
Chapter 2

The Fourier method

9 Derivation of the heat equation

We consider a straight homogeneous metal rod of length l, cross-section S, and

density ρ . We choose the axis x along the rod, and let x = 0 be the left end of the

rod, so that x = l is its right end. Denote by u(x,t) the temperature of the rod at a

point x at the moment t > 0. We assume that the cross-section is small, so that u

depends only on x. It turns out that u(x,t) satisfies the differential equation called

the heat equation,

∂u

∂ t
= a2 ∂ 2u

∂x2
(x,t)+ b f (x,t), (9.1)

where f (x,t) is the density of the external heat source at the point x at the moment t.

This means that the piece [x,x + ∆x] of the rod during the time interval from t until

t + ∆ t receives from the outside the amount of heat equal to

Qexternal = f (x,t)∆x∆ t. (9.2)

Let us derive (9.1). To do this, we write the equation of the heat balance for the

piece of the rod [x,x + ∆x] as the time changes from t to t + ∆ t:

cm∆T = Q. (9.3)

Here c is the specific heat capacity of the material, m = ρS∆x is the mass of the

piece, and ∆T is the temperature increase:

∆T ≈ u(x,t + ∆ t)−u(x,t). (9.4)

Q is the total amount of heat received by the piece:

Q = Qexternal + Ql + Qr, (9.5)
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66 2 The Fourier method

where Qexternal is the heat received from the external sources, Ql is the amount of

heat received from the left (that is, through the section of the rod at the point x),

while Qr is the amount of heat received from the right (that is, through the section

of the rod at the point x + ∆x). See Fig. 9.1.

Fig. 9.1
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According to the Fourier law of heating,

Ql = −λ S
∂u

∂x
(x,t)∆ t, Qr = λ S

∂u

∂x
(x + ∆x,t)∆ t, (9.6)

where λ is the heat transfer coefficient and S is the cross-section area of the rod.

The relation (9.6) means that the rate of the heat transfer through the cross-section

of the rod at the point x is proportional to the rate of change of the temperature,
∂u
∂x

(x,t). Signs in (9.6) are chosen so that the heat is transferred from warmer bodies

to cooler ones (the second law of thermodynamics). For example, for u(x,t) on

Fig. 9.1, Ql < 0, Qr > 0, while ∂u
∂x

> 0 everywhere, hence the signs in the left- and

right-hand sides of (9.6) coincide.

Substituting (9.6) and (9.2) into (9.5), and then (9.5) and (9.4) into (9.3), we get

cρS∆x

(

u(x,t + ∆ t)−u(x,t)
)

≈ f (x,t)∆x∆ t + λ S

(∂u

∂x
(x + ∆x,t)− ∂u

∂x
(x,t)

)

∆ t.

From here, dividing by ∆x∆ t and considering the limit ∆x → 0 and ∆ t → 0, we get

cρS
∂u

∂ t
= λ S

∂ 2u

∂x2
+ f (x,t). (9.7)

Then (9.1) follows, with the values of the constants being a2 = λ
cρ and b = 1

cρS
.
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10 Mixed problem for the heat equation

Here we will describe the basic idea of the Fourier method.

To determine the temperature of the rod, besides equation (9.1), one needs to

specify the initial temperature

u(x,0) = ϕ(x), 0 < x < l (10.1)

and the boundary conditions. For example, if the ends of the rod are submerged into

the melting ice, then their temperature will be equal to zero (0◦C):

u(0,t) = 0, u(l,t) = 0, t > 0. (10.2)

The problem (9.1), (10.1), (10.2) is called the mixed problem for the heat equation.

For simplicity, we first assume that f (x,t) ≡ 0. The general case with the nonho-

mogeneity f (x,t) 6= 0 is considered in Section 15 below. Let us write the problem

(9.1), (10.1), (10.2) (with f ≡ 0) in the operator form:

{

d
dt

û = a2Aû(t), t > 0;

û(0) = ϕ̂ .
(10.3)

Here A = d2

dx2 , û(t) ≡ u(x,t), and ϕ̂ ≡ ϕ(x). As it follows from the boundary condi-

tions (10.2), û(t) ∈C2
0 [0, l] for all t > 0, where

C2
0 [0, l] ≡ {u(x) ∈C2[0, l] : u(0) = u(l) = 0}.

Thus, we consider the operator A = d2

dx2 on the domain D(A) = C2
0 [0, l].

The idea of the Fourier method is to try to find a solution to the problem (10.3)

in the form of the sum of particular solutions of the form T (t)X(x). Let us illustrate

this idea on an example of the system of n ordinary differential equations with n

unknown functions, also written in the vector form (10.3):

{

d
dt

û(t) = Aû(t), û(t) =
(

û1(t), . . . , ûn(t)
)

∈ Rn, t > 0;

û(0) = ϕ̂ = (ϕ̂1, . . . , ϕ̂n) ∈ Rn,
(10.4)

where A is a matrix of size n× n. Assume that there is a basis of the eigenvectors

eee1, . . . , eeen of the matrix A, with the eigenvalues λk:

Aeeek = λkeeek, k = 1, . . . , n. (10.5)

Then the solution û(t) we are looking for, as well as the initial vector ϕ̂ , can be

represented as

û(t) =
n

∑
k=1

Tk(t)eeek, ϕ̂ = ∑ϕkeeek.
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Substituting into (10.4) we get

n

∑
k=1

dTk(t)

dt
eeek =

n

∑
k=1

λkTk(t)eeek,
n

∑
k=1

Tk(0)eeek =
n

∑
k=1

ϕkeeek,

hence
dTk(t)

dt
= λkTk(t), t > 0; Tk(0) = ϕk.

We see that Tk(t) = ϕkeλkt , and, therefore,

û(t) =
n

∑
k=1

ϕkeλkt eeek. (10.6)

In what follows we will obtain the analogs of formulas (10.5)–(10.6) for the

operator A = d2

dx2 .

11 The Sturm – Liouville problem

Let us find in D(A) = C2
0 [0, l] the eigenfunctions X1(x), X2(x), . . . of the operator A:

{

AXk = λkXk, k ∈ N;

Xk ∈ D(A), Xk 6= 0.
(11.1)

The relation (11.1) means that

{

X ′′
k (x) = λkXk(x), 0 < x < l;

Xk(0) = Xk(l) = 0, Xk(x) 6≡ 0.
(11.2)

Remark 11.1. We will show below in Section 13 that the solution to the problem

(10.3) in the basis X1, . . . , Xk, . . . of the eigenfunctions of the operator A has the

form analogous to (10.6):

u(x,t) =
∞

∑
k=1

ea2λktϕkXk(x), (11.3)

where ϕk are the components of ϕ̂ in the basis {Xk : k ∈ N}. Let us point out that

in view of (11.1) each term in the series (11.3) satisfies the operator equation (10.3).

Therefore any finite (partial) sum of this series also satisfies (10.3). The entire series

(11.3) satisfies equation (10.3) if it allows termwise differentiation: once in t and

twice in x. This is the case when the series converges sufficiently fast.

We introduce the notation

〈u, v〉 =

∫ l

0
u(x)v(x)dx for ∀u, v ∈ L2[0, l].
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Lemma 11.1. The operator A = d2

dx2 with the domain D(A) = C2
0 [0, l] is symmetric

and negative:

〈

d2u

dx2
,v

〉

=

〈

u,
d2v

dx2

〉

, ∀u, v ∈ D(A), (11.4)

〈

d2u

dx2
,u

〉

< 0, ∀u ∈ D(A), u(x) 6≡ 0. (11.5)

Proof. (i) The equality (11.4) means that

∫ l

0
u′′(x)v(x)dx =

∫ l

0
u(x)v′′(x)dx. (11.6)

To prove it, we integrate both sides of (11.6) by parts:

∫ l

0
u′′(x)v(x)dx = u′ v

∣

∣

∣

l

0
−
∫ l

0
u′(x)v′(x)dx, (11.7)

∫ l

0
u(x)v′′(x)dx = uv′

∣

∣

∣

l

0
−
∫ l

0
u′(x)v′(x)dx. (11.8)

The boundary terms in the right-hand sides of (11.7) and (11.8) vanish since v(0) =
v(l) = 0 and u(0) = u(l) = 0. Thus, the relation (11.6) is proved.

(ii) When u = v, it follows from (11.7) that

〈

d2u

dx2
,u

〉

=

∫ l

0
u′′(x)u(x)dx = −

∫ l

0

(

u′(x)
)2

dx ≤ 0.

This proves (11.5). Indeed, if
∫ l

0

(

u′(x)
)2

dx = 0, then u′(x) ≡ 0, u(x) ≡ const. But

because of the boundary conditions u(0) = u(l) = 0 one concludes that u(x) ≡ 0,

contradicting the condition u(x) 6≡ 0 in (11.5).

Corollary 11.2. All the eigenvalues of the operator A = d2/dx2 are negative. In-

deed, as it follows from (11.5),

0 >

〈

d2Xk

dx2
,Xk

〉

= λk〈Xk,Xk〉.

The eigenfunctions Xk,Xn with different eigenvalues λk 6= λn are orthogonal:

∫ l

0
Xk(x)Xn(x)dx = 0.

Indeed, it follows from (11.4) that

λk〈Xk,Xn〉 = 〈AXk,Xn〉 = 〈Xk,AXn〉 = λn〈Xk,Xn〉,

implying that 〈Xk,Xn〉 = 0.
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Solution of the Sturm – Liouville problem

From equation (11.2) we get

Xk(x) = Ak e
√

λkx + Bke−
√

λkx. (11.9)

Substituting this into the boundary conditions (11.2), we get

{

Ak + Bk = 0,

Ak e
√

λkl + Bke−
√

λkl = 0.
(11.10)

The matrix of this system should be degenerate, or else Ak = Bk = 0 and Xk(x) ≡ 0,

contradicting (11.2). Thus, λk satisfy the characteristic equation

det

[

1 1

e
√

λkl e−
√

λkl

]

= e−
√

λkl − e
√

λkl = 0.

It then follows that e−
√

λkl = e
√

λkl , hence e2
√

λkl = 1. Therefore, 2
√

λkl = 2kπ i,

k ∈ Z, leading to
√

λk =
kπ i

l
⇒ λk = −

(kπ

l

)2

. (11.11)

Here we may assume that k ≥ 0. As one might have expected, λk ≤ 0. Thus, the

eigenvalues λk are found. Now let us find the eigenfunctions Xk(x). For this, we take

into account that the system (11.10) is degenerate. Therefore, these two equations

are linearly dependent, and it suffices to consider only the first one: Bk = −Ak. In

view of (11.11), we get:

Xk(x) = Ak

(

e
kπi

l
x − e−

kπi
l

x
)

= Ak2isin
kπx

l
.

Here we applied the Euler formula

eiϕ − e−iϕ = (cosϕ + isinϕ)− (cosϕ − isinϕ) = 2isinϕ .

Since the eigenfunctions Xk are defined up to a factor, we can finally set

Xk(x) = sin
kπx

l
, k = 1, 2, . . . .

Here we can assume that k > 0, since for k = 0 we have X0(x) ≡ 0.

Answer.

λk = −
(kπ

l

)2

, Xk(x) = sin
kπx

l
, k = 1, 2, . . . .
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Properties of solutions to the Sturm – Liouville problem

Property 11.3. Completeness: Xk(x) form a complete orthogonal set in L2(0, l) (this

property is known from the theory of the Fourier series).

Property 11.4. Orthogonality:

〈Xk,Xn〉 =

l
∫

0

Xk(x)Xn(x)dx = 0 for k 6= n. (11.12)

Property 11.5. Asymptotics: λk ∼−k2 for k → ∞. That is, there exists a limit

lim
k→∞

λk

−k2
> 0.

Problem 11.6. Check directly the orthogonality property (11.12) for Xk.

Solution. Since k 6= n,

∫ l

0
sin

kπx

l
sin

nπx

l
dx =

1

2

∫ l

0

(

cos
(k−n)πx

l
− cos

(k + n)πx

l

)

dx = 0.

Problem 11.7. Find the norm of Xk in L2(0, l).

Solution.

||Xk||2 ≡
∫ l

0
X2

k (x)dx =

∫ l

0
sin2 kπx

l
dx =

∫ l

0

1− cos 2kπx
l

2
dx =

l

2
. (11.13)

Problem 11.8. Plot the graph of Xk(x).

Solution. See Fig. 11.1.

Fig. 11.1
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Problem 11.9. Solve the Sturm – Liouville problem, that is, find the eigenfunctions

of the operator A ≡ d2

dx2 on the interval [0, l] for each of the boundary conditions:

Xk(0) = X ′
k(l) = 0, (11.14)

X ′
k(0) = Xk(l) = 0, (11.15)

X ′
k(0) = X ′

k(l) = 0. (11.16)

Answer.

For (11.14), λk =−
( (k+ 1

2 )π
l

)2
, Xk(x) = sin

(k+ 1
2 )πx

l
, k = 0, 1, 2, . . . . See Fig. 11.2.

Fig. 11.2

For (11.15), λk = −
( (k+ 1

2 )π
l

)2
, Xk(x) = cos

(k+ 1
2 )πx

l
, k = 0, 1, 2, . . . . See

Fig. 11.3.

Fig. 11.3

For (11.16), λk = −( kπ
l
)2, Xk(x) = cos kπx

l
, k = 0, 1, 2, . . . . See Fig. 11.4.

Fig. 11.4
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One can also consider arbitrary boundary conditions of the form

α0X ′
k(0)+ β0Xk(0) = 0, α1X ′

k(l)+ β1Xk(l) = 0, (11.17)

where α0,1 and β0,1 are real numbers such that

α2
0 + β 2

0 6= 0, α2
1 + β 2

1 6= 0.

Problem 11.10. Prove that the operator d2

dx2 with the boundary conditions (11.17)

is symmetric.

Remark 11.11. The eigenfunctions and the eigenvalues corresponding to each of

the boundary conditions (11.14), (11.15), and (11.16) possess all the properties 11.3,

11.4, and 11.5 (completeness, orthogonality, the asymptotics of the eigenvalues) of

solutions to the Sturm – Liouville problem (11.1). See [Pet91, SD64, TS90, Vla84].

Multidimensional eigenvalue problem

Let us consider an arbitrary bounded region Ω ⊂ R with a smooth boundary ∂Ω
and the problem of finding the eigenfunctions of the Laplace operator in Ω with the

Dirichlet boundary conditions:

△Xk(x) = λkXk(x), x ∈ Ω ,

Xk

∣

∣

∣

∣

∂Ω

= 0. (11.18)

It turns out that its eigenfunctions corresponding to different λk are also orthog-

onal in L2(Ω), while its eigenvalues λk are negative.

Problem 11.12. Prove that the Laplace operator with the boundary conditions

(11.18) is symmetric and negative.

Problem 11.13. Prove that if instead of (11.18) one takes the Neumann boundary

conditions,
∂Xk

∂nnn

∣

∣

∣

∂Ω
= 0,

where
∂

∂nnn
stands for the derivative normal to ∂Ω , then the Laplace operator is

symmetric and non-positive, with λ = 0 the eigenvalue corresponding to the eigen-

function X0(x) ≡ 1.
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12 Eigenfunction expansions

As we already pointed out, the eigenfunctions sin kπx
l

, k = 1, 2, . . . form a complete

orthogonal set in L2(0, l). Therefore they make up an orthogonal basis in L2(0, l)
and, consequently, any function ϕ(x) ∈ L2(0, l) could be decomposed over this ba-

sis:

ϕ(x) =
∞

∑
k=1

ϕkXk(x). (12.1)

Let us find the formula for the coefficients ϕk. This is accomplished with the aid

of the orthogonality conditions (11.12): we multiply (12.1) by Xk(x) and integrate

from 0 to l. Then we get

l
∫

0

ϕ(x)Xn(x)dx =
∞

∑
k=1

ϕk

l
∫

0

Xk(x)Xn(x)dx = ϕn

l
∫

0

X2
n (x)dx, (12.2)

since all the terms in the summation in (12.2) with numbers k 6= n are equal to zero!

Termwise integration of the series in (12.2) is justified since the series in (12.1)

converges in L2(0, l), while the scalar product in L2(0, l) is continuous in each of

the two arguments.

Then from (12.2) we get the desired expression for the coefficients:

ϕn =

l
∫

0

ϕ(x)Xn(x)dx

l
∫

0

X2
n (x)dx

=
2

l

l
∫

0

ϕ(x)Xn(x)dx, (12.3)

where we took into account that ‖Xn‖2 = l/2 by (11.13).

Problem 12.1. Find the conditions on the function ϕ(x) so that the following is

true:

(i) The series (12.1) converges uniformly on the interval [0, l];
(ii) The series (12.1) is termwise differentiable two times.

Solution. (i) It is sufficient (but not necessary) that

∞

∑
k=1

|ϕk| < ∞. (12.4)

For this inequality to hold, it suffices to require that

ϕ(x) ∈C1[0, l], ϕ(0) = ϕ(l) = 0. (12.5)

Let us derive (12.4) from (12.5). Integrating by parts, we get:
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ϕk =
2

l

∫ l

0
ϕ(x)sin

kπx

l
dx =

2

l

∫ l

0
ϕ(x)

(−cos kπx
l

)′

kπ
l

dx

=
2

kπ

(

−ϕ(x)cos
kπx

l

∣

∣

∣

l

0
+

∫ l

0
ϕ ′(x)cos

kπx

l
dx

)

. (12.6)

Above, the boundary terms are equal to zero due to the boundary conditions in

(12.5). Therefore ϕk = 2
kπ ϕ ′

k, where ϕ ′
k =

∫ l
0 ϕ ′(x)cos kπx

l
dx. But {cos kπx

l
: k ∈ N}

is the orthogonal system in L2(0, l), with
∫ l

0 cos2 kπx
l

dx = l
2
, hence, due to the Bessel

inequality,
∞

∑
k=1

|ϕ ′
k|

2 ≤ 2

l

∫ l

0
|ϕ ′(x)|2 dx < ∞. (12.7)

Therefore, applying the Cauchy – Bunyakovsky inequality, we get:

∞

∑
k=1

|ϕk| =
∞

∑
k=1

∣

∣

∣

2

kπ
ϕ ′

k

∣

∣

∣≤
( ∞

∑
k=1

∣

∣

∣

2

kπ

∣

∣

∣

2) 1
2
( ∞

∑
k=1

|ϕ ′
k|

2
) 1

2
< ∞. (12.8)

(ii) For the series (12.1) to be twice differentiable, it suffices to have the series for

ϕ ′′(x) converge uniformly in x. The latter takes place if

∞

∑
k=1

k2|ϕk| < ∞. (12.9)

For this, we require that in addition to (12.5) we also have

ϕ(x) ∈C3[0, l] and ϕ ′′(0) = ϕ ′′(l) = 0. (12.10)

Let us derive (12.9) from (12.10) and (12.5). For this, we remark that, due to

(12.5) and (12.6),

ϕk =
2

kπ

l
∫

0

ϕ ′(x)cos
kπx

l
dx =

2l

(kπ)2

(

ϕ ′(x)sin
kπx

l

∣

∣

∣

∣

l

0

−
l
∫

0

ϕ ′′(x)sin
kπx

l
dx

)

=
2l2

(kπ)3

(

ϕ ′′(x)cos
kπx

l

∣

∣

∣

∣

l

0

−
l
∫

0

ϕ ′′′(x)cos
kπx

l
dx

)

.

The boundary terms vanished due to the boundary conditions (12.10) and due

to sin kπx
l

equal zero at x = 0 and x = l. Therefore, ϕk = −2l2

(kπ)3 ϕ ′′′
k , where ϕ ′′′

k =
∫ l

0 ϕ ′′′(x)cos kπx
l

dx. But ϕ ′′′ ∈ L2(0, l); thus, by (12.7),

∞

∑
k=1

|ϕ ′′′
k |2 ≤ 2

l

l
∫

0

|ϕ ′′′(x)|2 dx < ∞,
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and, similarly to (12.8),

∞

∑
k=1

k2|ϕk| =
∞

∑
k=1

k2

∣

∣

∣

∣

−2l

(kπ)3
ϕ ′′′

k

∣

∣

∣

∣

≤ 2l2

π3

∞

∑
k=1

1

|k| |ϕ
′′′
k | < ∞.

Problem 12.2. Show that for a function ϕ(x) ∈C(N)[0, l] the estimates

|ϕk| ≤
C

|k|N
, k = 1, 2, . . . (12.11)

are satisfied if and only if

ϕ(0) = ϕ(l) = 0, ϕ ′′(0) = ϕ ′′(l) = 0, . . . , ϕ2n(0) = ϕ2n(l) = 0 (12.12)

for all 2n ≤ N −2, n = 0, 1, 2, . . ..

Let us point out that the boundary conditions (12.12) are satisfied, in particular,

for all the eigenfunctions sin kπx
l

. On the other hand, under the condition (12.11), the

series (12.1) is convergent on the interval [0, l] uniformly together with its deriva-

tives up to the order N −2. Therefore, since the homogeneous boundary conditions

(12.12) are satisfied for the eigenfunctions sin kπx
l

, it follows that the same bound-

ary conditions are also satisfied for the sum of the series (12.1). This proves the

necessity of conditions (12.12) for (12.11).

Remark 12.3. Similarly, let us consider the decomposition of the function ϕ(x)
over a system of eigenfunctions Xk(x) which corresponds to each of the boundary

conditions (11.14), (11.15), and (11.16). For estimate (12.11) for the Fourier coeffi-

cients ϕk of this decomposition to be true, it is necessary that ϕ(x) satisfy the same

homogeneous boundary conditions as the eigenfunctions Xk(x) and their derivatives

up to the order N −2. When ϕ ∈ C(N)[0, l], it is easy to check that these conditions

are not only necessary but also sufficient for (12.11).

Problem 12.4. Solve Problem 12.2 for the decomposition over the eigenfunctions

of the Sturm – Liouville problem with each of the boundary conditions (11.14),

(11.15), and (11.16).

Problem 12.5. Decompose over the set {sin kπx
l

: k ∈ N}, the following functions:

a. ϕ(x) ≡ 1, 0 < x < l. See Fig. 12.1.

Fig. 12.1

ϕ(x)
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Solution. ϕk =
2

l

l
∫

0

sin
kπx

l
dx = −2

l

cos kπx
l

kπ
l

∣

∣

∣

∣

l

0

=
2

kπ

[

1− (−1)k
]

.

Let us point out that now the condition (12.4) is not satisfied. This is because

ϕ(x) ≡ 1 is not equal to zero at the ends of the interval.

b. ϕ(x) ≡ x, 0 < x < l. See Fig. 12.2.

Fig. 12.2

ϕ(x)

Solution.

ϕk =
2

l

l
∫

0

xsin
kπx

l
dx =

2

l

l
∫

0

x
(−cos kπx

l
)
′

kπ
l

dx = . . . = − 2

kπ
l(−1)k.

Here |ϕk| ∼ 1
k

because ϕ(l) 6= 0 (see (12.11) and (12.12)).

c. ϕ(x) = x(l − x). See Fig. 12.3.

Fig. 12.3

ϕ(x)

Is it true that ϕk = O( 1
k
), or O( 1

k2 ), or O( 1
k3 ), . . .?

Problem 12.6. Decompose the functions ϕ(x) = 1, x, x2, x(l − x) over the eigen-

functions of the Sturm – Liouville problem with each of the boundary conditions

(11.14), (11.15), and (11.16). In each of these cases, find the asymptotics:

ϕk = O
(1

k

)

, O
( 1

k2

)

, . . . .

Hint. Use Remark 12.3.
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13 The Fourier method for the heat equation

So, let us solve the problem (10.3):











∂u

∂ t
= a2 ∂ 2u

∂x2
, u(0,t) = u(l,t) = 0, t > 0,

u(x,0) = ϕ(x), 0 < x < l.

(13.1)

Let us look for a solution to the problem (13.1) in the form of the series

u(x,t) =
∞

∑
k=1

Tk(t)Xk(x), Xk(x) = sin
kπx

l
. (13.2)

Due to the completeness of the set of eigenfunctions

{

sin
kπx

l
: k ∈ N

}

(13.3)

in L2(0, l), one can write in the form (13.2) any function u(x,t) as long as u(x,t) ∈
L2(0, l) for each fixed t. The choice of the basis (13.3) is dictated by the boundary

conditions which appear in (13.1). Namely, each term of the series (13.2) satisfies

these boundary conditions since sin kπx
l

, k ∈ N, satisfy the boundary conditions in

(11.2).

To find the solution u(x,t), it remains to determine temporal functions Tk(t) (the

functions Xk(x) are called the spatial functions). Tk(t) are found substituting the

series (13.2) into the equation and the initial condition in (13.1).

Determining the temporal functions

A. We substitute the series (13.2) into equation (13.1): For t > 0,

∞

∑
k=1

T ′
k (t)sin

kπx

l
= −a2

∞

∑
k=1

Tk(t)
(kπ

l

)2

sin
kπx

l
, 0 < x < l. (13.4)

Here we interchanged the operators of differentiation, ∂
∂ t

and ∂ 2

∂x2 , with the summa-

tion of the series. Below we will discuss why this interchange is allowed. The jus-

tification of the Fourier method is based on proving the validity of this interchange.

In (13.4) we also used the identity

∂ 2

∂x2
sin

kπx

l
= −

(kπ

l

)2

sin
kπx

l
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satisfied by the eigenfunctions of the Sturm – Liouville problem (11.1)–(11.2). Let

us point out that the boundary conditions for the Sturm – Liouville problem have

already been used.

Further, if the series in (13.4) converge in L2(0, l), then, due to the orthogonality

of the basis {sin kπx
l

: k ∈ N}, we get the following equations on the temporal

functions Tk(t):

T ′
k (t) = −a2

(kπ

l

)2

Tk(t) = −
(akπ

l

)2

Tk(t), t > 0, k = 1, 2, . . . . (13.5)

For each k ∈ N, (13.5) is a homogeneous linear differential equation with constant

coefficients. Let us write its characteristic equation:

λ = −
(akπ

l

)2

.

Then the general solution of (13.5) is given by

Tk(t) = Cke−( akπ
l )2t . (13.6)

Substituting this expression into (13.2), we get

u(x,t) =
∞

∑
k=1

Cke−( akπ
l

)2t sin
kπx

l
. (13.7)

B. The unknown constants Ck in (13.7) are found from the initial conditions.

Namely, substituting the series (13.2) into the initial conditions in (13.1), we find:

∞

∑
k=1

Tk(0)sin
kπx

l
= ϕ(x), 0 < x < l. (13.8)

Hence, Tk(0) coincide with the Fourier coefficients of the decomposition of the func-

tion ϕ(x) over the set {sin kπx
l

: k ∈ N} (see (12.3)):

Tk(0) = ϕk ≡
2

l

l
∫

0

ϕ(x)sin
kπx

l
dx. (13.9)

Comparing with (13.6), we find

Ck = ϕk.

Thus, (13.7) takes the form

u(x,t) =
∞

∑
k=1

ϕke−( akπ
l )2t sin

kπx

l
. (13.10)
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Justification of the Fourier method for the heat equation

Does the series (13.10) indeed represent the solution to the problem (13.1)?

A. For t > 0, the series (13.10) converge for each x ∈ [0, l]. For example, let

ϕ(x) ∈ L2(0, l). (13.11)

Then the series (13.8) converge in the same space L2(0, l). Indeed, from the Cauchy

– Bunyakovsky inequality,

|ϕk| ≤
2

l

l
∫

0

|ϕ(x)|dx ≤ 2

l

(

l
∫

0

dx

) 1
2
(

l
∫

0

ϕ2(x)dx

) 1
2 ≤ const.

Therefore, the series (13.10) for each fixed t > 0 is dominated by the series

const
∞

∑
k=1

e−( akπ
l )2t = const

∞

∑
k=1

e−εk2

,

where ε = ( aπ
l
)2t > 0, which in turn is dominated by the convergent geometric

series. Hence, according to the Weierstrass Theorem, the functional series (13.10)

converges uniformly on [0, l] for ∀t > 0 to a function which is continuous in x.

Corollary 13.1. The series (13.10) satisfies the boundary conditions (10.2).

B. The series (13.10) is a differentiable function in x ∈ [0, l] for any t > 0. Indeed,

according to the theorem about the termwise differentiation of a series,

∂u

∂x
(x,t) =

∞

∑
k=1

ϕke−( akπ
l

)2t
(

−cos
kπx

l

)kπ

l
, (13.12)

as long as the series in the right-hand side converges uniformly in x on [0, l]. The

last condition is satisfied for any t > 0 since the series (13.12) is dominated by the

convergent series

const
π

l

∞

∑
k=1

ke−εk2

< ∞.

C. The series (13.10) has derivatives in x and in t of all orders for t > 0. This is

proved similarly to B.

Corollary 13.2. All termwise differentiations of series in (13.4) are justified, hence

the series (13.10) satisfies the heat equation (9.1).

Finally, for t = 0 the series (13.10) satisfies the initial condition (10.1) in view of

(13.8) and (13.9) in the following sense (prove this!):

||u(x,t)−ϕ(x)||L2(0,l) → 0 for t → 0+.
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Remark 13.3. The condition (13.11) allows the function ϕ(x) to have disconti-

nuities: For example, let ϕ(x) ≡ 0 for x < l
2
, u(x) ≡ 1 for x < l

2
. Then the func-

tion u(x,0) = ϕ(x) will be discontinuous. At the same time, the solution u(x,t) for

any t > 0 will be a smooth function on [0, l]! One says that the heat equation (9.1)

“smoothens” the initial data.

Problem 13.4. Find the solution to the mixed problem







∂u
∂ t

= 9 ∂ 2u
∂x2 (x,t), 0 < x < 5, t > 0;

u(0,t) = u(5,t) = 0;

u(x,0) = 1.

Solution. According to (13.10),

u(x,t) =
∞

∑
k=1

ϕke−( 3kπ
5 )2t sin

kπx

5
, (13.13)

where ϕk are found using (13.9):

ϕk =
2

5

5
∫

0

sin
kπx

5
dx =

2

kπ

[

1− (−1)k
]

.

Problem 13.5. Find the limit of the solution (13.13) for t → ∞.

Solution.

lim
t→+∞

u(x,t) = lim
t→+∞

∞

∑
k=1

ϕke−( 3kπ
5

)2t sin
kπx

5

=
∞

∑
k=1

ϕk lim
t→+∞

e−( 3kπ
5 )2t sin

kπx

5
=

∞

∑
k=1

0 = 0. (13.14)

Problem 13.6. Justify the interchange of taking the limit and the summation in

(13.14).

Problem 13.7. Find the solution to the mixed problem







ut(x,t) = 4uxx(x,t), 0 < x < 3, t > 0;

u(0,t) = 0, ux(3,t) = 0;

u(x,0) = x.
(13.15)

Solution. Here the solution should be decomposed over the eigenfunctions of the

Sturm – Liouville problem (11.14) (see Fig. 11.2):

u(x,t) =
∞

∑
k=0

Tk(t)sin
(k + 1

2
)πx

3
. (13.16)
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Substituting this series into (13.15), we obtain

∞

∑
k=0

T ′
k (t)sin

(k + 1
2
)πx

3
= 4

∞

∑
k=0

−
((k + 1

2
)π

3

)2

Tk(t)sin
(k + 1

2
)πx

3
.

From this relation, for any k = 0, 1, 2, . . .,

T ′
k (t) = −

(2(k + 1
2
)π

3

)2

Tk(t) ⇒ Tk(t) = Cke
−
(

2(k+ 1
2

)π

3

)2

t
. (13.17)

Substituting (13.16) into the initial condition of the problem (13.15), we get

∞

∑
k=0

Tk(0)sin
(k + 1

2
)πx

3
= x =⇒

Tk(0) =
2

3

3
∫

0

xsin
(k + 1

2
)πx

3
dx

=
2

3
x
−cos

(k+ 1
2 )πx

3

(k+ 1
2 )π

3

∣

∣

∣

∣

∣

3

0

+
2

3

3
∫

0

cos
(k+ 1

2 )πx

3

(k+ 1
2 )π

3

dx = 0 +
2

3

sin
(k+ 1

2 )πx

3
(

(k+ 1
2 )π

3

)2

∣

∣

∣

∣

∣

3

0

=
2
3

sin(k + 1
2
)π

(

(k+ 1
2 )π

3

)2
=

2

3

(−1)k
9

(k + 1
2
)

2
π2

=
6(−1)k

(k + 1
2
)

2
π2

.

Since Ck = Tk(0), we may now substitute Tk(t) given by (13.17) into (13.16), getting

u(x,t) =
∞

∑
k=0

6(−1)k

(k + 1
2
)2π2

e−
4π2(k+ 1

2
)2t

9 sin
(k + 1

2
)πx

3
.

Problem 13.8. Find the solution to the mixed problem







ut(x,t) = 16uxx(x,t), 0 < x < 3, t > 0;

ux(0,t) = ux(3,t) = 0;

u(x,0) = x.

Problem 13.9. Find the limit t → ∞ of the solution of the previous problem.

Answer.

lim
t→∞

u = ϕ0 ≡
1

3

3
∫

0

xdx =
1

3
· 9

2
=

3

2
.
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14 Mixed problem for the d’Alembert equation

Let us solve the mixed problem







utt(x,t) = a2uxx(x,t), 0 < x < l, t > 0;

u(0,t) = 0, u(l,t) = 0;

u(x,0) = ϕ(x), ut(x,0) = ψ(x).
(14.1)

Similarly to (10.3), it is written in the operator form as

{

∂ 2û
∂ t2 (t) = a2Aû(t), t > 0;

û(0) = ϕ , ∂ û
∂ t

(0) = ψ .

Solution of the problem (14.1)

We will look for the solution in the form of the series (13.2):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

l
. (14.2)

A. Substituting (14.2) into (14.1), we formally get

∞

∑
k=1

T ′′
k (t)sin

kπx

l
= a2

∞

∑
k=1

−
(kπ

l

)2

Tk(t)sin
kπx

l
.

From here, as long as these series converge in L2(0, l), we find the equations on the

temporal functions (compare with (13.5)):

T ′′
k (t) = −

(akπ

l

)2

Tk(t), ∀k = 1, 2, . . . . (14.3)

The general solution is (compare with (13.6)):

Tk(t) = Ak cos
akπ

l
t + Bk sin

akπ

l
t. (14.4)

B. The unknown constants Ak and Bk are found from the initial conditions in (14.1):















u(x,0) = ∑∞
k=1 Tk(0)sin kπx

l
= ϕ(x) ⇒ Tk(0) = ϕk (see (13.9)),

ut(x,0) =
∞

∑
k=1

T ′
k (0)sin

kπx

l
= ψ(x) ⇒ T ′

k (0) = ψk ≡
2

l

l
∫

0

ψk(x)sin
kπx

l
dx.

Substituting (14.4) in the above relation, we find:
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Tk(0) = Ak = ϕk,

T ′
k (0) = Bk

akπ

l
= ψk ⇒ Bk =

ψk

( akπ
l

)
. (14.5)

Therefore, according to (14.4),

Tk(t) = ϕk cos
akπ

l
t +

ψk

( akπ
l

)
sin

akπ

l
t.

Finally, substituting (14.5) into (14.2), we obtain:

u(x,t) =
∞

∑
k=1

(

ϕk cos
akπ

l
t +

ψk

( akπ
l

)
sin

akπ

l
t

)

sin
kπx

l
t. (14.6)

Question 14.1. While deriving (14.3), we again interchanged differentiation in x

and t with the summation. Is this justified?

Justification of the Fourier method for the d’Alembert equation

A. Does the series (14.6) converge? It is dominated by the series

const
∞

∑
k=1

(

|ϕk|+
|ψk|

k

)

.

For the convergence of this series, it suffices that

{

ϕ(x) ∈C1[0, l], ϕ(0) = ϕ(l) = 0;

ψ(x) ∈C[0, l].

This is proved similarly to the derivation of (12.4) from (12.5).

B. We need to be able to differentiate the series (14.6) twice in x and in t. For this,

the convergence of the following series suffices:

∞

∑
k=1

(

k2|ϕk|+ k|ψk|
)

< ∞. (14.7)

For the convergence of this series, it is sufficient to have

{

ϕ(x) ∈C3[0, l], ϕ(0) = ϕ(l) = 0, ϕ ′′(0) = ϕ ′′(l) = 0;

ψ(x) ∈C2[0, l], ψ(0) = ψ(l) = 0.
(14.8)

This is proved analogously to the derivation of (12.9) from (12.10).

Conclusion. The series (14.6) is a solution to the problem (14.1) if the functions ϕ
and ψ satisfy the conditions (14.8).
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Remark 14.2. More precise (less restrictive) conditions on ϕ , ψ are given in terms

of the Sobolev spaces (see Section 26 below).

Problem 14.3. Find the solution of the mixed problem







ut = 9uxx(x,t), 0 < x < 4, t > 0;

ux(0,t) = 0, u(4,t) = 0;

u(x,0) = 0, ut(x,0) = 16− x2.
(14.9)

Solution. One needs to decompose the solution over the eigenfunctions of the Sturm

– Liouville problem (11.15) (see Fig. 11.3):

u(x,t) =
∞

∑
k=0

Tk(t)cos
(k + 1

2
)πx

4
.

Substitution into (14.9) gives, similarly to (14.3),

T ′′
k (t) = −9

((k + 1
2
)π

4

)2

Tk(t). (14.10)

The initial conditions in (14.9) give







Tk(0) = ϕk = 0,

T ′
k (0) = ψk ≡

2

4

∫ 4

0
(16− x2)cos

(k + 1
2
)πx

4
dx =

43(−1)k

(k + 1
2
)3π3

.
(14.11)

Let us point out that here ϕk ≡ 0, while ψ(x) satisfies conditions similar to (14.8):

ψ(x) ≡ 16− x2 ∈ C2[0, 4]; ψ ′(0) = ψ(4) = 0, that is, ψ(x) satisfies the same ho-

mogeneous boundary conditions as the eigenfunctions Xk(x) = cos
(k+ 1

2 )πx

4
do, and

|ψk| ≤C/k3 due to Remark 12.3. Therefore, the estimate (14.7) takes place.

From (14.10) and (14.11) we find, similarly to (14.4) and (14.5):

Tk(t) =
ψk sin

3(k+ 1
2 )πt

4

3(k+ 1
2 )π

4

.

Answer.

u(x,t) =
∞

∑
k=1

256(−1)k

3
(

(k + 1
2
)π
)4

sin
3(k + 1

2
)πt

4
cos

(k + 1
2
)πx

4
.
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15 The Fourier method for nonhomogeneous equations

The heat equation

A. Let us consider the mixed problem for the nonhomogeneous heat equation with

the homogeneous boundary conditions (nonhomogeneous boundary conditions in

Section 16 below will be the next step in developing the Fourier method):







∂u
∂ t

= a2 ∂ 2u
∂x2 + f (x,t), 0 < x < l;

u(0,t) = 0, u(l,t) = 0;

u(x,0) = ϕ(x).

(15.1)

Again, we look a solution of this problem in the form (13.2):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

l
. (15.2)

The new step will be the decomposition of f (x,t) over the eigenfunctions of the

Sturm – Liouville problem:

f (x,t) =
∞

∑
k=1

fk(t)sin
kπx

l
; fk(t) =

2

l

l
∫

0

f (x,t)sin
kπx

l
dx. (15.3)

This decomposition is possible due to the completeness of the family of eigenfunc-

tions sin kπx
l

, k ∈ N, in the space L2(0, l) as long as f (x,t) ∈ L2(0, l) for each fixed

t > 0.

B. For finding the temporal functions Tk(t), we substitute decompositions (15.2),

(15.3) into (15.1):

∞

∑
k=1

T ′
k (t)sin

kπx

l
= −a2

∞

∑
k=1

(kπ

l

)2

Tk(t)sin
kπx

l
+

∞

∑
k=1

fk(t)sin
kπx

l
. (15.4)

From here, due to the orthogonality of the family of eigenfunctions, we get

T ′
k (t) = −

(akπ

l

)2

Tk(t)+ fk(t), t > 0, k = 1, 2, . . . . (15.5)

Thus, the differential equation on the temporal functions is obtained. For the unique

determination of these functions, one needs to take into account the initial condition

from (15.1):

∞

∑
k=1

Tk(0)sin
kπx

l
= ϕ(x) ⇒ Tk(0) =

2

l

l
∫

0

ϕ(x)sin
kπx

l
dx.
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Let us point out that the boundary conditions in (15.1) are automatically satisfied

due to decomposition (15.2) (since they are satisfied for the eigenfunctions sin kπx
l

)

as long as Tk(t) = O
(

1
k2

)

.

C. Let us apply this scheme to particular problems.

Problem 15.1. Solve the mixed problem







ut = 16uxx + 2, 0 < x < 7, t > 0;

ux(0,t) = u(7,t) = 0;

u(x,0) = 0.
(15.6)

Solution. As it follows from the boundary conditions, the solution should be de-

composed over the eigenfunctions of the Sturm – Liouville problem (11.15) (see

Fig. 11.3):

u(x,t) =
∞

∑
k=0

Tk(t)cos
(k + 1

2
)πx

7
. (15.7)

Substituting this series into (15.6), we get the equation similar to (15.5):

T ′
k (t) = −

(4(k + 1
2
)π

7

)

2

Tk + fk, t > 0, k = 1, 2, . . . , (15.8)

where

fk ≡
2

7

7
∫

0

2cos
(k + 1

2
)πx

7
dx =

4

7

sin
(k+ 1

2 )πx

7

(k+ 1
2 )π

7

∣

∣

∣

∣

∣

7

0

= 4
(−1)k

(k + 1
2
)π

. (15.9)

As it follows from the initial condition of the problem,

Tk(0) = 0. (15.10)

Let us solve the problem (15.8), (15.10). The general solution to (15.8) has the form

Tk(t) = T 0
k (t)+ T

p
k (t), (15.11)

where T 0
k (t) is the general solution to the homogeneous equation,

T 0
k (t) = Cke

−
(

4(k+ 1
2

)π

7

)2
t , (15.12)

and a particular solution T
p

k (t) to the nonhomogeneous equation (15.8) is a constant.

Substituting T
p

k (t) = Ak. into (15.8), we get

0 = −
(4(k + 1

2
)π

7

)2

Ak + fk,
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Ak =
49 fk

16
(

(k + 1
2
)π
)2

=
49(−1)k

4
(

(k + 1
2
)π
)3

. (15.13)

Substituting (15.12) and (15.13) into (15.11), we get

Tk(t) = Cke
−
(

4(k+ 1
2

)π

7

)2
t +

49(−1)k

4
(

(k + 1
2
)π
)3

. (15.14)

Now we need to take into account the initial condition (15.10):

0 = Ck +
49(−1)k

4
(

(k + 1
2
)π
)3

⇒ Ck = − 49(−1)k

4
(

(k + 1
2
)π
)3

.

Finally, substituting (15.14) into (15.7), we get

u(x,t) =
∞

∑
k=0

(−1)k 49

4
(

(k + 1
2
)π
)3

(

−e−(
4(k+ 1

2
π

7 )2t + 1
)

cos
(k + 1

2
)πx

7
. (15.15)

Problem 15.2. Find the limit of the solution to the problem (15.6) as t → +∞.

Solution. Taking the limit t → ∞ in each term in the series (15.15), we get (justify!)

u∞(x) ≡ lim
t→+∞

u(x,t) =
∞

∑
k=0

49(−1)k

4
(

(k + 1
2
)π
)3

cos
(k + 1

2
)πx

7
. (15.16)

Let us compute the sum of this series. For this, we notice that

u′∞(x) = −
∞

∑
k=0

7

4

(−1)k

(

(k + 1
2
)π
)2

sin
(k + 1

2
)πx

7
, (15.17)

u′′∞(x) = −
∞

∑
k=0

(−1)k

4(k + 1
2
)π

cos
(k + 1

2
)πx

7
= −1

8
(15.18)

where the last equality follows from decomposition (see (15.9))

2 =
∞

∑
k=0

4(−1)k

(k + 1
2
)π

cos
(k + 1

2
)πx

7
.

Integrating twice the identity (15.18), we get

u∞(x) =
1

16
(−x2 +C1x +C2). (15.19)

To find C1 and C2, we notice that due to (15.16) and (15.17)

u∞(7) = 0, u′∞(0) = 0.
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Substituting the expression (15.19) into the above relations, we find C1 = 0, C2 =
49; hence, u∞(x) = 1

16
(49− x2).

Remark 15.3. We could obtain u∞ directly from (15.6), without using the non-

stationary solution (15.15). To do so, we substitute ut by 0 and solve the problem

{

0 = 16u′′∞(x)+ 2, 0 < x < 7;

u′∞(0) = 0, u∞(7) = 0.
(15.20)

Remark 15.4. The important property of the heat equation is that under stationary

external conditions (that is, when the nonhomogeneous terms of the equation and

the boundary conditions do not depend explicitly on t) the solution u(x,t) stabilizes

as t → +∞:

u(x,t) → u∞(x), t → +∞. (15.21)

The limit function u∞(x) is the solution to the corresponding stationary problem. The

only exception is the case of perfect insulation at both ends ( ∂u
∂x

= 0 at x = 0 and x =
l) and the nonhomogeneity is nonzero. In this case, there is no limit stationary state

u∞(x). If, for example, the nonhomogeneity in the equation is a positive constant

(permanent heat influx), then the temperature growth is unbounded.

Problem 15.5. Find the limit as t → +∞ of the solution to the mixed problem







ut = 25uxx(x,t)+ 3x2, 0 < x < 6;

u(0,t) = 0, u′(6,t) = 1;

u(x,0) = sinx.
(15.22)

Solution. As we said above, we get from (15.22) and (15.21) the following boundary

value problem for u∞(x) = limt→∞ u(x,t) :

{

0 = 25u′′∞(x)+ 3x2, 0 < x < 6;

u∞(0) = 0, u′∞(6) = 1.

Integrating this equation, we get u∞(x) =− x4

100
+C1x+C2. From the boundary con-

ditions we get C2 = 0, − 63

25
+C1 = 1.

Answer. u∞(x) = − x4

100
+ 241

25
x.

The wave equation

Let us consider the nonhomogeneous wave equation.

Problem 15.6. Solve the following mixed problem (where ω > 0):







utt (x,t) = 25uxx + x(3− x)sinωt, 0 < x < 3, t > 0;

u(0,t) = u(3,t) = 0;

u(x,0) = 0, ut(x,0) = 0.
(15.23)
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Solution. A. In view of the boundary conditions in (15.23), we are looking for the

solution u in form of the decomposition over the eigenfunctions of the Sturm –

Liouville problem (11.1):

u(x,t) =
∞

∑
k=1

Tk(t)sin
kπx

3
. (15.24)

For this, the function x(3−x)sin ωt in equation (15.23) is also decomposed into the

series over the system sin kπx
3

:

x(3− x)sinωt =
∞

∑
k=1

gk sin
kπx

3
sinωt, (15.25)

where gk = 2
3

3
∫

0

x(3− x)sin kπx
3

dx = 36

(kπ)3

(

1− (−1)k
)

.

B. Finding the temporal functions Tk(t). Substituting decomposition (15.24) and

(15.25) into equation (15.23) and using the orthogonality of the family sin kπx
3

, we

get, similarly to (14.3),

T ′′
k (t) = −

(5kπ

3

)2

Tk(t)+ gk sinωt. (15.26)

Substitution of the series (15.24) into the initial conditions (15.23) gives

Tk(0) = 0, T ′
k (0) = 0. (15.27)

The Cauchy problem (15.26)–(15.27) uniquely determines the temporal functions

Tk(t).
It is known that the general solution to equation (15.26) has the form

Tk(t) = T 0
k (t)+ T

p
k (t), (15.28)

where T 0
k (t) is the general solution of the corresponding homogeneous equation

T 0
k (t) = Ak cos

5kπ

3
t + Bk sin

5kπ

3
t,

while T
p

k (t) is a particular solution to the nonhomogeneous equation (15.26).

When finding a particular solution, one needs to distinguish two cases: the reso-

nant case and the non-resonant case.

1. Non-resonant case: For all k ∈ N,

ω 6= 5kπ

3
. (15.29)

Then T
p

k (t) are to be looked for in the form

T
p

k (t) = Ck sinωt.
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Substitution into (15.26) gives

−ω2Ck sinωt = −
(5kπ

3

)2

Ck sinωt + gk sinωt,

from where, in view of (15.29),

Ck =
gk

(

5kπ
3

)2 −ω2
.

Then (15.28) takes the form

Tk(t) = Ak cos
5kπ

3
t + Bk sin

5kπ

3
t +

gk sinωt
(

5kπ
3

)2 −ω2
.

Finally, the initial conditions (15.27) yield

Ak = 0, Bk

5kπ

3
+

gkω

( 5kπ
3

)2 −ω2
= 0 ⇒ Bk = − gkω

5kπ
3

(

( 5kπ
3

)2 −ω2
) .

Thus, in the case when (15.29) is satisfied for all k = 1, 2, . . ., we have

u(x,t) =
∞

∑
k=1

gk
(

5kπ
3

2)−ω2

(

− ω

( 5kπ
3

)
sin
(5kπ

3
t
)

+ sinωt
)

sin
kπx

3
. (15.30)

2. Resonant case: For some m ∈ N,

ω =
5mπ

3
. (15.31)

In this case,

T p
m (t) = t(Cm cosωt + Dm sinωt).

Taking k = m and substituting into (15.26), we get

2
(

−Cmω sinωt + Dmω cosωt
)

+ t
(

−Cmω2 cosωt −Dmω2 sinωt
)

= −
(5mπ

3

)2
t
(

Cm cosωt + Dm sinωt
)

+ gm sin ωt. (15.32)

Here in the left-hand side we used the Leibniz formula for computing

d2

dt2

[

t
(

Cm cosωt + Dm sinωt
)

]

.

Taking into account (15.31) and collecting the terms in (15.32), we get

2
(

−Cmω sinωt + Dmω cosωt
)

= gm sinωt.

We compare the coefficients at cosωt and sinωt on the left and on the right:
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2Dmω = 0, −2Cmω = gm.

Since ω > 0,

Dm = 0, Cm = − gm

2ω
.

Thus,

T p
m (t) = −t

gm

2ω
cosωt.

Therefore

Tm(t) = Am cos
5kπ

3
t + Bm sin

5kπ

3
t − t

gm

2ω
cosωt.

Substituting into the initial conditions (15.27), we get

Am = 0; Bm

5mπ

3
− gm

2ω
= 0 =⇒ Bm =

3gm

10mπω
.

Therefore,

T p
m (t) =

3gm

10mπω
sin
(5kπ

3
t
)

− t
gm

3
cosωt.

Thus, if for some m ∈ N the condition (15.31) is satisfied, we get (compare with

(15.30)):

u(x,t) = ∑
k∈N,k 6=m

gk

( 5kπ
3

)2 −ω2

(

− ω

( 5kπ
3

)
sin

5kπ

3
t + sinωt

)

sin
kπx

3

+
( 3gm

10mπω
sin

5mπ

3
t − t

gm

2ω
cosωt

)

sin
mπx

3
. (15.33)

Remark 15.7. In the non-resonant case, all the terms in the series (15.30) are

bounded functions of x, t, while in the resonant case (15.31) one of the terms in

(15.33) is unbounded when t → +∞. Therefore, for large t, the solution will be

represented mainly by the last term in (15.33). As t grows, the solution becomes

unboundedly large. If it were the amplitude of a string, the string would break. As

the matter of fact, when the solution becomes large, it is no longer described by the

linear wave equation, and the formula (15.33) is no longer valid.

Problem 15.8. Find the solution to the mixed problem







utt(x,t) = 16uxx + sin 7πx
10

, 0 < x < 5, t > 0;

u(0,t) = 0, ux(5,t) = 0;

u(0,x) = 0, ut(0,x) = 0.
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16 The Fourier method for nonhomogeneous boundary

conditions

Up to now, we were using the Fourier method only for problems with homogeneous

boundary conditions. It turns out that the problem with nonhomogeneous boundary

conditions is easily reduced to a problem with homogeneous boundary conditions.

The heat equation

Problem 16.1. Find the solution to the mixed problem







ut = 9uxx, 0 < x < 4, t > 0;

u(0,t) = f (t), u(4,t) = g(t);
u(x,0) = 0.

(16.1)

Solution. Let us find an auxiliary function v(x,t) which satisfies the given boundary

conditions:

v(0,t) = f (t), v(4,t) = g(t), t > 0.

Such a function can easily be found, for example, using a linear interpolation

v(x,t) =
x

4
g(t)+

4− x

4
f (t).

Denote w = u− v. Then w satisfies the homogeneous boundary conditions

w(0,t) = 0, w(4,t) = 0, t > 0. (16.2)

Question 16.2. What equation and boundary conditions does the function w satisfy?

Answer. We substitute u = w+ v into (16.1); then

{

wt + vt = 9(wxx + vxx),
w(x,0)+ v(x,0) = 0,

leading to
{

wt = 9wxx + 9(vxx − vt),
w(x,0) = −v(x,0).

Thus, unlike u, the function w satisfies the nonhomogeneous heat equation! But the

boundary conditions (16.2) are now homogeneous, hence w could be found using the

method of Section 15; then u = w+v is the solution to the problem (16.1). Thus, we

sent the nonhomogeneity from the boundary conditions into the differential equation

(16.1) and into the initial condition.
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The wave equation

Problem 16.3. Solve the mixed problem







utt = 16uxx, 0 < x < 5, t > 0;

u(0,t) = 0, ux(5,t) = sinωt;

u(x,0) = 0, ut(x,0) = 0.
(16.3)

Solution. A. The auxiliary function

v(x,t) = xsinωt

satisfies the specified boundary conditions. For w ≡ u− v, we have:







wtt = 16wxx + ω2xsinωt, 0 < x < 5, t > 0;

w(0,t) = 0, wx(5,t) = 0;

w(x,0) = −v(x,0) = 0, wt (x,0) = −vt(x,0) = −xω .
(16.4)

B. Following the method of Section 15, we are looking for w in the form

w(x,t) =
∞

∑
k=0

Tk(t)sin
(k + 1

2
)πx

5
. (16.5)

For this, we expand the right-hand side of equation (16.4):

ω2xsin ωt = ω2 sinωt
∞

∑
k=0

xk sin
(k + 1

2
)πx

5
,

where

xk =
2

5

∫ 5

0
xsin

(k + 1
2
)πx

5
dx = −2

5

5

(k + 1
2
)π

∫ 5

0
xd cos

(k + 1
2
)πx

5

= − 5

(k + 1
2
)π

[

xcos
(k + 1

2
)πx

5

∣

∣

∣

5

0
−
∫ 5

0
cos

(k + 1
2
)πx

5
dx
]

=
2 ·5

(k + 1
2
)2π2

sin
(k + 1

2
)πx

5

∣

∣

∣

5

0
=

10

(k + 1
2
)2π2

· (−1)k. (16.6)

C. Substituting (16.5)–(16.6) into equation (16.4), we find the equations on the tem-

poral functions Tk(t):

T ′′
k (t) = −16

((k + 1
2
)π

5

)2

Tk(t)+ ω2xk sinωt, k = 0, 1, 2, . . . . (16.7)

From the initial conditions (16.4) we find Tk(0) = 0 and



17 The Fourier method for the Laplace equation 95

T ′
k (0) =

2

5

∫ 5

0
(−ωx)sin

(k + 1
2
)πx

5
dx = −ω

10 · (−1)k

(k + 1
2
)2π2

. (16.8)

In the last equality, we took into account (16.6). The problem (16.7)–(16.8) could

be solved in the same way as in Section 15. Again, two cases are possible: resonant

and non-resonant.

Complete the solution of the problem (16.1).

Remark 16.4. For problems like (16.4) a condition analogous to (14.8) is not sat-

isfied. Still, the new function w(x,t) satisfies the initial and boundary conditions in

the usual sense. It is only the first equation in (16.4) that is satisfied in the sense of

distributions (see Section 26 below).

Problem 16.5. Find the resonance condition in the problem (16.3).

Answer. ω =
4(m+ 1

2 )πx

5
for some m = 0, 1, 2, . . ..

17 The Fourier method for the Laplace equation

Boundary value problems in a rectangle

A. Let us consider the boundary value problem in the rectangle Ω = [0,a]× [0,b]:











△u(x,y) ≡ ∂ 2u
∂x2 + ∂ 2u

∂y2 = 0, 0 < x < a, 0 < y < b;

u(0,y) = 0, u(a,y) = 0;

u(x,0) = f (x), u(x,b) = g(x).

(17.1)

This is the boundary value problem, or the Dirichlet problem: the function u is given

at the boundary of the considered region. See Fig. 17.1.

Fig. 17.1
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Solution. The problem (17.1) can be solved by the method of Section 15, where the

role of the variable t is now played by the variable y, as could be seen from com-

paring problems (17.1) and (15.1). We are looking for the solution in the following

form:

u(x,y) =
∞

∑
k=1

Yk(y)sin
kπx

a
. (17.2)

Then the boundary conditions at x = 0 and x = a in (17.1) are automatically satisfied.

We substitute (17.2) into equation (17.1). This gives equations on Yk(y):

−
(kπ

a

)2

Yk(y)+Y ′′
k (y) = 0, 0 < y < b. (17.3)

Substitution into the boundary conditions (17.1) at y = 0 and y = b yields















Yk(0) = fk ≡
2

a

∫ a

0
f (x)sin

kπx

a
dx,

Yk(b) = gk ≡
2

a

∫ a

0
g(x)sin

kπx

a
dx.

(17.4)

The general solution to equation (17.3) has the form

Yk(y) = Ake
kπ
a y + Bke−

kπ
a y. (17.5)

The constants Ak and Bk are found from the boundary conditions (17.4):

Ak + Bk = fk, Ake
kπ
a b + Bke−

kπ
a b = gk.

Solving this system, we find:







Ak = 1

e
kπ
a b−e−

kπ
a b

(gk − fke−
kπ
a b),

Bk = 1

e
kπ
a b−e−

kπ
a b

( fke
kπ
a b −gk).

(17.6)

Thus, the solution of the problem (17.1) is given by (17.2), (17.5), and (17.6).

Let us check the validity of the solution (17.2). We need to justify the possibility

of the termwise differentiation of the series (17.2). If f (x) and g(x) are integrable

functions, then f (x) and g(x) are bounded:

| fk| ≤
2

a

∫ a

0
| f (x)|dx, |gk| ≤

2

a

∫ a

0
|g(x)|dx.

But then from (17.6) we see that |Ak| ≤ c

e
kπ
a b

, |Bk| ≤ const. Therefore, it follows from

(17.5) that |Yk(y)| ≤ ce−
kπ
a (b−y) +ce−

kπ
a y. As a consequence, for ε < y < b−ε , with

ε > 0 small, one has |Yk(y)| ≤ ce−
kπ
a ε , and the series (17.2) for these values of y is

dominated by the convergent geometric series ∑∞
k=1 ce−

kπ
a ε . It is easy to see that the
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derivatives of the second order in x and in y of the series (17.2) are dominated by

the series ∑∞
k=1 ck2e−

kπ
a ε , which is also convergent. In the same way one proceeds

with the derivatives of any order in x and y.

Conclusion. Solution of the Dirichlet problem (17.1) is a smooth function inside

the rectangle Ω . Let us assume that, as in (12.5), f (x), g(x) ∈ C2
0 [0,a]. Then, anal-

ogously to (12.4), fk, gk = O( 1
k2 ) and, consequently, |Yk(y)| ≤ c

k2 , y ∈ [0,b]. There-

fore, the series (17.2) converges uniformly in the rectangle Ω = [0,a]× [0,b], and

its sum is a function which is continuous in this rectangle and satisfies boundary

conditions in (17.1).

B. More general boundary value problem of the Dirichlet type in the rectangle,







△u(x,y) = 0, 0 < x < a, 0 < y < b;

u(0,y) = ϕ(y), u(a,y) = ψ(y);
u(x,0) = f (x), u(x,b) = g(x),

(17.7)

could be solved by decomposing the solution u into two terms:

u = u1 + u2. (17.8)

Here u1 solves the problem (17.1), while u2 solves the problem







△u2 = 0, 0 < x < a, 0 < y < b;

u2(0,y) = ϕ(y), u2(a,y) = ψ(y);
u2(x,0) = 0, u2(x,b) = 0.

This problem takes the same form as (17.1) if one interchanges x and y. Therefore

u2 should be tried in the form (compare with (17.2)):

u2(x,y) =
∞

∑
k=1

Xk(x)sin
kπy

b
. (17.9)

If f , g ∈C2
0 [0,a], while ϕ , ψ ∈C2

0 [0,b], then, according to what we said above,

u1 and u2, and, consequently, u = u1 + u2 are continuous functions in Ω which

satisfy the required boundary conditions.

In the general case, for the continuity of u(x,y) in Ω , the following compatibility

conditions are obviously required:

f (0) = ϕ(0), ϕ(b) = g(0), g(a) = ψ(b), ψ(0) = f (a). (17.10)

Problem 17.1. Prove that the problem (17.7) has a solution continuous in Ω if

f , g ∈C2[0,a], ϕ , ψ ∈C2[0,b], and the compatibility condition (17.10) is satisfied.

Hint. Try to find the solution to equation △v = 0 in Ω which coincides with the

boundary values given by functions f , g, ϕ , and ψ at the boundary of the region

Ω . Then the difference u− v could be found using decomposition (17.8) described

above.
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C. Now we consider the nonhomogeneous Laplace equation (the Poisson equation).

Problem 17.2. Solve the boundary value problem







△u(x,y) = x2y, 0 < x < a, 0 < y < b;

u(0,y) = 0, u(a,y) = 0;

u(x,0) = 0, ∂u
∂y

(x,b) = 0.
(17.11)

Let us point out that here at x = 0, x = a, and y = 0 one has the boundary value of

the Dirichlet type, while at y = b one has the boundary value of the Neumann type

(that is, the derivative of the solution in the normal direction is specified).

Solution. Homogeneous boundary conditions at x = 0, and x = a allow to write the

solution in the form of the series over the eigenfunctions of the corresponding Sturm

– Liouville problem:

u(x,y) =
∞

∑
k=1

Yk(x)sin
kπy

a
. (17.12)

We also decompose over these functions the right-hand side:

x2y = y
∞

∑
k=1

gk sin
kπy

a
, gk =

2

a

∫ a

0
x2 sin

kπy

a
dx.

Substituting these decompositions into (17.11), we get for ∀k = 1, 2, . . .

−
(kπ

a

)2

Yk(y)+Y ′′
k (y) = ygk, 0 < y < b; Yk(0) = 0, Y ′

k(b) = 0. (17.13)

Then

Yk(y) = Ake
kπx

a + Bke−
kπx

a +
ygk

−( kπ
a

)
2
. (17.14)

The constants Ak and Bk can be found after substituting this solution into the bound-

ary conditions in (17.13):

Ak + Bk = 0,
kπ

a
Ake

kπ
a b +

(

−kπ

a

)

Bke−
kπ
a b +

gk

−( kπ
a

)2
= 0.

Answer. The solution is given by the formulas (17.12), (17.14).

Boundary value problems in annulus and in disc

A. Let us solve the boundary value problem of the Dirichlet type in the annulus

between the circles of radii r1 and r2:
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{△u(x,y) = 0, r2
1 < x2 + y2 < r2

2;

u|x2+y2=r2
1
= f1(ϕ), u|x2+y2=r2

2
= f2(ϕ); 0 ≤ ϕ ≤ 2π .

(17.15)

Here f1 and f2 are given continuous functions of the angular variable ϕ .

Solution. Let us convert to polar coordinates r =
√

x2 + y2, ϕ = arctan
y
x
.

Problem 17.3. Prove that in these coordinates the problem (17.15) takes the form











△u =
∂ 2u

∂ r2
+

1

r

∂u

∂ r
+

1

r2

∂ 2u

∂ϕ2
= 0, r1 < r < r2;

u|r=r1
= f1(ϕ), u|r=r2

= f2(ϕ); 0 ≤ ϕ ≤ 2π .

(17.16)

This is a problem in a rectangle [0,2π ]× [r1,r2] (Fig. 17.2). The boundary con-

ditions are given at the lower and at the upper sides of the rectangle.

Fig. 17.2

Question 17.4. Are there boundary conditions at the left and right sides of the

rectangle?

Answer. Yes, it is the periodicity condition in the variable ϕ :

u(0,r) = u(2π ,r),
∂u

∂ϕ
(0,r) =

∂u

∂ϕ
(2π ,r). (17.17)

This follows from the fact that the points with the polar coordinates (0,r) and (2π ,r)
are identical. Analogous periodicity conditions in ϕ also hold for all partial deriva-

tives of u in r and ϕ .

Problem 17.5. Show that the conditions (17.17) together with equation (17.16)

guarantee the periodicity in ϕ of all the derivatives of u in r and ϕ if u(ϕ ,r) is a

smooth function in the rectangle [0,2π ]× [r1,r2].

The Sturm – Liouville problem which corresponds to the homogeneous boundary

conditions (17.17) has the form
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





∂ 2

∂ϕ2
Φ(ϕ) = λ Φ(ϕ), 0 < ϕ < 2π ;

Φ(0) = Φ(2π), Φ ′(0) = Φ ′(2π).
(17.18)

Solving this problem, we find:

λk = −k2, Φk(ϕ) = Ak coskϕ + Bk sinkϕ , k = 0, 1, 2, . . . .

Therefore, for each k 6= 0 there are two linearly independent eigenfunctions: coskϕ
and sinkϕ , while for k = 0 there is only one eigenfunction: Φ0(ϕ) ≡ 1. As it is

known from the Fourier series theory, these eigenfunctions form a complete orthog-

onal set in L2(0,2π) and are mutually orthogonal. The squares of their L2-norms are

given by











∫ 2π

0
Φ2

0 (ϕ)dϕ =

∫ 2π

0
dϕ = 2π ;

∫ 2π

0
cos2(kϕ)dϕ =

∫ 2π

0
sin2(kϕ)dϕ = π , k = 1, 2, 3, . . . .

(17.19)

The Fourier method for the problem (17.16) in the annulus consists of finding

the solution in the form of a series over the eigenfunctions of the problem (17.18):

u(ϕ ,r) =
∞

∑
k=0

Rk(r)coskϕ +
∞

∑
k=1

Sk(r)sin kϕ . (17.20)

Substituting this series into equation (17.16), we get the following equations on the

“radial” functions Rk(r):

R′′
k +

1

r
R′

k +
1

r2
Rk(−k2) = 0, r1 < r < r2, k = 0, 1, 2, . . . (17.21)

and the same equations on Sk:

S′′k +
1

r
S′k +

1

r2
Sk(−k2) = 0, r1 < r < r2, k = 0, 1, 2, . . . . (17.22)

Let us solve the radial equations (17.21), (17.22). These are the Euler equations.

Substituting Rk = rλ into (17.21), we get

λ (λ −1)rλ−2 + λ rλ−2− k2rλ−2 = 0,

and we get the characteristic equation λ 2 −k2 = 0, hence λ = ±k. If k 6= 0, then the

roots are simple, and the general solutions to (17.21) and (17.22) have the following

form:

Rk(r) = Akrk + Bkr−k, k = 1, 2, 3, . . . ; (17.23)

Sk(r) = Ckrk + Dkr−k, k = 1, 2, 3, . . . . (17.24)

For k = 0, the root of the equation λ = 0 has multiplicity 2, hence
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R0(r) = A0 + B0 lnr. (17.25)

Substituting (17.23)–(17.25) into (17.20), we get the general solution of a homoge-

neous Laplace equation in the annulus:

u(ϕ ,r) = A0 + B0 lnr +
∞

∑
k=1

(Akrk +
Bk

rk
)coskϕ +

∞

∑
k=1

(Ckrk +
Dk

rk
)sin kϕ . (17.26)

Remark 17.6. This is a general form of a harmonic function in the annulus.

The values of the constants in (17.26) are obtained from the boundary conditions

(17.16):











A0 + B0 lnr1 +
∞

∑
k=1

(Akrk
1 + Bkr−k

1 )coskϕ +
∞

∑
k=1

(Ckrk
1 + Dkr−k

1 )sin kϕ = f1(ϕ),

A0 + B0 lnr2 +
∞

∑
k=1

(Akrk
2 + Bkr−k

2 )coskϕ +
∞

∑
k=1

(Ckrk
2 + Dkr−k

2 )sin kϕ = f2(ϕ),

(17.27)

where 0 ≤ ϕ ≤ 2π . Taking into account the orthogonality of the eigenfunctions of

the Sturm – Liouville problem (17.18) and the relations (17.19), we get











A0 + B0 lnr1 =
1

2π

∫ 2π

0
f1(ϕ)dϕ ,

A0 + B0 lnr2 =
1

2π

∫ 2π

0
f2(ϕ)dϕ ,

(17.28)

and, similarly, for k = 1, 2, 3, . . .,











Akrk
1 + Bkr−k

1 =
1

π

∫ 2π

0
f1(ϕ)coskϕ dϕ ,

Akrk
2 + Bkr−k

2 =
1

π

∫ 2π

0
f2(ϕ)coskϕ dϕ ;

(17.29)











Ckrk
1 + Dkr−k

1 =
1

π

∫ 2π

0
f1(ϕ)sin kϕ dϕ ,

Ckrk
2 + Dkr−k

2 =
1

π

∫ 2π

0
f2(ϕ)sin kϕ dϕ .

(17.30)

We find A0 and B0 from the system (17.28) and Ak, Bk from (17.29). Ck and Dk are

found from (17.30). The problem (17.15) is solved.

Problem 17.7. Prove that the solution (17.26) of the problem (17.15) is infinitely

differentiable in the interior of the annulus.

Problem 17.8. Solve the Dirichlet problem in the annulus:

{

△u(x,y) = 0, 4 < x2 + y2 < 9;

u|x2+y2=4 = x, u|x2+y2=9 = y.

Solution. Here r1 = 2, r2 = 3, so that
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f1(ϕ) = 2cosϕ , f2(ϕ) = 3sinϕ . (17.31)

Therefore, the right-hand sides in (17.28) are equal to zero and A0 = B0 = 0. Analo-

gously, the right-hand sides of the systems (17.29) and (17.30) are equal to zero for

all k 6= 1, thus

Ak = Bk = 0, Ck = Dk = 0 for k 6= 1.

Hence, the series (17.26) contains only two terms:

u(ϕ ,r) = (A1r + B1r−1)cosϕ +(C1r + D1r−1)sin ϕ . (17.32)

The remaining coefficients are obtained from the systems of equations

{

A12 + B1
1
2

= 2,

A13 + B1
1
3

= 0,

{

C12 + D1
1
2

= 0,

C13 + D1
1
3

= 3,
(17.33)

which are derived directly from (17.31). Namely, (17.33) is obtained by substitut-

ing (17.31) into (17.27) and comparing the Fourier coefficients in both sides of the

relations, instead of evaluating integrals in (17.29)–(17.30). From (17.33) we find

A1 = −4

5
, B1 =

36

5
, C1 =

9

5
, D1 = −36

5
. (17.34)

Answer. u(ϕ ,r) =
(

− 4
5
r + 36

5
r−1
)

cosϕ +
(

9
5
r− 36

5
r−1
)

sinϕ .

B. Now let us consider the Dirichlet problem in the disc of radius R:

{

△u(x,y) = 0, x2 + y2 < R2;

u|x2+y2=R2 = f (ϕ), 0 < ϕ < 2π .
(17.35)

A solution of this problem also has the form (17.26), since the disc x2 + y2 < R2

contains the (degenerate) annulus 0 < x2 + y2 < R2. But the disc also contains the

point (0,0), where the solution has to be finite:

|u(0,0)|< ∞. (17.36)

It can be shown [TS90] that (17.36) holds if and only if all the terms which have

the singularity at (0,0) of the form lnr and r−k are absent from (17.26). This means

that B0 = Bk = Dk = 0, k = 1, 2, 3, . . .. Thus, (17.26) takes the form

u(x,y) = A0 +
∞

∑
k=1

rk(Ak coskϕ +Ck sin kϕ). (17.37)

This is the analog of the Taylor series for a harmonic function in a disc. The coef-

ficients of the series (17.37) are found from the boundary condition of the problem

(17.35).

Problem 17.9. Solve the Dirichlet problem in the disc:
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{

△u(x,y) = 0, x2 + y2 < 4;

u|x2+y2=4 = x2.

Solution. We are looking for the solution u in the form (17.37). The substitution of

this series into the boundary condition gives:

A0 +
∞

∑
k=1

2k(Ak coskϕ +Ck sinkϕ) = 2 + 2cos2ϕ , (17.38)

since x2|r=2 = (2cosϕ)2 = 4cos2 ϕ = 2 + 2cos2ϕ . Comparing the Fourier coeffi-

cients in the left- and right-hand sides of (17.38), we see that all Ak and Ck with

k 6= 0 and k 6= 2 are equal to zero, and and the formula (17.37) yields the answer:

A0 = 2, A2 = 1/2, C2 = 0. The formula (17.37) takes the form

u = 2 + r2 1

2
cos2ϕ = 2 +

r2

2
(cos2 ϕ − sin2 ϕ) = 2 +

x2 − y2

2
.

Problem 17.10. Solve the Dirichlet problem in the annulus:

{

△u(x,y) = x2, 9 < x2 + y2 < 16;

u|x2+y2=9 = 0, u|x2+y2=16 = 0.

Hint. Both the solution that we are looking for and the right-hand side of the equa-

tion are to be decomposed into the series of the form (17.20). Equations on the radial

functions Rk and Sk will be the nonhomogeneous Euler equations.

Problem 17.11. Solve the Neumann problem in the disc:

{△u(x,y) = 0, x2 + y2 < 9;
∂u
∂nnn
|x2+y2=9 = y,

where ∂
∂nnn

is the derivative normal to the boundary of the disc.

Hint. Solution is to be looked for in the form of the series (17.37); moreover, in the

polar coordinates one has ∂u
∂nnn

= ∂u
∂ r

.

Conclusion. The heat equation, the wave equation, and the Laplace equation possess

different properties. As it follows from the results of Chapter 2, solutions of the

homogeneous Laplace equation and the heat equation are smooth inside the regions

where they are considered, even if the boundary values are discontinuous. At the

same time, solutions of the homogeneous wave equation could be discontinuous if,

for example, the initial data are discontinuous functions.
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