Chapter 2
The Fourier method

9 Derivation of the heat equation

We consider a straight homogeneous metal rod of length /, cross-section S, and
density p. We choose the axis x along the rod, and let x = O be the left end of the
rod, so that x =/ is its right end. Denote by u(x,) the temperature of the rod at a
point x at the moment ¢ > 0. We assume that the cross-section is small, so that u
depends only on x. It turns out that u(x,¢) satisfies the differential equation called

the heat equation,
du 2%u
y =d° o (x,t) +bf(x,1), 9.1

where f(x,1) is the density of the external heat source at the point x at the moment 7.
This means that the piece [x,x + Ax] of the rod during the time interval from 7 until
t + At receives from the outside the amount of heat equal to

Qextemal = f(x>l)AXAl~ (92)

Let us derive (9.1). To do this, we write the equation of the heat balance for the
piece of the rod [x,x + Ax] as the time changes from 7 to 7 + Ar:

cmAT = Q. 9.3)

Here c is the specific heat capacity of the material, m = pSAx is the mass of the
piece, and AT is the temperature increase:

AT =~ u(x,t + At) —u(x,t). 9.4
Q is the total amount of heat received by the piece:

Q = Qextemal + Ql + Qra 9.5)

Alexander Komech and Andrew Komech, Principles of Partial Differential Equations, 65
Problem Books in Mathematics, DOI 10.2007/978-1-4419-1096-7 2,
© Springer Science + Business Media, LLC 2009



66 2 The Fourier method

where Q.yernai 15 the heat received from the external sources, Q; is the amount of
heat received from the left (that is, through the section of the rod at the point x),
while O, is the amount of heat received from the right (that is, through the section
of the rod at the point x 4+ Ax). See Fig. 9.1.

Qexternal

X
Fig.9.1
According to the Fourier law of heating,
du du
=—AS 1At ,=AS Ax,t)At, 9.6
Ql ax(-xa ) 5 Q ax(x+ x ) ( )

where A is the heat transfer coefficient and S is the cross-section area of the rod.
The relation (9.6) means that the rate of the heat transfer through the cross-section
of the rod at the point x is proportional to the rate of change of the temperature,
‘3)’? (x,1). Signs in (9.6) are chosen so that the heat is transferred from warmer bodies
to cooler ones (the second law of thermodynamics). For example, for u(x,) on
Fig. 9.1, 0; <0, Q, > 0, while ‘3;‘ > 0 everywhere, hence the signs in the left- and
right-hand sides of (9.6) coincide.

Substituting (9.6) and (9.2) into (9.5), and then (9.5) and (9.4) into (9.3), we get

d d
cpSAx(u(x,t +At) — u(x,t)) ~ f(x,1)AxAt + lS(au (x4 Ax,1) — au (x,t))At.
X X
From here, dividing by AxAt and considering the limit Ax — 0 and At — 0, we get

0 0?2
cps a? —AS ax;‘ +f(x0). 9.7)

1

Then (9.1) follows, with the values of the constants being a? = C’}) andb = _ oS
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10 Mixed problem for the heat equation

Here we will describe the basic idea of the Fourier method.
To determine the temperature of the rod, besides equation (9.1), one needs to
specify the initial temperature

u(x,0) = @(x), 0<x<l (10.1)

and the boundary conditions. For example, if the ends of the rod are submerged into
the melting ice, then their temperature will be equal to zero (0° C):

w(0,0)=0,  u(l,t)=0, 1>0. (10.2)

The problem (9.1), (10.1), (10.2) is called the mixed problem for the heat equation.

For simplicity, we first assume that f(x,#) = 0. The general case with the nonho-
mogeneity f(x,7) # 0 is considered in Section 15 below. Let us write the problem
(9.1), (10.1), (10.2) (with f = 0) in the operator form:

40 =a’An(t), t>0;
(10.3)

u(x,t), and @ = @(x). As it follows from the boundary condi-

Here A = d 25 ﬁ(t) =
€ C3[0,1) for all # > 0, where

tions (10.2), #(r)
30,0 = {u(x) € CZ[O,Z} : u(0) =u(l) =0}.

Thus, we consider the operator A = d , on the domain D(A) = C3[0,1].

The idea of the Fourier method is to try to find a solution to the problem (10.3)
in the form of the sum of particular solutions of the form 7' ()X (x). Let us illustrate
this idea on an example of the system of n ordinary differential equations with n
unknown functions, also written in the vector form (10.3):

4h(r) = Aﬁ(t) a(t) = (a1(t), ..., da(t)) €R®, 1> 0;
{ ‘f’ ) ( (0) (10.4)
I/t( ) ((P17' .,(pn)ER",
where A is a matrix of size n x n. Assume that there is a basis of the eigenvectors
ey, ..., e, of the matrix A, with the eigenvalues A;:
Aek:lkek, kzl,...,l’l. (105)

Then the solution #(7) we are looking for, as well as the initial vector @, can be

represented as
n
=Y Tier,  ¢=Y oeex.
k=1
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Substituting into (10.4) we get

n

n dT n n
Y ;t(t) er=Y MTi(t)er, Y T(O)ex=Y e,
k=1 =

k=1 k=1 k=1

hence
dT;(t)

dt
We see that T; (1) = (pke’lkt , and, therefore,

= /lka(t), t>0; Tk(O) = Q.

n
=Y oeMer. (10.6)
k=1
In what follows we will obtain the analogs of formulas (10.5)—(10.6) for the
operator A = ;xzz.

11 The Sturm - Liouville problem

Let us find in D(A) = C3[0,1] the eigenfunctions X; (x), X2(x), ... of the operator A:

AXk:),ka, keN; (11.1)
X, € D(A), Xi#0. :

The relation (11.1) means that

{X,g(x)lkxk(x)’ 0<x<; (11.2)

Xi(0) =Xk (1) =0,  Xi(x) #0.

Remark 11.1. We will show below in Section 13 that the solution to the problem
(10.3) in the basis Xi, ..., Xk, ... of the eigenfunctions of the operator A has the
form analogous to (10.6):

Z X (x) (11.3)

where @y are the components of ¢ in the basis {X; : k € N}. Let us point out that
in view of (11.1) each term in the series (11.3) satisfies the operator equation (10.3).
Therefore any finite (partial) sum of this series also satisfies (10.3). The entire series
(11.3) satisfies equation (10.3) if it allows termwise differentiation: once in ¢ and
twice in x. This is the case when the series converges sufficiently fast.

We introduce the notation

(u,v) = /Olu(x) v(x)dx for Yu,veL?[0,1].
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Lemma 11.1. The operator A = ddxzz with the domain D(A) = C3[0,1] is symmetric
and negative:

d’u d*v
<dx2 ,v> = <u, dx2> , Yu,v e D(A), (11.4)
d’u
g2t <0, VYueD(A), u(x) #0. (11.5)
Proof. (i) The equality (11.4) means that
1 l
/ u"(x)v(x)dx = / u(x)v" (x) dx. (11.6)
0 0
To prove it, we integrate both sides of (11.6) by parts:
l 1 !
/ u’ (x)v(x)dx = u'v’o —/ u'(x)V' (x)dx, (11.7)
0 0
! 1 !
/ u(x)v' (x)dx = uv' o —/ ' (x) V' (x) dx. (11.8)
0 0

The boundary terms in the right-hand sides of (11.7) and (11.8) vanish since v(0) =
v(l) =0 and u(0) = u(I) = 0. Thus, the relation (11.6) is proved.
(if) When u = v, it follows from (11.7) that

(43 = [wintar=- [ () <o

This proves (11.5). Indeed, if [} (u/(x))zdx =0, then u'(x) = 0, u(x) = const. But
because of the boundary conditions #(0) = u(I) = 0 one concludes that u(x) = 0,
contradicting the condition u(x) # 0 in (11.5).

Corollary 11.2. All the eigenvalues of the operator A = d? /dx* are negative. In-
deed, as it follows from (11.5),

d’x
0> < dx2k>Xk> = e X, Xie)-

The eigenfunctions X;, X, with different eigenvalues A; # A, are orthogonal:
l
/ Xy (x) X, (x)dx = 0.
0
Indeed, it follows from (11.4) that

2'k<)(k>)(ll> = <AXk7Xll> = <Xk7AXn> = )‘n<Xk>Xﬂ>7

implying that (X, X,) = 0.
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Solution of the Sturm — Liouville problem

From equation (11.2) we get
X (x) = ApeVH 4 BreVAx, (11.9)

Substituting this into the boundary conditions (11.2), we get

Ar+ B =0,
{ Kk (11.10)

AreVH 4 B VMl — .

The matrix of this system should be degenerate, or else Ay = By = 0 and X;(x) =0,
contradicting (11.2). Thus, A satisfy the characteristic equation

1 1 il _ Nl
det |}\/Ml e\/lkl‘| =e il oV M — .

It then follows that e’\/’lk’ = e\/lk’ , hence ez\/lk’ = 1. Therefore, 2\/ Al = 2kmi,
k € Z, leading to

kmi km\2
Va="" = lk:—(l). (11.11)

Here we may assume that kK > 0. As one might have expected, A; < 0. Thus, the
eigenvalues A; are found. Now let us find the eigenfunctions X; (x). For this, we take
into account that the system (11.10) is degenerate. Therefore, these two equations
are linearly dependent, and it suffices to consider only the first one: By = —Ay. In
view of (11.11), we get:

ki ki kmx

Xi(x) :Ak(e 1Y —e x) = A2isin
Here we applied the Euler formula
€'? —e71% = (cos @ +isin@) — (cos @ — isin @) = 2isin .
Since the eigenfunctions Xj are defined up to a factor, we can finally set

kmx

Xi(x) =sin i

k=1,2,....
Here we can assume that k > 0, since for k = 0 we have Xj(x) = 0.
Answer.

k2 k
,lkz—(l”), Xi(x) = sin 71”, k=1,2,....
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Properties of solutions to the Sturm — Liouville problem

Property 11.3. Completeness: X; (x) form a complete orthogonal set in L (0,1) (this
property is known from the theory of the Fourier series).

Property 11.4. Orthogonality:

1
(Xk,Xn>:/Xk(x)X,,(x)dx:0 for k#n. (11.12)
0

Property 11.5. Asymptotics: Ay ~ —k? for k — oo. That is, there exists a limit

A
li > 0.
kgl;lo —k2
Problem 11.6. Check directly the orthogonality property (11.12) for X.

Solution. Since k # n,

I 1 /1 _
/ sin krx sin X dx = / cos (k—m)mx —COoS (k+m)mx dx=0.
Jo l l 2 Jo l [

Problem 11.7. Find the norm of X; in L%(0,1).

Solution.
! Lk 1] —cos 2k l
HXkHZE/OXI(Z()C)GUCZ/OSin2 7;xdx:/0 ) ! dx=2. (11.13)
Problem 11.8. Plot the graph of X;(x).
Solution. See Fig. 11.1.
i LI
T D
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Problem 11.9. Solve the Sturm — Liouville problem, that is, find the eigenfunctions
of the operator A = ;fz on the interval [0, /] for each of the boundary conditions:

X (0) =X (1) =0, (11.14)
X;(0) = X, (1) =0, (11.15)
X/ (0) =X/ (I)=0. (11.16)

Answer. |
For (11.14), 4 = — (*"27%)? X, (x) = sin {

: _ X
|
|
IRV
1___X_7_ XI
Fig. 11.2
1 1
For (11.15), & = —(“"")?, Xe(x) = cos "™ k=0,1,2,.... See
Fig. 11.3.
RS

Fig.11.3

For (11.16), A = — ()%, Xi(x) = cos *7* k=0, 1,2, ... . See Fig. 11.4.
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One can also consider arbitrary boundary conditions of the form
X (0) + BoXi(0) =0,  auXp(l) + BiXe(l) =0, (11.17)

where o ; and | are real numbers such that
o +Bi #0,  of +B7#0.

Problem 11.10. Prove that the operator ;;2 with the boundary conditions (11.17)
is symmetric.

Remark 11.11. The eigenfunctions and the eigenvalues corresponding to each of
the boundary conditions (11.14), (11.15), and (11.16) possess all the properties 11.3,
11.4, and 11.5 (completeness, orthogonality, the asymptotics of the eigenvalues) of
solutions to the Sturm — Liouville problem (11.1). See [Pet91, SD64, TS90, V1a84].

Multidimensional eigenvalue problem

Let us consider an arbitrary bounded region 2 C R with a smooth boundary dQ
and the problem of finding the eigenfunctions of the Laplace operator in £2 with the
Dirichlet boundary conditions:

AXk(x) = lka(x), x e Q,

Xl =0. (11.18)
aQ
It turns out that its eigenfunctions corresponding to different A; are also orthog-
onal in L2(Q), while its eigenvalues A; are negative.

Problem 11.12. Prove that the Laplace operator with the boundary conditions
(11.18) is symmetric and negative.

Problem 11.13. Prove that if instead of (11.18) one takes the Neumann boundary
conditions,
9X;
=0
onloe 7

d L .
where stands for the derivative normal to d€, then the Laplace operator is

on

symmetric and non-positive, with A = 0 the eigenvalue corresponding to the eigen-
function Xy (x) = 1.
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12 Eigenfunction expansions

As we already pointed out, the eigenfunctions sin k7l”‘, k=1,2, ... form a complete
orthogonal set in L?(0,1). Therefore they make up an orthogonal basis in L?(0,)
and, consequently, any function ¢(x) € L?(0,1) could be decomposed over this ba-
sis:

=) oXi(x). (12.1)
k=1
Let us find the formula for the coefficients ¢y. This is accomplished with the aid

of the orthogonality conditions (11.12): we multiply (12.1) by X;(x) and integrate
from O to /. Then we get

1
/(p x)dx = Z (pk/Xk dquon/x2 (12.2)
0

since all the terms in the summation in (12.2) with numbers k # n are equal to zero!
Termwise integration of the series in (12.2) is justified since the series in (12.1)
converges in L*(0,1), while the scalar product in L?(0,1) is continuous in each of
the two arguments.

Then from (12.2) we get the desired expression for the coefficients:

o=" = [ox,(xax (123)

where we took into account that || X,||? = /2 by (11.13).

Problem 12.1. Find the conditions on the function ¢(x) so that the following is
true:

(i) The series (12.1) converges uniformly on the interval [0,];
(i) The series (12.1) is termwise differentiable two times.

Solution. (i) It is sufficient (but not necessary) that
Y lou| <o (12.4)
k=1

For this inequality to hold, it suffices to require that

() €C'0,1],  @(0)=9()=0. (12.5)

Let us derive (12.4) from (12.5). Integrating by parts, we get:
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1 kn:x
o = 2/ o(x) sin / —eos ) dx
[ Jo l
2 kmx , kmx
= i ((p(x) cos ’0+/0 ¢'(x)cos ; dx). (12.6)

Above, the boundary terms are equal to zero due to the boundary conditions in

(12.5). Therefore ¢ = 2 ¢, where @] = fo @' (x) cos ™ dx. But {cos *™* : k € N}

2 kn’xdxi

is the orthogonal system in L%(0,1), with fo cos !, hence, due to the Bessel

inequality,
s 2 2! 2
Yol < [ 1ol dr<e (12.7)
k=1 L'Jo

Therefore, applying the Cauchy — Bunyakovsky inequality, we get:

Eior-El2ol< (EI2N Em) = o

(ii) For the series (12.1) to be twice differentiable, it suffices to have the series for
¢" (x) converge uniformly in x. The latter takes place if

Y 2oy < oo (12.9)
k=1

For this, we require that in addition to (12.5) we also have

o(x)€C3[0,]] and ¢@"(0)=¢"(I)=0. (12.10)
Let us derive (12.9) from (12.10) and (12.5). For this, we remark that, due to
(12.5) and (12.6),
2 l k 21 /
O = kn/(p’(x)cos 7;xdx: (k)2 ((p( sin © /(p sin N7 x)
0 0
2% ’
= (k) ((p (x) cos /(p'" cos xdx).
0

The boundary terms vanished due to the boundary conditions (12.10) and due

kX equal zero at x = 0 and x = [. Therefore, @ = ;72;1 5@, where @ =

I (p”’(x) cos “™ dx. But ¢ € L*(0,1); thus, by (12.7),

to sin

]
Lo < [lo" e
0
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and, similarly to (12.8),

Zk2|(Pk\ Zk2

20 &

///
— 77:3 Z |k‘|

///

k7r

Problem 12.2. Show that for a function @ (x) € CV)[0, 1] the estimates

x| < |kCN, k=1,2,... (12.11)

are satisfied if and only if

9(0)=0()=0, ¢"(0)=¢"(1)=0, ..., ¢*(0)=¢™()=0 (12.12)
forall2n <N—-2,n=0,1,2,....

Let us point out that the boundary conditions (12.12) are satisfied, in particular,
for all the eigenfunctions sin k’,”. On the other hand, under the condition (12.11), the
series (12.1) is convergent on the interval [0,/] uniformly together with its deriva-
tives up to the order N — 2. Therefore, since the homogeneous boundary conditions
(12.12) are satisfied for the eigenfunctions sin k?", it follows that the same bound-
ary conditions are also satisfied for the sum of the series (12.1). This proves the
necessity of conditions (12.12) for (12.11).

Remark 12.3. Similarly, let us consider the decomposition of the function ¢(x)
over a system of eigenfunctions X;(x) which corresponds to each of the boundary
conditions (11.14), (11.15), and (11.16). For estimate (12.11) for the Fourier coeffi-
cients @y of this decomposition to be true, it is necessary that ¢ (x) satisfy the same
homogeneous boundary conditions as the eigenfunctions X (x) and their derivatives
up to the order N — 2. When ¢ € C™)[0,1], it is easy to check that these conditions
are not only necessary but also sufficient for (12.11).

Problem 12.4. Solve Problem 12.2 for the decomposition over the eigenfunctions
of the Sturm — Liouville problem with each of the boundary conditions (11.14),
(11.15), and (11.16).

Problem 12.5. Decompose over the set {sin 7" : k € N}, the following functions:

a. ¢(x)=1,0<x<]I. SeeFig. 12.1.
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2 cos k?" ! 2

1ok )k

]
20k
Solution. @ = l/sin 7l”dx: [1- (=D
0

Let us point out that now the condition (12.4) is not satisfied. This is because
¢(x) = 1 is not equal to zero at the ends of the interval.

b. ¢(x)=x,0<x <. SeeFig. 12.2.

o(x) |
o| Il *
Fig. 12.2
Solution.
[ [ /
k 2 — cos 2
O = /xsin Xy = ; /x( . ") x= :—kﬂl(—l)k
0 0 !

Here |@y| ~ }( because ¢(I) # 0 (see (12.11) and (12.12)).

c. @(x)=x(I—x).See Fig. 12.3.

0 7 7 ®
2

Is it true that g = O(;), or O( 5 ), or O( /), .2

Problem 12.6. Decompose the functions @(x) = 1, x, x?, x(I — x) over the eigen-
functions of the Sturm — Liouville problem with each of the boundary conditions
(11.14), (11.15), and (11.16). In each of these cases, find the asymptotics:

aofl). o(L).

Hint. Use Remark 12.3.
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13 The Fourier method for the heat equation
So, let us solve the problem (10.3):

du  ,0%u
5 =@ 52 u(0,t) = u(l,r) =0, t>0, 13.0)
u(x,0) = o(x), 0<x<l

Let us look for a solution to the problem (13.1) in the form of the series

kmx

u(x,t) =Y Ti(0)Xe(x),  Xi(x) =sin . (13.2)
k=1
Due to the completeness of the set of eigenfunctions
k
{sin 71” : keN} (13.3)

in L?(0,1), one can write in the form (13.2) any function u(x,t) as long as u(x,t) €
L%(0,1) for each fixed . The choice of the basis (13.3) is dictated by the boundary
conditions which appear in (13.1). Namely, each term of the series (13.2) satisfies
these boundary conditions since sin k?", k € N, satisfy the boundary conditions in
(11.2).

To find the solution u(x,?), it remains to determine temporal functions Tj(t) (the
functions Xy (x) are called the sparial functions). T;(t) are found substituting the
series (13.2) into the equation and the initial condition in (13.1).

Determining the temporal functions

A. We substitute the series (13.2) into equation (13.1): For¢ > 0,

— kT — kn\* . km
Y. 7{(t)sin x:—aZZTk(t)< ) sint . 0<x<l. (13.4)
k=1 ! k=1 ! !
Here we interchanged the operators of differentiation, gz and gxzz , with the summa-

tion of the series. Below we will discuss why this interchange is allowed. The jus-
tification of the Fourier method is based on proving the validity of this interchange.
In (13.4) we also used the identity

9? “in kmx (k”)zsin kmx
0x2 I ! l
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satisfied by the eigenfunctions of the Sturm — Liouville problem (11.1)—-(11.2). Let
us point out that the boundary conditions for the Sturm — Liouville problem have
already been used.

Further, if the series in (13.4) converge in LZ(O, 1), then, due to the orthogonality
of the basis {sin k7l”‘ : k € N}, we get the following equations on the temporal

functions T (7):
/(1) = — 2<kﬂ)2T(z)——(ak”)2T(z) (>0, k=1,2 (13.5)
k =—a i k - / k\t)» y — L4 ... .

For each k € N, (13.5) is a homogeneous linear differential equation with constant
coefficients. Let us write its characteristic equation:

P (akn ) 2.
l
Then the general solution of (13.5) is given by

akm )2t

Ti(1) = Cre (13.6)
Substituting this expression into (13.2), we get
> 7(:11(7[)2[ . kmx
u(x,t) =Y Cre” "1 sin ;- (13.7)
k=1

B. The unknown constants C; in (13.7) are found from the initial conditions.
Namely, substituting the series (13.2) into the initial conditions in (13.1), we find:

= k
Y. 7,(0)sin ’l”:<p(x), 0<x<l. (13.8)
k=1

Hence, 7;(0) coincide with the Fourier coefficients of the decomposition of the func-
tion @(x) over the set {sin “™ : k € N} (see (12.3)):

2 k
T(0) = o = /(p(x) sin 7;xdx. (13.9)
0
Comparing with (13.6), we find
Ck = @

Thus, (13.7) takes the form

kmx

; (13.10)

ulx,) =Yy ore " sin
k=1
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Justification of the Fourier method for the heat equation

Does the series (13.10) indeed represent the solution to the problem (13.1)?
A. Fort > 0, the series (13.10) converge for each x € [0,/]. For example, let

o(x) € L*(0,1). (13.11)

Then the series (13.8) converge in the same space L?(0,/). Indeed, from the Cauchy
— Bunyakovsky inequality,

1 l 1

I I
lor] < ?/\(p(x)|dx§ ?(/ dx)2 (/(pz(x)dx)2 < const.
0

0 0

Therefore, the series (13.10) for each fixed ¢ > 0 is dominated by the series
nd 7(ak7t>2t o nd 78](2
const Z e V1 = const Z e ,
k=1 k=1

where € = (“[”)ZI > 0, which in turn is dominated by the convergent geometric
series. Hence, according to the Weierstrass Theorem, the functional series (13.10)
converges uniformly on [0,/] for Vz > 0 to a function which is continuous in x.

Corollary 13.1. The series (13.10) satisfies the boundary conditions (10.2).

B. The series (13.10) is a differentiable function in x € [0,/] for any 7 > 0. Indeed,
according to the theorem about the termwise differentiation of a series,

P = e krx k
aZ(x,t) =Y e )zt(fcos 71”) l” (13.12)
k=1

as long as the series in the right-hand side converges uniformly in x on [0,/]. The
last condition is satisfied for any ¢ > 0 since the series (13.12) is dominated by the
convergent series

T o el -
constl /;ke < oo,
C. The series (13.10) has derivatives in x and in ¢ of all orders for ¢ > 0. This is
proved similarly to B.

Corollary 13.2. All termwise differentiations of series in (13.4) are justified, hence
the series (13.10) satisfies the heat equation (9.1).

Finally, for r = O the series (13.10) satisfies the initial condition (10.1) in view of
(13.8) and (13.9) in the following sense (prove this!):

Hu(x,t) - (P(x)‘|L2(0J> — 0 for t— O+.
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Remark 13.3. The condition (13.11) allows the function ¢(x) to have disconti-
nuities: For example, let ¢(x) =0 for x < 2, u(x) = 1 for x < .. Then the func-
tion u(x,0) = ¢@(x) will be discontinuous. At the same time, the solution u(x,¢) for
any ¢ > 0 will be a smooth function on [0,/]! One says that the heat equation (9.1)
“smoothens” the initial data.

Problem 13.4. Find the solution to the mixed problem

g?:93il2t(x7t)7 0<X<5, l‘>0’
u(0,¢) =u(5,t) =0;
u(x,0) = 1.

Solution. According to (13.10),

& ook
= Y o s T (13.13)
k=1

where ¢, are found using (13.9):

Problem 13.5. Find the limit of the solution (13.13) for t — oo.

Solution.
lim u(x,t) = lim E e 5 gin kmx
t— oo o ——+ oo (pk 5
Em lim e 5 gin ke _ Em 0=0. (13.14)
=1 tﬂ+°° 5

Problem 13.6. Justify the interchange of taking the limit and the summation in
(13.14).

Problem 13.7. Find the solution to the mixed problem

u(x,1) = 4ty (x,1), 0<x<3, t>0;
w(0,)) =0,  uy(3,1)=0; (13.15)
u(x,0) = x.

Solution. Here the solution should be decomposed over the eigenfunctions of the
Sturm — Liouville problem (11.14) (see Fig. 11.2):

0 1
t) =Y Ti(¢)sin (”32)“. (13.16)
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Substituting this series into (13.15), we obtain

1 1

o kD & (kw2 . (k+
k:ZOTk(t)sm 32 :416207( 32 )Tk(t)sm 32

)TTx

From this relation, for any k =0, 1,2

T,é(t)z—(z(kgé)ﬂ)ZTk(t) = Tk(t):Ckei( . (13.17)

Substituting (13.16) into the initial condition of the problem (13.15), we get

o0 k+ Yz
ZTk(O)sin( +32) ey —

2 7 (k+ O
X
7;(0) = 3 / xsin 32 dx

3 +h ! 3
2 —cos (H ™ /cos § 70+25in (k+32)m
35w T3 (e dr=0+, (H;)n)z
3 ( 3 0
_gsin(k+3)m 2 (=1)f9 e(—1)f

(<k+3;>n)2 3+ 1w (et 1)
Since C; = T;(0), we may now substitute 7;(z) given by (13.17) into (13.16), getting

6(_1)k 7471:2(](;%)21 . (k+;)7‘[x
e s
5 (k+5)?a? 3

Problem 13.8. Find the solution to the mixed problem

u (x,1) = 161y (x,1), 0<x<3, t>0;
ux(0,8) = uy(3,¢) = 0;
u(x,0) = x.

Problem 13.9. Find the limit # — oo of the solution of the previous problem.

Answer.

1 1
tlgguf(pof /xdx:3~



14 Mixed problem for the d’ Alembert equation 83

14 Mixed problem for the d’Alembert equation

Let us solve the mixed problem

Uy (x ,z) Uy (x,1), 0<x<l, t>0;
u(0,1) = u(l,r) =0; (14.1)
u(x,0) = ( ) w(x0) = w(x).

Similarly to (10.3), it is written in the operator form as

{ PU(1) = d’Ai(t), 1>0;

Solution of the problem (14.1)
We will look for the solution in the form of the series (13.2):
Z ysin X7 (14.2)

A. Substituting (14.2) into (14.1), we formally get

2

> kmx > km kmx
T/ (¢) sin =a* 7( ) T;.(7) sin .
Lrtsn'T = T (") nisin]

From here, as long as these series converge in L?(0,1), we find the equations on the
temporal functions (compare with (13.5)):

k 2
10 =—(“"

l ) T(1), Vk=1,2,.... (14.3)
The general solution is (compare with (13.6)):

km
t+Bsin . (14.4)

akr
T (t) = Ag cos /

/

B. The unknown constants A, and By, are found from the initial conditions in (14.1):
u(x,0) =Y Te(0 )Sm =) = Ti(0)=@c (see(13.9)),
I

2 k
ZTk sin ™ — y(x) = T/(0) = i = z / e (x) sin ’l”dx.
o

Substituting (14.4) in the above relation, we find:
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Ti(0) = Ax = ¢,
akm
L0 =8 ~w = B- (;’;’;). (14.5)
I
Therefore, according to (14.4),
akm Vi . akm
Ti(t) = rcos / t+ (a];n)sm s
Finally, substituting (14.5) into (14.2), we obtain:
- akm VW, . akmw \ . kmx
u(x,t) :kg’l<(pkcos / t+ (a];n) sin ; t) sin ; t. (14.6)

Question 14.1. While deriving (14.3), we again interchanged differentiation in x
and ¢ with the summation. Is this justified?

Justification of the Fourier method for the d’Alembert equation

A. Does the series (14.6) converge? It is dominated by the series

S 1\
const O | + .
(o + )

For the convergence of this series, it suffices that

{ o(x) €C'0,7],  @(0)=o(l)=0;
y(x) € C[0,1].

This is proved similarly to the derivation of (12.4) from (12.5).
B. We need to be able to differentiate the series (14.6) twice in x and in ¢. For this,
the convergence of the following series suffices:

Y (K¥lol +klual ) <. (14.7)
k=1

For the convergence of this series, it is sufficient to have

{<p(x)ec3[o,l], 90 =0()=0,  @"O)=¢"N)=0: ;¢

v eC0d,  w(0)=w(l)=0.

This is proved analogously to the derivation of (12.9) from (12.10).

Conclusion. The series (14.6) is a solution to the problem (14.1) if the functions ¢
and y satisfy the conditions (14.8).
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Remark 14.2. More precise (less restrictive) conditions on ¢, y are given in terms
of the Sobolev spaces (see Section 26 below).

Problem 14.3. Find the solution of the mixed problem

uy =y (x,1), O0<x<4, t>0;
w(0,) =0,  u(d,1)=0; (14.9)
u(x,0)=0, u(x,0) = 16 — x2.

Solution. One needs to decompose the solution over the eigenfunctions of the Sturm
— Liouville problem (11.15) (see Fig. 11.3):

u(x,r) = i Ti(t) cos (k +4;)7rx.
k=0

Substitution into (14.9) gives, similarly to (14.3),

T/ (1) = —9((“4;)”)2@{(;). (14.10)

The initial conditions in (14.9) give

Tk(o):(pk:07 . .
'y :2/4 okt y)mx  A(-1) (14.11)
Tk(O)*‘I/k—4 A (16 —x°) cos A dx = (k+ 1y

Let us point out that here ¢, = 0, while y(x) satisfies conditions similar to (14.8):
v(x) =16 — x> € C?[0,4]; ¥'(0) = w(4) = 0, that is, y(x) satisfies the same ho-

. . . K+
mogeneous boundary conditions as the eigenfunctions Xy (x) = cos ( +};) ™ do, and

|wi| < C/k? due to Remark 12.3. Therefore, the estimate (14.7) takes place.
From (14.10) and (14.11) we find, similarly to (14.4) and (14.5):
1
W sin 3(k+42)m

Ti(r) 3(k+)m

Answer.
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15 The Fourier method for nonhomogeneous equations

The heat equation

A. Let us consider the mixed problem for the nonhomogeneous heat equation with
the homogeneous boundary conditions (nonhomogeneous boundary conditions in
Section 16 below will be the next step in developing the Fourier method):

W=y f(xe), O<x<l
u(0,t) =0, u(l,r) =0, (15.1)
u(x,0) = @(x).

Again, we look a solution of this problem in the form (13.2):
Z s1n . (15.2)

The new step will be the decomposition of f(x,7) over the eigenfunctions of the
Sturm — Liouville problem:

1

filt) = ? /f(x,z)sin k7;xdx. (15.3)

0

kmx
l 2

s

flx1) =) filt)sin

k=1

This decomposition is possible due to the completeness of the family of eigenfunc-
tions sin **, k € N, in the space L?(0,1) as long as f(x,t) € L*(0,1) for each fixed
t>0.

B. For finding the temporal functions 7} (), we substitute decompositions (15.2),
(15.3) into (15.1):

o oo 2
X 5 (lm) kmx
s1n =—a Ti.(¢) sin + sm . 154
Lo} L (] L' s
From here, due to the orthogonality of the family of eigenfunctions, we get
, akmy?
Tk(t):f< l ) L)+ filt), >0, k=1,2,....  (15.5)

Thus, the differential equation on the temporal functions is obtained. For the unique
determination of these functions, one needs to take into account the initial condition
from (15.1):

gk

Tk(O)sink7;x:(p(x) = Tk(O):i / (p(x)sink’; dx.

k=1
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Let us point out that the boundary conditions in (15.1) are automatically satisfied
due to decomposition (15.2) (since they are satisfied for the eigenfunctions sin k’f‘ )

1
k)
C. Let us apply this scheme to particular problems.

as long as T;.(¢) = 0(

Problem 15.1. Solve the mixed problem

uy = 16Uy, + 2, O0<x<7, t>0;
ux(0,8) = u(7,t) =0; (15.6)
u(x,0) =0.

Solution. As it follows from the boundary conditions, the solution should be de-
composed over the eigenfunctions of the Sturm — Liouville problem (11.15) (see
Fig. 11.3):

> k+
u(x,t) = ZTk(t)cos( 2) *. (15.7)
k=0
Substituting this series into (15.6), we get the equation similar to (15.5):
2
4(k+Hm
Tk’(t)z—( ( 72) )Tk-i—fk, >0, k=1,2,..., (15.8)
where
7 (kD) |7 k
2 (k+ Dmx 4sin" 2 (-1
=" [2cos 2T dx= 7 =4 : 15.9
fe 7/ 7 7 (b ko PP
0 7
As it follows from the initial condition of the problem,
Ti(0) = 0. (15.10)

Let us solve the problem (15.8), (15.10). The general solution to (15.8) has the form
Ti(t) =T (1) + T (1), (15.11)

where Tk0 (¢) is the general solution to the homogeneous equation,

700 = e (727, (15.12)

and a particular solution Tkp (t) to the nonhomogeneous equation (15.8) is a constant.
Substituting 7}/ (t) = Ay. into (15.8), we get

0:7(4(1(—!-%)7[

2
A
7 ) k+fk7



88 2 The Fourier method

1k
Ay 4Ok _ OEDE (15.13)

16((k+Dm)’ 4((kt3))]
Substituting (15.12) and (15.13) into (15.11), we get

4k+ymy 2 49(—1)*
Tk(t):Ckef( 72 )t+ 9( )

. (15.14)
4((k+ 1))’
Now we need to take into account the initial condition (15.10):
49(—1) 49(—1)*
0=Cr+ (=1) ;. = G=- (=1) 5
4((k+3)m) 4((k+5)m)
Finally, substituting (15.14) into (15.7), we get
el 49 Akt 1 n k+1 .
u(x,z):Z(—l)k 3<—e’( 7° )2’+1)c0s( 2) * (15.15)
k=0 4((k+3)m) 7

Problem 15.2. Find the limit of the solution to the problem (15.6) as t — +co.
Solution. Taking the limit # — oo in each term in the series (15.15), we get (justify!)

o k 1
— k
Uo(X) = lim u(x,7) = 49(-1) cos (k+ 2)7”'

(15.16)
[=tee =0 4((k+;)7r)3 7

Let us compute the sum of this series. For this, we notice that

k 1
==Y, (=1) sin(k+72)m, (15.17)

" _ — (_l)k (kJr;)TEx__]
Ug(x) = 1;4(k+é)ﬂcos 7 =3 (15.18)

where the last equality follows from decomposition (see (15.9))

< 4(—1) k+ Oz
2:2 ( 1) cos( 2) x.
im0 (k+,)m 7

Integrating twice the identity (15.18), we get

4+ Cx+G). (15.19)

Uoo(Xx) =

16(
To find C| and C,, we notice that due to (15.16) and (15.17)
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Substituting the expression (15.19) into the above relations, we find C; =0, C, =
49; hence, U (x) = 116 (49 — x2).

Remark 15.3. We could obtain u.. directly from (15.6), without using the non-
stationary solution (15.15). To do so, we substitute u; by 0 and solve the problem

o 1" :
{0 16ug(x)+2,  0<x<T7; (15.20)

ul,(0) =0, uo(7) = 0.

Remark 15.4. The important property of the heat equation is that under stationary
external conditions (that is, when the nonhomogeneous terms of the equation and
the boundary conditions do not depend explicitly on 7) the solution u(x,) stabilizes
as t — +-oo:

u(x,1) — Uoo(x), t — oo (15.21)

The limit function u«(x) is the solution to the corresponding stationary problem. The
only exception is the case of perfect insulation at both ends (gz =0atx=0andx=
[) and the nonhomogeneity is nonzero. In this case, there is no limit stationary state
s (x). If, for example, the nonhomogeneity in the equation is a positive constant
(permanent heat influx), then the temperature growth is unbounded.

Problem 15.5. Find the limit as # — 4o of the solution to the mixed problem
= 25U (x,1) + 322, 0<x<6;

w(0,6) =0, u'(6,1)=1; (15.22)
u(x,0) = sinx.

Solution. As we said above, we get from (15.22) and (15.21) the following boundary
value problem for ite(x) = limy_,e u(x,7):

0=25u"(x)+3x*>, 0<x<6;
Uo(0) =0,  ul(6)=1.

Integrating this equation, we get uo(x) = — 1*30 + C1x+ C,. From the boundary con-
ditions we get C, =0, ,g; +C =1.
Answer. uo(x) = — 1"30 + 3.

The wave equation

Let us consider the nonhomogeneous wave equation.

Problem 15.6. Solve the following mixed problem (where @ > 0):

Uy (x,1) = 25Uy + x(3 — x) sin or, 0<x<3, t>0;
) =u(3,1) =0 (15.23)
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Solution. A. In view of the boundary conditions in (15.23), we are looking for the
solution u in form of the decomposition over the eigenfunctions of the Sturm —
Liouville problem (11.1):

Z )sin x. (15.24)

For this, the function x(3 — x) sin @7 in equation (15.23) is also decomposed into the

series over the system sin k;” :

x(3—x)sinwr = Z gk s1n sina)t7 (15.25)

3
where g = 3 [x(3 —x)sin T dx = 30, (lf(fl)k).
0 (k)

B. Finding the temporal functions 7;(¢). Substituting decomposition (15.24) and

knx

(15.25) into equation (15.23) and using the orthogonality of the family sin *3*, we
get, similarly to (14.3),

<5k7r 2

1) = (", ) Ti(r) + gusin 0. (15.26)

Substitution of the series (15.24) into the initial conditions (15.23) gives
7;(0) =0, T;(0)=0. (15.27)

The Cauchy problem (15.26)—(15.27) uniquely determines the temporal functions
Ti(1).
It is known that the general solution to equation (15.26) has the form

Ti(t) =T (1) + T (1), (15.28)
where Tko(t) is the general solution of the corresponding homogeneous equation

Sk Sk
Tko(t):Akcos Snt—l—Bksin 3”t,

while Tkp (¢) is a particular solution to the nonhomogeneous equation (15.26).
When finding a particular solution, one needs to distinguish two cases: the reso-

nant case and the non-resonant case.

1. Non-resonant case: Forall k € N,

Skr

0F S (15.29)

Then 7} (¢) are to be looked for in the form

T} (t) = Cysino.
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Substitution into (15.26) gives
Skm\2
—0*Cysinot = — ( 3 ) C.sin ot + gy sin ot

from where, in view of (15.29),

8k

RNC YR

Then (15.28) takes the form

B Skr . Skm g sin wt
Ti(t) = Agcos 3 t + By sin 3 t+(5’§”)2—w2.

Finally, the initial conditions (15.27) yield

Skr 8@
Ak :07 Bk + =0 = Bk =
3 (51;17)27 w2

_ 8k®
Slgn ((51;:)2 o wz)
Thus, in the case when (15.29) is satisfied forall k =1, 2, ..., we have

o gk o . /5km . . kmx
u(x,r) = - sin t)+sinor)sin . (15.30)
k; (sgnz)_wz( (3km) ( 3 ) ) 3

2. Resonant case: For some m € N,

P (15.31)

In this case,
TP (t) =t(Cucos ot + Dy, sin ot).

Taking k = m and substituting into (15.26), we get
2(~Cn®sin O + Dy cos 01 ) + 1 (—Cp®* cos ©f — D,,@? sin o1 )

_ 7(57;”)2t(Cmcoswt+Dm $in @) + g, 5in 0. (15.32)

Here in the left-hand side we used the Leibniz formula for computing

d? .
52 [z (Ccos ot + Dy, sin a)t)} )

Taking into account (15.31) and collecting the terms in (15.32), we get
2(—Cn@sin @t + D,y 0 cos OF) = gy sin OF.

We compare the coefficients at cos @t and sin wf on the left and on the right:
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2D,,0 =0 —2C,0 = gn,
Since w > 0,
Dp=0, Cp=-5"
2w
Thus,
TE(r) = —ti"o cos of
Therefore sk sk
T T
T(t) = Ay cos 3 t + B,,sin 3 t ftiz) cos Ot .
Substituting into the initial conditions (15.27), we get
Smw gn 3gm
An=0; B — =0= By, .
" "3 20 " 10mnw

Therefore,

3 Sk
TP(t) = IOné;;w sin( 3”t) —tg3m Cos W

Thus, if for some m € N the condition (15.31) is satisfied, we get (compare with
(15.30)):

8k o . 5km . . kmx
u(x,t) = (f sin~ " f+sin a)t) sin
it (5777 02\ (3m) S 3 3
3 5
(10:;:;@ sin nsmtftgz; cosa)t) sin m;rx' (15.33)

Remark 15.7. In the non-resonant case, all the terms in the series (15.30) are
bounded functions of x, #, while in the resonant case (15.31) one of the terms in
(15.33) is unbounded when ¢t — +oo. Therefore, for large ¢, the solution will be
represented mainly by the last term in (15.33). As ¢ grows, the solution becomes
unboundedly large. If it were the amplitude of a string, the string would break. As
the matter of fact, when the solution becomes large, it is no longer described by the
linear wave equation, and the formula (15.33) is no longer valid.

Problem 15.8. Find the solution to the mixed problem

Uy (x,1) = 16ux,c—i-s1n717f))‘7 0<x<5, >0
(0 [) 0, MX(57[):0;
u(0,x) =0, u;(0,x) = 0.
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16 The Fourier method for nonhomogeneous boundary
conditions

Up to now, we were using the Fourier method only for problems with homogeneous
boundary conditions. It turns out that the problem with nonhomogeneous boundary
conditions is easily reduced to a problem with homogeneous boundary conditions.

The heat equation

Problem 16.1. Find the solution to the mixed problem

Uy = uyy, O<x<4, t>0;
w(0,0)=f(r),  u(4,r)=g(t); (16.1)
u(x,0) =0.

Solution. Let us find an auxiliary function v(x,7) which satisfies the given boundary
conditions:

v(0,1) = f(1), v(4,t) =g(t), t>0.

Such a function can easily be found, for example, using a linear interpolation

X 4—x

v(x,t) =" g(t)+ 4

f(0).
Denote w = u — v. Then w satisfies the homogeneous boundary conditions
w(0,1) =0, w(4,t) =0, t>0. (16.2)

Question 16.2. What equation and boundary conditions does the function w satisfy?

Answer. We substitute u = w4 v into (16.1); then

Wi 4V = 9(Wax + Vir)s
w(x,0) +v(x,0) =0,

leading to
W = Iy + 9V — vr),
w(x,0) = —v(x,0).

Thus, unlike u, the function w satisfies the nonhomogeneous heat equation! But the

boundary conditions (16.2) are now homogeneous, hence w could be found using the
method of Section 15; then u = w+v is the solution to the problem (16.1). Thus, we
sent the nonhomogeneity from the boundary conditions into the differential equation
(16.1) and into the initial condition.
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The wave equation

Problem 16.3. Solve the mixed problem

Uy = 161y, 0<x<5, t>0;
u(0,7) =0, ux(5,t) = sinor; (16.3)
u(x,0) =0, ur (x,0) = 0.

Solution. A. The auxiliary function
v(x,t) = xsin ot
satisfies the specified boundary conditions. For w = u — v, we have:

Wy = 16wy + w%xsin o, 0<x<5, t>0;
w(0,0)=0,  wy(5.1)=0; (16.4)
w(x,0) = —v(x,0) =0, we(x,0) = —v(x,0) = —xo.

B. Following the method of Section 15, we are looking for w in the form

© 1
wixt) = Y Ti(t) sin (k +52)”x. (16.5)
k=0

For this, we expand the right-hand side of equation (16.4):

. . > . k+ Nx
®*xsinwt = @*sinwr Y x;sin (k+2)
k 5 3

k=0

where

X = xsin x=—
5

5 Jo 5 5 (k+ 5

k+Nax;s /5 k+ Mr
| 52) x’o_/ cos' 52) xdx}
JO

5 k4 5 k
2 in ¢ +2)7rxd 203 /xdcos( )T
)mJo

= — |:)C Ccos
T

2.5 . (k+;)m’s 10

— —1~ 16.
(ke ™™ s ’ (166

0 (k+))2n? 3

C. Substituting (16.5)—(16.6) into equation (16.4), we find the equations on the tem-
poral functions 7} (¢):

k+ Nmy2
Tk”(z)z—m(( 52) )Tk(z)+w2xksina)t, k=0,1,2,.... (167

From the initial conditions (16.4) we find 7;(0) = 0 and
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2 /5 (k+ ))mx 10- (—1)f
T7,(0) = / —ox)sin - 2 dyx=-0 . 16.8
(=7 [ (coxsin " hr iy 169
In the last equality, we took into account (16.6). The problem (16.7)—(16.8) could
be solved in the same way as in Section 15. Again, two cases are possible: resonant
and non-resonant.
Complete the solution of the problem (16.1).

Remark 16.4. For problems like (16.4) a condition analogous to (14.8) is not sat-
isfied. Still, the new function w(x,?) satisfies the initial and boundary conditions in
the usual sense. It is only the first equation in (16.4) that is satisfied in the sense of
distributions (see Section 26 below).

Problem 16.5. Find the resonance condition in the problem (16.3).

4(m+ymx
Answer. @ = 52> forsomem=0,1,2,....

17 The Fourier method for the Laplace equation

Boundary value problems in a rectangle

A. Let us consider the boundary value problem in the rectangle 2 = [0,4] x [0,5]:

Au(x,y)zgi’z‘—i—gi’z‘:O, O<x<a, 0<y<b;

u(0,y) =0, u(a,y) =0; (17.1)
u(x,0) = f(x), u(x,b)=gx).

This is the boundary value problem, or the Dirichlet problem: the function u is given
at the boundary of the considered region. See Fig. 17.1.
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Solution. The problem (17.1) can be solved by the method of Section 15, where the
role of the variable ¢ is now played by the variable y, as could be seen from com-
paring problems (17.1) and (15.1). We are looking for the solution in the following
form:

u(ry) = ¥ %(y)sin kzx. (17.2)
=1

Then the boundary conditions at x = 0 and x = a in (17.1) are automatically satisfied.
We substitute (17.2) into equation (17.1). This gives equations on Y;(y):

k 2
—( Z) V() +Y/(5) =0, 0<y<b. (17.3)

Substitution into the boundary conditions (17.1) at y = 0 and y = b yields

) =fi= ["rtsin T ax

5 ra . (17.4)
y/4
Yi(b)=gr= / g(x)sin * dx.
alo a
The general solution to equation (17.3) has the form
Yi(y) = Age'a? + Bre™ a7 (17.5)
The constants A; and By, are found from the boundary conditions (17.4):
km km
Ac+Bi=fi,  Awee’+Be " =g
Solving this system, we find:
_km
Ak - kmy, ! _kmy, (gk 7fke a b)a
€ 716 ¢ iy (17.6)
By = k), 7k7rb(fke ¢ _gk)'
ea”—e a

Thus, the solution of the problem (17.1) is given by (17.2), (17.5), and (17.6).

Let us check the validity of the solution (17.2). We need to justify the possibility
of the termwise differentiation of the series (17.2). If f(x) and g(x) are integrable
functions, then f(x) and g(x) are bounded:

2 4 2 4
A< [l lal < [Cle@ldx

But then from (17.6) we see that [A¢| < 7 [Bi| < const. Therefore, it follows from
e a

(17.5) that |Y;(y)| < ce™ TO) 4o TV Asa consequence, for € <y < b— ¢, with
€ > 0 small, one has |Y;(y)| < ce™ T¢, and the series (17.2) for these values of yis
dominated by the convergent geometric series } ;" ce™ e Ttis easy to see that the
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derivatives of the second order in x and in y of the series (17.2) are dominated by

. - _k A
the series } ;” ck?e~'a €, which is also convergent. In the same way one proceeds
with the derivatives of any order in x and y.

Conclusion. Solution of the Dirichlet problem (17.1) is a smooth function inside
the rectangle Q. Let us assume that, as in (12.5), f(x), g(x) € C3[0,a]. Then, anal-
ogously to (12.4), fi, gk = 0(]:2) and, consequently, |Yi(y)| < /5, y € [0,b]. There-
fore, the series (17.2) converges uniformly in the rectangle Q = [0,4a] x [0, 5], and
its sum is a function which is continuous in this rectangle and satisfies boundary

conditions in (17.1).

B. More general boundary value problem of the Dirichlet type in the rectangle,

Au(x,y) =0, O<x<a, 0<y<b;
u(0,y)=0(y),  u(a,y)=w(y):; (17.7)
u(x,0) = f(x), u(x,b) = g(x),

could be solved by decomposing the solution u into two terms:
u=uj+u. (17.8)
Here u; solves the problem (17.1), while u; solves the problem

Aur =0, O<x<a, 0<y<b;

w(0,y)=0(y),  w(ay)=wy(y);
up(x,0) =0, up(x,b) = 0.

This problem takes the same form as (17.1) if one interchanges x and y. Therefore
uy should be tried in the form (compare with (17.2)):

= . km
uz(x,y) = ZXk(x) sin by' (17.9)
k=1

If f, g € C}[0,a], while @, y € C}[0,b], then, according to what we said above,
u; and up, and, consequently, u = u; + up are continuous functions in £ which
satisfy the required boundary conditions.

In the general case, for the continuity of u(x,y) in £, the following compatibility
conditions are obviously required:

f(0)=9(0), o()=¢g(0), gla)=wb), w(0)=f(a) (17.10)

Problem 17.1. Prove that the problem (17.7) has a solution continuous in  if
f, g €C?0,a], ¢, w € C?[0,b], and the compatibility condition (17.10) is satisfied.

Hint. Try to find the solution to equation Av = 0 in £ which coincides with the
boundary values given by functions f, g, ¢, and y at the boundary of the region
Q. Then the difference u — v could be found using decomposition (17.8) described
above.
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C. Now we consider the nonhomogeneous Laplace equation (the Poisson equation).

Problem 17.2. Solve the boundary value problem

Au(x,y) = x>y, O<x<a, 0<y<b;
u(0,y) =0,  u(a,y)=0; (17.11)
u(x,0) =0, 94 (x,b) = 0.

Let us point out that here at x = 0, x = a, and y = 0 one has the boundary value of
the Dirichlet type, while at y = b one has the boundary value of the Neumann type
(that is, the derivative of the solution in the normal direction is specified).

Solution. Homogeneous boundary conditions at x = 0, and x = a allow to write the
solution in the form of the series over the eigenfunctions of the corresponding Sturm

— Liouville problem:

& k
u(x,y) = Y Yi(x)sin Zy. (17.12)
k=1

We also decompose over these functions the right-hand side:

> km 2 [a km
xzy =Yy Z gk sin y, gk = / x%sin Y dx.
k=1 a aJjo a

Substituting these decompositions into (17.11), we getforVk =1, 2, ...

k2
—( )Yk(y)+Y,§’(y)=ygk, O<y<b  Y(0)=0, Y/(b)=0. (17.13)

a

Then
Y8k

—(*)
The constants A and By, can be found after substituting this solution into the bound-
ary conditions in (17.13):

kmx _ knx
Yk(y):Ake a —|—Bk€ a —|— (17]4)

2-

km km km km
Ar+Br =0, aAk€”b+(7a)Bk€7”b+ (il;)zio
a

Answer. The solution is given by the formulas (17.12), (17.14).

Boundary value problems in annulus and in disc

A. Let us solve the boundary value problem of the Dirichlet type in the annulus
between the circles of radii r; and r:
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Au(x,y) =0, < xt+yr <
(17.15)
M‘szryz:r% = f1(§0)7 M‘szryz:r% = fz((P); 0<o<2m.
Here f; and f, are given continuous functions of the angular variable ¢.
Solution. Let us convert to polar coordinates r = 1/x2 +y2, ¢ = arctan .

Problem 17.3. Prove that in these coordinates the problem (17.15) takes the form

82u+18u+182u 0 e
= = r<r<r,
art  ror  r?ode? » -z (17.16)

u‘r:r1:f1(¢)> M|r:r2:f2(§0); 0<¢<2m

Au

This is a problem in a rectangle [0,27] x [ry,r,] (Fig. 17.2). The boundary con-
ditions are given at the lower and at the upper sides of the rectangle.

Fig.17.2

Question 17.4. Are there boundary conditions at the left and right sides of the
rectangle?

Answer. Yes, it is the periodicity condition in the variable ¢:

du du

u(0,r) =u(2m,r), 8q)(O,r) = 0

(2m,r). (17.17)
This follows from the fact that the points with the polar coordinates (0,r) and (27, 7)
are identical. Analogous periodicity conditions in ¢ also hold for all partial deriva-
tives of u in r and @.

Problem 17.5. Show that the conditions (17.17) together with equation (17.16)
guarantee the periodicity in ¢ of all the derivatives of u in r and @ if u(¢@,r) is a
smooth function in the rectangle [0,27] X [ry,r2].

The Sturm — Liouville problem which corresponds to the homogeneous boundary
conditions (17.17) has the form
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82
a(pﬂ’((P):/ldS((P% 0<¢<2m (17.18)
®(0) = d(21),  P'(0)=P'(27).

Solving this problem, we find:
o=—k,  D(@) =Arcoskg +Bysinkp,  k=0,1,2,....

Therefore, for each k # 0 there are two linearly independent eigenfunctions: cosk¢
and sink@, while for k = 0 there is only one eigenfunction: Pp(@) = 1. As it is
known from the Fourier series theory, these eigenfunctions form a complete orthog-
onal set in L7 (0,27) and are mutually orthogonal. The squares of their L?-norms are
given by

2 27

i(p)do= | dp=2m
2n O on (17.19)
/O cos’ (ko) de = /O sin(kg)dp =m, k=1,2,3,....

The Fourier method for the problem (17.16) in the annulus consists of finding
the solution in the form of a series over the eigenfunctions of the problem (17.18):

u(@,r) =Y Ri(r)coskg + Y Si(r)sinke. (17.20)
k=0 k=1

Substituting this series into equation (17.16), we get the following equations on the
“radial” functions Ry (r):

1 1
RZJFrR;cJFrsz(*kZ):Oa r<r<ry, k=0,1,2... (17.21)
and the same equations on Si:
1 1 / 1 2
SkJrrSkJrrZSk(fk):O, r<r<r, k=0,1,2,.... (17.22)

Let us solve the radial equations (17.21), (17.22). These are the Euler equations.
Substituting Ry, = r* into (17.21), we get

AA =) A2k 2 =0,

and we get the characteristic equation A2 — k> = 0, hence A = k. If k # 0, then the
roots are simple, and the general solutions to (17.21) and (17.22) have the following
form:
Re(r)=Au* +Bur ™, k=1,2,3,...; (17.23)
Se(r)=Cu*+Dpr %, k=1,2,3,.... (17.24)

For k = 0, the root of the equation A = 0 has multiplicity 2, hence
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Ro(r) =Ao+Bylnr. (17.25)
Substituting (17.23)—(17.25) into (17.20), we get the general solution of a homoge-
neous Laplace equation in the annulus:
B = « Bk o ¢ Dk, .
u(@,r) =Ao+Bolnr+ Y (A + ot )coskp + Y (Crr* + & )sinke. (17.26)
k=1 k=1
Remark 17.6. This is a general form of a harmonic function in the annulus.

The values of the constants in (17.26) are obtained from the boundary conditions
(17.16):

Ao+Bolnry + ¥ (Aer + Brr %) coske + ¥ (Cork + Dy ) sinkg = £1(9),
k=1 k=1
Ao+ Bolnry+ ¥ (Agrk + Bury ¥ cosko + Y (Curk + Diry ) sinke = (@),
k=1 k=1
(17.27)

where 0 < ¢ < 27. Taking into account the orthogonality of the eigenfunctions of
the Sturm — Liouville problem (17.18) and the relations (17.19), we get

1 2
Ao+ Bolnr =, / file)do,
T 0277:

1 (17.28)
Aop+ Bpl = d
ot+Bolnry = A f(e)do,
and, similarly, fork =1,2,3, ...,
k 1 21
Akrlf + Byt = / Si(@)coskode,
71[- 0, (17.29)
Akrjzc +Bkr;k = ﬂ/o f2(@)coskodo;
X 1 2 .
Ckr]f—l—Dkrf = / fl((P) smk(pd(p,
TJo (17.30)

1 2 )
Ckrlﬁ +Dkr£k: 75/0 f(@)sinkode.

We find Ag and Bj from the system (17.28) and Ay, By from (17.29). Cj, and Dy, are
found from (17.30). The problem (17.15) is solved.

Problem 17.7. Prove that the solution (17.26) of the problem (17.15) is infinitely
differentiable in the interior of the annulus.

Problem 17.8. Solve the Dirichlet problem in the annulus:

{Au(x,y)O, 4<x?+y?<9;

u‘x2+),2:4 =X, u|x2+y2:9 =

Solution. Here r; = 2, r, = 3, so that
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fi(9) =2cos @, f2(¢) =3sing. (17.31)

Therefore, the right-hand sides in (17.28) are equal to zero and Ag = By = 0. Analo-
gously, the right-hand sides of the systems (17.29) and (17.30) are equal to zero for
all k # 1, thus

Ak:Bk:O7 Ck:Dk:() for k%l

Hence, the series (17.26) contains only two terms:
u(@,r) = (A1r+Bir V) cos@ + (Cir+Dyr V) sin . (17.32)

The remaining coefficients are obtained from the systems of equations

{A12+BI;2, {C12+D1;0, 1733

A13+31§=0, C13—|—D1;=3,

which are derived directly from (17.31). Namely, (17.33) is obtained by substitut-

ing (17.31) into (17.27) and comparing the Fourier coefficients in both sides of the

relations, instead of evaluating integrals in (17.29)—(17.30). From (17.33) we find
4 36 9 36

B = C = D =—"". 17.34
5 1= 5 | | ( )

A= —
! 5’ 5

Answer. u(@,r) = (f;‘rJr 356;"1) cos @+ (grf 356r’1) sin@.

B. Now let us consider the Dirichlet problem in the disc of radius R:

_ 2 2 2.
{Au(x,y)o, X“+y° <R (17.35)

uleyoge = f(@), 0<¢<2m.

A solution of this problem also has the form (17.26), since the disc x>+ y2 <R?
contains the (degenerate) annulus 0 < x> 4+ y? < R?. But the disc also contains the
point (0,0), where the solution has to be finite:

14(0,0)| < oo. (17.36)

It can be shown [TS90] that (17.36) holds if and only if all the terms which have
the singularity at (0,0) of the form Inr and ¥ are absent from (17.26). This means
that B=B, =D, =0, k=1,2,3,.... Thus, (17.26) takes the form

u(x,y) =Ao+ Y r*(Axcoskg + Cysink). (17.37)
k=1

This is the analog of the Taylor series for a harmonic function in a disc. The coef-
ficients of the series (17.37) are found from the boundary condition of the problem
(17.35).

Problem 17.9. Solve the Dirichlet problem in the disc:
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{Au(x,y) =0, X243 < 4;

)
Uiy =x

Solution. We are looking for the solution u in the form (17.37). The substitution of
this series into the boundary condition gives:

Ao+ Y 2%(Akcoskg + Cysink) = 2+ 2cos20, (17.38)
k=1

since x2|,—, = (2c0s @)% = 4cos? @ = 2+ 2cos2¢. Comparing the Fourier coeffi-
cients in the left- and right-hand sides of (17.38), we see that all Ay and C; with
k # 0 and k # 2 are equal to zero, and and the formula (17.37) yields the answer:
Ao=2,A,=1/2,C, =0. The formula (17.37) takes the form

1 2 22
u:2+r220052(p:2+r2(cosz(p—sinzq)):2+x 2y .

Problem 17.10. Solve the Dirichlet problem in the annulus:

{ Aulxy)=x*, 9 <+y? < 16;
M‘x2+y2:9 =0, u|x2+y2:16 =0.

Hint. Both the solution that we are looking for and the right-hand side of the equa-
tion are to be decomposed into the series of the form (17.20). Equations on the radial
functions Ry and S; will be the nonhomogeneous Euler equations.

Problem 17.11. Solve the Neumann problem in the disc:

{Au(x,y) =0, x> +y?<09;
du _
on |x2+y2:9 =

where 59 , 1 the derivative normal to the boundary of the disc.

Hint. Solution is to be looked for in the form of the series (17.37); moreover, in the
du

polar coordinates one has 3,’1 =9
Conclusion. The heat equation, the wave equation, and the Laplace equation possess
different properties. As it follows from the results of Chapter 2, solutions of the
homogeneous Laplace equation and the heat equation are smooth inside the regions
where they are considered, even if the boundary values are discontinuous. At the
same time, solutions of the homogeneous wave equation could be discontinuous if,
for example, the initial data are discontinuous functions.
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