Chapter 2
The Knowledge Representation Strategy

This chapter explains in a detailed way the main encoding principles underpinning
the NKRL style of knowledge representation. It describes NKRL as a sort of
general environment to be used to represent formally all sorts of narratives; specific
solutions used to represent particular kinds of narrative knowledge (particular
narrative “contents”) will be detailed in Chapter 3. After reading Chapter 2,
interested people should be able (i) to understand the characteristic NKRL
(external) code that has been used in the framework of all the existing NKRL
applications; (ii) to encode themselves in NKRL’s terms at least in some simple
example of nonfictional narrative.

Following Section 2.1, which is devoted to the description of the general,
“architectural” organization of the “basic” NKRL language and to the introduc-
tion of its four “components,” Section 2.2, will give a detailed explanation of
the data structures used for these components. Section 2.3 will deal with the
“second-order” structures used in NKRL to take into account those connectivity
phenomena that, as we have seen in Chapter 1, are so important for the correct
representation of narrative information. A short conclusion, Section 2.4, will
end the chapter.

2.1 Architecture of NKRL: the Four “Components”

From an “architectural” point of view, we can see the “basic” NKRL language
(i.e. without considering the second-order tools at the moment) as structured
into four connected “components,” even if the differences among these compo-
nents are somewhat blurred in the implementation software. Each of them takes
into account a particular category of narrative phenomena, making use of specific
knowledge representation tools that can be considered as the best fitted for
modeling these phenomena. The four components are definitional, enumerative,
descriptive and factual, we provide a general description of their main charac-
teristics below.

e The definitional component concerns the formal (binary) representation of
both the general (like “human being,” “amount” or “artifact”) and the

G.P. Zarri, Representation and Management of Narrative Information, 39
DOI 10.1007/978-1-84800-078-0_2, © Springer-Verlag London Limited 2009

40

2 The Knowledge Representation Strategy

” ”

specific notions (like “business person,” “taxi,” “city” or “demand for ran-
som”) that must be considered for taking correctly into account the narra-
tive information proper to the different application domains. The NKRL
formal representations of these notions are called “concepts” — denoted in
general as C;. NKRL concepts are inserted into a generalization/specializa-
tion directed graph structure (often, but not necessarily, reduced to a tree)
that, for historical reasons, is called HClass(es), “hierarchy of classes.” The
data structures of the NKRL concepts correspond relatively well to the
analogous structures that can be built up using the usual environments for
the creation of ontologies like Protégé [Noy et al., 2000], WebODE [Arpirez
et al., 2003] or OntoEdit [Sure et al., 2002]. In the concrete NKRL structures
expressed in “external” NKRL format, the concepts are “named” making use
of (lower case) symbolic labels like human_being, business_person, taxi_,
city _, ransom_demand, etc. To discriminate between concepts and other
categories of the language also represented in practice by lower case
“names,” e.g. the “modulators” (see Section 2.2.2.4), the symbolic labels
denoting the concepts always include at least an “underscore” symbol.

The “enumerative component” concerns the formal representation of the
instances |; (specific examples) of the notions (concepts) pertaining to the
definitional component — as we will see in Chapter 3, not all the NKRL
concepts can be endowed with instances. The formal representations in
NKRL’s terms of such instances take the name of “individuals”; individuals
are then created by instantiating the properties of the concepts of the defini-
tional component. Individuals are characterized by the fact of being countable
(enumerable) and of always being associated, often in an implicit way, with a
spatio-temporal dimension. Within the actual NKRL structures, each indivi-
dual owns a unique conceptual label (JOHN_SMITH, PARIS_, RANSOM_
DEMAND_4): two individuals associated with the same NKRL description
but having different labels will be considered as different individuals. In the
“external” format of NKRL, individuals are represented in upper case. To
discriminate between individuals and other categories of the language also
denoted in upper case, like predicates and roles (Section 2.2.2.2), their sym-
bolic labels always include at least an “underscore” symbol.

The “descriptive component” concerns the formal representation of general
classes of elementary events like “moving a generic object,” “formulate a
need,” “be present somewhere,” “starting a company,” “committing acts of
violence against someone,” etc. As we have already stated in Chapter 1, the
formal (n-ary) representations of these general classes in NKRL terms are
called “templates”, t. Note that the term “elementary event” is used in
NKRL to denote also, in general, all the fuzzy, associated notions like
state, situation, period, episode, history, process, action, etc.; see also
Zarri [1998]. The general classes of elementary events (templates) of the
descriptive component are obtained by abstraction/generalization from sets
of specific, elementary narrative “events” (in the general meaning evidenced
before) that we can observe (or imagine) in the real world. Within the

” @

2.1 Architecture of NKRL: the Four “Components” 41

concrete NKRL structures, templates are denoted in “external” format by
symbolic labels such as the Produce:HumanBeinglnjuring already met in
Section 1.1.2; see Chapter 3 for details. Templates are inserted into an
inheritance hierarchy (in this case, a simple tree) that is called HTemp
(hierarchy of templates).

® The “factual component” provides the formal representation (as instances of
the templates of the descriptive component) of the different, possible ele-
mentary events that can be isolated within a narrative. As already stated,
these formal representations are called “predicative occurrences”, c¢. A
predicative occurrence is then the NKRL representation of an elementary
narrative information like “Tomorrow, I will move the wardrobe,” “Lucy
was looking for a taxi,” “Peter lives in Paris,” “Company X, located in
Geneva, has taken the control of Company Y,” etc. The elementary events
(the predicative occurrences) eventually concern the description of a parti-
cular set of interactions among individuals (and, in case, concepts) — see the
interaction between Lucy and a particular wardrobe in the example before,
or between Brutus and Caesar in the “stabbing” event of Chapter 1— where:
(1) the “semantic category” of the set of interactions is defined by the
particular “deep predicate” (“stabbing”) associate with the event; (i) in
conformity with the Kimian analysis of Chapter 1, the set of interactions is
delimited from a spatio/temporal point of view. This implies, among other
things, that a specific “duration” (a specific temporal interval that can be
“empty” in the case, for example, of a “future” or “hypothetical” event) will
always be associated with a predicative occurrence. Within the concrete
NKRL representations in external format, occurrences are denoted
(usually) by a sort of “pointed” notation, introduced in Section 2.2.2.2.

With respect, for example, to a description logics’ perspective [Baader et al.,
2002], we note that the definitional component in NKRL corresponds roughly to
Thox and the enumerative component to Abox. Tbox contains, in fact, intensional
knowledge that describes the general properties of concepts; ABox contains the
corresponding extensional knowledge. No description logics structures corre-
spond, on the contrary, to the descriptive or factual structure of NKRL that
constitute then, from a data structure point of view, the main innovation
introduced by this last language.

We can conclude this section by emphasizing that, in NKRL, the concepts
(definitional component) and their instances (individuals, enumerative compo-
nent) are kept conceptually distinct — even if they are represented using, in practice,
the same data structures; see the following sections. The main reason for operating
this separation is linked with the very different epistemological status of concepts —
which define a generic, abstract mold for some compulsory notions that must be
taken into consideration in a given domain — with respect to the individuals, which
represent only transitory entities found out in the context of some concrete events of
the domain. In this respect, concepts can be considered as necessary and permanent,
at least in the context of a given application — even if, in practice, customizing

42 2 The Knowledge Representation Strategy

HClass for an application requires the addition of several new, low-level concepts
online (and, in some cases, their modification and withdrawal). Individuals repre-
sent, on the contrary, unpredictable, randomly occurring entities stored consecu-
tively (and continuously) into an NKRL-based system, characterized by the
absence of any necessity attribute and that can, therefore, be eliminated without
any consequence for the logical coherence of the system.

Similar considerations could also be formulated about the reasons for dis-
tinguishing between descriptive (templates) and factual component (predicative
occurrences) entities — even if, in this case, the need for such a differentiation is
more concretely evident (the predicative occurrences constitute the formal basis
for encoding our nonfictional narratives).

Note that the separation concepts/instances (individuals) can appear as an
obvious requirement today but, in reality, recognizing that there is a need for this
distinction is a relatively recent notion. Many “expert systems” environments in
the 1970s and 1980s could not differentiate between the two. A well-known
example in this context is that of KEE [Fikes and Kehler, 1985], one of the early
and most powerful commercial environments for the development of complex
frame-based systems. Followers of a uniform approach in which all the “units,”
to adopt the KEE terminology, have the same status, claim that, for many
applications, this distinction is not very useful and only adds some important
logical and semantic difficulties. From a knowledge representation point of
view, the formalization of the concepts/instances distinction can be traced
back to the well-known Woods [1975] paper “What’s in a link: foundations
for semantic networks” and to his claim for a separation between “intension”
(concepts) and “extension” (instances, e.g. the sets of entities that “materialize”
the concepts). One of the examples used by Woods concerns the classical Frege’s
(and Quine’s) example about the two different concepts of “morning star” and
“evening star” (intension) that are both materialized by the same instance
(extension), the planet Venus. We note that NKRL follows Woods’ conclusion
of conceiving all the nodes of an ontology as intensional entities (i.e. as con-
cepts), and to add a specific predicate of existence only when necessary to
introduce some instances; see Section 2.2.1.4. A corollary of this decision con-
cerns the fact that, in NKRL, individuals (instances) are terminal symbols
(leaves) of the HClass hierarchical structure (the NKRL “ontology” of concepts)
and that they cannot be further specialized, i.e. they cannot receive further
instances; again, see Section 2.2.1.4 and Zarri [1997].

2.2 The Data Structures of the Four Components

The data structures proper of the four components are systematically imple-
mented as structured objects identified by a symbolic label. Within this general
framework, very important differences exist between the definitional/enumera-
tive and the descriptive/factual structures.

2.2 The Data Structures of the Four Components 43

2.2.1 Definitional| Enumerative Data Structures

The definitional and enumerative data structures that support concepts and
individuals have been implemented in a relatively simple and straightforward
way, given that the most complex and intriguing aspects of the “narrative”
phenomena are taken into account by the descriptive and factual data structures.
Therefore, in designing these structures, the aim has been simply that of
implementing a clean and simple semantics allowing very efficient and fast
managing of operations. These structures (basically “binary” — see the discussion
in Chapter 1) have, then, been organized in a (traditional and well-known)
frame-like fashion, i.e. as bundles of properties (attributes, features,
qualities,. . .) [value relations where neither the number nor the order of the
properties is fixed. This type of organization, then, concerns both the definitions
associated with the concepts and the descriptions of the corresponding
individuals.

NKRL “frames” conform to the general requirements of the Open Knowl-
edge Base Connectivity (OKBC), [Chaudhri et al., 1998], and are not very
different from the object structures used in Protégé [Noy et al., 2000; Gennari
et al., 2002]. As is well known, Protégé is a sort of standard for the set up of
frame-oriented ontologies: in a recent survey based on 627 answers to a
questionnaire about the practices of the SW community [Cardoso, 2007],
Protégé was the ontology editor most frequently mentioned with a “market
share” of 68.2%. A prototype that extends the present Protégé system to
support collaborative ontology editing in a Web-based environment is pre-
sented, for example, in Tudorache and Noy [2007]. Note that the NKRL
software makes use of a specific environment — the HclassEditor — to set up
its frame structures and to store them onto an ORACLE database; see also
Appendix A. This environment is very similar to the standard (i.e. without
additional plugins) Protégé environment, and the two can, at least in principle,
be indifferently used to introduce new concepts or individuals into HClass or to
modify them. Some of the reasons for building up a specific NKRL environ-
ment for the set up of frame-like structures are explained in the following
sections. Information below refers, in general, to concepts: the specific pro-
blems proper to the implementation of NKRL instances (individuals) are
examined in detail in Section 2.2.1.4.

2.2.1.1 General Principles of the HClass “Frames”

We will quickly recall here some well-known notions concerning the set up of
ontologies of concepts under the form of “frames.”

These ontologies are structured as inheritance hierarchies making use of the
IsA link (also called AKindOf (Ako), SuperC, etc.). A relatively unchallenged
(however, see Brachman [1983]) semantic interpretation of ISA states that this
relationship among concepts, when noted as (IsA C, C4), means that concept C,

44 2 The Knowledge Representation Strategy

is a specialization of the more general concept C4. In other terms, Cy subsumes
C.. This assertion can be expressed in logical form as

Vx (Ca(x) — Ci(x)) 2.1

Equation (2.1) says that, if any elephant_ (C,) IsA mammal_ (C4), and if
CLYDE_ is an elephant_, then CLYDE_ is also a mammal_. When Eq. (2.1)
is interpreted strictly, it also implies that a given concept C, and all its instances
must inherit all the properties and their values of all the concepts C; in the
hierarchy that have Cx as a specialization; we speak in this case of strict
inheritance. Note that, even under the strict inheritance hypothesis, totally
new properties can be added to Cy to specialize it with respect to its parents.
The problems connected with a systematic interpretation of “inheritance” as
“strict inheritance” are discussed in Bertino et al. [2001: 139-147].

A “frame” is now basically a set of properties (normally called “slots”) with
associated classes of admitted values (the “fillers” of the slots) that is associated
with the nodes representing the concepts (not necessarily the totality of the
concepts) of a given ontology. Introducing a frame corresponds, then, to add
to the fundamental IsA relationship that necessarily concerns all the concepts C;
of an ontology a new sort of relationship between a specific concept Cx to be
defined and some of the other concepts Cq, Co, ..., C, of the ontology. The
relationship concerns the fact that C4, Co, ..., C, are used in the frame defining
Ck to indicate the class of fillers that can be associated with the “slots” of this
frame — the slots denoting, as already stated, the main properties (attributes,
qualities, etc.) of Cx. In NKRL (HClass), no fixed number of slots exists and no
particular order is imposed on them; slots can be accessed by their names.

To see how the relationships between a generic C, and concepts Cq, Co, .. ., C,
can be formally described, let us suppose that a specific concept Cq (e.g.
home_address) is endowed with a property Ry (¢.g. HasNecessarily) that associ-
ates it with a concept C, like postal_code. We can formalize this situation as

Vx (C1(x) — 3y (Ca(y) A Ri(x,¥))) (2.2)

Equation (2.2) means, according to our example, that every home address is
endowed with the property of having a postal code (the slot HasNecessarily will
appear in the frame associated with the concept postal_code). As already stated,
properties (slots) can be systematically inherited along an inheritance hierarchy
only under the “strict inheritance” hypothesis. Instances (“individuals” in the
NKRL terminology) inherit from the father concept.

As usual in the ontological domain, it is possible to allow an HClass concept
to inherit its properties (slots) from two or more concepts by clicking on the
button “Multi-Inheritance” in the hClassEditor environment. The user can then
choose the concepts in the ontology that they want to assume as “fathers” for the
selected concept.

2.2 The Data Structures of the Four Components 45

We can remark now on a first, important difference with respect to the
Protégé approach in case of possible conflicts among inherited slots in a multiple
inheritance context,i.c. in the case of slots coming from different father concepts
and having the same name but different values. Protégé makes use, in fact, of
automatic heuristics to solve these conflicts. A precedence list is computed in a
“mechanical” way by starting with the first leftmost concept that represents a
generalization (superconcept) of the concept where the conflict has been
observed; the construction of this list proceeds by visiting depth-first the
nodes in the left branch, then those of the right branch, then the join, and up
from there. The “conflicting” concept inherits the properties of the first element
of the list. This technique depends, obviously, on the particular arrangement
adopted in the construction of the inheritance hierarchy, and can oblige one to
insert a number of “dummy concepts” in order to produce a correct precedence list.
In NKRL, we have decided, on the contrary, to have systematic recourse to the
intervention of the user to solve any possible incoherence. As stated above, the
user will then be asked to select the correct set of properties/values explicitly for
the concept under examination, i.e. to specify exactly the superconcept from which
a given conflicting property must be inherited.

We conclude this section by noticing that, as we have seen, the use of multi-
inheritance in HClass is admitted; we must now add that it is also strongly
discouraged. We agree, in fact, with Guarino [e.g. Guarino, 1998] when he says
that, in the ontological domain, there is a tendency towards relying on multiple
inheritance (“ISA overloading”) to solve all the possible “polysemy” (in the most
general meaning of this term) problems. In reality, a more in-depth examination
of these (supposed) multiple-inheritance situations shows that, for example, by
simply duplicating the “polysemic” concepts, or by reducing to “properties”
(roles) some “dubious” concept, the need for multiple inheritance disappears.
Moreover, in NKRL, the possibility of expressing dynamic concepts making use
of descriptive/factual structures (i.e. by expressing some of these “concepts” as
templates/predicative occurrences — see Section 2.2.1.3) can help to further
reduce the “IsA overloading” phenomenon and to eliminate then the need for
multi-inheritance connections.

2.2.1.2 Prototype Slots

In a “frame” context, there always has been a lot of debate about the theoretical
problems linked with the arbitrariness in the choice of the slots (in the choice of
the particular properties intended to describe in a better way the “meaning” of a
concept). A “classical” paper in this framework is Wilensky [1987]. Given the
evident impossibility of finding a global (and shared) solution to this problem at
the theoretical level, some practical solutions have been implemented. They are
all based on the use of meta-structures intended to describe in a precise way the
computational behavior of a given slot — and, therefore to give, in a certain way,
also a sort of “definition” of the slot. A well-known approach in this context
consists in adding facets to the slots, where a facet is an annotation describing

46 2 The Knowledge Representation Strategy

some characteristics of the slots like, for example, type restrictions on the values
of the slot (VALUE-TYPE facets) and specifications of the exact number of
possible values that the slot may take on (CARDINALITY facets). An evolution
of the facet approach concerns making use of full “slot-control schemata” —
1.e. of a structured object containing complete information about the properties of
a specific slot, not only those concerning domain, range and cardinality, but
also, for example, detailed inheritance specifications for the slot.

To deal, at least partly, with the arbitrariness problem (in particular the
arbitrariness of the “attribute” slots — see below), NKRL follows the “slot-
control schemata” approach, giving then to the HClass slots the status of full-
fledged objects. As in Protégé and in the OKBC requirements, slots in NKRL
are then defined a priori as “prototype slots,” independently then from the
specifications of any particular concept. Prototype slots are grouped in a list,
and attached to specific concepts when necessary. According to a classical
example, an “attribute” like “age” can, in fact, be used to describe the char-
acteristics of both (among other things) the concepts author_ and manuscript_.
The slot Age will be then defined as a slot prototype whose minimal value is set
to “0,” and which cannot be used in a situation where it is required that the slot
must be capable of containing negative values. Age will then be attached, in
case, to author_, manuscript_ and to many other possible concepts. Analo-
gously, an attribute like Name will be introduced as a slot prototype that can
be filled only with a value of the “string of characters” type, etc.

In NKRL, the data types admitted for the fillers of the HClass (prototype)
slots are strictly the following:

Boolean;

(HClass) concept/individual,;
double (precision);

integer;

string (of characters).

Moreover, the values corresponding to the previous data types can be sub-
mitted, as usual, to constraints. The cardinality constraint defines the number of
values that can be associated with a slot; this number must be included between
the CardMin and CardMax limits, which respectively define the minimal and
maximal number of values. If the slots are of the integer or double precision
types, then their fillers must be included within a numeric interval. If the slots are
of the concept/individual type, then the fillers can only be chosen among the
instances, and all the specific terms with their instances, of the concept defined as
default value, etc.

There is, however, an important difference between our approach to the
management of the prototype slots and that of Protégé —in Protégé, the prototype
slots are called template slots. In this last environment, the features originally
associated with a prototype (template) slot can always be overridden when the
prototype is associated with a concept. For us, the constraints associated with a
specific prototype (type of the value, cardinality, min/max, possible default

2.2 The Data Structures of the Four Components 47

value, etc.) are strictly enforced to maintain the coherence of the global knowl-
edge base, and they cannot be changed when a prototype is associated with a
specific concept, becoming then a slot proper to this concept. This means that,
when a prototype slot is concretely used and the user realizes that the con-
straints associated with this slot are not well tailored to her/his specific needs,
the user cannot intervene directly on the slot at the concept level but must either
(1) edit the original prototype slots (change its constraints) or (ii) define a new
prototype slot that fits exactly her/his specific needs.

There is, in practice, only a possibility of directly editing the information
already associated with the slots of a concept, and this concerns a restriction of
the domain of the admitted values. More precisely:

e a modification of the cardinality is allowed only if the new CardMin/Card-
Max interval is included within the interval of the original prototype,

e the same restriction applies to the min/max numeric interval of the integer and
double precision values;

e if a default concept is associated with the slot, then this default can be
changed only if the new default is an instance, or a specific term with all its
instances, of the original default.

Figure 2.1 reproduces an hClassEditor screen dump, showing the use of
prototype slots to associate properties with the biotechnology company
concept — a specific term of biological_company in HClass.

§ hClass Editor
ile Connection Edit Help
an_heing_or_social_body |

human_being St Brotty l

lsocial_body /|[vearEstablished:]] |H Add Prototype Slot ' Validate Input " Removt
=3 academic_institution ‘[IName:[]
158 agency_ B Slot Name Employees
[certification_organism Gardnkn !
= company_ CardMax 3.4028235E38
[advertising_company
D agriculturefforestthunting/fishing
@ [T biological_company
[biotechnology._company
D combinatorial_biology_com|

|iconcent
[eytologic_company = =
©- [genetic_company N
©- (7 building_company
©- [chemical_company
©- 3 computer_company
©- =7 distributionitransportation_comg
©- [financial_services_company
©-] general_services_company
©- =7 health_services_company
©- [industry_manifacture_company
©- [medi
==

Fig. 2.1 Utilization of the prototype slots

48 2 The Knowledge Representation Strategy

In the situation illustrated, two slots, i.e. YearEstablished and Name, have
already been associated with the concept under definition; moreover, we have
selected again the “Slot Prototype” window to add a new slot, Employees, to
biotechnology _company. In this window we have clicked on the “Add Prototype
Slot” button, and selected Employees in the prototype slots list. Employees
appears with its features, the cardinality constraints and the type, the latter
being “Concept.” The default value associated with the prototype is hClass;
according to the third of the rules for editing slots introduced above, we can
“specialize” the default making use of the “Change root ...” button. Clicking on
this opens a “Select concept” window (see Fig. 2.2) where a new default for the
slot will be selected, i.e. individual_person. Clicking on the “Validate Input”
button (Fig. 2.1) will cause the Employees slot to be listed among the
biotechnology company slots.

2.2.1.3 Categories of Properties

From a semantic point of view, the properties of the concept C, to be defined
(i.e. all the possible types of relationships between C, and some other concepts

Search Concept : individual_person] Find |

[hClass
© (3 nkrl_grammar
©-] non_sortal_concept
@ (O] sortal_concept
@ [entity_
©- [artefact_
©- [beliefs_
- [body_part
@ [complex_system
©- (] economicffinancial_entity
@ [T information_content
©- (7 labeliame_
@ [living_entity
- [animal_
@ =3 human_being_or_social_body
@ 3 human_being
@ [group_
©-] individual_person
@ [social_body

. living_plant
Fig. 2.2 Selecting a new D b

default value for the Select || Cancel

Employees slot

=

2.2 The Data Structures of the Four Components 49

Table 2.1 Types of properties in an NKRL frame

{0oID

[Relation (IsA | InstanceOf:
HasSpecialization | HasInstance:
MemberOf | HasMember:
PartOf | HasPart:
UserDefined:
UserDefined,:)

Attribute (Attribute4:
Attribute,,)

Procedure (Procedure;:
Procedure,:)]}

Cy, Cy, ..., C, of the ontology that appear in the definition of the frame

associated with C, — see Section 2.2.1.1) can be classed in three categories:
relations, attributes, and procedures; see Table 2.1.

OID (Object IDentifier) stands for the “symbolic name” of the particular
concept to be defined; see, in an NKRL context, some symbolic labels like
business_person, postal_code or biotechnology company introduced in the
previous paragraphs. The presence of the IsA and HasSpecialization properties
is mandatory for the concepts — as is mandatory the presence of InstanceOf and
Haslnstance for the individuals; these properties define, in fact, the general
structure of the ontology. From a practical point of view, we can note that the
IsA and HasSpecialization properties do not require an implementation under
the form of a “slot,” given that they are implicitly defined by the structure of the
HClass hierarchy (e.g. see Fig. 2.1); the same is true for the InstanceOf and
Haslnstance properties. All the residual properties are implemented as instantia-
tions of predefined prototype slots, independently from their semantic category.

“Relation-type” Properties

The properties of the “relation” type are used to represent mutual kinds of
relationships between a concept or individual and other concepts or individuals
of the ontology. Eight “standard” properties of the “relation” type are used
in NKRL (see Table 2.1); they are: IsA, and the inverse HasSpecialization,
InstanceOf, and the inverse Haslnstance, MemberOf (HasMember) and PartOf
(HasPart). Some of their formal attributes (under the “strict inheritance”
hypothesis) are described in Table 2.2 (also see Schiel [1989]); in Table 2.2, C;
denotes a generic concept and I; a generic instance/individual.

An important point about these properties concerns the fact that, because of
the general definitions of “concept” and “instance” and because of the char-
acteristics of IsA, InstanceOf, PartOf and MemberOf illustrated in Table 2.2,

50 2 The Knowledge Representation Strategy

Table 2.2 Some formal attributes of IsA, InstanceOf, PartOf, MemberOf
(lSA C, Cz) A (lSA C, Cl) — C;=GCy

(IsA C; C,) A (IsA C5 C3) — (IsA C; Cs)

(IsA C; Cy) A (ISACy C3) — IC4(ISA C, Cy) A (ISAC5 Cy)

(PartOf C; C,) — —(PartOf C, C)

(PartOf C; C;) A (PartOf C, C3) — (PartOf C; C3)

(IsA C; Cy) A (PartOf C, C3) — (PartOf C; C3)

(IsA C; Cy) A (PartOf C; C3) — (PartOf C, C3)

(IsA C; C3) A (PartOf C; C3) — (PartOf C; C,)

(IsA C; C,) A MemberOf C, C3) — (MemberOf C; Cs)

(InstanceOf I; C;) A (IsA C; C,) — (InstanceOf I; C,)

(PartOf I 15) A (InstanceOf Iy C;) A (InstanceOf I, C,) — (PartOf C; C5)
(PartOf C; C,) A (InstanceOf I, C,) — 3l (InstanceOf I; Cy) A (PartOf I, I5)

a concept or an individual (instance) cannot make use of the totality of the eight
“relation properties” introduced above. More exactly:

e Therelations IsA, and the inverse HasSpecialization, are reserved to concepts.

e Haslnstance can only be associated with a concept, InstanceOf with an
individual (i.e., the concepts and their instances, the individuals, are linked
by the InstanceOf and HaslInstance relations).

Moreover, MemberOf (HasMember) and PartOf (HasPart) can only be used
to link concepts with concepts or instances with instances, but not concepts with
instances, see also [Winston et al., 1987].

We can also remark that only two, i.e. MemberOf and PartOf (and their
inverses), of the so-called “meronymic” relations appear in the list of the
“relation properties” of NKRL. Our basic criterion for differentiating between
MemberOf and PartOf is likened with the homogeneity (MemberOf) or not
(PartOf) of the component parts; in this way, “Cardinal Ratzinger is MemberOf
the Holy College” (or “This tree is MemberOf the forest”) and “a handle is
PartOf a cup.” PartOf is also characterized by a sort of “functional” quality (see
again the “a handle is part of a cup” example) that is absent in MemberOf.

As is well known, six different meronymic relations are defined on the con-
trary in Winston et al. [1987]: component/integral object (corresponding to our
PartOf), member/collection (corresponding to our MemberOf), portion/mass,
stuff/object, feature/activity, place/area. Note that Winston et al. [1987] is still
the reference paper for people interested in the practical implications of making
use of meronymic concepts; for an overview of some more theoretical (and
description logics-oriented) approaches, see Artale et al. [1996]. Recent work in
a SW context has apparently not introduced any significant advance in this
field, e.g. see Rector and Welty [2005]. The justification of our approach is
twofold:

e A first point concerns the wish of keeping the HClass component of the
NKRL language as simple as possible. In this context, the only “relation

2.2 The Data Structures of the Four Components 51

properties” that it was really necessary to introduce (in addition, of course,
to IsA, InstanceOf and their inverses) were the MemberOf and HasMember
relations, given that they intervene in the definition of the data structures
used, for example, to represent plural situations in NKRL; see Section
2.2.2.3 and Appendix B. We have also then added, of course, the “comple-
mentary” PartOf and HasPart relation properties.

® On the other hand, dealing systematically with the examples of “non-NKRL
relation properties” given by Winston and his colleagues by using only the
four meronymic relations accepted in NKRL leads to results that are not
totally absurd, even if, sometimes, some aspects of the original meaning
are lost.

With respect to this last point, an example given in the Winston et al. paper is
“this hunk is part of my clay,” which is interpreted as an illustration of the
“portion/mass” meronymic relation. We can show that, in an NKRL context,
this example could also be understood as a MemberOf/HasMember relation, in
the style of “this tree is MemberOf the forest.” We can, in fact, interpret “my
clay” as an individual, GENERIC_PORTION_OF_CLAY_1, an instance then of
generic_portion_of clay that can be considered as a (low-level) specialization of
physical_entity. As we will discuss in detail in Section 3.1.2.1, we cannot, in fact,
make use of a simpler individual in the CLAY_1 style that would be a direct
instance of clay_; the latter, as a substance_, cannot be endowed in fact with
direct instances. It is now easy to see GENERIC_PORTION_OF CLAY_1 as
formed (HasMember) by several hunks, HUNK 1, ..., HUNK_n. The latter are,
in turn, instances of a concept like, for example, hunk_of clay: as the trees in the
forest, they are all homogeneous and play no particular functional role with
respect to the whole represented by GENERIC_PORTION_OF_CLAY_1. Passing
now to other examples: “A martini is partly alcohol” (stuff/object) can be easily
rendered using, for example, an “attribute property” (see below); “an oasis is a
part of a desert” (place/area) can be represented using PartOf (there is no
particular homogeneity between “oasis” and “desert”); etc.

“Attribute-type” Properties

The characteristic properties of a concept/individual are specifically represented
by the slots of the “attribute” type. For example, for a concept like tax_, possible
attributes (slots) are TypeOfFiscalSystem, CategoryOfTax, Territoriality, Type-
OfTaxPayer, TaxationModalities, etc.; all these attributes must be defined pre-
viously, of course, as prototype slots. These sorts of slot represent, normally, the
“core” of the definition of a given concept Cy.

For these properties, the concepts C, Cy, ..., C, that appear in the slots of
the frame associated with C, must be interpreted as constraints on the sets of
legal fillers (values) that can be associated with these properties when the concept
C,. is specialized or instantiated. An important point concerns the fact that, in
NKRL, these “constraints” can only be expressed using the data types introduced

52 2 The Knowledge Representation Strategy

in Section 2.2.1.2: integer, double precision, Boolean, string of characters, HClass
concept, HClass individual. As in Protégé, additional “legal” constraints are the
“cardinality” constraints; see also Fig. 2.1. This means, in particular, that
specific operators proper to, for example, a description logics environment
that could be used to build up complex constraints in the style of (INTERSEC-
TION human_being (UNION doctor_ lawyer_) (NOT.ONE.OF fred_)) are not
admitted here. This last formal expression can be interpreted as denoting a
class of fillers that are men, can be doctors or lawyers, but cannot be Fred.
This limitation is not at all disturbing for two main reasons:

e According to the NKRL philosophy, expressions like the above that, intro-
ducing complex relationships about concepts and individuals, can be consid-
ered as pertaining in reality to the “narrative” and “event-specific” domains
are best described by using the “descriptive” and “factual” tools, templates and
predicative occurrences. This means, in practice, that not only is it possible to
represent expressions like the above correctly in NKRL, but also that
NKRL is able to encode them in the most appropriate way.

e Avoiding making use of these complex constraints — and avoiding, then, all
the theoretical and practical problems linked with the inheritance of role
fillers built up in this way — allows one fo steer clear from the exponential
complexity problems that affect terminological reasoning and that, according
to the different configurations, may be NP-hard, co-NP-hard, NP-complete,
PSPACE-complete; see Bertino et al. [2001: 164—168] in this context.

“Procedure-type” Properties

The “procedure” slots are used in general to store information about the dynamic
characterization of a concept or individual, e.g. by giving the description of its
typical behavior, the instructions for the use, etc. Classically, this sort of content
can be represented as procedural pieces of code in the “methods” or “demons”
style. A characteristic of NKRL, however, concerns the possibility of describing
this “procedural” information in a declarative style using, as fillers of the “proce-
dure” slots, descriptive (templates) or factual (occurrences) structures. The data
type of the “procedure” prototype slots is then always “string of characters.”

For example, specific complex concepts can be defined in detail making use of
templates; an example is given by the concept norms_for_indirect_transfer_of
revenues_abroad in the legal domain, where templates have been used for supply-
ing an operational description of these norms; see Section 2.3.2.2 (Table 2.20). As a
second example we will see, in Appendix B, the use of “declarative” techniques
making use of templates for disambiguating complex “plural” expressions. Note that
the templates used in this context are partially instantiated templates, where at least
some of the explicit variables have been replaced with HClass terms congruent with
their constraints; we will return to this point later.

A particularly useful way of utilizing the “procedure” slots is to make use of
these slots to store the so-called HClass occurrences. The latter take their origin

2.2 The Data Structures of the Four Components 53

from the remark that, when examining the narrative information included in
news stories, for example, we find a lot of background information that is (i) of a
general import, and really needed for a complete understanding of these stories,
(i1) relatively independent from the proper “event(s)” related in a specific story,
and (iii) highly repetitive. If we look, for example, at the news stories inserted in
the “Philippine terrorism” corpus used in a recent NKRL application carried out
in the context of the PARMENIDES project [Rinaldi et al., 2003; Black et al.,
2004], we find — systematically repeated for each of these stories — background
information in the style of: “The Abu Sayyaf group is an Islamic separatist group
in the Southern Philippines,” “The Abu Sayyaf group routinely performs ransom
kidnapping in order to finance its activities,” “The town of Isabela is located on
Basilan island,” “Jolo is the capital of the southern Sulu province,” etc.

Itis now evident that inserting information in this style directly into the HClass
records for individuals, like ISABELA _, IOLO_, ABU_SAYYAF_GROUP, etc., instead
of coding it again and again for each new story, can give rise to a double benefit: (i)
increasing the logical coherence of the knowledge stored into the system; (ii)
reducing notably the global amount of NKRL code needed for each application.
The fillers of the “procedure” roles represented under the form of HClass occur-
rences are, in this case, (sequences of) NKRL predicative occurrences, i.e. the
formal representations of the specific “narrative events.” More details can be
found in Zarri and Bernard [2004a].

2.2.1.4 NKRL Instances (Individuals)

In Section 2.1, we have already noticed that, in NKRL, some form of Instan-
ceOf link must be implemented as the necessary complement of IsA for the
construction of well-formed HClass hierarchies of “standard” concepts.

The difference between (IsA C, C;) and (InstanceOf I; C;) is normally
explained in terms of the difference between the two options of (i) considering
C, as a subclass of Cy in the first case, operator “C,” and (ii) considering |, (an
instance) as a member of the class C; in the second, operator “e” — see also the
definitions in Table 2.2. Unfortunately, this is not sufficient to eliminate any
ambiguity about the notion of instance, which is, eventually, much more con-
troversial than the notion of concept. In this section we will discuss briefly the
NKRL solutions for two of the main problems concerning the practical imple-
mentation of instances (“individuals,” enumerative component), namely (i) the
possibility of considering as instances in themselves all the “intermediate” nodes
of an ontology (to the exclusion then of the root), instead of admitting that the
instances can only be some “leaves” of the hierarchy; (ii) even limiting the
notion of instance to this last interpretation, the possibility of having several
levels of instances, i.e. instances of an instance. For simplicity’s sake, we will
make use for the discussion below of a fragment of the elementary, well-known
ontology relating elephant_ to mammal_ and animal_; see Fig. 2.3.

With reference now to the first of the two problems stated above, if a very
liberal interpretation of the notion of instance is admitted, then CLYDE_ is an

54 2 The Knowledge Representation Strategy

Fig. 2.3 Fragment of the animal_
elephant_/mammal_, etc.
ontology IsA
reptile_ mammal_ insect_
dog_ cat_ elephant_
chow_ poodle_

instance of elephant_ but elephant_ can also be considered, to a certain extent,
as an instance of mammal_; this is accepted in many object-oriented systems, in
the description logics systems, in Protégé, etc. In this latter system, for example,
both individuals (instances) and classes (concepts) can be instances of classes:
Protégé can then introduce metaclasses as classes whose instances are them-
selves classes. Every class (concept) has a dual identity, it is a “subclass” of
another class (its “superclass”) in the normal class hierarchy defined by the IsA
links, and it is at the same time an “instance” of another class, its “metaclass.”
As a class defines a sort of “compelling mold” for its instances, the metaclass
defines a compelling mold for the associated classes, describing, for example,
which specific slots these latter can have, and the constraints for the values of
these slots.

This position can be seen — along with the a priori definition of the frame
slots as first class objects under the form of “template” or “prototype” slots —as
a further answer to the congenital problem proper to any type of object/
property-based system (including description logics systems) that concerns the
arbitrariness in the choice of the properties (in the choice of the slots); see the
discussion in Section 2.2.1.2. A solution in this style is surely elegant, and can
contribute to assuring the logical coherence of the resulting knowledge bases,
but it is not deprived of inconveniences.

We can note first that, by admitting that also the concepts can be considered
as “instances” of other concepts, the logical and semantic properties of the
“proper” instances are likely to become strongly dependent on the particular
choice of primary concepts selected to set up a given inheritance hierarchy.
Under this assumption in fact, we can infer that, according to the definition
given in Eq. (2.1), the InstanceOf relationship should be, like ISA, always
transitive. With reference then to Fig. 2.3, and assuming that the relationship
(InstanceOf FIDO_ poodle) holds, the (InstanceOf FIDO_ animal_) also holds.
But if, in this same figure, we substitute the root animal_ with the root species_,
then we can still consider that (InstanceOf poodle _species_) holds, but it becomes
very difficult to assert (InstanceOf FIDO_ species). More generally, the above

2.2 The Data Structures of the Four Components 55

assumption introduces a considerable amount of epistemological confusion by
equating entities that, like the “concepts,” are atemporal — at least in the context
of a given application — and not linked to a specific location with others, like the
“instances,” always characterized by very precise (even if sometimes implicit)
spatio-temporal coordinates; also see Lenat and Guha [1990: 332-339].

The solutions adopted in NKRL for the introduction of the instances and
their association to the HClass hierarchy consist, then, in adding to the set-
oriented definition of an instance a sort of an “extensional” definition in the
Woods style [Woods, 1975]; see Section 2.1. According to this principle, we
consider that all the nodes of a well-formed inheritance hierarchy (ontology) like
that of Fig. 2.3 must be considered only as “concepts,” 1.e. general descriptions/
definitions of generic intensional notions, like that of poodle_. When necessary, to
each of these nodes can be added an InstanceOf link having the meaning of a
specific existence predicate, ¢.g. we can declare that a specific, extensional incar-
nation of the “concept” poodle_ is represented by the “individual” FIDO_. In
this way, the introduction of instances becomes strictly a local operation, to be
executed explicitly, when needed, for each node (concept) of the hierarchy.
A consequence of this assumption is represented by the fact that, as already
stated, concepts participate in the HClass inheritance hierarchy directly;
instances participate indirectly in this hierarchy through their parent concepts.

We can now conclude this section by examining the second of the problems
evoked before, i.e. the possibility of creating instances of instances. The classical
example [e.g. Zarri, 1997] is given by PARIS_, an individual (enumerative
component) that is an instance of the concept city , but that could, at least in
principle, be further specialized through the addition of proper “instances”
(i.e. viewpoints) like “Paris of the tourists,” “Paris as a railway node,” “Paris in
the Belle Epoque,” etc. According to what was stated above, instances in NKRL are
always considered as terminal symbols; this excludes, then, any possibility of
implementing instances of instances using this language. Viewpoints can, however,
be easily realized in NKRL according to a solution that goes back to the seminal
paper by Minsky [1975] about frames. This solution consists, then, in introducing
in the inheritance hierarchy specialized concepts like tourist_city, railway_node,
historical_city that all admit the individual PARIS_ as an instance; PARIS_
inherits from each of them particular, “bundled” sets of attributes (slots) like,
for example, {TaxisBaseFare, EconomyHotels, UndergroundStations,...} from
tourist_city, {TypesOfMerchandise, DailyCommutersRate,...} from railway_
node, etc.

2.2.2 Descriptive[Factual Data Structures

The data structures used for the descriptive and factual components (templates
and occurrences) are more worthy of note than those utilized for the concepts
and individuals of the definitional and enumerative components. They are of

56 2 The Knowledge Representation Strategy

the n-ary type; see the discussion in Section 1.2.1. From a formal point of view
they show, for example, some similarities with the data structures proper to the
Case Grammars used in linguistics and computational linguistics [e.g. Fillmore,
1968; Bruce, 1975]. As already stated, however, Case Grammars deal with
linguistic/surface-level entities, whilst the NKRL descriptive/factual data struc-
tures deal with symbolic/deep-level entities; see again Rosner and Somers [1980].

2.2.2.1 General Format of the Descriptive/Factual Structures

In opposition then to the binary (basically, “attribute-value”) structures used
for the frames of the definitional and enumerative component, the descriptive/
factual data structures — i.e. those used for both the “templates” (descriptive
component) and the “predicative occurrences” (factual component); see later
Section 2.3 for the second-order structures —are “n-ary” constructions character-
ized by the association of “quadruples.” These connect together the symbolic
name of the whole template/occurrence, a predicate and the arguments of the
predicate introduced by named relations, the roles; see again the discussion in
Chapter 1 and Eq. (1.2), reproduced below for ease of reference. The quadruples
have in common the “name” and “predicate” components. As already stated, we
denote in Eq. (1.2) with L; the generic symbolic label identifying a given template
fi or an occurrence ¢;, with P; the predicate used (like MOVE, PRODUCE,
RECEIVE, etc.), with R, the generic role (slot, case, like SUBJ(ect), OBJ(ect),
SOURCE, DEST(ination)) and with a the corresponding argument (concepts C;,
individuals |;, or associations of concepts or individuals):

(L,-(Pj(R1a1)(R2 az) e (Rn a,,))) (12)

As we have seen, templates are inserted into an HTemp(lates) hierarchy,
where each node represents a template object and which — at the difference of
HClass that is (at least in principle) a direct acyclic graph (DAG) — consists
simply of a tree. Predicative occurrences, i.e. the formal NKRL representations
of “elementary events” represent the “leaves” of this tree. Taking into account
the fact that templates are nothing else than formal descriptions of classes of
structured events, HTemp corresponds, therefore, to a taxonomy of events. This
enlarges the traditional interpretation of ontologies, where only “taxonomies of
concepts” are usually taken into consideration.

2.2.2.2 Semantic Predicates, Roles, Templates and Occurrences

One of the main assumptions of NKRL is that, at least for a large class of
nonfictional narrative documents, the semantic and conceptual structures
that convey the narrative knowledge are limited in number and relatively
stable, so that it is possible to denote these structures by making use of
some sort of (partial) canonical representation. This confirms, among other
things, that the NKRL representation of templates (classes of narrative

2.2 The Data Structures of the Four Components 57

events) and occurrences (specific events) is independent of the different NL
surface utterances used to describe these classes or events; see also the discus-
sion in Section 1.1.2.2.

Semantic Predicates as Primitives

Returning to Eq. (1.2), its central element consists of a deep semantic pre-
dicate identifying the basic type of action, state, situation, etc. that concerns a
specific event (predicative occurrence) or a class of events (template) — see
again Section 1.1.2.2.

Note that, in conceptual systems that share some similarities with NKRL
(like Semantic Networks [Lehmann, 1992] or Conceptual Graphs [Sowa, 1984,
1999)), the semantic predicates can be chosen, at least in principle, according to
any “deep” or “surface” option. For example, in the “Primitives and prototype”
section of his 1984 book, Sowa says that: “In general, a system should allow
high-level concepts to be expanded in terms of lower ones, but such expansions
should be optional, not obligatory” [Sowa, 1984: 14]. In reality, in the imple-
mented systems, the “surface” option is largely preferred — probably, among
other things, because choosing the “deep” option (the “primitive” option) means
defining exactly the condition of use of these primitives, i.e. establishing some sort
of HTemp “catalogue,” and this can be long and very annoying work. Making use,
on the contrary, of a “surface” approach can give the impression that this
“defining” work is not really necessary, given that the “predicates” used (NL
verbs, in practice) have an intuitive meaning in NL. In the surface approach,
however, the other side of the coin concerns the introduction of an excessive
number of degrees of freedom in the representation of complex “entities” like the
nonfictional narratives, with the negative effects, e.g. on the possibility of securing
the reproduction or the sharing of the results already mentioned in the discussion
about CGs in Section 1.2.2.2.

For the predicates, NKRL has then chosen the “deep” (primitive) option.
A long experience with the conceptual representation of all sorts of multimedia,
nonfictional narratives has shown that it is possible to make use, in the tem-
plates and occurrences, of only seven “deep” (canonical) semantic predicates
corresponding to very general, prototypical categories of the “behavior” of all
sorts of human and nonhuman “characters” — these predicates were five in the
RESEDA project; see the Preface. Their conventional labels (along with an
intuitive description of their “meaning”) are indicated in Table 2.3: in NKRL,
then, these seven predicates represent the only “legal” entities that can be
substituted to the P; term in Eq. (1.2).

We can note immediately — and this is true in general for all the entities
mentioned in Eq. (1.2) like, for example, the “roles” — that the actual definition
of each of these predicates is strictly operational and is supplied, in practice, by
the fact of being used within a given, exactly identified subset of the templates of
the HTemp hierarchy described in Chapter 3. This means also that (i) each of the
structures derived from Eq. (1.2), i.e. the templates (and, accordingly, the

58 2 The Knowledge Representation Strategy

Table 2.3 Semantic predicates in NKRL
Predicate Mnemonic description

BEHAVE A character adopts a particular attitude, plays a particular role, or acts
(concretely or intentionally) to obtain a given result

EXIST To be present, also metaphorically, in a certain place; when associated with
“temporal modulators” like begin and end, see Section 2.2.2.4, the
predicative occurrences built up around this predicate can also be used to
represent the “origin” or the “death” of a person, a company, etc.

EXPERIENCE A character is affected by some sorts of good, bad or “neutral” news or

events

MOVE The displacement of a person or a physical object, the transmission of a
message, a change of opinion . ..

OWN To have, to possess (also metaphorically, e.g. a given entity “has” a
particular property)

PRODUCE Execute a task or an activity, cause to exist or occur (with reference to
material or immaterial entities, like the production of a service), etc.

RECEIVE To acquire, to obtain, also abstract entities like information or advice

predicative occurrences), must be considered as a whole and that (ii) the tem-
plates constitute the veritable basic units to be taken into consideration with
respect to the definition of the entire descriptive/factual domain.

Note, in this respect, that the reduced set of NKRL “semantic predicates”
could evoke, in effect, the well-known, reduced set of 11 “primitive acts” utilized by
Schank in the early descriptions of his “conceptual dependency” (CD) theory; see
Schank and Abelson, [1977] and the discussion in the first chapter. We recall here
that, in Schank’s terms, the elementary event “X walked to the cafeteria” is
represented roughly as “X (the ‘actor’) PTRANS (‘physical transfer,” the primitive
act) X (the ‘object’) to the cafeteria (the ‘directive case’).” This model has been
criticized mainly on the basis of the evident impossibility of reducing always, and in
an unambiguous way, all the universe’s complexity to 11 primitive acts. We must
add, for correctness’ sake, that, in the most recent applications, Schank and his
colleagues have relied more and more on high-level concepts/predicates, like DIS-
PUTE, PETITION, NEED-SERVICE, AUTHORIZE, LEGAL-CONSULTATION, HAVE-
MEDICAL-PROBLEM, etc., instead of expanding everything into primitives [Schank
and Abelson, 1977; Schank and Carbonell, 1979; Schank, 1982; Lytinen, 1992].

From an NKRL point of view, a first, very rough reply to this type of
criticism (too limited a number of primitives) could be the remark that
NKRL is not at all a universal formalism — like CD, but also, for example,
Sowa’s CGs — but only a formalism to represent correctly only the (relatively
restricted) domain of nonfictional narratives.

But a more convincing reply can be given with reference to a much more
“subtle” type of criticism of the Schank approach expressed, for example, in
Wilensky’s [1987] report already mentioned. In this document, Wilensky does
not criticize the possibility/opportunity of the decomposition in primitive

2.2 The Data Structures of the Four Components 59

terms, but the fact that this decomposition can be of no utility in many practical
situations. Decomposing “walking” in terms of PTRANS does not exempt the
CD users from the need of reconstructing, in some way, the full concept of
“walking” when inferencing is needed, given that PTRANS has, in itself, a very
loose semantic link with a very specific notion like that of “walking”; see
Wilensky [1987: 10-14].

Wilensky’s remark about the need of going beyond the restricted conceptual
scope of each single Schankian primitive acts (of each NKRL semantic predicate)
complies well with NKRL’s general philosophy. As has been mentioned before,
and as will appear even more clearly later when the characteristics of the
NKRL’s “catalogue” of HTemp templates are discussed, the “primitive” entities
of NKRL are not at all represented by the seven semantic predicates listed in
Table 2.3 — or by the “roles” of Table 2.4. They coincide in reality with (at least)
the about 150 (extensible and customizable) templates listed in HTemp and
derived by the controlled combinatory of predicates, roles and arguments of the
predicates (HClass concepts or combinations of these concepts) expressed
according to the format represented by Eq. (1.2).

We can conclude about “primitives” by noticing that a hardline support to a
whole primitive approach can be found in the work of Anna Wierzbicka; see her
well-known early books [Wierzbicka, 1972, 1981] and the recent book with Cliff
Goddard [Goddard and Wierzbicka, 2002]. Wierzbicka’s aim — carried on
through her “Natural Semantic Mctalanguage” (NSM) research program — is
that of finding (making use of “reductive paraphrase” tools) the smallest set of
basic concepts in terms of which all other words, concepts and grammatical
constructions can be explicated, and that cannot themselves be explicated in a
noncircular fashion. The (provisional) result is a list of about 60 semantic primes
regrouped in classes like “substantives” (I, YOU, SOMEONE/PERSON,
PEOPLE), “quantifiers” (ONE, TWO, SOME, ALL, MANY/MUCH), “actions and
events” (DO, HAPPEN, MOVE), “existence and possession” (THERE IS/EXIST,
HAVE), “time” (WHEN/TIME, NOW, BEFORE, AFTER, A LONG TIME, A SHORT
TIME, FOR SOME TIME, MOMENT), “space,” “logical concepts,” etc. This work
is very interesting; many of these “primes” coincide in general with some “high-
level” HClass concepts, and could surely be useful for the set up of all sorts of
“conceptual lexica.” Unfortunately, at least for the moment, Wierzbicka and
colleagues are not completely clear about the way fo combine these primitives in
order to give rise to a sort of “universal syntax/grammar’” that could be retrieved in
all the possible languages, and this lessens, then, the interest of her work for
NKRL’s (present and pressing) needs.

Introducing the NKRL Roles

As stated at length in Chapter 1, the use of “roles” to link the “semantic
predicate” to its (simple or complex) “arguments” (see the terms R; in Eq. (1.2))
represents one of the main features that allows NKRL to go beyond the limited

60 2 The Knowledge Representation Strategy

Table 2.4 NKRL’s roles
Role Acronym Mnemonic description

Subject SuBJ The main protagonist (the “agent,” but also, in case, the
“patient”...) of the elementary event (of the class of
elementary events). The “filler” (argument of the predicate) of
this role is often, but not necessarily, an animate entity or a
group of animate entities (e.g. a social body)

Object OBJ The entity, animate or not, which is acted upon in the context of
the event (the class of events)
Source SOURCE The animate entity (group of entities) who is responsible for the

particular behavior, situation, state, etc. of the SUBJ of the
elementary event (of the class of elementary events)

Beneficiary BENF The animate entity (group of entities) who constitutes the
addressee (the “recipient,” etc.) of the OBJ mentioned in the
event or class of events (or, more generally, the addressee of
the global behavior of the SUBJ of the event or class of events)

Modality MODAL The (often inanimate) entity (or the process) that is instrumental
in producing the situation described in the event or class of
events

Topic TOPIC The theme (“a propos of...”) of the fact(s) or situation(s) that
are represented in the event (in the class of events)

Context CONTEXT The general context (“in the context of...”) of the fact(s) or
situation(s) that are represented in the event (in the class of
events)

“binary” approach used by many present knowledge representation systems.
NKRL’s roles are listed in Table 2.4. We can add that:

e “Role” is a very general notion used, among other things, both in linguistics
and in knowledge representation. Making reference to the classification
illustrated, e.g., in [Van Valin, 1999] — where roles are introduced at three
different levels of generality, the verb-specific semantic roles (like runner,
killer, hearer, broken, lover, etc.), the thematic relations (like agent, instru-
ment, experiencer, theme, patient), and the two generalized semantic roles
(actor, undergoer)—and in agreement with the “deep” (conceptual) nature of
the language, NKRL roles can be associated with the “thematic relation”
category.

o However (see the discussion in Section 1.1.2.3), NKRL roles represent
simply a functional/semantic relationship that holds between a predicate
and one of its (simple or complex) arguments and that is strictly necessary
in itself for the full appraisal of the “meaning” to be represented. This means
that (at the difference, for example, of what happens with Jackendoff’s
[1990] “thematic roles — see again the discussion mentioned above), the
decision of making use of an NKRL particular role is totally independent
from any surface structure (any syntactic) consideration. NKRL roles, then,
are eventually more similar to the “correlators” of Ceccato’s operational

2.2 The Data Structures of the Four Components 61

linguistics [Ceccato, 1961, 1967] — where to each correlator corresponds a set
of mental operations — than to the (syntactically constrained) Jackendoft’s
“thematic roles.”

Asit appears from Table 2.4, there are then seven roles in NKRL, that are used
to identify the participants in a given elementary event or class of events. They,
like the semantic predicates, are primitive — with the caveats already expressed
about the primitive character of the semantic predicates, see also below and the
next Section — and, like the predicates, are identified by means of symbolic names.
In this respect, NKRL’s position is, once again, opposed to that of Jackendoff
[1990: 44-58], who refuses to attribute standard names to its thematic roles —even
if, in practice, he makes use of the usual “Agent, Source, Goal ...” terms.

An important point to emphasize is that the NL descriptions that appear in
Table 2.4 are there, as well as those of Table 2.3, only to suggest an intuitive
explanation of the function of the NKRL roles, and do not constitute at all a
“definition” of these roles. Their real definition is given, once again, operation-
ally: (i) by their mandatory presence/optional presence/absence in the formal
descriptions of the different templates; (i1) by the set of constraints that are
explicitly associated with the roles in the templates and that define the classes
of their legal fillers. As already stated at length, the templates constitute, in a
sense, the real “primitives” of the NKRL language. Ambiguities that can rise by
examining the NL descriptions of Table 2.4 are then settled by examining
the formal definitions of the templates of the HTemp hierarchy. For
example (see Chapter 3), the “property” to be explicitly declared in templates
like Own:SimpleProperty and Own:CompoundProperty is necessarily associated
as filler with the TOPIC role, ruling out, then, any possible ambiguity about the use
in this context of the MODAL (or CONTEXT) role.

The “fillers” of the seven roles listed in Table 2.4 —1.e. the a;terms in Eq. (1.2),
the “arguments” of the semantic predicate — are represented, in the templates, by
variables and constraints on the variables (see next section) and by HClass terms,
concepts and individuals, in the predicative occurrences. Note that these argu-
ments can be “simple,” i.e. represented by a unique variable or HClass term, or
“structured.” Structured arguments, called “expansions” or “complex fillers” in
NKRL terms, are built up by combining HClass terms or variables according to a
precise syntax; this topic will be discussed in detail in Section 2.2.2.3

The NKRL Templates and the “Catalogue”

The (single) “semantic predicate,” the seven “roles” and the “arguments” are the
three basic building blocks that make up a template t,—and, therefore, a predicative
occurrence (instance of template) c;. These three blocks cannot, separately, receive
an interpretation in terms of classes of meaningful events, an (at least partial) valid
interpretation will only arise after their (mandatory) assembling has been carried
out. An immediate corollary of the above is that the presence of at least a filled role
in a template is a necessary (but not sufficient) condition in order that the template

62 2 The Knowledge Representation Strategy

be meaningfully interpreted — note that, in NKRL, the role SUBJ(ect) must
necessarily be filled in any possible template or predicative occurrence; see also
the discussion about the “Kimian-like events” in Section 1.1.2.1.

In a template/predicative occurrence, the single arguments, simple or struc-
tured (expansions), and the template/occurrence as a whole, may be character-
ized by “determiners” (attributes) that introduce further details about their
significant semantic aspects. Note that, in opposition to what happens with the
predicates, roles, and arguments, the determiners are never strictly necessary for
the interpretation of a template (of a predicative occurrence) in terms of a general
description of a class of meaningful events (of an event). For example, templates
and occurrences may be accompanied by “modulators” (like “nonintentional,”
“social,” “possible”) that, as their name suggests, are there to refine or modify the
basic interpretation of the template or occurrence; moreover, predicative occur-
rences are necessarily associated with the two “temporal” attributes date-1 and
date-2. Examples of determiners that, on the contrary, can only be associated
(through the “external” operator “:”) with the fillers (arguments of the predicate)
of the SUBJ, OBJ, SOURCE and BENF roles are the “location” attributes. The
determiners are described in detail in Section 2.2.2.4.

The general scheme of a template or predicative occurrence is shown in
Table 2.5. In reality, the temporal attributes indicated in this table are never
associated with specific templates, given that these latter represent atemporal
categories of the NKRL language. On the contrary, they are always associated
with the predicative occurrences, even if these attributes can be “empty” in some
specific cases; see Chapter 3.

The format of Table 2.5 is called “external NKRL format,” in contrast with
the “internal format” concretely used to store and process the NKRL structures,
see Zarri and Bernard [2004b: appendix A]. This internal format is normally
called the “Béatrice format” in NKRL jargon. Note that, in the examples of
coding inserted in the following sections, the roles will be omitted in the external
representations of templates and occurrences, for simplicity’s sake, when the
corresponding fillers (arguments of the predicate) are “empty.” In reality, all
seven roles are always present in the internal format that is, fundamentally, a
sort of “positional” format.

Table 2.5 External format of an NKRL template/predicative occurrence

PREDICATE SUBJ {<argument> : [location]}
OBJ {<argument> : [location]}
SOURCE {<argument> : [location]}
BENF {<argument> : [location]}
MODAL {<argument>}
TOPIC {<argument>}
CONTEXT {<argument>}

[modulators]
[temporal attributes (missing in the templates)]

2.2 The Data Structures of the Four Components 63

Returning now to the three basic building blocks (predicate, roles, arguments)
that make up a template/predicative occurrence, if we combine the seven pre-
dicates with the seven predicative roles, the several hundred upper level concepts of
the HClass hierarchy (see Chapter 3: these high-level concepts are practically
invariable given that they are used to define the constraints on the arguments of
the templates — see Tables 2.6 and 2.7), the determiners, etc., we obtain a (very
large) solution space where all the legal templates are in principle represented. In
reality, these possible combinations are filtered making use of pragmatic rules
like: “the OWN templates must necessarily provide for an OBJ(ect) role and, in
their Own:Property variant, cannot be endowed with a BEN(e)F(iciary) role”; “all
the EXIST templates of the “origin or death” sub-hierarchy require the presence

Table 2.6 Building up predicative occurrences

(a)
name: Produce:Violence
father: Produce:PerformTask/Activity

position: 6.35
NL description: “Execution of Violent Actions on the Filler of the BEN(e)F(iciary) Role”
PRODUCE SUBJ vart: [(var2)]
OBJ var3
[SOURCE var4: [(var5)]]
BENF var6: [(var7)]
[MODAL var8|
[TOPIC var9]
[CONTEXT var10]
{[modulators], +(abs)}
var1 = human_being_or_social_body
var3 = violence_
var4 = human_being_or_social_body
var6 = human_being_or_social_body
var8 = violence_, weapon_, criminality/violence_related_tool,
machine_tool, general_characterizing_property,
small_portable_equipment
var9 = h_class
var10 = situation_, spatio/ftemporal_relationship, symbolic_label
var2, varb, var7 = geographical_location
(b)
mod3.c5) PRODUCE SuBJ (SPECIF INDIVIDUAL_PERSON_20 weapon_wearing
(SPECIF cardinality _ several_)): (VILLAGE_1)
OBJ kidnapping_
BENF ROBUSTINIANO_HABLO
CONTEXT #mod3.c6
date-1: 1999-11-20
date-2:

Produce:Violence (6.49)
On November 20, 1999, in an unspecified village (VILLAGE 1), an armed group of people has
kidnapped Robustiniano Hablo

64 2 The Knowledge Representation Strategy

Table 2.7 The syntax of the constraint expressions
var; = h_class_term
The simplest form of constraint, e.g. see the constraints on all the variables of Table 2.6 apart
from the constraints on var8 and var10. We will suppose first that h_class_term represents a
concept. In this case, the constraint says simply that in all the occurrences derived from the
specific template where varj occurs, the value bound to var; must be a specific term, concept or
individual (with respect to the HClass hierarchy) of the concept h_class_term that represents
the constraint. If h_class_term represents an individual, then the value associated with var;
must be an individual strictly identical to the h_class_term
var; = h_class_term_1, h_class_term_2, ..., h_class_term_n

NKRL constraints are frequently expressed using this syntax, e.g. see the constraints on var8
and var10 of Table 2.6. The “comma” operator “,” represents here an “exclusive or”;i.e. in the
occurrences, the value bound to var; must be a specific term, concept or individual of one of the
listed concepts to the exclusion of all the others. If some of the h_class_term_i constraints
represent an individual, then the identity holds only if the value associated with var; is an
individual strictly identical to this constraint

var; # h_class_term_1, h_class_term_2, ..., h_class_term_n

In this case, the “comma” operator “,” represents an “and”; i.e. in the occurrences derived from
the template where var; occurs, the value bound to var; must be different from all the listed
constraints h_class_term_i, including the specific terms, concepts and individuals, of all these
constraints

var; = vari, var2, ..., var,

The “comma” operator “,” represents here an “and.” This syntax means that the values
(concepts or individuals) assumed by var1, var2, .. ., var, in the occurrences derived from the
template where var; occurs must be strictly identical to the value assumed by var;. Note that, in
the concrete templates/inference rules, the variables var?, var2, ..., var, are, normally,
introduced before the variable var; comes into sight

var; # vart, var2, ..., var,

In this case, too, the “comma” operator “,” represents an “and”; the value (concept or

individual) assumed by var; must be strictly different from the values assumed by all the
variables var1, var2, . .., var,

var; = symbolic_label 1, ..., symbolic_label_n

This syntax (a variant of the second expression of the list) means that the value of var; must be
the symbolic label of a predicative occurrence; see the completive construction in Section 2.3.1.

w »

The operator “,” represents an “exclusive or”

var; = h_class_term_1, ..., h_class_term_n, individual_

This expression means that the value of var; must be, at the same time, an individual and a
specific term, concept or individual of one of the h_class_term_1, ..., h_class_term_n
constraints. The “comma” operators “,” represent an “exclusive or” (see the second

expression of this table), with the exception of the last operator, which represents an “and”
(the value must be also an individual)

of a temporal modulator”; “the displacements of a person or group of persons,
predicate MOVE, are always expressed in the form of a SUBJ(ect) who moves
himself as an OBJ(ect),” etc. This filtering leads, eventually, to a limited number of
templates, actually about 150 —see Chapter 3 and the full description of the
HTemp hierarchy in Zarri [2003a]. As already stated, HTemp is a tree; we can

2.2 The Data Structures of the Four Components 65

ﬁ» HTEMP - Hierarchy of Templates

©- [Experience:
©- (9 Own:
@ =1 Produce:
©- [Produce:Acceptance/Refusal
©- [Produce:Relationlnvolvement
©- [Produce:Entity
©- [Produce:PerformTaskiActivity
©- [Produce:CreateCondition/Result
©- [Produce:IncrementiDecrement
©- [Exist:
©- [Receive:
©- (] Behave:
@ 3 Move:
@ [Move:TransferToSomeone
©- [Move:TransferOfServiceToSomeone
D Move:TransferFinancialResourceToSomeone
D Move:TransferkKnowledge
D Move:TransferMaterialThingToSomeone
@ (=] Move:AutonomousDisplacement
D Move:AutonomousChangeOfState
©- [Move:AutonomousPersonDisplacement
@ =1 Move:ForcedChange
©- (] Move:ForcedChangeOfState
@ =] Move:ForcedChangeOfLocation
D Move:MoveAProcess
@ [Move:MoveAnEntity
D Move:MoveAnAnimateEntity
@ (=1 Move:MoveAninanimateEntity
D Move:MoveAFinancialltem
@ (=1 Move:Transmitinformation
D Move:Geneticlnformation
D Move:Structuredinformation

Fig. 2.4 HTemp fragment illustrating (part of) of the MOVE (and PRODUCE) branch(es)

add that it is structured into seven branches, where each branch corresponds to
one of the seven semantic predicates accepted by the language and described in
Table 2.3, i.e. each branch includes only templates built up around a specific
predicate. Figure 2.4 reproduces a partial list of the templates included in the
MOVE (and PRODUCE) branch(es) of Htemp; see Chapter 3. The HTemp
hierarchy coincides, then, with the catalogue of the NKRL templates.

66 2 The Knowledge Representation Strategy

We must add that, when we speak of a “catalogue,” this does not mean that
this last must be immutable and definitive. The HTemp catalogue is, on the
contrary, a living structure where it is always possible to insert new elements.
For example, by using (mainly) specialization (customization) operations con-
cerning the classes of possible role fillers, we can obtain, from one of the present
templates, all the (specific) “derived” templates concretely needed for the dif-
ferent, practical applications. From a template like Move:MoveAProcess
(Fig. 2.4) [Zarri, 2003a], we can obtain, for example, a “derived” template like
“move an industrial process” and the predicative occurrences —e.g. “move, in a
well-defined spatio-temporal framework, this particular industrial production”
— that correspond to the description of events in the style of: “Sharp Corpora-
tion has shifted production of low-value personal computers from Japan to
companies in Taiwan and Korea.” When a specific NKRL application has been
completely defined and it is routinely running, it is then possible to evaluate the
“derived” templates specifically introduced for this application, choosing
among them those that can be considered of a general interest. These latter
templates will then be added to the catalogue.

From a formal point of view, since the templates represent the basic defining
entities of the language, they can also be considered as the “axioms” of NKRL,
identifying then which classes of nonfictional narratives can be concretely dealt with
and according to which modalities of use; this explains why the “catalogue” can be
considered as part and parcel of the definition of the language. Eventually, we can
note (from a “theoretical linguistics” point of view and taking for granted that the
templates are the real “primitives” of the NKRL language) that they can be
interpreted in the context of those verb semantic classes that (making abstraction
from minor theoretical divergences) can be found, for example, in the work of
Co0k [1979: 63-65], Jackendoff, [1990], Van Valin [1993: 39], and Levin [1993]. In
this context — with the usual caveat about the fact that NKRL is interested in the
“deep” conceptual level of the narrative material taken into consideration and not in
any theory concerning the syntax/semantics relationships — we are particularly
sympathetic with Beth Levin’s pragmatic work.

Deriving a Predicative Occurrence from a Template

To represent a simple narrative like “On November 20, 1999, in an unspecified
village, an armed group of people has kidnapped Robustiniano Hablo,” we must
first select the HTemp template corresponding to “execution of violent actions”;
see Table 2.6a. The selection is realized (automatically or manually) on the basis
of “deep predicate” considerations like those expounded in Section 1.1.2 (Kimian
and Davidsonian analysis). In our example, the selected template is a specializa-
tion (see the “father” code in Table 2.6a) of the particular PRODUCE template
corresponding to “perform some task or activity”; also see Fig. 2.4. The parti-
cular narrative to be represented is extracted from one of the (declassified) new
stories dealt with, in NKRL’s terms, in the context of the PARMENIDES

2.2 The Data Structures of the Four Components 67

project already mentioned; these stories have been supplied by the Greek Min-
istry of Defence (MoD), one of the PARMENIDES partners.

As appears clearly from Table 2.6a, in a template the arguments of the
predicate (the a, terms in Eq. (1.2)) are represented by variables with associated
constraints — which are expressed as HClass concepts or combinations of
HClass concepts. The syntax of the “constraint expressions” is explained in
Table 2.7. When creating a predicative occurrence like mod3.c5 in Table 2.6D,
the role fillers in this occurrence must conform to the constraint of the father
template. In the occurrence mod3.c5, for example, ROBUSTINIANO_HA
BLO (the “BEN(e)F(iciary)” of the kidnapping) and INDIVIDUAL_PER
SON_20 (the unknown “SUBJ(ect),” actor, initiator of this action) are both
instances of individual_person — a specialization of human_being_or_social_
body; see, in Table 2.6b, the constraints on variables var? and var6. kidnapping_
is a specialization of violence_; see var3, etc.

In a template, optional elements are in square parentheses. This means, for
example, that filling the SOURCE, MODAL, TOPIC and CONTEXT roles of
Table 2.6a is not mandatory in the predicative occurrences derived from the
Produce:Violence template. Also, the presence of individuals/concepts that can
replace the “location variables” (var2, var5 and var7 in Table 2.6a) is not
compulsory in these occurrences: as already stated, the “location attributes”
are linked with the predicate arguments by using the colon operator “:”; also see
Section 2.2.2.4. Possible “forbidden” elements (e.g. a particular role that cannot
exist for a given template) are marked as “+()”; for example, in Table 2.6a, the
code {[modulators], +(abs)} means that several “modulators” (see Section
2.2.2.4) can be associated with the occurrences derived from the template, to the
exception of the modulator abs(olute).

With respect now to the occurrences, a conceptual label like mod3.c5 in
Table 2.6b represents the symbolic name used to identify a specific predicative
occurrence c¢;. The use of this sort of “pointed” notation is not, in principle,
strictly mandatory; it is, however, strongly recommended, and it has been
systematically used in all the later applications of the NKRL software. The
first component of the “pointed” notation identifies the original document to be
represented into NKRL format, in this case the third news story of the MoD
corpus. The second component, c5, tells us that the specific predicative occur-
rence is the fifth within the set of predicative and binding (see Section 2.3)
occurrences that represent together the NKRL “image” of the complete original
narrative document. This formal image is called both the metadocument or (more
often) the conceptual annotation associated with the original document; see
again Section 2.3 and Chapter 3.

In the mod3.c5 predicative occurrence of Table 2.6b, the “filler” of the
SUBJ(ect) role is a structured argument (expansion) that makes use of the
“attributive operator,” SPECIF(ication), one of the four operators that
make up the specific AECS sub-language — this sub-language, and the rules for
building up well-formed expansions, is detailed in Section 2.2.2.3. This
structured argument means that the kidnapping has been realized by a group,

68 2 The Knowledge Representation Strategy

(SPECIF cardinality _several), of unknown individuals that are collectively iden-
tified as INDIVIDUAL_PERSON_20; (SPECIF cardinality several_) is one of the
typical “NKRL idioms” (see Table 3.2) that is used to represent the cardinality of
sets of totally undefined size, like those corresponding to generic plural referents as
“men” or “books.” The unknown individuals were armed, weapon_wearing.
weapon_wearing is a specialization of the dressing_attribute concept of HClass;
this corresponds to saying that, via the generalizations dressing_attribute and
physical_aspect_attribute, it also corresponds to a specialization of animate_enti-
ty_property; see Section 3.1.2.1.

This particular structured argument is associated with a location attribute,
represented by the individual VILLAGE_1 in Table 2.6b. Other attributes are the
two temporal attributes date-1 and date-2 that materialize the temporal interval
associated with the elementary narrative event represented by the predicative
occurrence. The syntax/semantics of the attributes is explained in Section
2.2.2.4, where a detailed description of the methodology for representing tem-
poral data in NKRL is also supplied.

2.2.2.3 Structured Arguments and the AECS Sub-language

The tools for representing structured arguments like the “filler” of SUBJ in
Table 2.6b discussed above are of particular importance in NKRL, where they
are used, among other things, for implementing a wide-ranging representation
of plural entities and expressions; see Appendix B.

The AECS Sub-language

In NKRL, structured arguments are built up in a principled way making use of a
specialized sub-language, AECS, which includes four expansion operators, the
disjunctive operator (ALTERNative = A), the distributive operator (ENUMeration
= E), the collective operator (COORDination = C), and the attributive operator
(SPECIFication = S). Their definitions are given in Table 2.8.

From a formal semantics point of view, we can note, for example, that

(SPECIFe; a b) = (SPECIFe; b a) (2.3)
(ENUM 6192) = (61 A e; A =7(COORD 6162)) (2.4)

Equation (2.3) says that, within a SPECIF list, the order of the properties a,
b, ... associated with an entity e; concept or individual, is not significant.
Equation (2.4) enunciates in a more formal way what is already stated in
Table 2.8: the main characteristics of the ENUM lists are linked with the fact
that the entities e, e,, ... take part necessarily in the particular relationship
between the structured argument and the predicate which is expressed by the
role that introduces the arguments, but they satisfy this relationships separately.

2.2 The Data Structures of the Four Components 69

Table 2.8 NKRL operators for structured arguments (expansions)

Operator Acronym Mnemonic description

Alternative ALTERN The disjunctive operator. It introduces a list of arguments,
namely concepts, individuals or lists labeled with different
expansion operators. Only one of the arguments of the list
takes part in the particular relationship, with the predicate
defined by the role-slot to be filled with the expansion;
however, this particular argument is not known

Coordination COORD The collective operator. All the elements of the list (concepts,
individuals or lists labeled with different expansion operators)
take part (necessarily together) in the relationship with the
predicate defined by the role-slot

Enumeration ENUM The distributive operator. Each element of the list (concepts,
individuals or lists labeled with different expansion operators)
satisfies the role—predicate relationship, but they do so
separately

Specification ~ SPECIF The attributive operator. This is used to associate a list of
“attributes” (properties), under the form of concepts,
individuals or other SPECIF lists, with the concept or individual
that constitutes the first term of the list. This allows us to
characterize this last element better. Note that each property
appearing inside a SPECIF list can be recursively associated, in
turn, with another SPECIF list

From a “pragmatic” point of view, it can be useful to conceive the
SPECIF(ication) operator as frequently used to translate “adjectives” that per-
tain to the “qualifying” and “possessive” grammatical categories. However, as
usual in NKRL — and as a confirmation of the fact that purely “linguistic”
considerations are often misleading in the context of a “deep level,”
“conceptual” type of representation — only the (mandatory) syntax proper to
the different templates (and, in particular, the restrictions associated with the
different roles) must be taken into account to solve the possible ambiguities.
For example, “John has got a civil servant employment” — where “civil servant”
could be considered as a “qualification” of John’s post — is translated in
reality making use of the Behave:Role template (see Section 3.2.2.1) where
civil_servant fills the MODAL role. In all the Own:Property templates (Section
3.2.2.5), the “qualifying, etc. properties” associated with a given “inanimate
entity” fill systematically the TOPIC role, and so on.

Because of, among other things, the possibility of setting up embedded lists —
see, in particular, the recursive nature of the SPECIF structures — an unruly
utilization of the AECS operators could give rise to very complex expressions,
difficult to interpret and disentangle (unify). Therefore, the definitions of
Table 2.8 are used in association with the so-called “priority rule,” which can
be visualized by using the following expression:

(ALTERN(ENUM(COORD(SPECIF)))) (2.5)

70 2 The Knowledge Representation Strategy

Table 2.9 An example illustrating the “priority rule”
ex.c1) EXIST SuBJ (ALTERN (ENUM MR_BROWN (COORD MR_SMITH
JENNIFER_SMITH))
(ENUM MR_BROWN (COORD MR_SMITH LUCY_SMITH))):
(WHITE_HOUSE)
CONTEXT RECEPTION_15
Exist:HumanPresentAutonomously (3.2122)

This expression is to be interpreted as follows: it is forbidden to use within the
scope of a list introduced by the binding operator B, a list labeled in terms of one
of the binding operators appearing on the left of B; in the priority expression
above,, e.g. it is impossible to use a list ALTERN within the scope of a list
COORD.

The strict and mandatory application of this rule in NKRL implies that it is
sometimes necessary to duplicate some parts of a complex expansion expression
in order to comply with Eq. (2.5). For example, a narrative elementary event
like: “Mr. Brown attended the reception at the White House; Mr. Smith also
there, accompanied by his daughter Jennifer (but the accompanying lady could
also be his wife Lucy),” will be translated in NKRL according to the represen-
tation given in Table 2.9 (note that Mr. Brown and Mr. Smith are supposed they
went separately to the reception, as shown by the use of ENUM). Of course,
each of the single coding elements (MR_BROWN, etc.) within the expansions
could be further specified by a proper SPECIF list.

Note that an important consequence of the priority rule is that a SPECIF list
can only be linked with a specific NKRL term, concept or individual, and not with a
list. Moreover, a location associated with an expansion formed of a SPECIF list
refers, obviously, to the first element of the list, i.e. to the term that is
“specified.”

Sophisticated additions to the basic system of the AECS operators have been
proposed in Zarri and Gilardoni [1996]: they will be discussed in Section 4.1.1.3.

2.2.2.4 Determiners (Attributes)

As already stated (see Section 2.2.2.2 and Table 2.5), single arguments of a
template/predicative occurrence, or templates/occurrences as a whole, may be
characterized by determiners (attributes) that (i) introduce further details/preci-
sions about the “meaning” of these arguments or templates/occurrences, but
that (ii) are never strictly necessary for their basic semantic interpretation in
NKRL terms. We can immediately note, however, that the presence of the two
temporal determiners is mandatory in order that we can produce well-formed
predicative occurrences (factual component) — even if, as we will see, these
temporal determiners can be “empty.” NKRL determiners can be conceived,
at least partly, as the “deep-level” (conceptual) counterparts of the surface
“adverbials,” e.g. see Austin et al. [2004] for recent research on this topic.

2.2 The Data Structures of the Four Components 71

In this section, we will focus on three classes of determiners: modulators,
location determiners, and temporal attributes). A fourth class of determiners is
represented by the validity attributes: in the most recent NKRL applications,
only two validity attributes have been concretely used, i.e. the “contradictory
validity attribute” and the “uncertainty validity attribute.”

The contradictory attribute, represented in external coding by the “exclama-
tion mark,” code “!,” is used to make known that information expressed in a
given NKRL structure (in practice, in an occurrence cx) contradicts information
expressed in another structure (in another occurrence c¢)). In this case, the
symbolic labels of the two structures (occurrences) become, respectively,
lek(c) and !c/(cy), i.e. the list including the labels of all the occurrences that are
in contradiction with c; is directly associated with the symbolic label of c;. The
uncertainty attribute, code “asterisk” “*,” may characterize either an occurrence
c¢; as a whole or single concept C; or an individual I;. In particular, the uncer-
tainty attributes are necessarily associated with all the occurrences that describe
future or possible events; see Section 2.3.2.1 and Chapter 3.

Modulators

Modulators apply to a full template or occurrence. This means that, to under-
stand the meaning of a template/occurrence in the presence of modulators, we
must first think about the basic meaning of this template/occurrence without
modulators and then particularize such meaning according to the modulators
used. Modulators can evoke, to a certain extent, the (universal and standardized)
primitive “lexical functions” proper to the meaning—text theory of Igor
Mel’cuk, like Magn (intensification), Loc (standard location), Bon (approval,
appreciation), AntiBon (disapproval), Oper, Func, Labor, etc. and their variants
[e.g. Zolkovskij and Mel’¢uk, 1967; Mel’¢uk, 1996]. Note once again, however,
that NKRL is not a linguistic theory, but a practical tool restricted to the
representation and management of nonfictional narrative information.

NKRL modulators pertain to three categories: temporal modulators, deontic
modulators and modal modulators.

Temporal Modulators

The definitions for the temporal modulators are given in Table 2.10. They are
used to represent the start or end points of given elementary events, or the
observation that, at a given point in time, a specific event is running. Note,
however, that their operational meaning is strictly associated with that of the
temporal determiners (temporal attributes); see below.

Deontic Modulators

Deontic modulators were integrated in NKRL during the NOMOS project
[Zarri, 1992b] to deal with subsets of the French “General Taxation Law” —
namely the norms used to settle cases concerning the transfer of revenues

72 2 The Knowledge Representation Strategy

Table 2.10 Temporal modulators

Temporal

modulator Acronym Mnemonic description

begin begin In the time interval associated with the elementary event
described in a predicative occurrence, we distinguish a
particular point, the timestamp (date) identifying the
beginning of the event, e.g. “On April 5th, 1982, Francis Pym
is appointed Foreign Secretary by the British Prime Minister”

end end The timestamp (date) marking the end of an elementary event is
identified

observe obs We identify a specific timestamp where a specific event can be

observed. obs will be used, for example, to represent the
information “It is known that, in June 1903, Lev Trotsky still
agreed with the Mensheviks about the strategy toward
socialism.” This situation is attested for June 1903, but we
cannot give, at this level, any information about its duration
that, in reality, extends in time before and after the given date

abroad. They have been systematically used afterwards for representing “legal-
oriented” narrative information; a recent paper on this topic is by Zarri [2007].
Their definitions are given in Table 2.11.

The deontic modulators of NKRL satisfy the logical relationships of
Table 2.12, which allow us to reduce all of them to the modulator perm.

This deontic system is very simple, for example, with respect to the formal
analysis contained in Lomuscio and Nute [2005]. Associated, however, with
HClass sub-trees particularly relevant from a “legal” point of view, like beliefs_,
guiltiness_, innocence_, plea_, violence_, etc., it can compare favorably with
the metadata system described in Gangemi et al. [2003] and describe correctly
the most simple legal situations.

Table 2.11 Deontic modulators

Deontic

modulator Acronym Mnemonic description

faculty fac Power of doing or not doing by autonomous choice

interdiction interd To forbid in a formal or authoritative manner

obligation oblig Someone is obliged to do or to endure something, e.g. by

authority of law, by moral authority, or according to an
autonomous need

permission perm “To be authorized to ...,” i.e. having the right to do something
where the right is granted by an external intervention

Table 2.12 Logical perm (x)
relatlonshlps_ oblig (x) = = (perm (= (x)))
among deontic modulator fac (x) = perm (x) A perm (- (x))

interd (x) = — (perm (x))

2.2 The Data Structures of the Four Components 73

Modal Modulators

If the NKRL determiners correspond, in general, to surface adverbials, then
modal modulators can be considered as the “deep-level” counterparts of some
specific “modal adverbials” [e.g. Shaer, 2003]. The modal modulators actually
accepted by the NKRL software are simply listed in Table 2.13. The semantic
properties of the most important among them (e.g. wish, poss) will be examined
in correspondence with their utilization in the context of particular templates/
occurrences; see Chapter 3.

Concurrent Utilization of Several Modulators

Several modulators can be associated with the same occurrence, as in this
fictitious example: “Mr. Smith could renounce to go to Paris on the con-
dition....” To represent correctly the first part of this narrative, two modal

Table 2.13 Modal modulators

Modulator Acronym Mnemonic description

absolute abs Used within EXIST occurrences to indicate the creation or
disappearing (birth, death) of an individual or social body

agreement, for, E.g. “to manifest a favorable/negative attitude with respect ...”

opposition against

denied event negv The reality of a particular event is denied (“Mary did not get the
book from John”)

desire, wish E.g. “Mary would like to be informed about...”

intention

firstly first The event is the first of a series of events

intentional, int, E.g. “Mr. Smith has, voluntarily/involuntarily, started a fire”

unintentional nint

leadership lid A character acts as a leader, e.g. “Mr. Smith took control of the
demonstration for peace”

mainly main E.g. “the plant will mainly make high value-added products”

mental ment The activity of the SUBJ(ect) does not give rise to a concrete

manifestation in the physical domain (e.g. a plan is only
conceived, but not necessarily executed)

multiple mult An event takes place several times within the time period
associated with the occurrence

necessary necs E.g. “required to fulfill something”; necs does not imply any
coercion or obligation by force of law; see oblig in Table 2.11

possibility poss The event represented in the occurrence could exist, or by itself
or as a consequence of another event

repeat rep A particular event already happened in the past (e.g. a politician
has been re-elected)

secretly krypt The activity of the SUBJ is hidden, e.g. a clandestine meeting

social soc The activity of the SUBJ concerns her/his socio-professional
duties

virtuality virt A situation, e.g. the nomination to a public function, that should

be true in principle, even it is not yet realized

74 2 The Knowledge Representation Strategy

modulators, negv and poss (see Table 2.13), should be added to the “basic”
predicative occurrence representing the displacement (MOVE) of Mr. Smith to
Paris. The first one, negv (denied event), is needed to represent the “negation” of
the event representing the journey; the second, poss (possibility), is needed to
say that the fact of renouncing to the journey is only a possibility linked to the
realization of a “condition” expressed in a second occurrence.

The possible, simultaneous presence of several modulators could introduce a
problem of scope ambiguity, see the well-known examples in the style of
“x{perm, negv} go to work yesterday” opposed to “x{negv, perm} go to work
yesterday.” In NKRL, scope ambiguity is strictly forbidden. As already stated,
when only a modulator is present, it works as a global operator that takes as its
argument the whole predicative occurrence. When a list of modulators is present,
they apply successively to the occurrence in a prefix notation (polish notation)
way. Therefore, the presence of a list {perm, negv} in the previous example
means that x has been permitted not to go to work yesterday (negv is applied
first, and then perm), while the presence of the list { negv, perm } means that x
has not been permitted to go to work yesterday. In the “Mr. Smith” example at
the beginning of this Section, the correct sequence for the two modulators is
then {poss, negv}. Note that:

e NKRL good coding practices recommend to make use, whenever possible, of
a single modulator for each predicative occurrence — it is normally better to
duplicate a predicative occurrence than to stack up several modal modula-
tors. However, particular combinations of modulators, in a prearranged order,
are directly imposed as mandatory by the syntax of a few templates; see
Chapter 3. As an example, we can mention here the use of EXIST templates
to represent the creation or dissolution of a social body (e.g. a company),
where the association {abs, begin/end} (in this order) must be necessarily
used. Note also that the temporal modulators can be freely associated with
the modal/deontic ones, normally as the “more external ones”; see {begin,
wish} or {end, soc} — it is important to realize that the temporal modulators
are mutually exclusive.

® As appears clearly from the above example, many of these “concurrence”
problems are linked with the presence of the modulator negv — for some
troubles and possible solutions that concern dealing with “negation” in a
conceptual representation context, see, among many others, the recent
paper by Mugnier and Leclére [2007]. From an NKRL point of view, we
can note that negv is a “historical heritage” of the RESEDA project and
that, with the growth of the number of conceptual entities present in both
the HTemp and HClass hierarchies, it is used less and less, even outside a
strict “multiple modulators” context. For example, “Bill is too busy, and he
doesn’t have time to exercise” will be “translated” using an Experience:
NegativeHuman/Social template (see Section 3.2.2.3), where BILL_, as a
SUBJ, EXPERIENCE(s) an impediment_ (OBJ) about (SPECIF finding-
time gym_exercising), which represents the TOPIC; the CONTEXT is given

2.2 The Data Structures of the Four Components 75

by (SPECIF commitment_ (SPECIF cardinality_ many_)). “Mary doesn’t
want people watching her undress” will be represented making use of the
template Behave:HumanProperty (Section 3.2.2.1), where MARY_, as a
SUBJ, BEHAVE(s) MODAL unwilling_ about the TOPIC of being scrutinized,
etc.; “Catia is unable to make use successfully of. ..” will make use again of
the template Experience:NegativeHuman/Social, where CATIA_, the SUBJ,
EXPERIENCE(s) OBJ failure_ about (TOPIC), etc. For some minor limita-
tions on the query/inference operations imposed by the presence of negv,
see Section 4.2.2.

Locations

<,

Location determiners can only be associated, through the operator “colon
(in external format), with the first four “main” roles of Table 2.4: SUBJ(ect),
OBJ(ect), SOURCE, BEN(e)F(iciary) — see also Table 2.5. The “locations” of the
fillers of the residual three roles, MODAL(ity), TOPIC and CONTEXT, can be
deduced, in case, from those associated with the “main” four roles.

The format of the location determiners follows these two general laws:

® A location determiner is always represented by a list of elements, concepts or
individuals. If this determiner is associated with an argument of the predicate
(i.e. with a filler of a role like SUBJ, OBJ, . . .) consisting of only one term, then
the elements of the list represent the different locations where this term is
simultaneously situated, as in the example: “Sharp Corporation produces its
personal computers in Taiwan and Korea.” In this case, the two elements
(individuals) of the list (TAIWAN_ KOREA_) that make up the location
determiner must be interpreted as the locations where the filler of the OBJ
role, personal_computer, is simultaneously produced. If the argument of the
predicate (i.e. the role filler) is, in turn, composed of a list, a biunivocal
correspondence must exist among the terms of the two lists (“Sharp Corpora-
tion makes notebooks in Taiwan and desktops in Korea”).

e Particular rules are followed in the different MOVE constructions; see
Section 3.2.2.4. For example, in the MOVE templates that are specializations
of Move:MoveAnEntity, the location list linked with the OBJ(ect)
filler is always a two-term list where the first term represents the initial
location and the second the final location. In the example: “Sharp Corpora-
tion has shifted production from Japan to Taiwan and Korea,” the location
determiner linked with the OBJ filler will be the embedded list (JAPAN_
(TAIWAN_ KOREA)). If some stop points along the way ought to be
represented, then it would be necessary to use a list of three terms, where
the (list constituting the) middle term represents the stop(s). In the MOVE
templates that concern the generic displacement of a character or a social
body and that derive from Move:AutonomousDisplacement, we system-
atically represent this situation by indicating that the character or social
body, as a SUBJ(ect), moves himself as an OBJ(ect). From a practical

76 2 The Knowledge Representation Strategy

point of view, this means that, in an occurrence concerning a trip of John,
JOHN_ will be the filler of both the SUBJ and OBJ slots. In this case, the
location determiner (possibly a list) associated with the SUBJ argument
represents the initial location(s) of John, and the location determiner linked
with the OBJ argument his final location(s); see Section 3.2.2.4. If the stop
points must be represented, then the OBJ location attribute is a list
where the first term — again a list in case of multiple stop points — corresponds
to these points.

We can note that, in some specific NKRL applications where a very precise
characterization of the locations was required, the location determiners of the
type “individual” had a specific internal representation made up of two
components:

e A complex, alpha-numerical “zip-code-type” symbol, giving the best
possible approximation of the spatial coordinates of the location to be
represented.

o The proper individual (enumerative component), labeled as usual by
using the place-name of the location (if this was known); see
examples like KOREA_, CHAMPS_ELYSEES, SCHOOL_342, CHURCH_18,
10_DOWNING_STREET, FARM_71, etc.

Note also that, independently from the internal representation, indivi-
duals like those above (KOREA , CHAMPS_ELYSEES, SCHOOL_342, etc.)
are instances of the particular HClass concepts denoting the category
of the given location, e.g. country , street , school , church_, official_
building, farm_, etc.

Temporal Determiners (Attributes)

The problem of finding a complete and computationally efficient system of
knowledge representation for temporal data has been intensely discussed in
recent years, thanks mainly to the debate aroused by the publication by James
Allen, at the beginning of the 1980s, of his proposals of an Interval Algebra; see
Allen [1981, 1983, 1984]. An “interval” is a finite length of time that starts and
ends at definite points; it can be visually represented as a horizontal line with
time going from left to right. According to Allen, a “time specialist” dealing
automatically with temporal information does not have to consider either
absolute time or the duration of intervals, but merely the relations between
intervals, i.e. it can leave unspecified the exact temporal relationship between
intervals. Seven primitive relationships (predicates) between the temporal inter-
vals iy and i, (and their inverses) are then defined in the Interval Algebra:
iy before ip, iy equal i, i1 meets i, (i1 is before i but there is no interval between
them, i.e. iy ends when /i, starts), iy overlaps i» (i/; starts before ir, and they
overlap), iy during i, iy starts i, (i; and i, share the same beginning, but /; ends
before i»), i finishes i» (i; and i, share the same end, but iy begins before /). A set

2.2 The Data Structures of the Four Components 77

of transitive axioms [Allen, 1983] defines the behavior of the above predicates;
two examples are

before(iy, iz) A before(iz, is) = before(iy, i) (2.6)

meets(iy, iz) A during(iz, i3) = (overlaps(iy,i3) V during(iy, i3)
V meets(iy,i3)) 2.7

Work that extends Allen’s proposals is described, for example, by Ladkin
[1986; Ladkin and Maddux, 1987]; work that investigates the relationships
between the “Interval” and “Point” algebras can be found, for example, in
Vilain and Kautz [1986] and Tsang [1987]. A temporal logic system introduced
independently from the work of Allen, where the concept of “persistence of a
situation” is introduced (see also Section 4.1.2) is given by McDermott [1982].
Kowalski and Sergot’s [1986] “Event Calculus” is an attempt to set up a general
system for reasoning about time and event in a logic programming framework;
in a way, this system can also be considered as an extension of Allen’s proposals.
A “spatial” system related to Allen’s interval algebra is the RCC8 Calculus
[Randell et al., 1992], which consists of eight topological base relations for
extended spatial regions.

In recent years, as a reaction to a pure “interval-based” system in Allen’s
style, we can remark a renewed interest for the “point-based” approaches: many
recent systems described in the literature can handle both metric (quantitative)
and qualitative (interval-based) temporal information. See, in this context,
TimeGraph [Miller and Schubert, 1990], MATS (Metric/Allen Time System)
[Kautz and Ladkin, 1991], TimeGraph-II [Gerevini and Schubert, 1995],
LATER (LAyered TEmporal Reasoner) [Brusoni et al., 1997], etc.

Three recent projects can be considered as representative of the “state of the
art” in the temporal representation domain — at least with respect to the
possibility of implementing “non-toy,” concrete applications in this specific
domain.

The first is the “Advanced Research and Development Activity (ARDA)
Challenge Project on Event Taxonomy” [Bolles and Nevatia, 2004], managed
by the ARDA Northwest Regional Research Center and having SRI Interna-
tional (SRI) and the University of Southern California (USC) as principal
partners. Centered on the automatic recognition of events in video records,
the project has created, among other things, a Video Event Representation
Language (VERL) that includes a temporal representation component. Time
can be specified as instants and intervals. Representation of intervals conforms
to Allen’s interval algebra; three relationships, begins, inside, and ends, can
hold between an instant { and an interval T; see, in NKRL, the three temporal
modulators defined in Table 2.10. Note also the existence of the three “pre-
dicates” change, cause, and enable, where the last two have a binding function

78 2 The Knowledge Representation Strategy

similar to that of the “binding occurrences” that, in NKRL, deal with the
“connectivity phenomena”; see Section 2.2.3.

The second project, linked with W3C/SW activities, is a “work on progress”
about the definition of an ontology of temporal concepts, OWL-Time, for
describing the temporal content of Web pages and the temporal properties of
Web Services; see Hobbs and Pan [2006]. OWL-Time is the successor of the
DAML-Time project [Hobbs and Pan, 2004]. The ontology defines two sub-
classes of TemporalEntity (i.e. Instant and Interval), three relations (i.e. begins,
ends and inside) for describing the relationships between instants and intervals
(see begins, inside, and ends in VERL and the NKRL’s temporal modulators), a
relation (i.e. before) on temporal entities, and a series of “interval relations” (i.e.
intervalEquals, intervalMeets, intervalOverlaps, etc. and their reverse relations)
to reproduce Allen’s system. All these “relations” are defined as ObjectProperty
in OWL and have as range either Instant or Interval. The ontology also includes
a set of specialized concepts, predicates and relations to allow the representa-
tion of durations (as properties of intervals), dates and other temporal entities:
e.g. January is a subclass of DateTimeDescription, with the restrictions that the
property unitType takes AllValuesFrom the class UnitMonth and the property
month has a value of 1. Clumsy examples of use of these definitions in a Web
Services context are described by Hobbs and Pan [2006].

The third project — the best known, and probably also the most interesting
from an NKRL point of view, in spite of the big differences both with respect to
the practical aims and to the general approach — concerns the Specification
Language TimeML; see Pustejovsky et al., [2005]. TimeML has been developed
in a computational linguistics context with the aim of annotating, from a tem-
poral point of view, an NL text by identifying and extracting events from this text
and by establishing their temporal anchoring. To annotate the texts, TimeML
makes use of four types of tags that make use of a syntax in the XML style (with
attributes and values): EVENT, TIMEX3, SIGNAL and LINK.

With respect to the first tag, EVENT, the modalities of identification of events
in TimeML do not appear as especially original and seem to be of the “neo-
Davidsonian” type (see the discussion in Section 1.1.2.2). They are then linked
with the retrieval of tensed verbs, untensed verbs (“. . .called the first minister to
thank him...”), nominalizations (“...a possible attack...), adjectives (“...a
dormant volcano...”), predicative clauses (“...there is no reason why they
would not be prepared...) or prepositional phrases (“on board”). Attributes
for the tag EVENT are of two types, i.e. EventlD (the identification of the
event, automatically assigned) and Class, with values like OCCURRENCE (die,
crash, build, merge, sell), STATE (on board, kidnapped, love), PERCEPTION
(see, hear, watch, feel), etc. The annotation of an event is completed making
use of a “secondary” tag, MAKEINSTANCE, used to introduce further
information about the event, like indications on the tense (PAST, PRESENT,
FUTURE, etc.), the aspect (PROGRESSIVE, PERFECTIVE, ...), the
modality, etc.

2.2 The Data Structures of the Four Components 79

The TIMEX3 tag is employed to mark up explicit temporal expressions; it
use is modeled on both the use of TIMEX2 — a set of annotations guidelines
for creating normalized representations of temporal expressions (“temporal
annotations”) in free text originally developed under the DARPA TIDES
(Translingual Information, Detection, Extraction and Summarization) pro-
gram (see Ferro et al. [2005] and http://timex2.mitre.org) — and on that of
Andrea Setzer’s TIMEX tag [Setzer and Gaizauskas, 2000; Setzer, 2001].
Note the existence of an automatic time tagger, TEMPEX, to generate
TIMEX2 tags in text documents automatically [Mani and Wilson, 2000].
The TIMEX3 tag can be associated with several types of attributes: some of
them are listed below.

e TimexID (automatically assigned).

e type, with values like DATE, to annotate fully specified time expressions like
September 3rd, 2007; TIME, to annotate (as in TIMEX2) underspecified or
context-dependent expressions like “The hostages were released that after-
noon”; DURATION, for annotating expressions like “three months” or “two
years”; SET, for annotating expressions like “twice a month”, “daily”; etc.

e value, where this attribute is used to introduce an instance of the ISO
8601 normalized date format [ISO, 2004], like 2007-10-26T09:15:00 that
denotes “October 26, 2007, 09/15.”

e mod, used to capture specific “temporal points” like BEFORE, AFTER,
ON_OR_BEFORE (“no less than a year ago”), “temporal comparisons”
like LESS_THAN, MORE_THAN, EQUAL_OR_THAN, “points and durations”
like START, MID (“the middle of the month”) or APPROX (“about three
years ago”).

e temporalFunction, which introduces a binary value to indicate whether all
the temporal information needed is provided (“twelve o’clock September 2,
2007”), or if this is not true (e.g. “yesterday” or “next year”) and it is then
necessary to make use of a temporal function.

e FunctionlnDocument (an optional attribute), with values like CREATION_-
TIME, MODIFICATION_TIME, PUBLICATION_TIME, etc.

For example, the CREATION_TIME of a document can be used in the
“temporal functions” mentioned above to identify a “temporal anchor”
(AnchorTimelD attribute) from which to start to calculate an actual (ISO)
value for “underspecified expressions” like “last week™; the anchor can then
be used to locate the week of creation of the document, allowing then to find the
week that precedes immediately this “creation week.”

The SIGNAL tag is used to annotate sections of the text, usually function
words, which can be used to show how temporal objects are related together.
They denote then “temporal prepositions and conjunctions” (from, before,
after, during, while, when, ...), “temporal modifiers” (twice, every, three
times, .. .), “subordinators” like “if,” etc.

80 2 The Knowledge Representation Strategy

However, the most important innovation introduced in TimeML (following
Setzer’s [2001] thesis) concerns certainly the set of LINK tags (TLINK, ALINK
and SLINK) that, as already signaled in Section 1.1.1.2, are particularly inter-
esting because they can be considered as TimeML’s solution to the problems
posed by “connectivity phenomena.” TLINK, the “temporal link,” is used to
represent the temporal relationship that holds between events or between events
and a specific time. The relType attribute of this link can be used to denote
simultaneous events (SIMULTANEOUS, as in the example “Jane was watch-
ing TV while Mary was cooking”), before/after events (BEFORE/
AFTER), during states or events (DURING, “Mary cooked for 40 minutes
on Tuesday”), etc. ALINK, the “aspectual link,” is used to represent the
relationships between an “aspectual event” and its “argument event”; in this
case, the attribute relType can denote an event that INITITATES, as in
“Mary started (aspectual event) to cook (argument event),” CULMINATES
(“Jane finished assembling the table”), TERMINATES or CONTINUES - see,
on the contrary, the NKRL use of temporal modulators in this context in
Table 2.10. Note also that, in TimeML, the “aspectual” predicates like “start”
and “finish” in the above examples are treated as “separate events,” independent
from the specific modified event like “cook.” Eventually, SLINK, the “subordina-
tion link,” is used to denote “contexts” and relationships between two events —
dealing, then, once again, with the omnipresent “connectivity phenomena” — see
values for the relType attribute like FACTIVE (“Mary managed to leave the
party”) COUNTER_FACTIVE (“John forgot to buy some bread”) or MODAL
(“Mary wanted John to buy some bread”).

In spite of its unquestionable richness and interest, TimeML sometimes also
appears particularly “heavy” and convoluted — we have far from mentioned all
the intricacies of its syntax — and not immune from certain dangers of ambiguity
and underspecification.

NKRL, Timestamps and Intervals

The association of temporal attributes with temporal modulators is at the
heart of the NKRL representation of the specific temporal data to be taken
into account in a “narrative information” context; note, however, that a
complete apprehension of this representation system cannot be obtained
without examining how it is used in a querying and inferencing context; see
Section 4.1.2. The two temporal attributes date-1 and date-2 define, in fact,
the global time interval or a specific point on the time axis (when associated, in
particular, with the modulators begin, end and obs; see Table 2.10) where a
predicative occurrence Cy (i.e. the corresponding elementary event) “holds.”
Among other things, this implies that, for each predicative occurrence — and
in contrast to what happens for the modulators and the location determiners
that, with few, very precise exceptions, are in general not mandatory — the
presence of the attributes date-1 and date-2 is absolutely mandatory in order

2.2 The Data Structures of the Four Components 81

to be able to assign a correct interpretation to this occurrence; e.g. see occur-
rence mod3.c5 in Table 2.6b.

More precisely, any predicative occurrence cy is necessarily associated with
the formal representation of the time interval / in which holds(cy, i) is true; iis in
turn defined by the timestamps associated as values with the two temporal
attributes date-1 and date-2. Timestamps are composed of sequences of integers
like <year-month-day-hour-minute...>, where the left and right boundaries of
the sequence represent, respectively, the maximum (e.g. years) and minimum
(e.g. nanoseconds) temporal grain chosen for a given application. In internal
representation, each sequence is converted into a single real; the equivalence
“timestamp = real” preserves the order of the original timestamps on the time
axis. From now onward, the term “timestamp” will denote the real number
corresponding to the original sequence. For clarity’s sake, however, we will
continue to use in the following the intuitive “external” NKRL symbolic notation
for timestamps, e.g. in the style of “2006-10-26” — which corresponds, therefore,
to the sequence <year-month-day> and which is compatible with the ISO 8601
standard [ISO, 2004]. Pragmatic solutions have been adopted to deal with the
problem of “lacunary dates,” given that, in the historical “narrative” applica-
tions for example, not all the elements of the original sequence corresponding to
a timestamp can be known simultaneously. Assuming, for example, that “max-
imum grain = years,” sequences with the year unknown are not permitted. In this
case, a set of possible years must be specified, automatically or by the domain
specialist: a copy of the associated occurrence is created for each possible year
and the set of occurrences is added to the knowledge base.

Given the above assimilation of timestamps with reals corresponding to
points of the time axis, it is now possible to make use of the standard
arithmetical properties to establish the relationships between timestamps,
and to calculate, when necessary, the duration of the intervals (in the James
Allen style). Expressing the generic timestamp as t,, we can make use, for
example, of the simple axioms described in Table 2.14; see also Miller and
Schubert [1990].

To calculate concretely the “metric duration,” dt, of an interval bounded
by the timestamps t; and t,, it is necessary to reconvert ¢; and t, into the
original sequences of integers fo express these two timestamps in terms of
“significant multiples” of the minimum grain. “Significant” means that, e.g.,
for two timestamps ¢; and t, including the years 2006 and 2007 in their

T.able 2.14 Relationships among (<) A(tL<t) = (4 <t
timestamps H<t)et<b)V=t)
t<h)ye (b2t
tr<t)=-(<t)
t2b)=(b<t)
((t1 < 1‘2) A (tz < t1)) = (t1 =l‘2), etc.

82 2 The Knowledge Representation Strategy

original sequences, and assuming that “years” and “days” are, respectively,
the maximum and the minimum grain, only one year period will be added to t,
when converting the whole sequences into days. Denoting with g(f,) the sig-
nificant multiple of the minimum grain corresponding to the generic time
stamp t, we will then simply have

dt(t1,t2)=g(t2)—g(t1) and if t1 S tz § t37 dt(t1,t3)=dt(t1,t2)+dt(t2, t3) (28)

Categories and Perspectives

If we examine the qualitative relationships between the duration of an
occurrence ¢k (the duration of the corresponding event) and the temporal
information carried by the temporal attributes date-1 and date-2, we can notice
several configurations.

In the simplest case, the duration is fully defined, as in the representation of
the elementary event “Between July 15 and September 5, 2006, John was
hospitalized”; in the corresponding predicative occurrence, we do actually
have two timestamps t; and f,, fy = 2006-07-15 and f, = 2006-09-05, which
allow us to localize exactly the boundaries of the event. From the point of view of
temporal information, this situation can thus be schematized as in Fig. 2.5: the
two timestamps t; and f, represent the values associated with the temporal
attributes date-1 and date-2 respectively.

We can now introduce a first fundamental concept of the NKRL system of
temporal representation, that of category of dating. The first temporal attri-
bute, date-1, is said to be represented in subsequence — the event begins to be
true at the timestamp #; (generalized date) that corresponds to the value
associated with this attribute — and the second date-2, which denotes the
upper temporal limit of the event, is said to be represented in precedence.
The values of the two attributes, and the category of dating (subsequence or
precedence) associated with these attributes, permit us to reconstruct the
temporal interval fully (in Allen’s meaning) that corresponds to the event we
are taking into consideration.

It is often necessary to deal with an event in which only one of the two
boundaries, {4 or f, is to be considered — for example, when it is necessary to
supply special information about the circumstances at the beginning or end of
the event. Another possibility is that only an intermediate timestamp f3, between
t; and t,, is known. In all these cases, NKRL requires that we make use only of

event

date-1: 4
t date-2: t,

ty t;

Fig. 2.5 The duration of the event is fully defined

2.2 The Data Structures of the Four Components 83

event
t Eal
___________________ date-1: ¢, + begin
t; only
——————— date-1: f, + end
ty only
______________ date-1: {; + obs
t3 only

Fig. 2.6 The duration of the event is unknown

the first temporal attribute, date-1, i.e. the single timestamp available is system-
atically associated as value with date-1, the second attribute, date-2, being
“empty.” The three cases are differentiated by using one of the “temporal mod-
ulators” of Table 2.10, to be linked to the global coded event. The beginning of an
elementary event (timestamp t;) will be represented by making use of the
modulator begin, and the “filled” temporal attribute date-1 is then represented
in subsequence. To indicate the end of an event (timestamp f,), the modulator
end is used, and the temporal attribute, date-1, must be represented in prece-
dence. If, finally, a particular moment within an event is to be indicated — for
example, to express the information that it appears that British Airway’s
indebtedness was low on July 2, 1993, or that it is known that, in June 1903,
Lev Trotsky still agreed with the Mensheviks about the strategy toward social-
ism, but without giving any information about the beginning or end of these
particular states that extends beyond the given dates — the modulator “obs(erve)”
is used. In this last case, the nonempty temporal attribute, date-1, is now said to
be represented in coincidence. The three cases illustrated in this paragraph are
summarized in Fig. 2.6.

Eventually, a last case corresponds to the point events, i.e. events that have a
metric duration df less than or equal to the minimum temporal grain considered.
If, for example, we look at the narrative fragment “Brussels, July 2, 1993. British
Airways Plc President Colin Marshall said in a Belgian newspaper interview the
company’s indebtedness was low ...,” it is likely that Colin Marshall’s speech
has occupied only a relatively small slice of July 2, 1993. This sort of event
appears, then, as concentrated in a particular “point” of the time axis; see
Fig. 2.7. The corresponding occurrences are characterized by the following
format: (i) the timestamp t; representing the date of the point event is associated
as a value with the temporal attribute date-1; (ii) the temporal attribute date-2 is
empty; (iil) no temporal modulator is to be associated with the predicative occur-
rence. The category of date-1 is the “coincidence.”

Whatever the timestamp to be considered and the associated category, an
important source of fuzziness is associated with the accuracy, or rather the lack
of accuracy, with which this timestamp can be located on the time axis. The

84 2 The Knowledge Representation Strategy

event
\=7/ date-1:

f

.

date-2:
without temporal modulator

Fig. 2.7 Point event

solutions proposed here (perspectives) generalize some remarks that go back to
Kahn and Gorry [1977]; see also Miller and Schubert [1990: 110]. Perspectives
represent a simple and elegant way for dealing with some of the “context-depen-
dent expressions” we have evoked, before, in the context of TimeML (e.g. see
certain attributes of the TIMEX3 tag), and compare favorably with the solutions
proposed in this project.

In NKRL, “perspectives” correspond to different ways of “capturing” a
timestamp. We have defined five different perspectives:

® direct perspective (no fuzz, as in “July 2, 2006, at noon”);

® inclusion fork, or simply fork (“between April 7 and September 2, 2006”);

® [imit from which (“after January 1, 2006”: a way of indirect dating, as in the
case of a letter A that does not bear a date but mentions having received a
letter B, which is dated “January 1, 2006,” this last date is thus a “limit from
which” for letter A);

® [imit to which (the symmetric case, “before December 2, 2005”: letter A does
not bear a date, but is mentioned in a letter C, which is dated);

® circa perspective (no lower or upper bounds, as in the case of a letter A which
does not bear a date, but mentions the celebration of a feast day the date of
which is known, without saying if the feast has passed or is to come: letter
A is situated around that date, “about December 25, 2005”).

We will stress here that the type of perspective that affects the temporal
information associated as a value with a temporal attribute is completely
independent of the category according to which the attribute itself is represented.
In a piece of information of the type: “John has been hospitalized in 2006, over a
period whose first limit is probably between June 10 and June 30, 2006, and the
second between September 1 and September 15 of the same year,” the corre-
sponding predicative occurrence would have both the temporal attributes date-
1 and date-2 “filled,” the first “in subsequence” and the second “in precedence”;
but, for both, the perspectives associated with the timestamps “filling” these
temporal attributes would be of the “fork” type. The “category” concerns the
temporal attributes; the “perspective,” the values (timestamps) to be associated
with such attributes.

Thus, if we exclude direct dating, these perspectives all specify a range of
possible values for the timestamp to be recorded. The only element that distin-
guishes them from each other is the way in which this range is indicated in the

2.2 The Data Structures of the Four Components 85

direct perspective \
“t
fork ‘l’ ‘L
t
from which ‘l’ ?
LI
\L t
to which 2. . -
t
circa perspective ? _ e ?
t

timestamp to be represented

Fig. 2.8 Timestamps and perspectives

original information sources (Fig. 2.8); we see that it can always be reduced to a
“fork,” where both limits can be specified, one only (“from which” and “to
which”), or none of them (“circa”).

When both the limits are not provided, the missing limit(s) must be restored:
a reconstructed date is noted conventionally in round brackets in the external
NKRL format. Such a reconstruction could be executed (i) manually by the
domain expert at the moment of building up the knowledge base of occurrences,
making use of the context of the event to be coded and of its personal knowl-
edge, or (il) automatically by inference, at the processing time, using some
algorithm designed to calculate “so many days” or “so many months,” etc.
before and/or after the effective timestamp (date) known and some sort of
conceptual representation of the context. See in this context, for example, the
“methods” by Kahn and Gorry [1977: 95-98] and, more recently, the “temporal
functions” in TimeML mentioned before.

We will conclude this section by noting that the values associated with the
temporal attributes date-1 and date-2 are represented, in reality, by a vector of
two elements (two timestamps). Each time we have to deal with nondirect
perspectives (fork, from which, to which, circa; see Fig. 2.8 again), the two
elements of the vector are both explicitly expressed, giving the limits of a fork
inside which is situated the (unknown) “correct” timestamp to be associated with
the attribute. On the other hand, the vector expressing a value to be represented
in direct perspective only contains one explicitly expressed timestamp, e.g. see
the value 1999-11-20 associated with date-1 in occurrence mod3.c5 in
Table 2.6b. The temporal attributes associated with the occurrence translating
the previous example, “John has been hospitalized in 2006 ...,” will then be
coded as

date-1: 2006-06-10, 2006-06-30
date-2: 2006-09-01, 2006-09-15

86 2 The Knowledge Representation Strategy

If the information to be represented was, on the contrary, “John has been
hospitalized in 2006, over a period whose first limit is probably between June 10
and June 30, 2006, and the second surely before September 15 of the same year,”
then the value (category: precedence) to be associated with the attribute date-
2would be characterized by a “to which” perspective, and the first element of
the corresponding vector would then be reconstructed; see:

date-1: 2006-06-10, 2006-06-30
date-2: (2006-09-01), 2006-09-15

Categories and perspectives represent, among other things, the basic building
blocks of the advanced system used for indexing the ORACLE knowledge bases of
NKRL occurrences — this system will be described in detail in Section 4.1.2. This
indexing schema allows us to reach a twofold result: (i) when posing a query to
the knowledge base, most of the (very complex) operations concerning tem-
poral information are directly take into account at the index level; (ii) the real
(and, once again, very complex) operations of filtering/unification between the
query and the contents of the knowledge base are executed on a very reduced
subset of the knowledge base of predicative occurrences.

2.3 Second-order Structures

In Chapter 1, we have already discussed the importance, in a general “narrative”
context, of being able to deal with those connectivity phenomena — expressed, in
NL, through syntactic/semantic constructions like causality, goal, indirect speech,
coordination and subordination, etc. — that, in a narrative, cause its global
meaning to go beyond the simple addition of the information conveyed by each
constitutive elementary event. These NL connectives constitute, then, the surface
evidence of those deep semantic mechanisms that assure the logical coherence
among the different components of the “stream” identifying a specific narrative.
For concrete solutions suggested for dealing with the connectivity phenomena
from a CS/AI point of view, we can evoke here, first, some “old,” well-known
proposals of Schankian inspirations evoking all sorts of scripts, scenarios,
thematic abstraction units (TAUs), memory organization packets (MOPs), etc.
[e.g. Schank and Abelson, 1977; Schank, 1980; Dyer, 1983; Kolodner, 1984] — the
SnePS (Semantic Network Processing System) of Shapiro [1979; Maida and
Shapiro, 1982] pertains roughly to the same period and allows us, for example,
to represent “narrative” situations like “Sue thinks that Bob believes that a dog
is eating a bone.” Among the recent suggestions we can evoke the (already
mentioned) CG mechanisms for dealing with “contexts”; see Sowa [1991] and
Section 1.2.2.1. In a generic “linguistics/computational linguistics” framework,
some solutions have been put forward by DRT [Kamp, 1981; Kamp
and Reyle, 1993]; as already stated, DRT is a semantic theory developed for
representing and computing trans-sentential anaphora and other forms of text

2.3 Second-order Structures 87

cohesion. In the same context, see also the TimeML proposals analyzed in the
previous section.

In NKRL, the connectivity phenomena are dealt with by making a (limited)
use of second-order structures: these are obtained from the reification of pre-
dicative occurrences (of templates in some special cases — see Section 2.3.2.2)
based on the use of their symbolic labels (see the L; terms in Eq. (1.2) and, as a
concrete example, mod3.c5 in Table 2.6b). “Reification” is intended here in
general (as usual in a object-oriented and Al contexts) as the possibility of
making objects out of already existing complex conceptual patterns (in our case,
templates and predicative occurrences) and to “say something” about them
without making reference to the original pattern.

2.3.1 The Completive Construction

A first example of second-order structure is given by the so-called “completive
construction,” which consists of using as filler of a role in a predicative occur-
rence ¢y the symbolic label (symbolic name) of another occurrence ¢;. Only the
OBJ, MODAL, TOPIC and CONTEXT roles of ¢ can accept as filler a symbolic
label c,.

Note immediately that the symbolic labels ¢, used as fillers can denote not
only predicative occurrences, as in the examples of this section, but also examples
of those binding occurrences we will introduce in the next section. Additional
constraints are:

® only one among the OBJ, MODAL, TOPIC and CONTEXT roles associated in
the case with an occurrence ¢, can be filled with a symbolic label cj;

® ¢, must correspond strictly to a simple filler (it must be, then, a single
symbolic label), i.e. complex fillers (expansions) cannot be used in the
framework of a completive construction reference.

For implementation reasons this unique label is prefixed, in external format,
by a “sharp,” “#,” code. The general format of a “completive construction filler”
actually corresponds, then, to #symbolic_label; see the tables below. Note that
symbolic_label is a regular concept of HClass (see Section 3.1.2) that has as
instances all the concrete labels used to denote both predicative or binding
occurrences in the different NKRL applications.

As an example of completive construction, Table 2.15gives the NKRL
representation of a fragment of Reuters’ news already mentioned in previous
sections, like “Brussels, July 2, 1993. British Airways Plc President Colin
Marshall said in a Belgian newspaper interview the company’s indebtedness
was low....” For simplicity’s sake, in this example, as in the majority of the
other examples of the book, the frame structures corresponding to the indivi-
duals — Colin Marshall, Brussels, etc. in this case — are not reproduced in the
table.

88 2 The Knowledge Representation Strategy

Table 2.15 A completive construction of the “transmission of information” type
conc5.c1) MOVE SuUBJ (SPECIF COLIN_MARSHALL

(SPECIF chairman_ BRITISH_AIRWAYS)):
(BRUSSELS)

OBJ #conch5.c3
BENF (SPECIF newspaper_ BELGIUM_)
MODAL interview_
date-1: 1993-07-02
date-2:
Move:Structuredinformation (4.42)
conc5.c3) EXPERIENCE SUBJ BRITISH_AIRWAYS
OBJ (SPECIF indebtedness_ (SPECIF amount_ small_))
{obs}
date-1: 1993-07-02
date-2:

Experience:NegativeHuman/Social (3.222)

In Table 2.15, the SPECIF sub-list (SPECIF amount_ small_) in the occur-
rence concb.c3 is one of the special SPECIF sub-lists labeled in a normalized way
(“NKRL idioms”) that will be examined in detail in Section 3.1.2.1; see also this
last section for a discussion about an HClass quantifying_property like small_.
As already stated (see Table 2.10), the presence of the temporal modulator
obs(erve) leads to an interpretation of the occurrence conc5.c3 as the descrip-
tion of a situation that, at this particular date, is observed to exist.

The completive link is realized here by introducing the symbolic label,
concbh.c3, of a “subordinate clause” (bearing the informational content to be
spread out, the decrease of British Airways’ indebtedness in our example) as the
OBJ(ect) filler (see OBJ #conc5.c3 in occurrence conc.c1) of a MOVE predicative
occurrence. In NKRL, this particular type of completive construction is largely
used given that it is the mandatory way of translating any sort of “transmission of
information”; see the discussion about the Move:Transmitlnformation template
and its specializations in Section 3.2.2.4. However, the use of the completive
construction is not limited to the representation of information transmission
phenomena; as already stated, fillers in the form of #symbolic_label can also
be used in association with the MODAL, TOPIC and CONTEXT roles.

As a further example of completive construction, let us consider the code
represented in Table 2.16, which translates this sort of complex situation (the
example concerns a corporate application of NKRL for managing complex
dialogue structures in the “Beauty Care” domain):
® Occurrence skin7.c1. On January 1st, 2002, Sarah121 sends a message to the

Beauty Net Community; the content of this message is detailed in occurrence

skin7.c2.

2.3 Second-order Structures 89

Table 2.16 Further examples of completive constructions

skin7.c1) MOVE SuBJ SARAH_121
oBJ #skin7.c2
BENF BEAUTY_NET_COMMUNITY
date-1: 2002-01-01
date-2:
Move:Structuredinformation (4.42)
skin7.c2) RECEIVE SuUBJ SARAH_121
OBJ advice_
SOURCE BEAUTY_NET_COMMUNITY
TOPIC #skin7.c3
CONTEXT (SPECIF eyeshadowing_ SARAH_121)
{wish}
date-1: 2002-01-01
date-2:
Receive:DesiredAdvice (7.21)
skin7.c3) OWN SUBJ (SPECIF use_ eyeshadow_powder)
OBJ property_
TOPIC (SPECIF more_effective_than
(SPECIF use_ eyeshadow_cream))
CONTEXT eyeshadowing_
{poss}
date-1: 2002-01-01
date-2:

Own:CompoundProperty (5.12)

® Occurrence skin7.c2. In this message, she says she would like (modulator
wish) to obtain their opinion, in the context of some eye shadowing opera-
tions, about (TOPIC role) what is related in occurrence skin7.c3.

® Occurrence skin7.c3. In particular, she would like to know whether, in the
context of these eye shadowing operations, the utilization of an eye shadow
powder is more effective than that of an eye powder cream.

In these predicative occurrences, the first one, skin7.c1, is an instance of the
template Move:Structuredinformation, skin7.c2 is an instance of Receive:Desired
Advice and skin7.c3 is an instance of the specific Own:CompoundProperty tem-
plate; the Own:Property templates are largely used in NKRL to describe the
properties of both entities and processes (see Section 3.2.5.5). advice_ is a specific
term of information_content in HClass via its subsuming terms generic_word_
content and word_content; more_effective_than is a relational_property, i.c. a
non_sortal_concept; see Section 3.1.2.1. eyeshadowing_ is a specific term of beauty
care_process (a specialization of process_) via its subsuming term eye_related_
care_process; eyeshadow_powder and eyeshadow_cream are both specific terms
of artefact_ through their subsuming terms eye_related product/tool and beauty
care_product terms, etc. — these last terms pertain to the specific branches of HClass
added to deal with the particular terminology of the Beauty Care domain.

90 2 The Knowledge Representation Strategy

Table 2.17 The Move:Structuredinformation template

name: Move:Structuredinformation
father: Move:TransmitInformation

position: 4.42
NL description: “Transmit a Structured Information”
MOVE SuUBJ vart: [(var2)]
OBJ var3
[SOURCE var4: [(var5)]]
[BENF var6: [(var7)]]
[MODAL var8]
[TOPIC var9]
[CONTEXT var10]
{[modulators], #abs}
var1 = human_being_or_social_body
var3 = symbolic_label
var4d = human_being_or_social_body
var6 = human_being_or_social_body
var8 = electronic/media_product, information_support, service_,
services_agency, transmission_medium, temporal_attribute
var9 = sortal_concept
var10 = situation_, symbolic_label
var2, vars, var7 = location_

To give an example of how the mandatory use of completive constructions for
predicative occurrences is denoted in a “template” context, Table 2.17 repro-
duces the template Move:Structuredinformation — which is at the origin of
the occurrences conc5.c1 of Table 2.15 and skin7.c1 of Table 2.16 (see also
Section 3.2.2.4). The constraint on the OBJ filler shows clearly that this role
must be necessarily filled by an instance of the symbolic_label concept.

For clarity’s sake, we will now reproduce below the totality of the syntactic
rules that govern the set up of well-formed completive expressions:

® The creation of an associative relationship of the “completive construction”
type consists in introducing the symbolic label ¢; of an NKRL occurrence,
predicative or binding (see next section), as “filler” of a role of a predicative
occurrence Cg.

® Only the roles OBJ, MODAL, TOPIC and CONTEXT of ¢ can be “filled” with
the symbolic label c,.

® 1Incy, only one of the above four roles can be filled with c, i.e. it is forbidden to
make use of more than a single completive construction reference within the
same predicative occurrence.

e The filler ¢, must be a “simple” filler, i.e. expansions (structured argument)
implying the use of the AECS operators cannot be used to set up relation-
ships among occurrences in the completive construction style.

e In the predicative occurrence ¢y, the actual format of the filler ¢, is #symbolic_
label, where symbolic_label is a regular HClass concept.

2.3 Second-order Structures 91

e In the templates, the mandatory use of a completive construction filler
in the derived predicative occurrences is denoted through the use of a
symbolic_label constraint on one of the variables var; of the template; see
Table 2.17.

2.3.2 Binding Occurrences

A second, more general way of linking together NKRL structures to take into
account the “connectivity phenomena” consists of making use of “binding
occurrences,” i.e. binary structures under the form of lists labeled with specific
“binding operators,” whose arguments are represented (reification) by symbolic
labels of (predicative or binding) occurrences. Extensions to binding structures
having “partially instantiated templates” as arguments will be introduced in
Section 2.3.2.2.

Unlike templates and predicative occurrences, binding occurrences are then
characterized by the absence of any predicate or role: they present strong syntac-
tic similarities with the “expansions” (structured arguments) introduced in
Section 2.2.2.3, the most important difference being that “binding occurrences”
are full-fledged, “independent” second-order objects endowed with a proper sym-
bolic “name.”

2.3.2.1 The Binding Operators

Like the expansions, the binding occurrence lists are then characterized by the
presence of an operator (a “binding operator” here) as the first element of the list.
The binding operators are listed in Table 2.18; see also the expansion operators
of Table 2.8. To enforce the syntactic coherence of the global NKRL code, the
binding occurrences must necessarily conform to the following mandatory
restrictions to be considered as well formed:

e The terms (arguments) ¢; that, in a generic binding list, are associated with
one of the operators of Table 2.18, denote necessarily (single) symbolic labels
of (predicative or binding) occurrences. Therefore (in contrast to what hap-
pens when dealing with the expansion structures), these arguments cannot
denote (canned) lists labeled in turn with binding operators. Note also that
each element c; of the binding list refers to a different binding or predicative
occurrence.

e In the binding occurrence of the ALTERN, COORD and ENUM type, no
restriction is imposed on the cardinality of the list, i.e. on the possible number
of terms (arguments) c;.

e In the binding occurrences labeled with CAUSE, REFER, GOAL, MOTIV
and COND, in contrast, only two arguments, ¢y and c;, are admitted. The
binding occurrence labeled with the above five binding operators are then
simply of the type: (OPERATOR ¢y ¢)). In these lists, the arguments (symbolic

92

2 The Knowledge Representation Strategy

Table 2.18 Binding operators of NKRL

Operator

Acronym

Mnemonic description

Alternative

Coordination

Enumeration

Cause

Reference

Goal

Motivation

Condition

ALTERN

COORD

ENUM

CAUSE

REFER

GOAL

MOTIV

COND

The disjunctive operator. Only a term of the associated list of
labels of predicative/binding occurrences must be considered,
but this term is not known a priori

The collective operator. All the terms of the list must,
obligatorily, be considered together to give rise to a valid
binding relationship

The distributive operator. Each term of the list must be
considered to produce a valid binding relationship, but they
satisfy this relationship separately

The strict causality operator, introducing a necessary and
sufficient causal relationship between the first and the second
arguments of the list, the latter explaining the former. Only two
terms can appear in a CAUSE binding occurrence; see also
Section 2.3.2.3

The weak causality operator, introducing a necessary but not
sufficient causal relationship between the first and the second
arguments of the list

The strict intentionality operator; the first argument is necessary
to realize the second, and the second is sufficient to explain the
first. The predicative occurrence(s) corresponding to the second
argument is/are necessarily marked as “uncertain,” operator “*”
(see Section 2.2.2.4)

The weak intentionality operator; the first argument is not
necessary to realize the second, but the second is sufficient to
explain the first. The predicative occurrence(s) corresponding to
the second argument is/are necessarily marked as “uncertain,”
operator “*”

The predicative occurrence corresponding to the first argument
represents an event that could happen if the predicative/binding
occurrence (i.e. event or complex situation) corresponding to the
second argument could be realized. The first argument
(predicative occurrence) is necessarily associated with a
modulator poss (see Table 2.13); the predicative occurrence(s)
corresponding to the second argument is/are necessarily marked
as “uncertain,” operator “*”

labels) can denote, in general, both a predicative and a binding occurrence;
an exception is represented by the COND binding occurrences, where the first
argument ¢, must correspond necessarily to a predicative occurrence; see
Table 2.18.

A first example will show, among other things, how “completive construc-
tions” and “binding occurrences” can coexist within a fragment of conceptual
annotation (or metadocument); a conceptual annotation (see Zarri [2003b] and
the examples of Chapter 3) is a structured association of binding and predicative
occurrences intended to supply a detailed representation of the “meaning” of a

2.3 Second-order Structures 93

Table 2.19 Mixing completive constructions and binding occurrences
conc5.c1) MOVE SuUBJ (SPECIF COLIN_MARSHALL
(SPECIF chairman_ BRITISH_AIRWAYS)):
(BRUSSELS)
OBJ #conch.c2
BENF (SPECIF newspaper_ BELGIUM_)
MODAL interview_
date-1: 1993-07-02
date-2:

Move:Structuredinformation (4.42)
conc5.c2) (CAUSE conc5.c3 concb.c4)
conc5.c3) EXPERIENCE SUBJ BRITISH_AIRWAYS

OBJ (SPECIF indebtedness_ (SPECIF amount_ small_))
{obs}
date-1: 1993-07-02
date-2:
Experience:NegativeHuman/Social (3.222)
conc5.c4) PRODUCE suBJ BRITISH_AIRWAYS
OBJ (SPECIF capital_increase BRITISH_AIRWAYS)
date-1: (1993-01-01), 1993-07-02
date-2:

Produce:EconomicinterestActivity (6.48)

complex narrative document. Table 2.19 provides, then, the complete NKRL
image of the example already used in Table 2.15: “Brussels, July 2, 1993. British
Airways Plc President Colin Marshall said in a Belgian newspaper interview the
company’s indebtedness was low following a capital increase.”

In Table 2.19, the content of the message is now represented by the binding
occurrence concb.c2. This occurrence — which is labeled using the CAUSE
operator defined in Table 2.18 (see also Section 2.3.2.3) and that follows the
“only two arguments” rule — means that event conc5.c3, the main event, has
been caused by event conc5.c4. The new predicative occurrence concb.c4 trans-
lates an elementary event that has been interpreted as a point event (no temporal
modulator) from a category point of view, and as a limit to which (“before July 2,
1993,” see the date fork) from a perspective point of view; see the “Categories
and perspectives” subsection in Section 2.2.2.4. The first term of the fork,
January Ist, 1993, is a reconstructed date, noted in parentheses in external
format.

2.3.2.2 Priority Rule and Generalization to Templates

We will now introduce two important, general remarks about the binding
operators introduced in the previous section.

94 2 The Knowledge Representation Strategy

Correspondence between “Expansion” and “Binding” Operators

A first remark concerns the correspondence between the operators of Tables 2.8
and 2.18. The basic semantics of ALTERN, COORD and ENUM are,
obviously, the same whether they are used within expansion lists or binding
occurrence lists. This is why, to avoid any possible confusion, these three
operators are denoted in the “external” NKRL notation as ALTERN1,
COORD1 and ENUM1 when they are used as expansion operators.

Moreover, the CAUSE, REFER, GOAL, MOTIV and COND operators of
Table 2.8 correspond, in a sense, to the operator SPECIF(ication) of Table 2.8.
This last operator is used, in fact, to supply further information about the first
argument of a SPECIF list —in a list (SPECIF e;a b ¢ .. .) in fact, the properties
a,b,c, ..., concepts or individuals, introduce additional details about the item e;
(the first argument) that follows immediately the operator SPECIF. When
dealing with binding lists labeled as CAUSE, GOAL, etc., we can consider the
(single; see Table 2.18) predicative or binding occurrence ¢, that represents, for
example, the second argument of a list (CAUSE ¢, ¢,) as an element that, once
again, supplies further information (the cause in this case, but also the goal, the
possible condition for the realization ...) about what is stated in the first
argument (occurrence ¢4) of the list.

However, for the binding occurrences, no strict formal constraints in the
style of the “priority rule” introduced in Section 2.2.2.3 can be imposed. This
depends mainly on the possibility that binding occurrences labeled with
COORD can be found, within a structured list of binding and predicative
occurrences, in a position that contradicts the strict sequence of the operators
imposed by the priority rule. In fact:

e In a binding list of the CAUSE, REFER, GOAL, MOTIV and COND type,
one of the two symbolic labels (normally the second, ¢,) can correspond to
another binding occurrence, in particular to a binding occurrence of the
COORD type. For example, in Table 2.19, the second argument conc5.c4
(the CAUSE) in the binding occurrence conc5.c2 could, in fact, instead of a
single predicative occurrence (a single elementary event), denote a long
narrative development represented by several occurrences grouped in a
COORD Iist. This last situation would then be equivalent to the introduction
of a COORD list within a CAUSE, REFER, GOAL, etc. binding list, i.e. within a
list that, according to what is expounded above, is supposed to correspond to a
SPECIF list. The priority rule as expressed in Section 2.2.2.3 would then be
implicitly violated.

e This situation is quite frequent in practice — as evidenced also by the
examples of Chapter 3 — because of the decision of admitting a /iberal use
of COORD binding lists within long sequences of predicative occurrences in
order to group together (“factorize”), for both readability and logical coher-
ence’s sake, occurrences that are very close from a semantic content point
of view. For example, we could group together in a COORD binding occur-
rence (i) a PRODUCE predicative occurrence relating the creation of some

2.3 Second-order Structures 95

artifacts and (ii) several occurrences in the style of skin7.c3 in Table 2.16
(derived then from Own:Property templates) to specify the different proper-
ties of these artifacts. The resulting COORD binding occurrence could, after
that, correspond to the second argument of a CAUSE, GOAL, etc. list.

Concretely, the only restriction on the use of binding operators within
binding occurrences (introducing, then, a sort of weakened form of the priority
rule) concerns the impossibility of making use of arguments ¢; denoting binding
occurrences of the ALTERN and ENUM types within binding occurrences of the
COORD type. Within these COORD binding occurrences, however, ¢; labels can
be freely used to denote binding occurrences of the COORD, CAUSE, REFER,
GOAL, MOTIV and COND types — as already stated, the last five operators
correspond (very roughly, and only from an operational point of view) to the
SPECIF operator of the AECS sub-language.

Using Template Labels within Binding Structures

A second remark concerns the generalization of the binding structures that can
be obtained by using as arguments the symbolic labels of “partially instantiated
templates” ¢, instead of symbolic labels of predicative/binding occurrences.
These binding structures are sometimes called binding templates. This possibility
is particularly useful when knowledge contents of a high level of abstraction and
generality must be represented, see the definitions associated with the “proce-
dure type properties” in an HClass context, Section 2.2.1.3, and the “NKRL
inference rules” in Chapter 4. We recall here that a “partially instantiated
template” corresponds to a standard template (descriptive component) where
at least some of the explicit variables (var;) originally associated with this
template have been replaced by some of their constraints (HClass terms) — or by
specializations/instances (individuals) of these constraints.

As an example, we reproduce in Table 2.20 the “predicative” and “binding”
templates included in the representation of a fragment of “normative” text, the
beginning of article no. 57 of the French General Taxation Law —e.g. see Zarri
[1992b] for a more complete analysis of this text. Article no. 57 is the main
normative source used to settle cases concerning an “indirect transfer of reven-
ues abroad”; as already stated in Section 2.2.1.3, the NKRL code of Table 2.20 is
then part of the definition of the HClass concept norms_for_indirect_transfer_
of revenues_abroad. The beginning of this article reads as follows, according to
a rough English translation: “To determine the income tax payable by companies
in France which are under the authority of, or which exercise a control over,
companies domiciled abroad, the revenues indirectly transferred abroad must be
added to the results registered in the books.” For simplicity’s sake, the code
reproduced in Table 2.20 concerns only the fragment in italics of the above
definition.

Objects like ind_trans.t4 and ind_trans.t5 are then “binding” templates, i.c.
binding structures where the arguments of the operators are the symbolic labels

96 2 The Knowledge Representation Strategy

Table 2.20 “Binding” and “predicative” templates

ind_trans.t1) (GOAL ind_trans.t2 ind_trans.t3)

ind_trans.t3) (ALTERN ind_trans.t4 ind_trans.t5)

ind_trans.t4) (COORD ind_trans.t6 ind_trans.t7)

ind_trans.t6) PRODUCE SuUBJ vart
OBJ (SPECIF calculation_ income_tax)
BENF var2: (FRANCE_)

var1 = human_being_or_social_body

var2 = company_

Produce:Numerical/StatisticalProcess (6.44)
ind_trans.t7) OWN SuUBJ var2: (FRANCE_)
OoBJ control_
TOPIC var3: (var4)
var2 = company_
var3 = company_
var2 # var3
var4 + FRANCE_
Own:ControlOfCompany (5.221)
ind_trans.t5) (COORD ind_trans.t8 ind_trans.t9)
ind_trans.t8) PRODUCE SuUBJ vart
OBJ (SPECIF calculation_ income_tax)
BENF var2: (FRANCE_)
var1 = human_being_or_social_body
var2 = company_
Produce:Numerical/StatisticalProcess (6.44)
ind_trans.t9) OWN SUBJ var3: (var4)
OBJ control_
TOPIC var2: (FRANCE_)
var3 = company_
var2 # var3
var4 = country_
var4 # FRANCE_
Own:ControlOfCompany (5.221)

t; of partially instantiated templates. ind_trans.t1 says that the operations con-
sisting of the addition of the revenues transferred abroad to the results, etc. (see the
wording of the article) — these operations (denoted by ind_trans.t2) are not
explicitly represented in the code of Table 2.20 — are strictly necessary (GOAL)
to allow the realization of the main task described in article no. 57 (the calcula-
tion of the income tax, ind_trans.t3); moreover, they also precede the execution
of this task (see also the next section). ind_trans.t3 represents the alternative that
is expressed by the textual fragment in italics. According to ind_trans.t4,
the calculation of the income tax (ind_trans.t6) may concern a French
company, var2, that controls (ind_trans.t7) a generic foreign company, var3,;

2.3 Second-order Structures 97

according to ind_trans.t5, the same calculation (ind_trans.t8) may concern a
French company that is controlled by a foreign company (ind_trans.t9). Note
that all the binding structures conform to the syntactic restrictions defined
above.

In Table 2.20, ind_trans.t6 and ind_trans.t8 are partial instantiations (see the
utilization of the individual FRANCE_ and of calculation_, a specialization of
the concept numerical/statistical_process) of the template Produce:Numerical/
StatisticalProcess. ind_trans.t7 and ind_trans.t9 are partial instantiations of
Own:ControlOfCompany; see the addition of specific locations, etc.

2.3.2.3 Binding Operators and Temporal Representation

If we consider the relationships between temporal information and binding
occurrences, a first remark concerns the fact that the temporal attributes date-
1 and date-2 necessarily associated with the predicative occurrences mentioned
in the binding occurrences are normally filled with explicit temporal indications
(explicit timestamps). Therefore, their temporal arrangement within the binding
occurrence is not difficult to assess.

Moreover, the four binding operators that constitute together the NKRL
taxonomy of causality, CAUSE, GOAL, REFER and MOTIV, are associated
with explicit temporal valences as illustrated by the examples of Fig. 2.9. As
we can see, CAUSE and GOAL respectively express a sort of strict causality or

ck is necessary to explain ¢}
ckis sufficient to explain ¢}

(CAUSE C; Cp) Ex: John was admitted to the hospital

Ck C because he was severely injured.
| | >~
~
temporal axis ck is necessary to explain ¢;
(REFER C; Cp) ckis not sufficient to explain ¢;
Ex: Since the ward was not crowded,
John stayed at the hospital an extra day.
cyis necessary to realise ck
ckis sufficient to explain ¢}
(GOAL ¢ Cp Ex: John was hospitalised in order
< Ck to be treated.
temporal axis [c;is not necessary to realise ck

(MOTIV Cy Cp) ckis sufficient to explain ¢;
Ex: Nancy bought some flowers
because John was to be discharged
|_fiom hospital in the afternoon.

Fig. 2.9 Time and causality in NKRL

98 2 The Knowledge Representation Strategy

purpose; REFER and MOTIV express a weak causality and purpose respectively.
Expressed in different terms, we can say that the use of CAUSE and GOAL is only
permitted in the presence of a “material implication” ¢, D ¢, where ¢ and ¢,
denote two generic predicative occurrences (elementary events). It is evident
that this last condition is not respected in the two examples of Fig. 2.9 that
illustrate the use of REFER and MOTIV.

We can conclude this section with two simple remarks:

e The first is that the taxonomy outlined above looks, of course, quite simplis-
tic compared with all the possible “classical” theories about causality, going
back to Aristotle’s work (who considers four types of cause — material
causes, formal causes, efficient causes, and final causes) and continuing
with Hume, Kant, Gibbon, etc. Unfortunately, many of these theories are
too complex or not specific enough to be used within a practical and robust
computational framework; see, in this context, the recent “Force Dynamics”
causal theory (of cognitive linguistics origin) proposed by Talmy [1988,
2000] and characterized, among other things, by a sophisticated dichotomy
between prototypical and nonprototypical specializations of the “causing”
and “letting” categories. “Practical” proposals nearer in their basic motiva-
tion to NKRL’s approach can be found, for example, in Schank and
Abelson [1977: 30-32] and Lenat and Guha [1990: 240-243]; see also
NKRL’s treatment of “wish, will,” etc. in Section 3.2.2.1.

e However, even the “causal taxonomy” proposed in this section has some-
times been considered as too complex to be used in practical applications,
mainly (i) when “narrative” information to deal with is particularly abun-
dant and (ii) when some form of automatic generation of the NKRL code
from textual input must be considered. For example, in recent applications
of the NKRL technology like the CONCERTO, EUFORBIA or PARME-
NIDES projects, only the two “causal” operators CAUSE and GOAL have
been really utilized, reducing then the use of REFER to that of CAUSE and the
use of MOTIV to that of GOAL, without producing, apparently, a too impor-
tant loss of information.

2.4 In the Guise of Winding Up

In this chapter, we have described the gemeral architecture of the NKRL
language and the syntactic rules that govern the production of well-formed
NKRL expressions — Chapter 3 will deal with the specific NKRL semantic and
ontological contents. Should we want to summarize in a few sentences what was
expounded in the sections above, we could say that:

e NKRL is structured into four connected “components,” where each of
them takes into account a particular category of narrative phenomena. The
definitional component concerns the formal definition of the concepts C;

2.4 In the Guise of Winding Up 99

(according to the usual “ontological” meaning of this term), and the enu-
merative component concerns the definition of the instances |; of these con-
cepts (individuals). The descriptive component deals with the formal
representations (templates, t;) of general classes of elementary events like
“moving a generic object,” “formulate a need,” “be present somewhere,”
and the factual component deals with the representation of the specific events
that correspond to particular instantiations of these general classes (predica-
tive occurrences, ¢;). With respect to description logics terminology, the
definitional component corresponds roughly to Tbox and the enumerative
component to Abox. No description logics structures correspond to the
descriptive and factual structures of NKRL.

e Concepts and individuals are inserted into an “ontology of concepts,” a
directed acyclic graph that, in NKRL, takes the name of HClass (hierarchy
of classes). Their “binary” data structures are relatively standard and consist
basically of frame-like structures, i.e. of bundles of property/value relation-
ships where neither the number nor the order of the properties is fixed. The
properties (i.e. the slots) of the frames describing specific concepts/indivi-
duals are obtained by specializing a set of prototype slots. From a semantic
point of view, the properties are grouped in three categories: relations,
attributes, and procedures. The latter are of particular interest, given that
their (complex) values are described making use of the “n-ary” data struc-
tures proper to the descriptive and factual components. In NKRL, concepts
cannot be considered as instances of other concepts; individuals are added,
when necessary, as “leaves” of HClass by using explicit local operations.

e The n-ary data structures, templates and predicative occurrences, used (i) for
the description of the general classes of events (templates) and (ii) for the
description of their instances, i.e. the concrete events (predicative occur-
rences), are formed by bundles of “quadruples” connecting together the
symbolic name of the template/occurrence, a predicate and the arguments
of the predicate introduced by named relations, the roles. The quadruples
have in common the “name” and “predicate” components. Predicates and
roles are primitive; the arguments can be simple HClass elements, concepts
or individuals, or well-formed structures (structured arguments or expan-
sions), where lists of HClass elements, labeled using the four operators of the
AECS sub-language, can be interwoven according to a priority rule.

e To assign a valid semantic interpretation (as an event or a class of events) to
an NKRL descriptive/factual structure (template or predicative occur-
rence), the latter must at least consist of a predicate, a role and an argument.
However, determiners (attributes) that (i) introduce further details/precisions
concerning the “meaning” of these templates/occurrences but that (ii) are
never strictly necessary for their basic semantic interpretation in NKRL
terms can also be added. Determiners include modulators (temporal, deontic
and modal modulators), locations and temporal determiners: the presence of
two temporal determiners, date-1 and date-2, is mandatory in order that a
predicative occurrence can be considered as well formed. Original concepts of

100 2 The Knowledge Representation Strategy

the NKRL representation system for temporal data are the “category of
dating,” which allows defining the relationships (precedence, subsequence,
contemporaneity) between timestamps and events, and the “perspective,”
which defines the different ways (different degrees of precisions) of “captur-
ing” a timestamp.

® Second-order structures obtained through the reification of templates and
predicative occurrences are used to deal with those connectivity phenomena
(in NL terms: causality, goal, indirect speech, coordination and subordina-
tion, etc.) that, in a narrative represented by a stream of elementary events,
cause the global meaning of the narrative to go beyond the simple addition of
the information conveyed by each elementary event. A first type of second-
order structure is the completive construction, where the symbolic label of a
predicative/binding occurrence can be used directly (reification) as filler of a
role in (different) predicative occurrences. A second, more general way of
linking together NKRL occurrences consists of making use of “binding
occurrences,” i.e. binary structures under the form of lists labeled with specific
“binding operators.” The arguments of the binding operators are represented
(reification) by symbolic labels of NKRL occurrences —and, more in general,
of NKRL templates. Four of these “binding operators” (CAUSE, GOAL,
REFER and MOTIV) form the NKRL “taxonomy of causality.”

To conclude about the four NKRL components, we present in Fig. 2.10 a
graphical representation of their main relationships. We make use for this of a
very simple narrative example where, for intelligibility’s sake, the temporal
information has been suppressed: “Berlex Laboratories have performed an
evaluation of a given compound.”

Many additional simplifications have been introduced in this figure. For
example, the organization of the HTemp and HClass hierarchies is extremely
simplified with respect to their real structure (see Chapter 3); the template
“evaluate an artifact” that appears in the “descriptive component” layer as an
offspring of the Produce:PerformTask/Activity template is an approximation of
the “real” template Produce:Assessment/Trial; the “individual” (enumerative
component) COMPOUND_27, which represents the specific compound men-
tioned in the event, is supposed here to be a direct instance of the (very high
level) concept artefact_, etc. Note that, for uniformity’s sake, we have consid-
ered that the proper assessment activities are well specified and that, therefore,
they can be described using a particular individual, ASSESSMENT_1. The
concept assessment_ is a specific term of activity_, and company_ is a specific
term of social_body.

The arrowhead lines represent, in general, have an instance links. This means,
for example, that the predicative occurrence “Berlex Laboratories have per-
formed an evaluation...” of the factual component has been created from the
corresponding “evaluate an artifact” template of the descriptive component,
which is, in turn, a specialization of the generic template, Produce:Perform
Task/Activity, used to describe the fact/situation/event of “performing a task

2.4 In the Guise of Winding Up 101

h class

activity

assessment

[Produée;l’ert%{mTask/Activity]
N \

S N \
A

~

FRODUCE SUBJ\cﬁQny_
OBJ asses nt_

TOPIC artefact

descriptive component I \

PRODUCE S\BJ BERLEX LABORATORIES

OBJ 3SEESGMENT 1

I Topfp~ © 27

Sfactual component I 1] _” - /\/]
I ! ~ 7 7 I

-~ - 7 4 \ I

I - k P 7]

- ’ 1

”
’ - ! i \ I

-~ 7 |

enumerative component

Fig. 2.10 Relationships among the NKRL components

or an activity.” More precisely, the predicative occurrence has been obtained by
replacing — for each role SUBJ(ect), OBJ(ect), TOPIC (a propos of...) of the
original “evaluation” template — the concepts indicating the general classes of
legal fillers (constraints) for these roles, e.g. company , with (in this case)
particular individuals, e.g. BERLEX_LABORATORIES.

The dotted lines without any arrow represent a sort of “coreference link.”
This means that, for example, in the HTemp “evaluation” template (descriptive
component), company_ is a symbolic label allowing us to access, from the
descriptive component environment, information stored in the frame-like struc-
ture company_ that pertains to the definitional component (HClass). Similarly,
the label COMPOUND_27 in the “evaluation” occurrence (factual component)
refers to the corresponding frame-like object pertaining to the enumerative
component environment.

2 Springer
http://www.springer.com/978-1-84800-077-3

Representation and Management of Narrative
Information

Theaoretical Principles and Implementation
Zarri, G.P.

20089, ¥, 302 p. 55 illus., Hardcover

ISEM: 978-1-84800-077-3

