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7.1 Introduction

In a job shop, each job has its own identity and its own set of processing
requirements. In a flexible assembly system, there are a number of different
types of jobs and jobs of the same type have identical processing requirements;
in such a system, setup times and setup costs are often not important and
a schedule may alternate many times between jobs of different types. In a
flexible assembly system an alternating schedule is often more efficient than
a schedule with long runs of identical jobs.

In the models considered in this chapter, a set of identical jobs may be
large and setup times and setup costs between jobs of two different types
may be significant. A setup typically depends on the characteristics of the job
about to be started and the one just completed. If a job’s processing on a
machine requires a major setup then it may be advantageous to let this job
be followed by a number of jobs of the same type.

In this chapter we refer to jobs as items and we call the uninterrupted
processing of a series of identical items a run. If a facility or machine is
geared to produce identical items in long runs, then the production tends
to be Make-To-Stock, which inevitably involves inventory holding costs. This
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144 7 Economic Lot Scheduling

form of production is, at times, also referred to as continuous manufacturing
(in contrast to the forms of discrete manufacturing considered in the previous
chapters). The time horizon in continuous manufacturing is often in the order
of months or even years. The objective is to minimize the total cost, which
includes inventory holding cost as well as setup cost. The optimal schedule is
typically a trade-off between inventory holding costs and setup costs and is
often repetitive or cyclic.

The associated scheduling problem has several aspects. First, the lengths
of the runs have to be determined and, second, the order of the different runs
has to be established. The run lengths are typically referred to as the lot
sizes and they are the result of trade-offs between setup costs and inventory
holding costs. The lots have to be sequenced in such a way that the setup
times and setup costs are minimized. This scheduling problem is referred to
as the Economic Lot Scheduling Problem (ELSP).

In the standard ELSP a single facility or machine has to produce n different
items. The machine can produce items of type j at a rate of Qj per unit
time. If an item of type j is regarded as a job with processing time pj , then
Qj = 1/pj. We assume that the demand rate for type j is constant at Dj

items per unit time. The inventory holding cost for one item of type j is hj
dollars per unit time. If an item of type j is followed by an item of type k a
setup cost cjk is incurred; moreover, a setup time sjk may be required. In some
models we assume that a setup involves a cost but no machine time and in
other, more general, models we assume that a setup involves a cost as well as
machine time. The setup cost and time may be either sequence dependent or
independent. If the setup cost (time) is sequence independent, then cjk = ck
(sjk = sk). The problem can be viewed as one of deciding a cycle length
x and a sequence of runs or cycle j1, j2, . . . , jν . This sequence may contain
repetitions, so ν ≥ n. The associated run times are τj1 , τj2 , . . . , τjν and there
may be idle time between two consecutive runs.

In practice, there are many applications of economic lot scheduling. In
the process industries (e.g., the chemical, paper, pharmaceutical, aluminum
and steel industries) setup costs and inventory holding costs are significant.
When minimizing the total costs, a scheduling problem often reduces to an
economic lot scheduling problem (see Example 1.1.4). There are applications
of lot scheduling in the service industries as well. In the retail industry (e.g.,
Sears, Wal-Mart) the procurement of each item has to be controlled carefully.
Placing an order for additional supplies entails an ordering cost and keeping
a supply in inventory entails a holding cost. The retailer has to determine the
trade-off between the inventory holding costs and the ordering costs.

7.2 One Type of Item and the Economic Lot Size

In this section we consider the simplest case, namely a single machine and
one type of item. Since there is only one type of item the subscript j can
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be dropped, i.e., the production rate is Q and the demand rate is D items
per unit time. We assume that the machine capacity is sufficient to meet the
demand, i.e., Q > D. The problem is to determine the length of a production
run. After a run has been terminated and sufficient inventory has been built
up, the machine remains idle until the inventory has been depleted and a new
run is about to start. Clearly, the length of a production run is determined
by the trade-off between inventory holding costs and setup costs. In order to
minimize the total cost per unit time we have to find an expression for the
total cost over a cycle.

Let x denote the cycle time that has to be determined. If D denotes the
demand rate, then the demand over a cycle is Dx and the length of a produc-
tion run to meet the demand over a cycle is Dx/Q. If the inventory level at
the beginning of the production run is zero, then the inventory level goes up
during the run at a rate Q−D until it reaches

(Q−D)
Dx

Q
.

During the idle period the inventory level goes down at a rate D until it
reaches zero and the next production run starts. So the average inventory
level is

1
2

(
Dx− D2x

Q

)
.

Each production run incurs a setup cost c. The average cost per unit time due
to setups is therefore c/x. Let h denote the inventory holding cost per item
per unit time. The total average cost per unit time due to inventory holding
costs and setups is therefore

1
2
h
(
Dx− D2x

Q

)
+

c

x
.

To determine the optimal cycle length we take the derivative of this expression
with respect to x and set it equal to zero, yielding

1
2
hD

(
1 − D

Q

)
− c

x2
= 0.

Straightforward algebra gives the optimal cycle length

x =

√
2 Q c

hD(Q−D)
.

The total amount to be produced during a cycle, i.e., the lot size, is

Dx =

√
2 DQ c

h(Q−D)
.
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The lot size Dx is not necessarily an integer number. (This is one of the
differences between continuous models and discrete models; this difference is
examined more closely in Example 7.2.2.)

The idle time of the machine during a cycle turns out to be

x
(

1 − D

Q

)
.

The ratio D/Q is at times denoted by ρ, and may be regarded as the utilization
of the machine, i.e., the proportion of time that the machine is busy.

Now consider the limiting case when the production rate Q is arbitrarily
high, i.e., Q → ∞. Then,

x = lim
Q→∞

√
2 Q c

hD(Q−D)
=

√
2c
hD

.

In this case the lot size is equal to

Dx =

√
2Dc

h
,

which is often called the Economic Lot Size (ELS) or Economic Order Quan-
tity (EOQ).

All the expressions above are based on the assumption that there is a setup
cost but not a setup time. If, in addition to the setup cost, there is also a setup
time s and s ≤ x(1−ρ), then the solution presented above is still feasible and
optimal. If

s > x(1 − ρ),

then the lot size computed above is infeasible. The optimal solution then is
the solution where the machine alternates between setups and production runs
with a cycle length

x =
s

1 − ρ
.

That is, the machine is either producing or being set up for the next run. The
machine is never idle.

The first example illustrates the use of these formulae.

Example 7.2.1 (The ELSP with and without Setup Times). Consider
a facility with a production rate Q = 90 items per week, a demand rate
D = 50 items per week, a setup cost c = $2000, a holding cost h = $20 per
item per week, and no setup times. From the analysis above it follows that
the cycle time x is 3 weeks and the quantity produced in a cycle is 150. Figure
7.1.a depicts the inventory level over the cycle. The idle time during a cycle
is 3(1 − 5/9) = 1.33 weeks, which is approximately 9 days.

Now suppose that there are setup times. If the setup time is less than 9
days (the length of the idle period), then the 3 week cycle remains optimal.
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Fig. 7.1. Inventory levels in Example 7.2.1

If the setup time is longer than 9 days, then the cycle time has to be longer.
For example, if a setup lasts 2 weeks (because of maintenance and cleaning),
then the cycle time is 4.5 weeks. Figure 7.1.b depicts the inventory level over
a cycle.

The next example highlights the differences between continuous and dis-
crete settings.

Example 7.2.2 (Continuous Setting vs. Discrete Setting). Consider a
production rate Q of 0.3333 items per day, a holding cost h of $5.00 per item
per day and a setup cost c of $90.00. The demand rate D is 0.10 items per
day. Applying the cycle length formula gives

x =

√
60

0.5(0.3333− 0.1)
= 22.678

and the number of items in a lot is Dx = 2.2678.
In a discrete setting such a number is not feasible. Consider the following

discrete counterpart of this instance. The time to produce one item (or job) is
p = 1/Q = 3 days. The demand rate is 1 item every 10 days. A lot of size k,
k integer, has to be produced every 10k days. (The solution in the continuous
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setting suggests that the optimal solution in the discrete setting is either a
lot of size 2 every 20 days or a lot of size 3 every 30 days.) The total cost per
day with a lot of size 1 every 10 days is 90/10 = $9.00. The total cost per day
with a lot of size 2 every 20 days is

(90 + 7 × 5)/20 = $6.25

and the total cost per day with a lot of size 3 every 30 days is

(90 + 7 × 5 + 14 × 5)/30 = $6.50.

So in a discrete setting it is optimal to produce every 20 days a lot of size 2.

7.3 Different Types of Items - Rotation Schedules

Consider again a single machine, but now with n different items. The demand
rate for item j is Dj and the machine is capable of producing item j at a rate
Qj . In order to start a production run for item j, a setup cost cj is incurred.
We assume, for the time being, that this setup cost is sequence independent.
In this section we determine the best production cycle that contains a single
run of each item. Thus, the cycle lengths of the n items have to be identical.
Such a schedule is referred to as a rotation schedule. The length of the cycle
determines the length of each of the production runs. Hence there is only a
single decision variable, the cycle length x. In order to determine the optimal
cycle length, it is again necessary to find an expression for the total cost per
unit time as a function of the cycle length x.

If setups require machine time, then it may not be possible to make the
cycle length arbitrarily small since frequent setups may take up too much
machine time.

The length of the production run of item j in a cycle is Djx/Qj . Assume
that the inventory level at the beginning of the production run of item j is
zero. During the production run, the level increases at rate Qj −Dj until it
reaches level (Qj−Dj)Djx/Qj . During the idle period, the inventory decreases
at a rate Dj until it reaches zero and the next production run starts. So the
average inventory level of item j is

1
2

(
Djx−

D2
jx

Qj

)
.

The facility incurs a setup cost cj for each production run of item j. The
average cost per unit time due to setups for item j is therefore cj/x. The total
average cost per unit time due to inventory holding costs and setup costs is
therefore

n∑
j=1

(1
2
hj

(
Djx−

D2
jx

Qj

)
+

cj
x

)
.
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To find the optimal cycle length we take the derivative with respect to x and
set it equal to zero, obtaining

n∑
j=1

(1
2
hjDj

(
1 − Dj

Qj

))
−

∑n
j=1 cj

x2
= 0,

Straightforward algebra yields the optimal cycle length

x =

√√√√( n∑
j=1

hjDj(Qj −Dj)
2Qj

)−1 n∑
j=1

cj .

The machine idle time during a cycle can be computed in a manner similar
to the single item case. This idle time is equal to

x
(

1 −
n∑

j=1

Dj

Qj

)
.

The ratio ρj = Dj/Qj can be regarded as the utilization factor of the machine
due to item j.

Consider the limiting case where the production rates are arbitrarily fast,
i.e., Qj = ∞ for j = 1, . . . , n. In this special case the optimal cycle length is

x =

√√√√( n∑
j=1

hjDj

2

)−1 n∑
j=1

cj .

Example 7.3.1 (Rotation Schedules without Setup Times). Consider
four different items with the following production rates, demand rates, holding
costs and setup costs.

items 1 2 3 4

Dj 50 50 60 60
Qj 400 400 500 400
hj 20 20 30 70
cj 2000 2500 800 0

The optimal cycle length x is 1.24 months and the total idle time is 0.48x
= 0.595 months. Figure 7.2 displays the optimal rotation schedule. The total
average cost per unit time can be computed easily and is 2155+2559+1627+
2213 = 8554.

As the setup cost of item 4 is zero, it is clear that a rotation schedule does
not make sense here. It makes more sense to spread the production of item 4
uniformly over the cycle to reduce inventory holding costs. In the next section
we consider this example again and allow for more general schedules.
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Fig. 7.2. Rotation schedule in Example 7.3.1

In the analysis above the order in which the different runs are sequenced
does not matter. We assumed that there were no setup times and that setup
costs were sequence independent. So, up to now, there was not any scheduling
problem, only a lot sizing problem.

If there are setup times that are sequence independent, i.e., sjk = sk for
all j and k, then the problem still does not have a sequencing component,
since the sum of the setup times does not depend on the sequence. If the sum
of the setup times is less than the idle time in the rotation schedule computed
above, the length of the rotation schedule remains optimal. If the sum of the
setup times exceeds the idle time computed above, then the actual optimal
cycle length has to be larger than the optimal cycle length obtained before.
Actually, the optimal cycle length again turns out to be the cycle length that
corresponds to a schedule in which the machine is never idle, i.e.,

x =
( n∑
j=1

sj

)/(
1 −

n∑
j=1

ρj

)
.

If the setup times are sequence dependent, then there is a sequencing
problem and a sequence that minimizes the sum of the setup times has to
be found. Minimizing the sum of the setup times in a rotation schedule is
equivalent to the so-called Travelling Salesman Problem (TSP), which can be
described as follows. A salesman has to visit n cities and the distance from
city j to city k is djk. His objective is to find a tour with the minimum total
travel distance. That this TSP is equivalent to our sequencing problem can
be shown easily. City j corresponds to item j and the distance from city j to
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city k, djk, is equivalent to the setup time needed when item k follows item
j, i.e., sjk. The TSP is known to be NP-hard.

If, in the case of sequence dependent setup times, a sequence can be found
that minimizes the sum of the setup times and this sum is less than the idle
time in the rotation schedule, then the lot sizes computed above, as well as
the sequence, are optimal.

However, if the optimal sequence results in a total setup time that is larger
than the machine idle time obtained before, then the optimal cycle length has
to be larger than the cycle length given in the formula above. The optimal cycle
length then again will be such that the machine is always either producing or
being setup for the next production run. In any case, the lot sizing problem
and the scheduling problem can still be analyzed separately.

The scheduling problem with arbitrary setup times is known to be ex-
tremely hard. However, when the setup times have a special structure, an
easy solution may exist. Consider, for example, the following setup times:

sjk = 0, j ≤ k

and
sjk = (j − k)s, j > k.

An optimal sequence can be obtained by starting out with the item with the
lowest index, continuing with the item with the second lowest index, and so
on. At the end of the run of the item with the highest index, a changeover
is made to the item with the lowest index in order to start a new cycle. This
sequence is obtained by applying the Shortest Setup Time first (SST) rule,
which is often used as a heuristic in cases with arbitrary setup times (see
Appendix C).

Example 7.3.2 (Rotation Schedules with Setup Times). Consider the
same four items as in Example 7.3.1. However, there are now sequence depen-
dent setup times. There are 3! = 6 possible sequences. The setup times are
given in the table below.

k 1 2 3 4

s1k - 0.064 0.405 0.075
s2k 0.448 - 0.319 0.529
s3k 0.043 0.234 - 0.107
s4k 0.145 0.148 0.255 -

This setup matrix is asymmetric, i.e., sjk is not necessarily equal to skj .
Recall that in the case without setup times the cycle time is 1.24 months

and the total idle time is 0.595 months. Since there are only six sequences, all
sequences can be enumerated and the best one can be selected. The sequence
1, 4, 2, 3 requires a total setup of 0.585 months, which is feasible and therefore
optimal. However, if SST is used starting with item 1, then the sequence
1, 2, 3, 4 is selected. This sequence requires a total setup of 0.635 months which
exceeds the idle time under the optimal cycle.
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7.4 Different Types of Items - Arbitrary Schedules

We now generalize the model described in the previous section to allow for
schedules that are more general than rotation schedules. Within a cycle there
may be multiple runs of any given item. For example, if there are three differ-
ent items 1, 2 and 3, then the cycle 1, 2, 1, 3 is allowed. There may be setup
costs as well as setup times.

If ρj denotes the utilization factor Dj/Qj of item j, then a feasible solution
exists if and only if

ρ =
n∑

j=1

ρj < 1.

This necessary and sufficient condition is the same as the condition for the
model in Section 7.3. It is intuitive that the setup times do not have any impact
on this feasibility condition. The setup times do take up machine time; but,
if a machine is operating close to capacity, then the cycle time and individual
production runs just have to be made long enough in order to minimize the
impact of the setup times.

In contrast to the model in the previous section for which there exists a
closed form solution (at least, when the setup times are sequence independent),
the problem considered in this section is very hard. There does not exist an
efficient algorithm for this problem. However, there are good heuristics that
usually lead to satisfactory solutions. In what follows, we describe one such
heuristic for the case with sequence independent setup times, i.e., sjk = sk.
Let S denote the set of all possible sequences of arbitrary length and jl the
index of the item produced in position l of the sequence. So j1, . . . , jν , where
ν ≥ n, denotes the production sequence of a given cycle. The sequence may
contain repetitions. Consider the item that is produced in the l-th position
of the sequence. If jl = k, then item k is produced in the l-th position of the
sequence. In the remainder of this section, the superscript l is used to refer to
data related to the item produced in the l-th position of the sequence, e.g.,
Ql = Qjl

and if the item in the l-th position is item k, then Ql = Qjl
= Qk.

The production of the item in position l involves a setup cost cl, a setup
time sl, a production time τ l, and a subsequent idle time ul which may be
zero. If item k is produced in the l-th position, item k may be produced again
within the same cycle. Let x denote the cycle time and v the time from the
start of the production of item k in the l-th position till the start of the next
production of item k (this may be in the same cycle or in the next cycle). So

v =
Qlτ l

Dl

and if jl = k, then

v =
Qkτ

l

Dk
.
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The highest inventory level is (Ql − Dl)τ l. The total inventory cost for the
production run of item k in position l is

1
2
hl(Ql −Dl)

(Ql

Dl

)
(τ l)2.

Let Ik denote the set of all positions in the sequence in which item k is pro-
duced and Ll all the positions in the sequence starting with position l (when
item k is produced) up to, but not including, the position in the sequence
where item k is produced next. The definition of Ll assumes that the sequence
j1, . . . , jν repeats itself. Let S denote the set of all possible cyclic schedules.
The ELSP can now be written as

min
S

min
x,τ l,ul

1
x

( ν∑
l=1

1
2
hl(Ql −Dl)

(Ql

Dl

)
(τ l)2 +

ν∑
l=1

cl
)

subject to ∑
j∈Ik

Qkτ
j = Dkx for k = 1, . . . , n,

∑
j∈Ll

(τ j + sj + uj) =
(Ql

Dl

)
τ l for l = 1, . . . , ν,

ν∑
j=1

(τ j + sj + uj) = x

The first set of constraints ensures that enough time is allocated to the pro-
duction of item k to meet its demand over the cycle. The second set ensures
that enough of the item in position l is produced to meet the demand till the
next time that item is produced.

The problem described above may be viewed as being composed of a mas-
ter problem and a subproblem. The master problem focuses on the search for
the best sequence j1, . . . , jν (an element of S), and the subproblem must de-
termine the optimal production times, idle times, and cycle length (τ l, ul, x)
given the sequence.

That the subproblem is relatively simple can be argued as follows. If the
sequence j1, . . . , jν is fixed, then the first set of constraints in the nonlinear
programming formulation is redundant, since substitution of the third set into
the first set yields

∑
j∈Ik

(Qj

Dj

)
τ j =

ν∑
j=1

(τ j + sj + uj),

which is the sum of the second set over all positions in Ik. So, given a fixed
sequence, the nonlinear programming problem that determines the optimal
production times and idle times can be formulated as follows:
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min
x,τ l,ul

1
x

( ν∑
l=1

1
2
hl(Ql −Dl)

(Ql

Dl

)
(τ l)2 +

ν∑
l=1

cl
)

subject to

∑
j∈Ll

(τ j + sj + uj) =
(Ql

Dl

)
τ l for l = 1, . . . , ν,

ν∑
j=1

(τ j + sj + uj) = x

The master problem, i.e., finding the best sequence j1, . . . , jν , is more
complicated. One particular heuristic yields good sequences in practice. This
heuristic is in what follows referred to as the Frequency Fixing and Sequencing
(FFS) heuristic. This FFS heuristic consists of three phases:

(i) The computation of relative frequencies phase.
(ii) The adjustment of relative frequencies phase.
(iii) The sequencing phase.

The first phase determines the relative frequencies with which the various
items have to be produced. The number of times item k is produced during
a cycle is denoted by yk. In the second phase, these production frequencies
are adjusted so they can be spaced out evenly over the cycle; the adjusted
frequency of item k is denoted by y′k. In the third and last phase these adjusted
frequencies are used to produce an actual sequence.

The first phase determines, besides the relative frequencies yk, also the
corresponding run times τk. If the runs of item k are of equal length and
evenly spaced, then the frequency yk and the cycle time x determine the run
time τk, i.e.,

τk =
ρkx

yk
.

To compute the yk we relax the original nonlinear programming formulation
by dropping the second set of the three sets of constraints. Without these
interlinking constraints the actual sequence is no longer important. Optimizing
over sequences now becomes optimizing over the cycle time x and run times
τk or, equivalently, over production frequencies yk.

Substitutions lead to the following modifications in the objective function
of the original nonlinear programming formulation of the ELSP problem:

1
x

( ν∑
l=1

1
2
hl(Ql −Dl)

(Ql

Dl

)
(τ l)2 +

ν∑
l=1

cl
)

=
1
x

( n∑
k=1

1
2
ykhk(Qk −Dk)

(Qk

Dk

)
(τk)2 +

n∑
k=1

ykck

)
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=
n∑

k=1

1
2
hk(Qk −Dk)

(Qk

Dk

)
ρkτk +

n∑
k=1

ckρk
τk

=
n∑

k=1

1
2
hk(Qk −Dk)τk +

n∑
k=1

ckρk
τk

=
n∑

k=1

akτk
ρk

+
n∑

k=1

ckρk
τk

=
n∑

k=1

akx

yk
+

n∑
k=1

ckyk
x

,

where
ak =

1
2
hk(Qk −Dk)ρk =

1
2
hk(1 − ρk)Dk.

Of course, in any feasible schedule the relative frequencies yk have to be
integers. This implies that the run times τk cannot assume just any values,
since they are determined by the relative frequencies. However, in order to
make the problem easier, we delete the integrality constraints on the yk and
thus relax the constraints on the τk as well (basically deleting the first set of
constraints in the original nonlinear programming formulation). Disregarding
the integrality constraints on the yk results in a relatively easy nonlinear
programming problem.

min
yk,x

n∑
k=1

akx

yk
+

n∑
k=1

ckyk
x

,

subject to
n∑

k=1

skyk
x

≤ 1 − ρ.

The constraint in this problem is equivalent to the last constraint in the
original formulation. If the left hand side of this constraint is strictly smaller
than the right hand side, then the sum of the setup times is less than the time
the machine is not producing, implying there is still some idle time remaining.

Before presenting a solution for this simplified nonlinear programming
problem some observations have to be made. First, a solution that is feasible
for the simplified nonlinear programming problem may not be feasible for
the original nonlinear programming problem; the solution to the simplified
problem may require some tweaking. Second, it is clear that the simplified
nonlinear programming problem has an infinite number of optimal solutions.
If the solution x∗, y∗1 , . . . , y∗n, is optimal and

n∑
k=1

skyk
x

< 1 − ρ
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(i.e., the inequality is strict), then any solution kx∗, ky∗1 , . . . , ky
∗
n, with k in-

teger, is also optimal. Basically, multiplying the first cyclic schedule by an
integer k results in an identical cyclic schedule. A third observation is the fol-
lowing: if the inequality above is strict, then the solution x∗, y∗1 , . . . , y

∗
n would

also be optimal if all setup times are zero. However, if in the optimal solution

n∑
k=1

skyk
x

= 1 − ρ,

then the setup times play an important role. The fact that there is no idle time
implies that the optimal solution requires relatively high production frequen-
cies with relatively short run times (possibly due to high holding costs or low
setup costs). These high frequencies require that the maximum proportion of
machine time, i.e., (1 − ρ), is dedicated to setup times.

The nonlinear programming problem can be dealt with as follows. Incorpo-
rating the constraint in the objective function using a Lagrangean multiplier
λ (λ ≥ 0), results in an unconstrained nonlinear optimization problem with
objective function

min
yk,x

n∑
k=1

akx

yk
+

n∑
k=1

ckyk
x

+ λ
( n∑
k=1

skyk
x

− (1 − ρ)
)
.

Taking the partial derivative of this function with respect to yk and setting it
equal to zero yields

yk = x

√
ak

ck + λsk
.

The cycle length x can be adjusted so that the production frequencies take
appropriate values (for example, one may choose the cycle length x so that
the smallest frequency value is approximately equal to 1). If there are idle
times, then λ is set equal to zero. If there are no idle times, then the λ has to
satisfy the equation

n∑
k=1

(
sk

√
ak

ck + λsk

)
= 1 − ρ,

since
n∑

k=1

skyk = (1 − ρ)x.

The solution yk is unlikely to be integer. To find an integer solution that is
close to the values obtained for yk may require the construction of a long
sequence with high frequencies.

The second phase of the FFS heuristic makes adjustments in the frequen-
cies yk. It has been shown in the literature that it is possible to find a new
set of frequencies y′k that are integers and powers of 2 with the cost of this
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new solution being within 6% of the cost of the original solution. Of course,
the run times of item k have to change then as well. The new run times, τ ′k,
can be computed by assuming that the total idle time remains the same and
the runs of item k are of equal length and equally spaced.

The third phase of the FFS heuristic generates the actual sequence. The
heuristic used here has its roots in the heuristic used for scheduling n different
jobs on a number of parallel machines to minimize the makespan. (Recall
from the second section of Chapter 5 that the most popular heuristic for this
problem is the LPT rule). Let

y′max = max(y′1, . . . , y
′
n).

For each item k, there are y′k jobs with the same estimated processing time
τ ′k (assuming that the lots will be equally spaced). Now consider a scheduling
problem with y′max machines in parallel and y′k jobs of length τ ′k, k = 1, . . . , n,
(implying a total of

∑n
k=1 y

′
k jobs). There is an additional restriction in that

item k with frequency y′k must have the y′k lots (jobs) placed on machines
that are equally spaced. For example, if y′max = 6 and y′k = 3, then there are
two choices: the three jobs are assigned either to machines 1, 3 and 5 or to
machines 2, 4 and 6. Now the following variation of the LPT heuristic can be
used: the pairs (y′k, τ

′
k) are listed in decreasing order of y′k. Pairs with identical

frequencies y′k are listed in decreasing order of the estimated processing time
τ ′k. The pairs are taken from the list one by one starting at the top. When the
pair (y′k, τ

′
k) is taken from the list, the corresponding y′k jobs of length τ ′k are

put on the machines (satisfying the spacing restriction) so that the maximum
of the total processing assigned so far to the selected y′k machines is minimized.
After all pairs in the list have been assigned, the resulting sequences on the
y′max machines are concatenated, i.e., machine 1, followed by machine 2, and
so on, to obtain a single sequence. This idea is based on the fact that after
all jobs have been scheduled and the total processing is more or less equally
partitioned over all the machines, the concatenated sequence will maintain
the equal spacing of the various runs of any given item.

The following example illustrates the application of the FFS heuristic to
an instance without setup times.

Example 7.4.1 (Application of the FFS Heuristic without Setup
Times). Consider again the situation described in Example 7.3.1. However,
now the schedule does not necessarily have to be a rotation schedule. There
are setup costs but no setup times. Since item 4 has no setup cost and a fairly
high holding cost, its production should be spread out as uniformly as possible
in between the production of the other three items.

In order to find the frequencies yk, we have to first solve the unconstrained
optimization problem. Note that

(1 − ρ)x = 0.48x,
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yk =
ρkx

τk
,

and
ak =

1
2
hk(Qk −Dk)ρk.

The following values can be computed easily.

items 1 2 3 4

Dj 50 50 60 60
Qj 400 400 500 400
hj 20 20 30 70
cj 2000 2500 800 0
ρj 0.125 0.125 0.12 0.15
aj 437.5 437.5 792 1785

It immediately follows that

y1 = 0.46x
y2 = 0.42x
y3 = 0.99x
y4 = ∞

Suppose that the cycle time x is set equal to 2 months. This cycle time
corresponds to the following approximate values for y1, . . . , y4: y1 = y2 = 1,
y3 = 2 and y4 = 16. The choice of y4 is somewhat arbitrary but it has to be
made high. The higher y4, the more uniform the production of item 4 can be
made in the final solution. Given a cycle time of 2 months and the production
frequencies above, the runtimes τk of the four items are τ1 = τ2 = 0.25,
τ3 = 0.12, τ4 = 0.3/16.

Now we apply the LPT-like heuristic. The number of machines in parallel
is ymax = 16. Item 4, the first to be assigned, is assigned to all 16 machines
with all 16 processing times equal to 0.3/16. Item 3 is assigned next and is
assigned to machines 1 and 9 with the two processing times equal to 0.12.
Item 1 is then put on machine 5 and item 2 on machine 13. Concatenating
the sequences of the 16 parallel machines results in the cyclic schedule

| 4 , 3 | 4 | 4 | 4 | 4 , 1 | 4 | 4 | 4 | 4 , 3 | 4 | 4 | 4 | 4 , 2 | 4 | 4 | 4 |.

Item 4 goes first for 0.3/16 months, followed by item 3 for 0.12 months. Item 4
goes next four times in a row, each time for 0.3/16 months (these four runs are
separated in the final solution by idle times). Item 1 follows for 0.25 months.
Item 4 goes again four times, and so on.

A feasibility check has to be done. It is clear that, in an ideal solution,
the runs of each item are spaced evenly over the cycle. If the runs of an item
are evenly spaced, we are assured that there are no stockouts. Attempting to
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uniformize the production of item 4 over the cycle results in many short runs
that are either separated by idle times or by production runs of other items.
We need to check whether, whenever items 1, 2, or 3 are produced, the stock
of item 4 is sufficient to cover the demand in the periods that the other items
are in production.

This solution could have been obtained in another way as well. As men-
tioned above, the y4 was selected somewhat arbitrarily. The reason for choos-
ing a high value is that it enables us to uniformize the item’s production over
the cycle. It is clear that the y4 has to be chosen at least as large as the sum
of all the other y’s, i.e., at least 4. If y4 = 4, then the algorithm yields the
sequence

4, 3, 4, 1, 4, 3, 4, 2.

A schedule can now be constructed as follows. First the production runs
of items 1, 2, and 3 are spaced evenly over the cycle and fixed. Then the
production of item 4 is scheduled separately in between the remaining idle
times. This production of item 4 is scheduled evenly over time (in many short
runs). However, before any of the items 1, 2, or 3 has to go into produc-
tion, a given amount of inventory of item 4 has to be built up. The inventory
level of item 4 depends on the length of the runs of items 1, 2, and 3. It is
only during these buildups of inventory that holding costs are incurred for
item 4.

The entire schedule is depicted in Figure 7.3. The average total cost per
unit time can be computed and is equal to

1875 + 2125 + 1592 + 190 = 5782.

Recall that the cost of the rotation schedule in Example 7.3.1 is 8554.
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The next example illustrates the application of the FFS heuristic on an
instance with setup times. In contrast to the previous example there is now,
under the optimal sequence, no idle time on the machine.

Example 7.4.2 (Application of the FFS Heuristic with Setup Times).
Consider the instance in the previous example but now with setup times. The
setup times are sequence independent.

items 1 2 3 4

Dj 50 50 60 60
Qj 400 400 500 400
hj 20 20 30 70
cj 2000 2500 800 0
sj 0.5 0.2 0.1 0.2
ρj 0.125 0.125 0.12 0.15
aj 437.5 437.5 792 1785

Note that, because of the nonzero setup time of item 4 the frequency of item
4 cannot be made arbitrarily high. In order to find the frequencies yk, we first
have to find a λ that satisfies the equation

n∑
k=1

(
sk

√
ak

ck + λsk

)
= 1 − ρ.

It can be verified easily that λ ≈ 8000 satisfies this equation. With this value
of λ the yk frequencies can be computed as a function of the cycle time x, i.e.,

yk = x

√
ak

ck + λsk
.

y1 = 0.27x
y2 = 0.33x
y3 = 0.70x
y4 = 1.05x

If the cycle time x is fixed at 3 months, then the approximate values y′1, . . . , y
′
4

can be either (1, 1, 2, 2) or (1, 1, 2, 4). Both solutions are power of two solutions.
Compare these solutions with the frequency values in the previous example,
i.e., (1, 1, 2, 16). It is clear that, because of the setup times, the frequency of
item 4 cannot be as high as in the previous example. There is simply not
enough idle time for that many setups.

Consider the solution x = 3 with frequencies (1, 1, 2, 2). The item sequence
is 1, 3, 4, 2, 3, 4. It has to be verified whether this solution is feasible. The idle
time before taking setups into account is 0.48 × 3 = 1.44 months and the
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total amount of setup time required is 1.3, which implies that the schedule
is feasible. Actually, this means that the cycle time x can be made slightly
smaller than 3, and a slightly smaller cycle time will give a better solution.
(In the previous example, without setup times, the cycle length was 2 months;
here the cycle time was made 3 months assuming that there would not be any
idle time.) The average total cost per unit time can be computed as in the
previous examples.

Consider the solution x = 3 with frequencies (1, 1, 2, 4). The order of the
items is

1, 4, 3, 4, 2, 4, 3, 4.

The total setup time required during a cycle is 1.7 months. This implies that
a cycle length of 3 months is not feasible with these frequencies. In order to
have these frequencies the cycle length has to be made larger (see Exercise
7.10).

7.5 More General ELSP Models

All models considered in the previous sections are single machine models.
Some of these models can be extended fairly easily. For example, consider the
model with multiple products on m identical machines in parallel. There are
setup costs but no setup times. Any particular item has to be processed on
one and only one of the m machines. The utilization factor of item j is again
defined as ρj = Dj/Qj and in order for a feasible solution to exist we must
have

n∑
j=1

ρj ≤ m.

Suppose that the schedule for each of the machines has to be a rotation
schedule. If the cycle times of the m rotation schedules have to be equal,
the problem is relatively easy and not much different from the one described
in Section 7.3. The only additional issue that needs to be resolved is the
assignment of the items to the different machines. Assuming that each item
has to be produced on one and only one machine, the loads have to be balanced
and the sum of the ρj ’s of the items assigned to any one machine has to be
less than one. To find a good balance or, equivalently, a good partition of the
n different items over the m machines, we can use the LPT heuristic with the
ρj values playing the role of processing times. The LPT heuristic (used for
minimizing the makespan in a parallel machine environment) will result in a
reasonably good assignment of the items to the m machines.

Example 7.5.1 (Rotation Schedules with Machines in Parallel). Con-
sider the situation in Example 7.3.1. Instead of a single machine, we now have
2 machines in parallel. The production rate of each of the two machines is half
the production rate of the machine in Example 7.3.1. The data are presented
below.
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items 1 2 3 4

Dj 50 50 60 60
Qj 200 200 250 200
hj 20 20 30 70
cj 2000 2500 800 0

Because the two machines have the same cycle length, the formula in Example
7.3.1 can be used here as well. The optimal cycle x in this case turns out to
be 1.35 months (the optimal cycle length with a single machine at twice the
speed is 1.24 months).

However, if the cycle times of the m rotation schedules are allowed to be
different, then the problem becomes more difficult. We can reduce total cost by
taking advantage of different cycle times. Again, an assignment of the items
to the machines has to be found while maintaining a proper machine load
balance. There is now an additional difficulty. If an item with a cost structure
that favors a long cycle time is assigned to the same machine as an item with
a cost structure that favors a short cycle time, then the solution is not likely
to be a good one. One can deal with this difficulty as follows. Consider each
item as a single product model (as in Section 7.2) and compute its cycle time.
Rank the items in decreasing order of their cycle times. Start taking the items
from the top of the list and put them on one machine. Keep assigning items
to this machine until its capacity is exhausted, i.e., the allocation of an item
makes the sum of the ρj ’s larger than one. This last item is then reallocated
to the second machine, and so on. This procedure may not lead to a good load
balance, and may even lead to an infeasible solution (i.e., the sum of the ρj ’s
on the last machine may be larger than one). If that is the case, then items
on adjacent machines have to be swapped in order to obtain a better balance.

The parallel machine model with rotation schedules and sequence depen-
dent setups is of course harder. The assignment of items to the m machines
now has to consider machine balance, preferred cycle times, as well as setup
times on all machines. The setup time structure becomes especially important
when there are large differences between setup times. Very little research has
been done on this problem.

When the schedules on the different machines do not have to be rotation
schedules, i.e., the parallel machines generalization of the model considered in
Section 7.4, the problem is even harder. However, now it is no longer necessary
to assign items with similar cycle times to the same machine. It is clear that in
the parallel machine environment there are still many unresolved issues that
require more research.

Another important extension of the single machine setting is the environ-
ment with machines in series, i.e., the flow shop. Consider a single machine
feeding another single machine with the production rates and setup costs of
the two machines being identical. Hence the cost structures of an item on the
upstream machine and on the downstream machine are the same. The ma-
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chines can be scheduled and synchronized so that the items, when they leave
the upstream machine, can immediately start their processing on the down-
stream machine without having to wait. Because of this synchronization, the
results in Sections 7.3 and 7.4 can be extended to the case of similar machines
with identical costs in series.

Example 7.5.2 (Rotation Schedules with Machines in Series). Con-
sider the same product mix as in Example 7.3.1. However, now instead of a
single machine, we have two machines in series. After an item has completed
its processing on the upstream machine, it has to go to the downstream ma-
chine and complete its processing there. There are setup costs but no setup
times. The setup costs of an item on the two machines are the same. A rota-
tion schedule is needed for the two machines (i.e., the same rotation schedule
must be used for both machines).

If the rotation schedule is such that an item with a long processing time
(i.e., with a low production rate) is followed by an item with a short pro-
cessing time (i.e., with a high production rate), then the item with the short
processing time may have to wait between the two machines. Assume that at
the beginning of the rotation schedule machine 1 starts with the production
of the item with the shortest processing time (i.e., with the highest produc-
tion rate), it then continues, without stopping, with the item with the second
shortest processing time, and so on. After it completes the run of the item
with the longest processing time machine 1 remains idle until it is necessary
to start the new cycle. In this way any item that comes out of machine 1
can start immediately on machine 2 without having to wait, i.e., there is no
Work-In-Process in between the two machines.

The inventory costs of the finished goods are exactly the same as in the
single machine case, so this system can be analyzed as a single machine.
However, there are now two setup costs, instead of only one. This implies that
the optimal cycle length is

√
2 = 1.4142 times longer than the optimal cycle

length for a single machine. This result can be extended easily to m identical
machines in series.

The results in the previous example can be further generalized. Consider
m machines in series with identical production rates for each product type,
but different setup costs. This problem can still be reduced to a single machine
problem with production rates identical to those of one of the machines in the
original problem. However, now the setup costs have to be set equal to the
sum of the setup costs of the original m machines, i.e., the setup cost for item
j in the new problem is

cj =
m∑
i=1

cij .

When the machines do not have identical production rates for each product
type the problem is not that easy. Consider first the case with two machines
that have identical setup costs but different speeds. But the speed structure
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is uniform over the items, i.e., the production rate of item j on machine i
is Qij = viQj , where vi is a speed factor of machine i. One approach is to
first analyze the slow machine as a single machine in isolation and then adapt
the fast machine accordingly (since the high speed machine provides more
flexibility). The schedule of the fast machine can be adapted in such a way
that there is no WIP in between the two machines. This model can then be
analyzed as a single machine with the production rates of the slow machine
and setup costs that are the sum of the setup costs of the two machines.

When the production rates are not uniform, it may become necessary to
schedule Work-In-Process (WIP) between the machines. The carrying cost
of the WIP in between the machines may be different from the holding cost
of the finished goods. This makes the model more complicated. Very little
research has been done on this problem.

An even more general machine environment is the flexible flow shop, i.e., a
number of stages in series with at each stage a number of machines in parallel.
Under very special conditions optimal rotation schedules can be determined
for such a machine environment. For example, consider two stages in series
with at each stage two machines in parallel. For any given product type the
production rates of the four machines are the same and so are the setup costs.
Under these circumstances there is no need for any WIP in between two stages.
This makes it possible to determine the optimal rotation schedules relatively
easily when the cycle times of all four machines have to be the same.

7.6 Multiproduct Planning and Scheduling at
Owens-Corning Fiberglas

Owens-Corning Fiberglas is a leading manufacturer of fiberglass products and
has a large manufacturing facility in Anderson, South Carolina. In its man-
ufacturing process, molten fiberglass is formed and the glass is spun onto
spools of various sizes. This material is used to weave fabric and to produce
chopped strand mat. Fiberglass mat is sold in rolls of various widths and
weights, treated with one of three process binders, and trimmed at one or
both edges or not at all. The demand for the products comes mainly from the
marine industry for the manufacture of boat hulls, and from the residential
construction industry for bath tubs and shower booths.

At the time when a production planning and scheduling system was de-
veloped for this facility, the product line consisted of over 200 distinct mat
items. Twenty-eight of these represented over 80% of the total annual demand
and were treated as high volume standard (stock) products. The remaining
items were made to order. The manufacturing facility had two main produc-
tion lines referred to as Mat Lines 1 and 2. Line 1 had approximately three
times the capacity of Line 2 and could produce mat 76 inches wide, whereas
Line 2 was limited to 60 inches. The product came off these lines in the form
of 175- to 230-pound cylinders. The average cost of down time on Line 1 was
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approximately $300 per hour; the average cost of down time on Line 2 was
less. Maintenance costs were related to the frequency of job changeovers. In
addition, each time a product change was made on a line, there was a sequence
dependent setup cost partly due to material waste. The monthly costs due to
setups ranged from $15,000 to $50,000 (with approximately 75 job changes
and 50 hours of down time).

The production planning and scheduling system developed for the mat
lines focused on three issues, namely aggregate planning (focusing on inven-
tory costs and workforce scheduling), production run quantities and lot sizing
(taking line assignments and inventory levels into account), and detailed line
sequencing of Make-to-Stock and Make-to-Order products (taking setup costs
into account). The system developed for the mat lines consisted therefore of
three main modules, namely,

(i) the aggregate planning module,
(ii) the lot sizing module, and
(iii) the sequencing module.

The aggregate planning module used as input the aggregate demand forecast
for the next twelve months. Its objective was to minimize the sum of direct
payroll costs, overtime costs and hiring and firing costs. The time horizon
ranged from three to twelve months. The optimization method in this module
was based on a production switching heuristic; this rule considered inventory
levels and forecasts of future demand and, based on these data, determined
the appropriate production rates. The output of this model included targets
with respect to aggregate inventory levels, production rates and levels of em-
ployment.

The output of the aggregate planning module served as input to the lot siz-
ing module. The lot sizing module also required a detailed short term demand
forecast for each stock item. The time horizon considered in this module was
up to three months. The output from this module were the line assignments
and the lot sizes. The optimization in this module was based on a linear pro-
gram formulation. The objective was to minimize all the relevant setup costs
and production costs subject to several sets of constraints. The inventory level
constraints ensured that aggregate inventory levels and safety stock levels were
met and the production balance constraints guaranteed demand satisfaction as
well as inventory conservation. The linear program was solved using the MPSX
package and the program was run on a monthly basis providing the plant with
specific inventory levels, lot sizes and line assignments for the coming months.

The output of the lot sizing module served as input for the sequencing mod-
ule. The time horizon of this module was one month, and its main objective
was the minimization of the sequence dependent setup costs. The dominant
components of setup costs were direct downtime and mat waste. Changeovers
were classified as fiber changes, width changes, weight changes, and slitter
changes. A distinction could be made within each family of changeovers based
upon the direction of the change. For example, it was easier to decrease weight
and width than to increase them. The sequencing heuristic was based on sim-
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Fig. 7.4. Overview of system at Owens-Corning Fiberglass

ple dispatching rules and the sequencing module was run on a weekly basis.
The entire system is depicted in Figure 7.4.

Implementation of the system led to major improvements in the operation
of the plant. The average number of changeovers went down from an average
of 70 before the system’s implementation to an average of 40 after the system’s
implementation.

The Owens-Corning Fiberglas environment is somewhat similar to the set-
ting described in Section 7.4. However, Owens-Corning had two machines in
parallel instead of the single machine in Section 7.4 (a parallel machine envi-
ronment was considered in Section 7.5). Note that the FFS heuristic described
in Section 7.4 is based on a nonlinear programming formulation, whereas the
lot sizing module in the Owens-Corning Fiberglas system was based on a
linear programming formulation.

7.7 Discussion

The models discussed in this chapter have similarities as well as differences
with the models for the the flexible assembly systems described in Chapter 6.
In both chapters the planning horizons are basically unbounded. (This is in
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contrast to the models described in Chapters 4 and 5, which all have a finite
number of jobs.) However, the objectives considered in Chapter 6 are funda-
mentally different from the objectives considered in this chapter. In Chapter
6, the typical objective is to maximize the throughput or, equivalently, to
minimize the cycle time. In this chapter, the throughput is basically given,
since the demand levels are known. The objective is to minimize the sum of
the inventory carrying costs and the setup costs. Nonetheless, the objectives
in this chapter display some similarities with the objectives in paced assembly
systems.

The models considered in this chapter are very important for industries
that produce Make-To-Stock and for environments with setup times and costs.
Examples of these industries include the paper industry, the aluminum indus-
try and the steel industry. If one compares the models described in this chapter
with the problems that have to be solved in those industries, then a number
of issues arise. The problems in practice are, of course, more complicated than
the models considered in this chapter. Often, if there are multiple machines
in parallel, the production rates of any given item on the various machines
may vary. Run lengths have in practice, besides an impact on the inventory
costs and the total change-over costs, also an effect on various other factors,
including

(i) the quality of the finished product,
(ii) the production yield or the amount of waste incurred,
(iii) the productivity of the facility and its total production capacity.

These three factors, which are not independent, are seldom included in
medium term or long term planning models. The three factors are some-
what related to one another. The quality of the products in process indus-
tries (which typically is a continuous measure rather than a discrete mea-
sure) depends strongly on the length of the run. The longer the length of
the run, the higher the average quality of production. In the process in-
dustries there is usually also a yield or waste problem (cutting stock or
trim related issues). If the run length is very small, then the average waste
tends to increase. So the more changeovers there are, the lower the av-
erage quality of the product, and the lower the productivity and the ca-
pacity. The cost of machine capacity is basically determined by oppor-
tunity costs (i.e., the shadow prices or dual prices of the resources in-
volved).

Practical problems are often a combination of Make-To-Stock and Make-
To-Order. The Make-To-Stock aspects involve problems such as those de-
scribed in this chapter whereas the Make-To-Order aspects are related to job
shop scheduling problems. Researchers have been analyzing inventory prob-
lems in which the facilities are assumed to be set up in series. This area of
research, often referred to as multi-echelon inventory theory or supply chain
management, is considered in the next chapter.
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Exercises

7.1. Consider four different products with the following demand rates, pro-
duction rates, holding costs and setup costs.

items 1 2 3 4

Dj 50 50 60 60
Qj 400 500 500 400
hj 20 20 30 70
cj 2000 1000 1000 100

(a) Find the optimal rotation schedule. Determine its cycle length, and
the total idle time.

(b) Suppose now that item 4 can be produced many times during a cycle.
Items 1, 2 and 3 still can be produced only once during a cycle. Find the
optimal production schedule. How does the optimal cycle length compare
with the original optimal cycle length?

7.2. Consider two identical machines in parallel. Four items have to be pro-
duced.

items 1 2 3 4

Dj 50 50 60 60
Qj 200 200 300 300
hj 20 20 30 70
cj 2000 2500 800 0

(a) Find the optimal rotation schedule assuming that the cycle lengths of
the two machines have to be the same. Compute the total average cost per
unit time.

(b) Find the optimal rotation schedules of the two machines assuming the
cycle lengths of the two machines do not have to be the same (determine
which items have to be combined with one another on the same machine to
obtain the best result). Compute the average cost per unit time and compare
the result with the result found under (a).

7.3. Consider the following two stage production process in a paper mill with
a downstream converting operation. At the first stage there is a single paper
machine. The output of this operation consists of large rolls of paper. The
second stage is a single machine cutting operation that produces cutsize paper.
To simplify the problem assume that only two items have to be produced.
Also, each item that comes out of the second stage corresponds to one of the
items that comes out of the first stage. The production rates, setup costs and
holding costs are different at the two stages. In the table below Qij denotes
the production rate of item j at stage i, cij the setup cost of item j at stage i,
and hij the holding cost of item j after processing at stage i (so h1j denotes



Exercises 169

the holding cost of keeping item j in inventory in between the two stages,
while h2j denotes the holding cost of item j as a finished good).

items 1 2

Dj 100 50
Q1j 400 400
Q2j 600 1000
h1j 20 20
h2j 60 80
c1j 3000 2500
c2j 1000 1250

The schedules at both stages have to be rotation schedules (i.e., it is, for
example, not allowed to produce item 1 at the first stage for a while, leave
the machine idle for some time, produce item 1 again, and then item 2).

(a) Assuming that the cycle length x of the two stages have to be the
same, what is the cycle length with the minimum total cost?

(b) Assume that the cycle lengths at the two stages are allowed to be
different. Determine the optimal cycle lengths of the two stages.

7.4. Connsider the environment with two machines in parallel in Example
7.5.1. Suppose now that the production rate of one machine is .7 times the
production rate of the machine in Example 7.3.1 and the production rate of
the second machine .3 times.

a) Determine the optimal rotation schedules when both machines must
have the same cycle time.

b) Determine the optimal rotation schedules when the two machines do
not have to have the same cycle times.

7.5. Consider the data in Example 7.3.1. Consider now m identical machines
in parallel. The production rate of item j on any one of the machines is
Qj/m. (This implies that the total production capacity does not depend on
the number of machines in parallel.) Assume that all the machines have to
be scheduled according to rotation schedules with the same cycle time x.
Compute the optimal x and the total cost for m = 2, 3, 4. Plot the total cost
against m.

7.6. Consider m identical facilities with each facility having a production rate
Qj/m. There are no setup times. Assume that all the facilities have to follow
rotation schedules with the same cycle length x. Derive an expression for the
optimal cycle length x. How does x depend on m? Discuss the monotonicity
and the convexity of the function.

7.7. Consider a paper mill with two paper machines. There are 5 different
types of paper that have to be produced. Items 1 and 2 have to be produced
on machine 1 and item 3 has to be produced on machine 2. Items 4 and 5 can
be produced on either one of the two machines.
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items 1 2 3 4 5

Dj 60 60 80 80 100
Qj 200 200 300 300 400
hj 20 30 40 20 20
cj 3000 2000 800 4000 1500

(a) Determine the optimal rotation schedule assuming that the cycle
lengths have to be the same.

(b) Determine the optimal rotation schedules assuming the cycle lengths
do not have to be the same.

(c) Determine the optimal schedule if the schedule on machine 1 has to
be a rotation schedule and the schedule on machine 2 may be an arbitrary
schedule.

7.8. Consider the following generalization of the paper making facility of Ex-
ercise 7.3. Again, there are two stages. The entire facility produces three dif-
ferent items. However, the paper machine at the first stage produces only two
different intermediate products. One of the intermediate products that comes
out of stage 1 is used at stage 2 to produce items 1 and 2. (This implies that
the data correponding to items 1 and 2 regarding stage 1 are the same.) The
other intermediate product that comes out of stage 1 is converted at stage 2
into item 3.

items 1 2 3

Dj 50 70 100
Q1j 250 250 300
Q2j 200 400 300
h1j 30 30 40
h2j 40 20 30
c1j 2000 2000 900
c2j 1000 3000 2000

Determine the optimal rotation schedule and its cycle length.

7.9. Consider the setting in Exercise 7.2. Instead of a single stage with two
machines in parallel, we have now two stages in series with two machines
in parallel at each stage. All four machines are identical with regard to pro-
duction rates and setup costs (the data being the same as in Exercise 7.2).
Determine the optimal rotation schedules of the four machines assuming that
the cycle times of the four machines are the same.

7.10. Consider the setting in Example 7.4.2.
(a) What is the minimum cycle time when the frequency values are y′1 =

y′2 = 1 and y′3 = y′4 = 2? Compute the total average cost of this solution.
(b) What is the minimum cycle time when the frequency values are y′1 =

y′2 = 1, y′3 = 2 and y′4 = 4? Compute the total average cost of this solution.
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(c) Compare the results obtained under (a) and (b) with the total average
cost obtained in Example 7.4.1. Explain your results.

Comments and References

Various books and monographs focus on lot sizing and scheduling; see, for example,
Haase (1994), Brüggemann (1995), Kimms (1997), and Zipkin (2000). Several excel-
lent survey papers cover this topic also in depth, see Graves (1981) and Drexl and
Kimms (1997).

The material in Section 2 is very basic. The EOQ formula was first mentioned
by Harris (1915) and studied in detail by Wilson (1934). This material is covered in
every elementary textbook on production planning and operations management.

Maxwell (1964) did an exhaustive study of rotation schedules. Gallego (1988)
and Gallego and Roundy (1992) generalized these results allowing for backorder
costs. Jones and Inman (1989, 1996) made an in depth study of the worst case
behavior of rotation schedules and compared rotation schedules with other types of
schedules. Gallego and Queyranne (1995) extended some of these results.

The FFS heuristic, described in Section 7.4, for generating arbitrary schedules is
due to Dobson (1987, 1992). Gallego and Shaw (1997) established the NP-hardness
of the ELSP with arbitrary cyclic schedules.

A fair amount of work has been done on lot scheduling in more complicated
machine environments; see Crowston, Wagner and Williams (1973), Carreño (1990),
Brüggemann (1995), Jones and Inman (1996), Chao and Pinedo (1996), and Pinedo
and Chao (1999).

The production planning and scheduling system developed for Owens-Corning
Fiberglas is discussed in Oliff and Burch (1985).



http://www.springer.com/978-1-4419-0909-1
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