool developers were forced to introduce more stringent design rules,
parameterize components and minimize component libraries. As design com-
plexities continued to increase, tool developers created new design abstraction
levels and tried to use the same design strategy from the circuit level, to the
logic level, to the processor level, and finally to the system level.

In this chapter, we will explain some basic system design methodologies
related to the different abstraction levels in the Y-chart we introduced in Chap-
ter 1.

2.1 BOTTOM-UP METHODOLOGY

Bottom-up methodology started even before CAD tools were invented. It is
still in use in much of the industry today, at least partially, because it follows an
intuitive methodology of building parts before assembling the whole product.
In a typical bottom-up methodology, designers develop components and then
store them in a library for use on the next-higher abstraction level.

As we can see in Figure 2.1, we have libraries of transistor, logic, RTL, and
processor components. Components in each of the libraries are used to build

D.D. Gajski et al., Embedded System Design: Modeling, Synthesis and Verification, 35
DOI: 10.1007/978-1-4419-0504-8_2,
© Springer Science + Business Media, LLC 2009

36 System Design Methodologies

components in the library on the next abstraction level. On the Circuit level,
we use transistors and develop circuits and their layouts for the basic logic
components such as gates, flip-flops, bus drivers, and others. These compo-
nents become standard cells for higher level design and layout tasks. These
standard cells, with their functionality, structure, and layout, are stored in the
Logic component library for use on the Logic level in Figure 2.1. On the logic
level, we create register-transfer components such as registers, register files,
ALUs, multipliers, and other components for processor micro architecture us-
ing Boolean expressions or FSM and FSMD models. After logic synthesis of
these RTL components, we perform the placement and routing with standard
cells for each component and store them in the RTL component library. On
the Processor level, we start with C code or an Instruction set and generate the
structure of processing elements (PEs) or communication elements (CEs). At
this level we also perform floorplanning, placement, and routing of these PEs
or CEs using the components from RTL library, and store them in Processor
library. On the System level, we start with a model of computation (MoC)
and generate the system structure consisting of multiple PEs and CEs from the
Processor component library. Finally, we perform the system layout by using
the component layouts from the Processor library. Note that each component
library has functional, structural, and layout models for each component in the
library. So by creating components and storing them in libraries, we can then
apply them in each successive abstraction level.

Behavior Structure
(Function) System (Netlist)

—
(—
F(...) Processor
@ ;] components
(=
(—
F(...) RTL
’ o, | components
’ =
—
N——] .
F(..) Logic
(] components
(=
v —
F(..) Transistor
Physical E[_El components

(Layout)
FIGURE 2.1 Bottom-up methodology

The advantage of bottom-up methodology is that abstraction levels are clearly
separated, each with its own library. This allows for globally-distributed loca-

Top-down Methodology 37

tions for design on each abstraction level, and for easier management of design
on each abstraction level, since each group supplies a component library for the
next level of abstraction. The disadvantage of this approach, however, is that
the libraries must include all possible components with all possible parameters
and that these must be optimized for the metrics required by any present and
possible future applications. This is a very difficult and never-ending task since
it is very difficult to anticipate on the lower abstraction level all the needs on
the next higher abstraction level.

2.2 TOP-DOWN METHODOLOGY

In contrast to bottom-up methodology, top-down methodology does not at-
tempt a component or system layout until the entire design is finished. A
top-down methodology begins with a particular MoC and generates from it a
system platform or system structure in which every component has its param-
eters and required metric values defined, but not its structure or layout. On the
next level of abstraction, each PE or CE component is further decomposed into
smaller RTL components. For example, in Figure 2.2, PE and CE components
that were generated on the System level are decomposed into RTL components
with their parameters and required metrics defined.

Behavior Structure
(Function) System (Netlist)

Start A
AN
N—]
a F() | Processor

“ components

~—
—
F(...) RTL

components
‘ G
——

F(.) | Logic
components

F(..) Transistor

Physical E[_El components
(Layout) ~——

FIGURE 2.2 Top-down methodology

In this case, each functional unit, such as the ALU, has all its functions spec-
ified, as well as its delay and power requirements. After those are determined,
each of the RTL components is further decomposed into logic components or

38 System Design Methodologies

gates. Finally, each logic component is broken down into a transistor netlist,
in which each transistor layout represents a basic cell. All such basic cells,
for the entire system, are placed on silicon and connected accordingly using
placement and routing methods and tools. Such top-down methodologies were
in use in design of early computers but today’s designs are too complex for such
a complete top-down methodology.

In general, top-down methodology leaves placement and routing for the last
step by avoiding the layouts on other levels of abstraction. Unfortunately, the
system and component metrics are not known until the last step and therefore
it is very difficult to optimize the whole design. The design decomposition or
synthesis has to be repeated over and over again without designers really know-
ing whether optimization is going in the right direction. In order to avoid too
many design iterations, designers need the concept of metric closure in which
different metric values from lower levels of abstraction are used to annotate
design on higher level of abstraction. In this case designers can estimate op-
timized metric values on the lower level of abstraction during the next design
iteration on the higher levels of abstractions. Unfortunately, metric closures are
difficult to achieve since metric estimations are as difficult as performing real
designs.

2.3 MEET-IN-THE-MIDDLE METHODOLOGY

Most designers today use some kind of meet-in-the-middle methodol-
ogy [124, 160] in order to take advantage of the benefits of both bottom-up
and top-down methodologies, while also minimizing their drawbacks. This is
convenient because the design standards and CAD tools on the lower levels
of abstractions are well understood and developed, but on the processor and
system level they are not. While there are some tools on the processor level,
almost none, with exception of general simulation tools, exist on the system
level. A meet-in-the-middle methodology allows a designer to take advantage
of the tools available for lower level abstractions while also reducing design
layouts on higher abstraction levels.

In general, a meet-in-the middle methodology applies a top-down methodol-
ogy to higher abstraction levels and a bottom-up methodology to lower abstrac-
tion levels [124, 160]. The main distinguishing feature of this approach is how
these styles meet. As shown in Figure 2.3, a meet-in-the-middle methodology
could start with a MoC and synthesize the system platform with virtual PEs
and CEs which are after that synthesized with RTL components from the RTL
library. These PEs and CEs also include commercially available IPs which are
also supplied as netlists of RTL components. Therefore, all PEs and CEs are
decomposed into RTL components from the library. Each RTL component has

Meet-in-the-middle Methodology 39

Behavior Structure
(Function) System (Netlist)

F(...) Processor
components

F(.) RTL
components

F(.) | Logic
components

A 4
F(...) Transistor

. O | components
Physical]
(Layout)

FIGURE 2.3 Meet-in-the-middle methodology (option 1)

its own structure and layout layout generated through some bottom-up method-
ology in the library. These RTL component layouts are combined through
floorplanning, and routing into the layout of the multi-core platform. For ex-
ample, ALU components in such a library would be limited to lengths of 8, 16,
32, 64 bits, and nothing in between.

Therefore, with such a meet-in-the-middle methodology, we do physical
design or layout three times: once for standard cells, a second time for RTL
components and a third time for the entire system platform, using the layout
of these RTL components. This mixed methodology has the advantages of
both bottom-up and top-down methodologies, since RTL components with their
metrics are available from the libraries while the system is synthesized top-
down from the RTL components. However, this approach has the drawback of
requiring designers to do layout more than once. Moreover, system optimization
is more difficult using already-made RTL components because they may not be
tuned to the requirements of each PE or CE in the targeted system platform.

Another possibility for a meet-in-the-middle methodology would be to per-
form system layout with logic components or standard cells, as shown in Fig-
ure 2.4. As with the first meet-in-the-middle methodology we described, this
one starts with a MoC and synthesizes the system platform with virtual PEs
and CEs. Those PEs and CEs are then synthesized with RTL components,
which themselves are further synthesized with logic components. Commer-
cially available IPs that are described on the RTL level are also synthesized
with RTL and logic synthesis tools that generate logic components netlists.
Therefore, every IP component, as well as the synthesized PEs and CEs, are

40 System Design Methodologies

Behavior Structure
(Function) System (Netlist)

Q A
A
N—]
6 F(.) | Processor

“ components
N’
f——

l F(...) RTL

components
S——
G

F(..) | Logic
components

A 4
F(...) Transistor

: O | components
Physical 3
(Layout)

FIGURE 2.4 Meet-in-the-middle methodology (option 2)

decomposed into logic components from the Logic component library. Since
each logic component has a layout as a standard cell, they are finally combined
through floorplanning and routing into the layout of a multi-core platform.

In this case, we do physical design or layout only twice: once for generating
standard cells and a second time for the entire system platform, using the stan-
dard cells layouts. This mixed methodology has an advantage in that only the
standard cell layout has to be upgraded with the introduction of a new fabrica-
tion technology. The RTL component layouts, which are much more complex
and in higher numbers do not need to be upgraded. An additional benefit is
that the whole design is flattened to standard cells and the layout is performed
only once. However, a system layout using standard cells is more complex than
it would be with RTL components, and the design metrics are less predictable
and controllable since standard cells for each RTL component may not be all
in one place. Furthermore, using such inaccurate metrics makes it difficult to
perform any system optimization on higher abstraction levels.

24 PLATFORM METHODOLOGY

The three design methodologies presented in the previous sections represent
ideal cases of three different design concepts. In reality, design methodologies
differ from company to company and even between different groups in the same
company. They are also very much product oriented [165]. In this case, system
design usually starts with an already-defined platform, usually one defined by a

Platform Methodology 41

Behavior Structure
(Function) System (Netlist)

F(...) Processor
components

F(...) RTL
components

F(.) | Logic
components

A 4

F(...) Transistor

. O | components
Physical (!
(Layout)

FIGURE 2.5 Platform methodology

well-known platform supplier or defined locally inside the company as shown in
Figure 2.5. Such platforms may have already some standard components, such
as memories and standard processors with well-defined layouts. The system
platform may also be upgraded with the addition of custom components that will
be synthesized with processor and RTL synthesis tools, after which the layout of
these custom components can be obtained through standard cells. Furthermore,
imported IPs are also converted to standard cell layout. Therefore, every custom
component or imported IP can be defined with a netlist of standard cells, which
is combined with netlists of other custom components for the combined standard
cells layout. Such standard cell layout is then combined on the System level
with layouts of standard processor and memory components into the system
platform layout. When using such a platform, we perform physical design or
layout three times: once for standard cells, then we use standard cells for the
layout of custom components, and finally we use processor component layouts
for the final platform layout.

In order to simplify platform design, some platforms have system layout
for all standard processor components finalized with some space left open for
the standard cell layout of custom components. When using such a platform,
therefore, we perform layout only two times: once for standard cells and second
time we use standard cells for the layout of custom components.

This mixed methodology has advantages from both bottom-up and top-down
methodologies since standard processor components are available from the
libraries and custom components can be inserted for application optimization.
However, this approach has the weakness of requiring us to do layout more than

42 System Design Methodologies

once. Also, custom components have to be adapted to reflect the structure and
layout requirements of the given platform.

Behavior Structure
(Function) System (Netlist)

F(...) Processor
components

F(...) RTL
components

F(..) | Logic
components

F(...) Transistor

. OO | components
Physical [r]
(Layout)

FIGURE 2.6 System methodology

The platform methodology can be upgraded to a system-level methodology
by introduction of standard architecture cells and retargetable compilers. An
architecture cell contains a parametrizable programmable processor such as
one shown in Figure 1.5. The parameters include number, type and size of
components, component connectivity, and the number of pipeline stages in
the functional units, controller and the datapath. Such a standard architecture
cells can be pre-synthesized with standard cells and inserted into the library
of Processor components or generated on demand. A typical system-level
methodology based on such architecture cells is shown in Figure 2.6. It starts
with a MoC and generates the platform architecture consisting of standard or
custom architecture cells. Since all the architecture cells have the layout model
in the library the final system layout is obtained by combining the layouts of
architecture cells.

This methodology has advantage of dealing only with two highest abstrac-
tion layers. Therefore, it is well-suited for application experts with minimal
knowledge of system and processor design. However, it requires a retargetable
compiler to cover different architecture cells.

System-level Synthesis 43

Behavior Structure
(Function) System (Netlist)

A Start

<

N —]
6 F(.) Processor

“ components

F(...) RTL
components

F(.) | Logic
components

A 4

Physical
(Layout)

FIGURE 2.7 FPGA methodology

2.5 FPGA METHODOLOGY

Field-Programmable-Gate-Array (FPGA) methodology is based on the
FPGA substrate, which consists of a multitude of 4-bit ROM cells called Look-
up Tables (LUTs). These LUTs can implement any 4-variable Boolean function.
Therefore, in this methodology, every RTL component in the RTL component
library must be decomposed into these 4-variable functions. Then, the Proces-
sor components are synthesized out of available RTL components.

In other words, a FPGA methodology shown in Figure 2.7 uses a top-down
methodology on both the System and Processor levels, in which standard and
custom PEs and CEs are all expressed in terms of LUTs. A system design starts
by mapping an application onto a given platform and then synthesizing custom
components down to RTL components which are defined in terms of LUTs.
Standard processors components in the Processor library are already defined in
terms of LUTs. Once all components in the platform are defined, we flatten
the whole design to LUTs and BRAMs and perform the placement and routing
with the tools provided by FPGA suppliers.

This type of top-down system design has the same weaknesses as any top
down methodology in that it is difficult to optimize the whole design by flat-
tening the whole design just to basic LUT cells. Furthermore, designers do not
know how the FPGA supplier-provided layout tools will map and connect all
the LUTs and BRAMs.

44 System Design Methodologies

Optimization
] |
: Application Estimation :
| |
| |
| |

——% Mapping Platform)¢ — — — — — — — — —— — —

Component
models

Component
libraries

FIGURE 2.8 System-level synthesis

2.6 SYSTEM-LEVEL SYNTHESIS

In the previous sections we described several basic strategies in system de-
sign. However, system design flow has been changing alongside fabrication
technologies and automation tools over the last 50 years. The changes started
with lower levels of abstraction, which are well understood today. However,
the higher levels of abstraction are still under investigation and discussion. In
this section and the next, we will describe briefly the synthesis process from
a behavioral description to a structural description on system and processor
levels.

As shown in Figure 2.8, system-level synthesis starts with an application
written in some MoC such as a set of sequential and parallel processes com-
municating through message-passing channels. Such a MoC must execute on
a platform of multiple standard and custom processors connected through an
arbitrary network. This type of platform can be defined partially or completely
after estimating some characteristics of the application in terms of performance,
cost, power, utilization, configurability, and other considerations. Platform def-
inition can be done manually or automatically.

Processor Synthesis 45

Once the platform is defined, an application must be partitioned and each
partition assigned to a processor or IP in the platform. In order to verify that
the application executes on the platform and satisfies all the requirements, we
need to generate a simulatable and possibly verifiable model such as a timed
Transaction-Level Model (TLM). After simulation, the design can be optimized
if it does not satisfy the requirements by changing the platform, the application
code, or the algorithms used in that code. We can also change the mapping
of the application to the platform. For example, we can minimize external
communication by grouping heavily communicating processes and assigning
the whole group to one processor. It is also possible to assign performance-
demanding processes to different processors or specialized IPs, or to pipeline
performance-demanding processes if possible.

After we obtain a satisfactory application code, platform, and mapping, we
can synthesize each component. Three types of components are needed: custom
SW, HW, or IF components. SW components are for scheduling of processes
such as different types of RTOS, and for communication and interfacing across
the platform. HW components are various custom processors and custom hard-
ware units, as described in the previous chapter. We also need communication
components such as bridges and transducers for protocol conversion, and inter-
face components such as bus arbiters and interrupt controllers.

Having synthesized these platform components, we need to generate a CAM
model that contains binaries for downloading to processors and RTL descrip-
tions for the HW parts in the platform. This can be done automatically or
manually. Such a CAM is downloadable to standard FPGA boards for sys-
tem prototyping, whose results can be used for final optimization of the whole
design.

Details on each of these tasks will be given in the chapters that follow.

2.7 PROCESSOR SYNTHESIS

On the processor level, the components are synthesized as standard pro-
cessors, custom processors, and custom hardware units, which are sometimes
called IPs. The standard and custom processors are usually defined by their
instruction sets. Custom processors can be also defined by the algorithm or
the programming language code that they execute. They are programmable
so that new algorithms and the code can be added or existing one modified.
Custom hardware units or IP are usually not programmable. They are used as
accelerators to execute special functions for a particular application, such as
multimedia applications.

As shown in Figure 2.9 the synthesis process starts with a given Specification
in a programming language, which is compiled into some Tool model such as

46 System Design Methodologies

Specification

| Compilation |

Tool model

Estimation
v HLS
m— Yy ______HS_
RTL ! Optimization
component ' Atiocation || Binding || scheduiing [l %L

library | L - _—____

Model generation

RTL model -—

| RTL tools |

-

FIGURE 2.9 Processor synthesis

CDFG or a FSMD or a three-address code. This formal model can be used for
Estimation of the future processor architecture and its metrics. It can be also
used for some partial or complete allocation, binding, and scheduling. Proces-
sor synthesis, sometimes called High-Level Synthesis (HLS), takes the formal
model and performs Allocation, Binding and Scheduling. The Allocation task
selects necessary and sufficient components from the RTL component library
and defines their connectivity. The Binding task defines binding of variables
to registers, register files, and memories, operations to specific functional units
and register-to-register transfers to specific buses. Scheduling assigns opera-
tions and register transfers to clock cycles. These three tasks compete with
each other, so a completely optimized design is not easy to achieve. That is
why estimation and pre-HLS comes handy. Pre-allocation helps in partial or
full definition of processor architecture. This way we can avoid the clock-cycle
estimates; since many or all of the register-to-register delays are known ahead
of time, there is no need to wait until the end of HLS to find out the clock cycle
time. Pre-binding may bind frequently-used variables to fast registers, register
files, or a scratch-pad memory to avoid lengthily delays caused by loading and
storing to the main memory. Pre-scheduling can assign key inner loops to high-
speed, pipelined functional units or it can pre-schedule such loops to specific
paths in a pipelined datapath.

Summary 47

Once HLS is finished we need to generate a RTL Model of the processor that
can be synthesized with standard RTL synthesis tools.

2.8 SUMMARY

In this chapter, we explained the differences between top-down, bottom-up,
and meet-in-the-middle methodologies by exposing their taxonomizing struc-
tures. We also highlighted some features of key ASIC and FPGA methodolo-
gies. We also detailed one methodology branch, synthesis, explaining how the
process might work on both the processor and system levels.

However, we have to acknowledge that there are many more design method-
ologies, almost one for every group, product, and company [103, 47, 63, 100,
129, 195, 184]. They may start with different specifications, may use other
models for verification of different concepts and metrics, and they may need
a different type of outputs. However, all design methodologies must address
the basic system needs and issues we have introduced in this chapter These
methodology issues will be discussed in more detail in the succeeding chapters.

2 Springer
http://www.springer.com/978-1-4419-0503-1

Embedded System Design

Modeling, Synthesis and Verification

Gajski, D.D.; Abdi, 5.; Gerstlauer, A.; Schirner, G,
2009, XXV, 352 p., Hardcowver

ISBEN: 978-1-4419-0503-1

	Chapter 2 SYSTEM DESIGN METHODOLOGIES
	2.1 BOTTOM-UP METHODOLOGY
	2.2 TOP-DOWN METHODOLOGY
	2.2 TOP-DOWN METHODOLOGY
	2.3 MEET-IN-THE-MIDDLE METHODOLOGY
	2.4 PLATFORM METHODOLOGY
	2.5 FPGA METHODOLOGY
	2.6 SYSTEM-LEVEL SYNTHESIS
	2.7 PROCESSOR SYNTHESIS
	2.8 SUMMARY

