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Abstract

Fear and anxiety are evolutionarily developed responses to perceived or
anticipated threat. They involve behavioral, autonomic, and endocrine altera-
tions aimed at increasing an organism’s chances of survival. Excessive or
uncontrolled fear and anxiety may lead to anxiety disorders. Animal and human
studies indicate the critical role of the amygdala in adaptive and maladaptive
fear. Recent advances elucidating the organization of the neural circuitry and
molecular mechanisms of fear provide new insights in normal as well as patho-
logical fear. In this chapter, we review the microcircuitry of the amygdala with
a special emphasis on its relevance to fear processing and fear learning. We also
discuss recent developments in understanding the basic molecular mechanism
of fear. Finally, we address some of the implications of amygdala research for
developing novel therapeutic approaches to maladaptive fear and anxiety.
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INTRODUCTION

Research on neural mechanisms of fear and anxiety has advanced significantly
in recent decades. Animal models have been particularly useful in characterizing
the microanatomy as well as the cellular and molecular mechanisms of fear and
anxiety. More recently, animal studies have been complemented by a growing
body of human research, especially involving functional imaging. Both avenues
of investigation point at the key role of the amygdala in processing fear.

Fear is a natural, evolutionarily developed response to environmental threats.
It includes autonomic and endocrine changes supporting defensive behaviors,
such as fighting, fleeing, or immobility (freezing). Physiological adjustments
allow increased blood flow and energy supply to skeletal muscles and the brain.
These alterations support actions aimed at increasing the organism’s chances of
survival. Information about natural threats have been evolutionarily hardwired
into animal brains, which appear to selectively respond to relevant environmental
factors, such as sights, sounds, or odors of common predators; specific social
behaviors of conspecifics; and painful or intense stimuli (e.g., sound of thunder,
etc.). These natural factors elicit innate fear. However, an individual has to learn
through experience about a variety of other possible threats. While innate pre-
programmed fear reactions are inherited, acquired fear responses result from
a capacity of an organism to learn and remember cues associated with danger
experienced throughout life. Whereas fear is considered to be a response to an
actual danger and is typically triggered by specific stimuli, anxiety is a state of
preparation for a predicted threat, which can be real or imaginary.

Maladaptive fear and anxiety occur in anxiety disorders. Although anxiety dis-
orders may involve innate mechanisms that unfold during life, such as a tendency
for extreme shyness (/), fear learning contributes significantly to many anxiety
pathologies (2-6). Thus, defining neural networks as well as cellular and molecular
pathways underlying fear learning is crucial for better understanding of pathogen-
esis of anxiety disorders and for development of new treatment approaches.

One of the most commonly and successfully used experimental models of
fear learning is Pavlovian fear conditioning (7). In this procedure, a neutral event
(a conditioned stimulus, CS), such as tone, is paired with an aversive event (an
unconditioned stimulus, US), such as a mild electric shock (Fig. 1) (6,8,9). Once
the CS and the US are paired, the CS acquires an ability to elicit behavioral, auto-
nomic, and endocrine fear responses. These responses are expressed automati-
cally on subsequent exposures to the CS. Fear conditioning has been observed in
a variety of species, ranging from insects and worms to birds and mammals.

Animal studies using fear conditioning demonstrate a unique and powerful
character of fear learning. First, fear conditioning occurs very quickly. Usually,
a single pairing of the CS with the US is sufficient to establish a memory. Second,
once learned, conditioned fear responses persist, often remaining throughout the
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Fig. 1. Auditory fear conditioning. In auditory fear conditioning, a neutral stimulus
(conditioned stimulus, CS), such as tone, is paired with an aversive event (unconditioned
stimulus, US), often a mild electric shock to the foot pads. As a consequence, subse-
quent presentations of the CS trigger fear responses, such as immobility or freezing

life of an organism. Third, defensive responses to stimuli previously associated
with aversive events may weaken or extinguish through experiences that show
that the CS no longer predicts harm. However, the original conditioning can
frequently be recovered either spontaneously or as a result of a new stressful
experience months or years after it has been extinguished. Fourth, fear moti-
vates other kinds of behaviors, such as approach and avoidance. Avoidance can
be adaptive, but in anxiety disorders avoidance often takes on a maladaptive
role, with the patient successfully avoiding fear and anxiety but at the expense
of failing to perform routine life roles.

THE INTRA-AMYGDALA MICROCIRCUITRY OF FEAR

The amygdala was named by the nineteenth century German anatomist Karl
Burdach for the almond-like (in Greek almond: amygdale) shape of one of its
subregions (/0). Although the amygdala is a complex structure involved in a
variety of functions, overwhelming evidence shows the critical role of the amygdala
in fear (6,11-18), as well as in fear and anxiety pathologies (/9-22). The role of
the amygdala in fear is ubiquitous in vertebrate species (6).

The amygdala is located bilaterally deep inside the temporal lobe. It consists
of several distinct groups of cells organized in nuclei (23) (Fig. 2). The regions
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Fig. 2. Amygdala inputs, internal connections, and outputs. The amygdala consists of
a group of nuclei. The nuclei most relevant to fear conditioning are the lateral (LA),
basal (B), and central (CE) nuclei of the amygdala, as well as the subgroup of neurons
known as intercalated cells (ITCs). The LA is the main sensory input area. It receives
inputs from the thalamus and the cortex; thus, it is responsible for linking the CS with
the US. The basal nucleus receives projections from the hippocampus and enthorhinal
and polymodal associative cortices, areas that may convey information about the envi-
ronmental context in which the fearful event is occurring. The CE is the common output
area controlling expression of behavioral, autonomic, and endocrine fear responses. The
LA is connected with the CE in direct and indirect (via the basal nucleus and the ITCs)
ways. The ITCs have inhibitory control over the CE. Major identified neuromodulators
involved in fear regulation include NE norepinephrine, DA dopamine, ACh acetylcho-
line, 5HT 5-hydroxytryptophan (serotonin)

most relevant to fear conditioning are the lateral (LA), basal (B), and central
(CE) nuclei, as well as a distinct subgroup of neurons known as the massa inter-
calata or intercalated cells (ITCs) (6,18,23-26)

The LA isconsidered tobe asensory gateway of the amygdala. Itreceives inputs
from all sensory modalities, including visual, auditory, tactile, olfactory, and
gustatory, as well as from fibers transmitting pain (/7). Although other amygdala
nuclei also receive some sensory afferents, the LA is the main region where the
sensory pathways converge. Studies using fear conditioning demonstrate that the
LA is responsible for linking information about the neutral cue (CS) with that
of the noxious stimulus (US). One of the most thoroughly investigated variants
of fear conditioning is auditory fear conditioning, whereas a CS consists of a
single tone. Fear conditioning studies reveal that auditory information reaches
the LA through two distinct sensory inputs: thalamic and cortical (6,11).
The thalamic pathway conveys a rapid but imprecise auditory signal from extra-
lemniscal areas, whereas the cortical pathway delivers a refined representation
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Fig. 3. Two roads to fear. Sensory information reaches the LA (lateral nucleus) through
two independent sensory inputs: The “low road” or thalamic pathway provides the amy-
gdala with a rapid but imprecise signal, while the “high road” delivers a more com-
plex and detailed representation derived from cortical association areas responsible in
humans for conscious processing. The two-road model of signal transmission illustrates
how fear responses can be initiated (by the direct low road) before we are aware of the
eliciting stimulus

from associative cortices, which in humans are responsible for conscious
processing. This last pathway, however, includes additional synaptic connec-
tions, which results in longer transmission. The “two-roads” model of signal
transmission is used to illustrate how fear responses can be triggered (by tha-
lamic road) before we are aware of the initiating stimulus (Fig. 3) (6).

While the lateral nucleus is believed to be the main sensory gateway, the
central nucleus is considered to be the major output region (27-29). The CE
projects to brain stem regions and through these projections controls expression
of fear responses, including some behavioral responses, such as freezing, as
well as autonomic and endocrine reactions. In addition, the CE is responsible
for activating amine modulatory systems, such as adrenergic, serotonergic,
dopaminergic, and cholinergic systems (/1,18,23) (Fig. 2).

The major input and output amygdala regions, the lateral and the central
nuclei, respectively, are connected through direct and indirect routes (23,30).
The indirect routes are believed to be major communication channels between
the both nuclei and involve connections from LA to the basal nucleus and the
ITCs, both of which project to CE. The basal nucleus also receives inputs from
the hippocampus and entorhinal and polymodal associative cortices and delivers
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information about the environmental context in which the threat is occurring
(23,24). In addition to fibers descending to the CE, the basal nucleus also
projects to striatal areas. These outputs are believed to control instrumental
behaviors (23,31,32). The ITC network extends from the rostral amygdala to
the anterior commissure (33) and consists of clusters of y-aminobutyric acid
(GABA) or GABA-ergic neurons. These neurons control the flow of activity
from the LA and basal nucleus to the CE by way of forward inhibition (34).

SYNAPTIC PLASTICITY AND ITS MOLECULES

Fear conditioning results in alterations in the strength of synaptic signaling
in the amygdala (Fig. 4). Although synaptic plasticity occurs in other amygdala
regions receiving some sensory inputs, such as the CE (35) and basal nucleus
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Fig. 4. Signal transduction pathways involved in fear conditioning in the lateral amy-
gdala. Consolidation of fear conditioning is initiated by the activation of receptors at the
postsynaptic neuron (1). This in turn triggers cascades of intracellular events that regulate
the activity of mitogen-activated protein kinase (MAPK) (2). MAPK controls transcrip-
tion factors, such as CREB (cyclic adenosine monophosphate response element-binding)
proteins, which regulate transcription of certain genes (3). Gene activation leads to new
RNA (ribonucleic acid) and new protein synthesis and thus structural changes in the
postsynaptic neuron (4). Plausible mechanisms of retrograde signaling (5) from the
postsynaptic neuron induce changes in the presynaptic neuron (6). cAMP cyclic adno-
sine monophosphate, NO nitric oxide, PKA protein kinase A, TrkB neurotrophic tyro-
sine kinase receptor 2, mGluR5 metabotropic glutamate 5 receptor, NMDR N-methyl
D-aspartate receptor, AMPAR alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor, PKC protein kinase C, CaMKII calcium/calmodulin-dependent protein
kinase II, NOS nitric oxide system. L-VGCC L-type voltage-gated calcium channel
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(36), the main site of synaptic changes underlying learning and memory is
the LA (13,24,25,37—41). The LA is a site where the CS and the US path-
ways converge. Most of the inputs projecting onto the amygdala are excitatory
and release glutamate binding to NMDA (N-methyl p-aspartate) and AMPA
(o-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors localized
on principal neurons. These neurons in turn transmit the information to other
amygdala regions.

The cellular hypothesis of fear conditioning posits that relatively weak CS
inputs become strengthened by the cooccurrence of the US, which is capable
of eliciting robust responses in the LA. The activation of postsynaptic NMDA
receptors on principal neurons by the CS signaling pathways in the context
of the strong depolarization by the US inputs triggers calcium influx (42)
(Fig. 4). This initiates cascades of intracellular processes involving second mes-
sengers and protein kinases, which lead to activation of transcription factors,
gene expression, new protein synthesis, and synaptic alterations (24,37,39-41)
Newly synthesized proteins strengthen synaptic connections. For example, it
has been demonstrated that fear conditioning stimulates trafficking of AMPA
receptors to synapses in LA (43). The insertion of new glutamatergic receptors
increases the postsynaptic response elicited by presynaptic inputs.

Synaptic plasticity and learning in the amygdala are regulated by a variety
of modulatory systems. Identified neuromodulators include the catecholamines
noradrenaline (44—46) and dopamine (47,48) as well as glucocorticoids (49,50),
serotonin (5/), nitric oxide (52), BDNF (brain-derived neurotrophic factor) (53),
endocannabinoids (54), neuropeptide Y (55,56), and others. These neuromodu-
lators may facilitate changes on principal neurons or inhibitory GABA-ergic
interneurons or both.

FEAR MEMORIES: THE QUESTION OF PERSISTENCE

Synaptic changes triggered by experience lead to the consolidation of the
new learning. However, before consolidation is completed, interference with
any of the stages of underlying intracellular events, from activation of the recep-
tors to new protein synthesis, impairs the memory. According to the standard
view of memory consolidation (57), once synaptic alterations are stabilized,
memories become immune to interference.

The standard memory consolidation model has been successfully used in
clinical studies. For example, it is well established that noradrenergic signal-
ing enhances learning, especially emotional learning (57), and two pilot studies
have demonstrated that administration of the [-adrenergic receptor antagonist
propranolol shortly after trauma decreases the risk of post-traumatic stress dis-
order (PTSD) (58,59)

The traditional view of consolidation, that once memories are consolidated
they persist in an unaltered state (57), was first challenged by studies in the
1960s showing that reactivation of a consolidated memory through retrieval
renders this memory susceptible to amnesic treatments (60—62). Recent studies
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Fig. 5. Reconsolidation processes enable modification of the memory. Reactivation of
the consolidated memory renders it labile and susceptible to interferences. This enables
the modification of the existing memory trace by the circumstances accompanying the
memory retrieval

ultimately challenged the consolidation theory, providing compelling evidence
that memory reactivation triggers another round of synaptic plasticity, a phe-
nomenon known as memory reconsolidation (Fig. 5) (62-71). It has been dem-
onstrated that reconsolidation of auditory fear conditioning in the LA involves
NMDA receptor activation (66,72), protein kinases (73-75), expression of
immediate early gene Zif268 (76), and new protein synthesis (63,77,78) and is
modulated by noradrenergic signaling (45).

One of the implications of reconsolidation research is that even well-consolidated
memories may be altered. In particular, a reconsolidation model may be help-
ful in developing new treatments of fear pathologies, such as PTSD or specific
phobias (62,65,69,70,79—81). Blocking reconsolidation may be helpful in atten-
uating learned fear responses and thus reducing the debilitating impact of trau-
matic experiences.

EXTINCTION OF FEAR: THE POWER OF CORRECTIVE
EXPERIENCE

Learned fear responses may be attenuated by repeated exposure to the
fear-arousing stimulus in a safe or neutral context (82,83). This phenomenon,
referred to as fear extinction, forms a theoretical basis of exposure therapies
(84-86). Extinction is a form of learning in which an organism learns that cues
previously associated with a fearful event no longer predict danger. Extinction
learning involves an interacting circuiting that includes the amygdala, medial
prefrontal cortex, and the hippocampus (87-96). Studies in humans have found
involvement of the amygdala and prefrontal cortex in extinction (97).
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As a form of learning, extinction shares with fear conditioning similar molec-
ular mechanisms. Specifically, glutamatergic signaling is required to initiate
synaptic plasticity processes. Animal studies have demonstrated that enhancing
glutamatergic stimulation by using the NMDA receptor agonist d-cycloserine
facilitates extinction learning via the amygdala (98). This was further applied in
human studies showing that exposure therapy in conjunction with d-cycloserine
facilitates fear extinction (99-101).

ACTIVELY COPING WITH FEAR

Successfully extinguished fears often spontaneously recover or may be rein-
stated by a new traumatic event. Extinction learning is based on a passive expo-
sure to fear-related stimuli. In contrast, a new study in rodents showed that active
coping with fear may produce enduring reduction of fear. This new learning para-
digm is referred to as escape from fear (102,103). In escape-from-fear learning,
an organism learns to perform active behaviors that eliminate a fearful stimulus
and thus reduce fear. The circuitry underlying escape-from-fear learning involves
a circuit switch in the amygdala that, instead of transmitting signaling from the
LA to the CE, directs information to the basal nucleus, which through its projec-
tions to the striatum and cortex controls actions (/4). A recent study in humans
using an active coping task found evidence for the involvement of not only the
same emotion regulation circuit as extinction—the amygdala and medial prefron-
tal cortex—but also the striatum (Schiller D, Cain CK, Kuhlman K, LeDoux JE,
Phelps EA, unpublished data). One implication of these findings is that therapies
actively engaging patients may produce more enduring effects (/04—106).

FROM ANIMAL TO HUMAN AMYGDALA

Recent studies using brain-imaging techniques have supported earlier animal
research depicting the amygdala as a key structure involved in fear and anxiety
(Fig. 6). The amygdala has been implied in adaptive fear (97,107,108) as well as
in pathological fear and anxiety (21,/09-112). In particular, the amygdala has
been implied in PTSD (/09-111) and phobias (112,113).

In addition, pharmacological approaches developed using animal models
offer promising results in treating human fear and anxiety pathologies (58,59,81,
99,101).

CONCLUSIONS

Recent studies significantly advanced our knowledge about the organization
of neural circuits and cellular and molecular mechanisms underlying fear and
fear learning. This has been accomplished in major part thanks to the use of ani-
mal models, which allow insights into the microcircuitry and molecular mecha-
nism of fear. Animal research forms a foundation for further human studies and
provides clues about possible future therapeutic approaches.
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Fig. 6. Functional magnetic resonance imaging (fMRI) of fear learning in the human
brain. Top: Structural magnetic resonance image (MRI) of the human brain (the box
delineates an area containing the amygdala). a Conditioned fear: fMRI showing amy-
gdala activation by the conditioned stimulus (CS) following pairing with the uncondi-
tioned stimulus (US). b Instructed fear: fMRI showing amygdala activation by a CS
that was not directly paired with the US but instead the subjects were instructed about
the US. ¢ Observational fear learning: fMRI showing amygdala activation by a CS after
the subjects observed someone else undergoing fear conditioning in which this CS was
paired with a US. (Images provided by Elizabeth Phelps)
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