
2
Regions in Binary Images

In binary images, a pixel can take on exactly one of two values. These values
are often thought of as representing the “foreground” and “background” in the
image, even though these concepts often are not applicable to natural scenes.
In this chapter we focus on connected regions in images and how to isolate and
describe such structures.

Let us assume that our task is to devise a procedure for finding the number
and type of objects contained in a figure like Fig. 2.1. As long as we continue

Figure 2.1 Binary image with nine objects. Each object corresponds to a connnected region
of related foreground pixels.

W. Burger, M.J. Burge, Principles of Digital Image Processing, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-84800-195-4_ Springer-Verlag London Limited, 2009 ©2,

6 2. Regions in Binary Images

to consider each pixel in isolation, we will not be able to determine how many
objects there are overall in the image, where they are located, and which pixels
belong to which objects. Therefore our first step is to find each object by
grouping together all the pixels that belong to it. In the simplest case, an
object is a group of touching foreground pixels; that is, a connected binary
region.

2.1 Finding Image Regions

In the search for binary regions, the most important tasks are to find out which
pixels belong to which regions, how many regions are in the image, and where
these regions are located. These steps usually take place as part of a process
called region labeling or region coloring. During this process, neighboring pixels
are pieced together in a stepwise manner to build regions in which all pixels
within that region are assigned a unique number (“label”) for identification.
In the following sections, we describe two variations on this idea. In the first
method, region marking through flood filling, a region is filled in all directions
starting from a single point or “seed” within the region. In the second method,
sequential region marking, the image is traversed from top to bottom, marking
regions as they are encountered. In Sec. 2.2.2, we describe a third method that
combines two useful processes, region labeling and contour finding, in a single
algorithm.

Independent of which of the methods above we use, we must first settle on
either the 4- or 8-connected definition of neighboring (see Vol. 1 [14, Fig. 7.5])
for determining when two pixels are “connected” to each other, since under
each definition we can end up with different results. In the following region-
marking algorithms, we use the following convention: the original binary image
I(u, v) contains the values 0 and 1 to mark the background and foreground,
respectively; any other value is used for numbering (labeling) the regions, i. e.,
the pixel values are

I(u, v) =

⎧
⎨

⎩

0 a background pixel
1 a foreground pixel
2, 3, . . . a region label.

2.1.1 Region Labeling with Flood Filling

The underlying algorithm for region marking by flood filling is simple: search
for an unmarked foreground pixel and then fill (visit and mark) all the rest of the
neighboring pixels in its region (Alg. 2.1). This operation is called a “flood fill”
because it is as if a flood of water erupts at the start pixel and flows out across
a flat region. There are various methods for carrying out the fill operation that

2.1 Finding Image Regions 7

Algorithm 2.1 Region marking using flood filling (Part 1). The binary input image I uses
the value 0 for background pixels and 1 for foreground pixels. Unmarked foreground pixels
are searched for, and then the region to which they belong is filled. The actual FloodFill()
procedure is described in Alg. 2.2.

1: RegionLabeling(I)
I: binary image; I(u, v) = 0: background, I(u, v) = 1: foreground
The image I is labeled (destructively modified) and returned.

2: Let m← 2 � value of the next label to be assigned
3: for all image coordinates (u, v) do
4: if I(u, v) = 1 then
5: FloodFill(I, u, v,m) � use any version from Alg. 2.2
6: m← m+ 1.
7: return the labeled image I.

ultimately differ in how to select the coordinates of the next pixel to be visited
during the fill. We present three different ways of performing the FloodFill()
procedure: a recursive version, an iterative depth-first version, and an iterative
breadth-first version (see Alg. 2.2):

(A) Recursive Flood Filling: The recursive version (Alg. 2.2, lines 1–8)
does not make use of explicit data structures to keep track of the image
coordinates but uses the local variables that are implicitly allocated by
recursive procedure calls.1 Within each region, a tree structure, rooted at
the starting point, is defined by the neighborhood relation between pixels.
The recursive step corresponds to a depth-first traversal [20] of this tree
and results in very short and elegant program code. Unfortunately, since
the maximum depth of the recursion—and thus the size of the required
stack memory—is proportional to the size of the region, stack memory is
quickly exhausted. Therefore this method is risky and really only practical
for very small images.

(B) Iterative Flood Filling (depth-first): Every recursive algorithm can
also be reformulated as an iterative algorithm (Alg. 2.2, lines 9–20) by
implementing and managing its own stacks. In this case, the stack records
the “open” (that is, the adjacent but not yet visited) elements. As in the
recursive version (A), the corresponding tree of pixels is traversed in depth-
first order. By making use of its own dedicated stack (which is created in
the much larger heap memory), the depth of the tree is no longer limited

1 In Java, and similar imperative programming languages such as C and C++, local
variables are automatically stored on the call stack at each procedure call and
restored from the stack when the procedure returns.

8 2. Regions in Binary Images

Algorithm 2.2 Region marking using flood filling (Part 2). Three variations of the
FloodFill() procedure: recursive, depth-first, and breadth-first.

1: FloodFill(I, u, v, label) � Recursive Version

2: if (u, v) is inside the image and I(u, v) = 1 then
3: Set I(u, v) ← label
4: FloodFill(I, u+1, v, label)
5: FloodFill(I, u, v+1, label)
6: FloodFill(I, u, v−1, label)
7: FloodFill(I, u−1, v, label)
8: return.
9: FloodFill(I, u, v, label) � Depth-First Version

10: Create an empty stack S

11: Put the seed coordinate (u, v) onto the stack: Push(S, (u, v))
12: while S is not empty do
13: Get the next coordinate from the top of the stack:

(x, y) ← Pop(S)
14: if (x, y) is inside the image and I(x, y) = 1 then
15: Set I(x, y) ← label
16: Push(S, (x+1, y))
17: Push(S, (x, y+1))
18: Push(S, (x, y−1))
19: Push(S, (x−1, y))
20: return.
21: FloodFill(I, u, v, label) � Breadth-First Version

22: Create an empty queue Q
23: Insert the seed coordinate (u, v) into the queue: Enqueue(Q, (u, v))
24: while Q is not empty do
25: Get the next coordinate from the front of the queue:

(x, y) ← Dequeue(Q)
26: if (x, y) is inside the image and I(x, y) = 1 then
27: Set I(x, y) ← label
28: Enqueue(Q, (x+1, y))
29: Enqueue(Q, (x, y+1))
30: Enqueue(Q, (x, y−1))
31: Enqueue(Q, (x−1, y))
32: return.

2.1 Finding Image Regions 9

to the size of the call stack.

(C) Iterative Flood Filling (breadth-first): In this version, pixels are tra-
versed in a way that resembles an expanding wave front propagating out
from the starting point (Alg. 2.2, lines 21–32). The data structure used to
hold the as yet unvisited pixel coordinates is in this case a queue instead
of a stack, but otherwise it is identical to version B.

Java implementation

The recursive version (A) of the algorithm corresponds practically 1:1 to its
Java implementation. However, a normal Java runtime environment does not
support more than about 10,000 recursive calls of the FloodFill() procedure
(Alg. 2.2, line 1) before the memory allocated for the call stack is exhausted.
This is only sufficient for relatively small images with fewer than approximately
200 × 200 pixels.

Program 2.1 gives the complete Java implementation for both variants of
the iterative FloodFill() procedure. In implementing the stack (S) in the
iterative depth-first Version (B), we use the stack data structure provided by
the Java class Stack (Prog. 2.1, line 1), which serves as a container for generic
Java objects. For the queue data structure (Q) in the breadth-first variant (C),
we use the Java class LinkedList2 with the methods addFirst(), remove-
Last(), and isEmpty() (Prog. 2.1, line 18). We have specified <Point> as
a type parameter for both generic container classes so they can only contain
objects of type Point.3

Figure 2.2 illustrates the progress of the region marking in both variants
within an example region, where the start point (i. e., seed point), which would
normally lie on a contour edge, has been placed arbitrarily within the region
in order to better illustrate the process. It is clearly visible that the depth-
first method first explores one direction (in this case horizontally to the left)
completely (that is, until it reaches the edge of the region) and only then exam-
ines the remaining directions. In contrast the breadth-first method markings
proceed outward, layer by layer, equally in all directions.

Due to the way exploration takes place, the memory requirement of the
breadth-first variant of the flood-fill version is generally much lower than that
of the depth-first variant. For example, when flood filling the region in Fig. 2.2
(using the implementation given Prog. 2.1), the stack in the depth-first variant

2 The class LinkedList is a part of the Java Collection Framework (see also Vol. 1
[14, Appendix B.2]).

3 Generic types and templates (i. e., the ability to specify a parameterization for a
container) have only been available since Java 5 (1.5).

10 2. Regions in Binary Images

Depth-first variant (using a stack):
1 void floodFill(int x, int y, int label) {
2 Stack<Point> s = new Stack<Point>(); // stack
3 s.push(new Point(x,y));
4 while (!s.isEmpty()){
5 Point n = s.pop();
6 int u = n.x;
7 int v = n.y;
8 if ((u>=0) && (u<width) && (v>=0) && (v<height)
9 && ip.getPixel(u,v)==1) {

10 ip.putPixel(u, v, label);
11 s.push(new Point(u+1, v));
12 s.push(new Point(u, v+1));
13 s.push(new Point(u, v-1));
14 s.push(new Point(u-1, v));
15 }
16 }
17 }

Breadth-first variant (using a queue):
18 void floodFill(int x, int y, int label) {
19 LinkedList<Point> q = new LinkedList<Point>();
20 q.addFirst(new Point(x, y));
21 while (!q.isEmpty()) {
22 Point n = q.removeLast();
23 int u = n.x;
24 int v = n.y;
25 if ((u>=0) && (u<width) && (v>=0) && (v<height)
26 && ip.getPixel(u,v)==1) {
27 ip.putPixel(u, v, label);
28 q.addFirst(new Point(u+1, v));
29 q.addFirst(new Point(u, v+1));
30 q.addFirst(new Point(u, v-1));
31 q.addFirst(new Point(u-1, v));
32 }
33 }
34 }

Program 2.1 Flood filling (Java implementation). The standard class Point (defined in
java.awt) represents a single pixel coordinate. The depth-first variant uses the standard stack
operations provided by the methods push(), pop(), and isEmpty() of the Java class Stack.
The breadth-first variant uses the Java class LinkedList (with access methods addFirst() for
Enqueue() and removeLast() for Dequeue()) for implementing the queue data structure.

grows to a maximum of 28,822 elements, while the queue used by the breadth-
first variant never exceeds a maximum of 438 nodes.

2.1 Finding Image Regions 11

depth-first breadth-first

(a)

K = 1.000

(b)

K = 5.000

(c)

K = 10.000

Figure 2.2 Iterative flood filling—comparison between the depth-first and breadth-first ap-
proach. The starting point, marked + in the top two image (a), was arbitrarily chosen.
Intermediate results of the flood fill process after 1000 (a), 5000 (b), and 10,000 (c) marked
pixels are shown. The image size is 250 × 242 pixels.

2.1.2 Sequential Region Labeling

Sequential region marking is a classical, nonrecursive technique that is known
in the literature as “region labeling”. The algorithm consists of two steps: (1)
a preliminary labeling of the image regions and (2) resolving cases where more

12 2. Regions in Binary Images

than one label occurs (i. e., has been assigned in the previous step) in the same
connected region. Even though this algorithm is relatively complex, especially
its second stage, its moderate memory requirements make it a good choice un-
der limited memory conditions. However, this is not a major issue on modern
computers and thus, in terms of overall efficiency, sequential labeling offers
no clear advantage over the simpler methods described earlier. The sequen-
tial technique is nevertheless interesting (not only from a historic perspective)
and inspiring. The complete process is summarized in Alg. 2.3–2.4, with the
following main steps:

Step 1: Initial labeling

In the first stage of region labeling, the image is traversed from top left to bot-
tom right sequentially to assign a preliminary label to every foreground pixel.
Depending on the definition of neighborhood (either 4- or 8-connected) used,
the following neighbors in the direct vicinity of each pixel must be examined
(× marks the current pixel at the position (u, v)):

N4(u, v) =
N2

N1 × or N8(u, v) =
N2 N3 N4

N1 ×

When using the 4-connected neighborhood N4, only the two neighbors N1 =
I(u−1, v) and N2 = I(u, v−1) need to be considered, but when using the
8-connected neighborhood N8, all four neighbors N1 . . . N4 must be examined.

Example

In the following example (Figs. 2.3–2.5), we use an 8-connected neighborhood
and a very simple test image (Fig. 2.3 (a)) to demonstrate the sequential region
labeling process.

Propagating labels. Again we assume that, in the image, the value I(u, v) =
0 represents background pixels and the value I(u, v) = 1 represents foreground
pixels. We will also consider neighboring pixels that lie outside of the image
matrix (e. g., on the array borders) to be part of the background. The neigh-
borhood region N (u, v) is slid over the image horizontally and then vertically,
starting from the top left corner. When the current image element I(u, v) is
a foreground pixel, it is either assigned a new region number or, in the case
where one of its previously examined neighbors in N (u, v) was a foreground
pixel, it takes on the region number of the neighbor. In this way, existing region
numbers propagate in the image from the left to the right and from the top to
the bottom, as shown in (Fig. 2.3 (b, c)).

2.1 Finding Image Regions 13

(a)

�

�

� � � � � � � � � � � � � �
� � � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

Background

Foreground

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
�

(b) only background neighbors

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
� �

new label (2)

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

�
� �

� � �

(c) exactly one neighbor label

� � � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � �
� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

� � �
� � �

neighbor label is propagated

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � � �

� � � � � �
� �

� � � � � �

�
�

� � � � � � � � �
��� �

�
� �

� � �
� � � �

� � �

(d) two different neighbor labels

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� � �

� � � � � �
� �

� � � � � �

�
�

� � � � � � � � �
��� �

�
�

� � �
� � � � �

� � � �

one of the labels (2) is propagated

Figure 2.3 Sequential region labeling—label propagation. Original image (a). The first
foreground pixel (marked 1) is found in (b): all neighbors are background pixels (marked 0),
and the pixel is assigned the first label (2). In the next step (c), there is exactly one neighbor
pixel marked with the label 2, so this value is propagated. In (d) there are two neighboring
pixels, and they have differing labels (2 and 5); one of these values is propagated, and the
collision 〈2, 5〉 is registered.

14 2. Regions in Binary Images

Algorithm 2.3 Sequential region labeling (Part 1). The binary input image I contains the
values I(u, v) = 0 for background pixels and I(u, v) = 1 for foreground (region) pixels. The
resulting region labels in I have the values 2 . . . m−1.

1: SequentialLabeling(I)
I: binary image; I(u, v) = 0: background, I(u, v) = 1: foreground
The image I is labeled (destructively modified) and returned.
m: number of assigned labels; C: set of label collisions.

2: (m, C) ← AssignInitialLabels(I)
3: R ← ResolveLabelCollisions(m, C) � see Alg. 2.4
4: RelabelImage(I,R) � see Alg. 2.4
5: return I.

6: AssignInitialLabels(I)
Performs a preliminary labeling on image I (which is modified).
Returns the number of assigned labels (m) and
the set of detected label collisions (C).

7: Initialize m← 2 (the value of the next label to be assigned).
8: C ← {} � empty set of collisions
9: for v ← 0 . . .H − 1 do � H = height of image I

10: for u← 0 . . .W − 1 do � W = width of image I
11: if I(u, v) = 1 then do one of:
12: if all neighbors of (u, v) are background pixels (all ni = 0)

then
13: I(u, v) ← m

14: m← m+ 1
15: else if exactly one of the neighbors has a label value nk > 1

then
16: set I(u, v) ← nk
17: else if several neighbors of (u, v) have label values nj > 1

then
18: Select one of them as the new label:

I(u, v) ← k ∈ {nj}.
19: for all other neighbors of (u, v) with label values ni>1

and ni �=k do
20: Create a new label collision: ci = 〈ni, k〉.
21: Record the collision: C ← C ∪ {ci}

Remark: The image I now contains label values 0, 2, . . .m− 1.
22: return (m, C).

continued in Alg. 2.4 ��

2.1 Finding Image Regions 15

Algorithm 2.4 Sequential region labeling (Part 2).

1: ResolveLabelCollisions(m, C)

Resolves the label collisions contained in the set C.
Returns R, a vector of sets that represents a partitioning
of the complete label set into equivalent labels.

2: Let L = {2, 3, . . .m− 1} be the set of preliminary region labels.
3: Create a partitioning of L as a vector of sets, one set for each label

value:
R ← [R2,R3, . . . ,Rm−1] = [{2}, {3}, {4}, . . . , {m− 1}],
so Ri = {i} for all i ∈ L.

4: for all collisions 〈a, b〉 ∈ C do
5: Find in R the sets Ra, Rb:

Ra ← the set that currently contains label a
Rb ← the set that currently contains label b

6: if Ra �= Rb (a and b are contained in different sets) then
7: Merge sets Ra and Rb by moving all elements of Rb to Ra:

Ra ← Ra ∪Rb, Rb ← {}
Remark: All equivalent label values (i. e., all labels of pixels in the
same region) are now contained in the same set Ri within R.

8: return R.

9: RelabelImage(I,R)

Relabels the image I using the label partitioning in R.
The image I is modified.

10: for all image locations (u, v) do
11: if I(u, v) > 1 then � I(u, v) contains a region label
12: Find the set Ri in R that contains the label I(u, v)
13: Choose one unique representative element k from the set Ri,

e. g., the minimum value:
k = min(Ri)

14: Replace the image label:
I(u, v) ← k

15: return.

Label collisions. In the case where two or more neighbors have labels belong-
ing to different regions, then a label collision has occurred; that is, pixels within
a single connected region have different labels. For example, in a U-shaped re-
gion, the pixels in the left and right arms are at first assigned different labels

16 2. Regions in Binary Images

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
�

� � �

� �

�

� �
� �

� � � � � � � � � �
� � � � � � � � �

�
�
�

�
�

�

� � �
� �
�

�
�
�

�

� ��

� �
�

(a) (b)

Figure 2.4 Sequential region labeling—intermediate result after Step 1. Label collisions
indicated by circles (a); the nodes of the undirected graph (b) correspond to the labels, and
its edges correspond to the collisions.

since it is not immediately apparent that they are actually part of a single re-
gion. The two labels will propagate down independently from each other until
they eventually collide in the lower part of the “U” (Fig. 2.3 (d)).

When two labels a, b collide, then we know that they are actually “equiv-
alent”; i. e., they are contained in the same image region. These collisions are
registered but otherwise not dealt with during the first step. Once all collisions
have been registered, they are then resolved in the second step of the algorithm.
The number of collisions depends on the content of the image. There can be
only a few or very many collisions, and the exact number is only known at the
end of the first step, once the whole image has been traversed. For this reason,
collision management must make use of dynamic data structures such as lists
or hash tables. Upon the completion of the first steps, all the original fore-
ground pixels have been provisionally marked, and all the collisions between
labels within the same regions have been registered for subsequent processing.

The example in Fig. 2.4 illustrates the state upon completion of step 1:
all foreground pixels have been assigned preliminary labels (Fig. 2.4 (a)), and
the following collisions (depicted by circles) between the labels 〈2, 4〉, 〈2, 5〉,
and 〈2, 6〉 have been registered. The labels L = {2, 3, 4, 5, 6, 7} and collisions
C = {〈2, 4〉, 〈2, 5〉, 〈2, 6〉} correspond to the nodes and edges of an undirected
graph (Fig. 2.4 (b)).

Step 2: Resolving collisions

The task in the second step is to resolve the label collisions that arose in the
first step in order to merge the corresponding “partial” regions. This process
is nontrivial since it is possible for two regions with different labels to be con-
nected transitively (e. g., 〈a, b〉∩〈b, c〉 ⇒ 〈a, c〉) through a third region or, more
generally, through a series of regions. In fact, this problem is identical to the
problem of finding the connected components of a graph [20], where the labels
L determined in Step 1 constitute the “nodes” of the graph and the registered

2.2 Region Contours 17

collisions C make up its “edges” (Fig. 2.4 (b)).

Step 3: Relabeling the image

Once all the distinct labels within a single region have been collected, the
labels of all the pixels in the region are updated so they carry the same label
(for example, chosing the smallest label number in the region), as shown in
Fig. 2.5.

� � � � � � � � � �
� � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

�
�

� � �
� �
� �

� � � � � � � � �
� � � � � � � �

�
�
�

�
�

�

� � �

� �

�
�
�

�

� �
�

� �

Figure 2.5 Sequential region labeling—final result after Step 3. All equivalent labels have
been replaced by the smallest label within that region.

2.1.3 Region Labeling—Summary

In this section, we described a selection of algorithms for finding and labeling
connected regions in images. We discovered that the elegant idea of labeling
individual regions using a simple recursive flood-filling method (Sec. 2.1.1) was
not useful because of practical limitations on the depth of recursion and the
high memory costs associated with it. We also saw that classical sequential
region labeling (Sec. 2.1.2) is relatively complex and offers no real advantage
over iterative implementations of the depth-first and breadth-first methods. In
practice, the iterative breadth-first method is generally the best choice for large
and complex images.

2.2 Region Contours

Once the regions in a binary image have been found, the next step is often
to find the contours (that is, the outlines) of the regions. Like so many other
tasks in image processing, at first glance this appears to be an easy one: simply
follow along the edge of the region. We will see that, in actuality, describing
this apparently simple process algorithmically requires careful thought, which
has made contour finding one of the classic problems in image analysis.

18 2. Regions in Binary Images

Area Bounding Box Center
Label (pixels) (left, top, right, bottom) (xc, yc)

2 14978 (887, 21, 1144, 399) (1049.7, 242.8)
3 36156 (40, 37, 438, 419) (261.9, 209.5)
4 25904 (464, 126, 841, 382) (680.6, 240.6)
5 2024 (387, 281, 442, 341) (414.2, 310.6)
6 2293 (244, 367, 342, 506) (294.4, 439.0)
7 4394 (406, 400, 507, 512) (454.1, 457.3)
8 29777 (510, 416, 883, 765) (704.9, 583.9)
9 20724 (833, 497, 1168, 759) (1016.0, 624.1)
10 16566 (82, 558, 411, 821) (208.7, 661.6)

Figure 2.6 Example of a complete region labeling. The pixels within each region have
been colored according to the consecutive label values 2, 3, . . . 10 they were assigned. The
corresponding region statistics are shown in the table below (total image size is 1212× 836).

2.2.1 External and Internal Contours

As we discussed in Vol. 1 [14, Sec. 7.2.7], the pixels along the edge of a binary
region (that is, its border) can be identified using simple morphological opera-
tions and difference images. It must be stressed, however, that this process only
marks the pixels along the contour, which is useful, for instance, for display
purposes. In this section, we will go one step further and develop an algorithm
for obtaining an ordered sequence of border pixel coordinates for describing a
region’s contour.

Note that connected image regions contain exactly one outer contour, yet,
due to holes, they can contain arbitrarily many inner contours. Within such

2.2 Region Contours 19

Outer Contour

Inner Contour

Figure 2.7 Binary image with outer and inner contours. The outer contour lies along the
outside of the foreground region (dark). The inner contour surrounds the space within the
region, which may contain further regions (holes), and so on.

holes, smaller regions may be found, which will again have their own outer
contours, and in turn these regions may themselves contain further holes with
even smaller regions, and so on in a recursive manner (Fig. 2.7).

An additional complication arises when regions are connected by parts that
taper down to the width of a single pixel. In such cases, the contour can run
through the same pixel more than once and from different directions (Fig. 2.8).
Therefore, when tracing a contour from a start point xS , returning to the start
point is not a sufficient condition for terminating the contour tracing process.
Other factors, such as the current direction along which contour points are
being traversed, must be taken into account.

One apparently simple way of determining a contour is to proceed in analogy
to the two-stage process presented in the previous section (2.1); that is, to first
identify the connected regions in the image and second, for each region, proceed
around it, starting from a pixel selected from its border. In the same way, an
internal contour can be found by starting at a border pixel of a region’s hole. A
wide range of algorithms based on first finding the regions and then following
along their contours have been published, including [61], [57, pp. 142–148], and
[65, p. 296]. However, while the idea of contour tracing is simple in essence, the
implementation requires careful record-keeping and is complicated by special
cases such as the single-pixel bridges described in the previous section.

As a modern alternative, we present the following combined algorithm that,
in contrast to the classical methods above, combines contour finding and region
labeling in a single process.

20 2. Regions in Binary Images

xS

Figure 2.8 The path along a contour as an ordered sequence of pixel coordinates with a
given start point xS . Individual pixels may occur (be visited) more than once within the
path, and a region consisting of a single isolated pixel will also have a contour (bottom right).

2.2.2 Combining Region Labeling and Contour Finding

This method, based on [18], combines the concepts of sequential region labeling
(Sec. 2.1) and traditional contour tracing into a single algorithm able to perform
both tasks simultaneously during a single pass through the image. It identifies
and labels regions and at the same time traces both their inner and outer
contours. The algorithm does not require any complicated data structures and
is very efficient when compared with other methods with similar capabilities.
The key steps of this method are described below and illustrated in Fig. 2.9:

1. As in the sequential region labeling (Alg. 2.3), the binary image I is tra-
versed from the top left to the bottom right. Such a traversal ensures that
all pixels in the image are eventually examined and assigned an appropriate
label.

2. At a given position in the image, the following cases may occur:
Case A: The transition from a foreground pixel to a previously unmarked
foreground pixel (A in Fig. 2.9 (a)) means that this pixel lies on the outer
edge of a new region. A new label is assigned and the associated outer
contour is traversed and marked by calling the method TraceContour()

(see Fig. 2.9 (a) and Alg. 2.5 (line 19)). Furthermore, all background pixels
directly bordering the region are marked with the special label −1.
Case B: The transition from a foreground pixel (B in Fig. 2.9 (b)) to an

2.2 Region Contours 21

· · · A

B

(a) (b)

B

C

(c) (d)

Figure 2.9 Combined region labeling and contour following (after [18]). The image is tra-
versed from the top left to the lower right a row at a time. In (a), the first point A on the
outer edge of the region is found. Starting from point A, the pixels on the edge along the
outer contour are visited and labeled until A is reached again. In (b), the first point B on
an inner contour is found. The pixels along the inner contour are visited and labeled until
arriving back at B (c). In (d), an already labeled point C on an inner contour is found. Its
label is propagated along the image row within the region.

unmarked background pixel means that this pixel lies on an inner contour.
Starting from B, the inner contour is traversed and its pixels are marked
with labels from the surrounding region (Fig. 2.9 (c)). Also, all bordering
background pixels are again assigned the special label value −1.
Case C: When a foreground pixel does not lie on a contour, then the
neighboring pixel to the left has already been labeled (Fig. 2.9 (d)) and
this label is propagated to the current pixel.

22 2. Regions in Binary Images

In Algorithms 2.5 and 2.6, the entire procedure is presented again and explained
precisely. The method CombinedContourLabeling() traverses the image
line-by-line and calls the method TraceContour() whenever a new inner
or outer contour must be traced. The labels of the image elements along the
contour, as well as the neighboring foreground pixels, are stored in the “label
map” L (a rectangular array of the same size as the image) by the method
FindNextPoint() in Alg. 2.6.

2.2.3 Implementation

While the main idea of the algorithm can be sketched out in a few simple steps,
the actual implementation requires attention to a number of details, so we have
provided the complete Java source for an ImageJ plugin implementation in
Appendix B (pp. 283–293). The implementation closely follows the description
in Algs. 2.5 and 2.6 but illustrates several additional details:4

– The task is performed by methods of the class ContourTracer. First the
image I (pixelArray) and the associated label map L (labelArray) are
enlarged by padding one layer of elements around their borders. The new
pixels are marked as background (0) in the image I. This simplifies contour
following and eliminates the need to handle a number of special situations.

– As contours are found they are turned into objects of class Contour and
collected in two separate lists: outerContours and innerContours. Every
contour consists of an ordered sequence of coordinate points of the standard
class Point (defined in java.awt). The Java container class ArrayList
(templated on the type Point) is used as a dynamic data structure for
storing the point sequences of the outer and inner contours.

– The method traceContour() (see p. 289) traverses an outer or inner con-
tour, beginning from the starting point xS (xS, yS). It calls the method
findNextPoint(), to determine the next contour point xT (xT, yT) follow-
ing xS :

– In the case that no following point is found, then xS = xT and
the region (contour) consists of a single isolated pixel. The method
traceContour() is finished.

– In the other case the remaining contour points are found by repeat-
edly calling findNextPoint(), and for every successive pair of points
the current point xc (xC, yC) and the previous point xp (xP, yP) are
recorded. Only when both points correspond to the original starting

4 In the following description the names in parentheses after the algorithmic symbols
denote the corresponding identifiers used in the Java implementation.

2.2 Region Contours 23

Algorithm 2.5 Combined contour tracing and region labeling (Part 1). Given a binary
image I, the method CombinedContourLabeling() returns a set of contours and an array
containing region labels for all pixels in the image. When a new point on either an outer or
inner contour is found, then an ordered list of the contour’s points is constructed by calling
the method TraceContour() (line 19 and line 26). TraceContour() itself is described
in Alg. 2.6.

1: CombinedContourLabeling (I)
I: binary image.
Returns the sets of outer and inner contours and a label map.

2: Couter ← {}, Cinner ← {} � create two empty sets of contours
3: Create a label map L of the same size as I and initialize:
4: for all image locations (u, v) do
5: L(u, v) ← 0 � label map L
6: R ← 0 � region counter R

Scan the image from left to right and top to bottom:
7: for v ← 0 . . .N−1 do
8: l ← 0 � set the current label l to “none”
9: for u← 0 . . .M−1 do

10: if I(u, v) is a foreground pixel then
11: if (l �= 0) then � continue inside region
12: L(u, v) ← l

13: else
14: l ← L(u, v)
15: if (l = 0) then � hit a new outer contour
16: R← R + 1
17: l ← R

18: xS ← (u, v)
19: c ← TraceContour(xS , 0, l, I, L)
20: Couter ← Couter ∪ {c} � collect outer contour
21: L(u, v) ← l

22: else � I(u, v) is a background pixel
23: if (l �= 0) then
24: if (L(u, v) = 0) then � hit new inner contour
25: xS ← (u−1, v)
26: c ← TraceContour(xS , 1, l, I, L)
27: Cinner ← Cinner ∪ {c} � collect inner contour
28: l ← 0
29: return (Couter, Cinner, L). � return the contour sets and label map

continued in Alg. 2.6 ��

24 2. Regions in Binary Images

Algorithm 2.6 Combined contour finding and region labeling (Part 2, continued from
Alg. 2.5). Starting from xS , the procedure TraceContour traces along the contour in
the direction dS = 0 for outer contours or dS = 1 for inner contours. During this pro-
cess, all contour points as well as neighboring background points are marked in the label
array L. Given a point xc, TraceContour uses FindNextPoint() to determine the next
point along the contour (line 10). The function Delta() returns the next coordinate in the
sequence, taking into account the search direction d.

1: TraceContour(xS , dS , l, I, L)
xS : start position,
dS : initial search direction (0 for outer, 1 for inner contours),
l: label for this contour, I: original image, L: label map.
Traces and returns the contour starting at xS .

2: (xT , dnext) ← FindNextPoint(xS , dS , I, L)
3: c ← [xT] � create a contour starting with xT
4: xp ← xS � previous position xp = (up, vp)
5: xc ← xT � current position xc = (uc, vc)
6: done ← (xS ≡ xT) � isolated pixel?
7: while (¬done) do
8: L(uc, vc) ← l

9: dsearch ← (dnext + 6) mod 8
10: (xn, dnext) ← FindNextPoint(xc, dsearch, I, L)
11: xp ← xc
12: xc ← xn
13: done ← (xp ≡ xS ∧ xc ≡ xT) � back at start point?
14: if (¬done) then
15: Append(c,xn) � add point xn to contour c

16: return c. � return this contour

17: FindNextPoint(xc, d, I, L)
xc: start point, d: search direction,
I: original image, L: label map.

18: for i← 0 . . . 6 do � search in 7 directions
19: x′ ← xc + Delta(d) � x′ = (u′, v′)
20: if I(u′, v′) is a background pixel then
21: L(u′, v′) ← −1 � mark background as visited (−1)
22: d← (d+ 1) mod 8
23: else � found a nonbackground pixel at x′

24: return (x′, d)
25: return (xc, d). � found no next point, return start point

26: Delta(d) = (Δx,Δy), with
d 0 1 2 3 4 5 6 7
Δx 1 1 0 −1 −1 −1 0 1
Δy 0 1 1 1 0 −1 −1 −1

2.2 Region Contours 25

1 import java.util.List;
2 ...
3 public class Trace_Contours implements PlugInFilter {
4 public void run(ImageProcessor ip) {
5 ContourTracer tracer = new ContourTracer(ip);
6 // extract contours and regions
7 List<Contour> outerContours = tracer.getOuterContours();
8 List<Contour> innerContours = tracer.getInnerContours();
9 List<BinaryRegion> regions = tracer.getRegions();

10 ...
11 }
12 }

Program 2.2 Example of using the class ContourTracer. See Appendix B.1 for a listing of
the complete implementation.

points on the contour, xp = xS and xc = xT , we know that the contour
has been completely traversed.

– The method findNextPoint() (see p. 290) determines which point on the
contour follows the current point xc (xC, yC) by searching in the direction d

(dir), depending upon the position of the previous contour point. Starting
in the first search direction, up to seven neighboring pixels (all neighbors
except the previous contour point) are searched in clockwise direction until
the next contour point is found. At the same time, all background pixels
in the label map L (labelArray) are marked with the value −1 to prevent
them from being searched again. If no valid contour point is found among
the seven possible neighbors, then findNextPoint() returns the original
point xc (xC, yC).

In this implementation the core of the algorithm is contained in the class
ContourTracer (pp. 287–292). Program 2.2 provides an example of its us-
age within the run() method of an ImageJ plugin. An interesting detail is
the class ContourOverlay (pp. 292–293) that is used to display the resulting
contours by a vector graphics overlay. In this way graphic structures that are
smaller and thinner than image pixels can be visualized on top of ImageJ’s
raster images at arbitrary magnification (zooming).

2.2.4 Example

This combined algorithm for region marking and contour following is particu-
larly well suited for processing large binary images since it is efficient and has
only modest memory requirements. Figure 2.10 shows a synthetic test image
that illustrates a number of special situations, such as isolated pixels and thin
sections, which the algorithm must deal with correctly when following the con-
tours. In the resulting plot, outer contours are shown as black polygon lines

26 2. Regions in Binary Images

(a) (b)

Figure 2.10 Combined contour and region marking: original image in gray (a), located
contours (b) with black lines for out and white lines for inner contours. The contour consisting
of singe isolated pixels (for example, in the upper-right of (b)) are marked by a single circle
in the appropriate color.

running trough the centers of the contour pixels, and inner contours are drawn
white. Contours of single-pixel regions are marked by small circles filled with
the corresponding color. Figure 2.11 shows the results for a larger section taken
from a real image (Vol. 1 [14, Fig. 7.12]).

2.3 Representing Image Regions

2.3.1 Matrix Representation

A natural representation for images is a matrix (that is, a two-dimensional
array) in which elements represent the intensity or the color at a corresponding
position in the image. This representation lends itself, in most programming
languages, to a simple and elegant mapping onto two-dimensional arrays, which
makes possible a very natural way to work with raster images. One possible
disadvantage with this representation is that it does not depend on the content
of the image. In other words, it makes no difference whether the image contains
only a pair of lines or is of a complex scene because the amount of memory
required is constant and depends only on the dimensions of the image.

Regions in an image can be represented using a logical mask in which the
area within the region is assigned the value true and the area without the value
false (Fig. 2.12). Since Boolean values can be represented by a single bit, such

2.3 Representing Image Regions 27

Figure 2.11 Example of a complex contour (in a section cut from Fig. 7.12 in Vol. 1 [14]).
Outer contours are marked in black and inner contours in white.

a matrix is often referred to as a “bitmap”.5

2.3.2 Run Length Encoding

In run length encoding (RLE), sequences of adjacent foreground pixels can be
represented compactly as “runs”. A run, or contiguous block, is a maximal
length sequence of adjacent pixels of the same type within either a row or
a column. Runs of arbitrary length can be encoded compactly using three
integers,

Runi = 〈rowi, columni, lengthi〉,

5 In Java, variables of the type boolean are represented internally within the Java
virtual machine (JVM) as 32-bit ints. There is currently no direct way to imple-
ment genuine bitmaps in Java.

28 2. Regions in Binary Images

(a) (b) (c)

Figure 2.12 Use of a binary mask to specify a region of an image: original image (a), logical
(bit) mask (b), and masked image (c).

Bitmap RLE

0 1 2 3 4 5 6 7 8

0

1 × × × × × ×
2

3 × × × ×
4 × × × × × ×
5 × × × × × × × × ×
6

→

〈row, column, length〉

〈1, 2, 6〉
〈3, 4, 4〉
〈4, 1, 3〉
〈4, 5, 3〉
〈5, 0, 9〉

Figure 2.13 Run length encoding in row direction. A run of pixels can be represented by
its starting point (1, 2) and its length (6).

two to represent the starting pixel (row, column) and a third for the length of
the run as illustrated in Fig. 2.13. When representing a sequence of runs within
the same row, the number of the row is redundant and can be left out. Also, in
some applications, it is more useful to record the coordinate of the end column
instead of the length of the run.

Since the RLE representation can be easily implemented and efficiently com-
puted, it has long been used as a simple lossless compression method. It forms
the foundation for fax transmission and can be found in a number of other
important codecs, including TIFF, GIF, and JPEG. In addition, RLE provides
precomputed information about the image that can be used directly when com-
puting certain properties of the image (for example, statistical moments; see
Sec. 2.4.3).

2.3.3 Chain Codes

Regions can be represented not only using their interiors but also by their
contours. Chain codes, which are often referred to as Freeman codes [25], are a
classical method of contour encoding. In this encoding, the contour beginning

2.3 Representing Image Regions 29

�
� �

�

� ��
�

��
�

�

�

�

�

�

�

xS

�

��

�

� ��

�
�

�
��

�
�

�

�

�

�

xS

4-Chain Code 8-Chain Code
3223222322303303...111 54544546767...222

length = 28 length = 18 + 5
√

2 ≈ 25

Figure 2.14 Chain codes with 4- and 8-connected neighborhoods. To compute a chain code,
begin traversing the contour from a given starting point xS . Encode the relative position
between adjacent contour points using the directional code for either 4-connected (left) or
8-connected (right) neighborhoods. The length of the resulting path, calculated as the sum
of the individual segments, can be used to approximate the true length of the contour.

at a given start point xS is represented by the sequence of directional changes
it describes on the discrete image raster (Fig. 2.14).

Absolute chain code

For a closed contour of a region R, described by the sequence of points cR =
[x0, x1, . . .xM−1] with xi = 〈ui, vi〉, we create the elements of its chain code
sequence c′R = [c′0, c

′
1, . . . c

′
M−1] by

c′i = Code(Δui, Δvi), (2.1)

where (Δui, Δvi) =

{
(ui+1−ui, vi+1−vi) for 0 ≤ i < M−1

(u0−ui, v0−vi) for i = M−1,

and Code(Δu,Δv) being defined by the following table:6

Δu 1 1 0 −1 −1 −1 0 1

Δv 0 1 1 1 0 −1 −1 −1

Code(Δu,Δv) 0 1 2 3 4 5 6 7

6 Assuming an 8-connected neighborhood.

30 2. Regions in Binary Images

Chain codes are compact since instead of storing the absolute coordinates for
every point on the contour, only that of the starting point is recorded. The
remaining points are encoded relative to the starting point by indicating in
which of the eight possible directions the next point lies. Since only 3 bits
are required to encode these eight directions the values can be stored using a
smaller numeric type.

Differential chain code

Directly comparing two regions represented using chain codes is difficult since
the description depends on the starting point selected xS , and for instance
simply rotating the region by 90◦ results in a completely different chain code.
When using a differential chain code, the situation improves slightly. Instead of
encoding the difference in the position of the next contour point, the change in
the direction along the discrete contour is encoded. A given absolute chain code
c′R = [c′0, c

′
1, . . . c

′
M−1] can be converted element by element to a differential

chain code c′′R = [c′′0 , c
′′
1 , . . . c

′′
M−1], with

c′′i =

{
(c′i+1 − c′i) mod 8 for 0 ≤ i < M−1

(c′0 − c′i) mod 8 for i = M−1,
(2.2)

again under the assumption of an 8-connected neighborhood.7 The element c′′i
thus describes the change in direction (curvature) of the contour between two
successive segments c′i and c′i+1 of the original chain code c′R. For the contour
in Fig. 2.14 (b), the results are

c′R = [5, 4, 5, 4, 4, 5, 4, 6, 7, 6, 7, . . .2, 2, 2],

c′′R = [7, 1, 7, 0, 1, 7, 2, 1, 7, 1, 1, . . .0, 0, 3].

Given the starting point xS and the (absolute) initial direction c0, the original
contour can be unambiguously reconstructed from the differential chain code.

Shape numbers

While the differential chain code remains the same when a region is rotated
by 90◦, the encoding is still dependent on the selected starting point. If we
want to determine the similarity of two contours of the same length M using
their differential chain codes c′′1 , c′′2 , we must first ensure that the same start
point was used when computing the codes. A method that is often used [2,28]
is to interpret the elements c′′i in the differential chain code as the digits of

7 See Vol. 1 [14, Appendix B.1.2] for implementing the mod operator used in Eqn.
(2.2).

2.3 Representing Image Regions 31

a number to the base b (b = 8 for an 8-connected contour or b = 4 for a
4-connected contour) and the numeric value

Val(c′′R) = c′′0 · b0 + c′′1 · b1 + . . . + c′′M−1 · bM−1

=
M−1∑

i=0

c′′i · bi. (2.3)

Then the sequence c′′R is shifted cyclically until the numeric value of the corre-
sponding number reaches a maximum. We use the expression c′′R�k to denote
the sequence c′′R being cyclically shifted by k positions to the right,8 such as
(for k = 2)

c′′R = [0, 1, 3, 2, . . .9, 3, 7, 4]

c′′R�2 = [7, 4, 0, 1, 3, 2, . . .9, 3]

and

kmax = arg max
0≤k<M

Val(c′′R�k) (2.4)

to denote the shift required to maximize the corresponding arithmetic value.
The resulting code sequence or shape number,

sR = c′′R�kmax, (2.5)

is normalized with respect to the starting point and can thus be directly com-
pared element by element with other normalized code sequences. Since the
function Val() in Eqn. (2.3) produces values that are in general too large to
be actually computed, in practice the relation

Val(c′′1) > Val(c′′2)

is determined by comparing the lexicographic ordering between the sequences
c′′1 and c′′2 so that the arithmetic values need not be computed at all.

Unfortunately, comparisons based on chain codes are generally not very
useful for determining the similarity between regions simply because rotations
at arbitrary angles (�= 90◦) have too great of an impact (change) on a region’s
code. In addition, chain codes are not capable of handling changes in size
(scaling) or other distortions. Section 2.4 presents a number of tools that are
more appropriate in these types of cases.

8 (c′′
R�k)[i] = c′′

R[(i− k) mod M].

32 2. Regions in Binary Images

Fourier descriptors

An elegant approach to describing contours are so-called Fourier descriptors,
which interpret the two-dimensional contour cR = [x0, x1, . . . xM−1] with
xi = (ui, vi) as a sequence of values [z0, z1 . . . zM−1] in the complex plane,
where

zi = (ui + i · vi) ∈ C. (2.6)

From this sequence, one obtains (using a suitable method of interpolation in
case of an 8-connected contour), a discrete, one-dimensional periodic function
f(s) ∈ C with a constant sampling interval over s, the path length around
the contour. The coefficients of the one-dimensional Fourier spectrum (see
Sec. 7.3) of this function f(s) provide a shape description of the contour in
frequency space, where the lower spectral coefficients deliver a gross description
of the shape. The details of this classical method can be found for example
in [28, 30, 46, 47, 69].

2.4 Properties of Binary Regions

Imagine that you have to describe the contents of a digital image to another
person over the telephone. One possibility would be to call out the value of
each pixel in some agreed upon order. A much simpler way of course would
be to describe the image on the basis of its properties—for example, “a red
rectangle on a blue background”, or at an even higher level such as “a sunset at
the beach with two dogs playing in the sand”. While using such a description
is simple and natural for us, it is not (yet) possible for a computer to generate
these types of descriptions without human intervention. For computers, it
is of course simpler to calculate the mathematical properties of an image or
region and to use these as the basis for further classification. Using features
to classify, be they images or other items, is a fundamental part of the field of
pattern recognition, a research area with many applications in image processing
and computer vision [21, 55, 72].

2.4.1 Shape Features

The comparison and classification of binary regions is widely used, for example,
in optical character recognition (OCR) and for automating processes ranging
from blood cell counting to quality control inspection of manufactured products
on assembly lines. The analysis of binary regions turns out to be one of the
simpler tasks for which many efficient algorithms have been developed and used
to implement reliable applications that are in use every day.

By a feature of a region, we mean a specific numerical or qualitative measure
that is computable from the values and coordinates of the pixels that make up

2.4 Properties of Binary Regions 33

the region. As an example, one of the simplest features is its size or area; that
is the number of pixels that make up a region. In order to describe a region
in a compact form, different features are often combined into a feature vector.
This vector is then used as a sort of “signature” for the region that can be used
for classification or comparison with other regions. The best features are those
that are simple to calculate and are not easily influenced (robust) by irrelevant
changes, particularly translation, rotation, and scaling.

2.4.2 Geometric Features

A region R of a binary image can be interpreted as a two-dimensional distri-
bution of foreground points xi = (ui, vi) on the discrete plane Z2,

R = {x0,x1 . . .xN−1} = {(u0, v0), (u1, v1) . . . (uN−1, vN−1)}.

Most geometric properties are defined in such a way that a region is considered
to be a set of pixels that, in contrast to the definition in Sec. 2.1, does not
necessarily have to be connected.

Perimeter

The perimeter (or circumference) of a region R is defined as the length of its
outer contour, where R must be connected. As illustrated in Fig. 2.14, the
type of neighborhood relation must be taken into account for this calculation.
When using a 4-neighborhood, the measured length of the contour (except
when that length is 1) will be larger than its actual length. In the case of
8-neighborhoods, a good approximation is reached by weighing the horizontal
and vertical segments with 1 and diagonal segments with

√
2. Given an 8-

connected chain code c′R = [c′0, c
′
1, . . . c

′
M−1], the perimeter of the region is

arrived at by

Perimeter(R) =
M−1∑

i=0

length(c′i), (2.7)

with length(c) =
{

1 for c = 0, 2, 4, 6,√
2 for c = 1, 3, 5, 7.

However, with this conventional method of calculation,the real perimeter
(P (R)) is systematically overestimated. As a simple remedy, an empirical
correction factor of 0.95 works satisfactory even for relatively small regions:

P (R) ≈ Perimetercorr(R) = 0.95 · Perimeter(R). (2.8)

34 2. Regions in Binary Images

Area

The area of a binary region R can be found by simply counting the image pixels
that make up the region,

A(R) = |R| = N. (2.9)

The area of a connected region without holes can also be approximated from
its closed contour, defined by M coordinate points (x0,x1, . . . xM−1), where
xi = (ui, vi), using the Gaussian area formula for polygons:

A(R) ≈ 1
2
·
∣
∣
∣
∣
∣

M−1∑

i=0

(
ui · v(i+1) modM − u(i+1) modM · vi

)
∣
∣
∣
∣
∣
. (2.10)

When the contour is already encoded as a chain code c′R = [c′0, c
′
1, . . . c

′
M−1],

then the region’s area can be computed using Eqn. (2.10) by expanding c′R into
a sequence of contour points, using an arbitrary starting point (e. g., (0, 0)).

While simple region properties such as area and perimeter are not influenced
(except for quantization errors) by translation and rotation of the region, they
are definitely affected by changes in size; for example, when the object to
which the region corresponds is imaged from different distances. However, as
described below, it is possible to specify combined features that are invariant
to translation, rotation, and scaling as well.

Compactness and roundness

Compactness is understood as the relation between a region’s area and its
perimeter. We can use the fact that a region’s perimeter P increases linearly
with the enlargement factor while the area A increases quadratically to see
that, for a particular shape, the ratio A/P 2 should be the same at any scale.
This ratio can thus be used as a feature that is invariant under translation,
rotation, and scaling. When applied to a circular region of any diameter, this
ratio has a value of 1

4π , so by normalizing it against a filled circle, we create a
feature that is sensitive to the roundness or circularity of a region,

Circularity(R) = 4π · A(R)
P 2(R)

, (2.11)

which results in a maximum value of 1 for a perfectly round region R and a
value in the range [0, 1) for all other shapes (Fig. 2.15). If an absolute value for
a region’s roundness is required, the corrected perimeter estimate (Eqn. (2.8))
should be employed:

Circularity(R) ≈ 4π · A(R)
Perimeter2corr(R)

. (2.12)

Figure 2.15 shows the circularity values of different regions as computed with
the formulation in Eqn. (2.12).

2.4 Properties of Binary Regions 35

Figure 2.15 Circularity values for different shapes. Shown are the corresponding estimates
for Circularity(R) as defined in Eqn. (2.12).

Bounding box

The bounding box of a region R is the minimal axis-parallel rectangle that
encloses all points of R,

BoundingBox(R) = 〈umin, umax, vmin, vmax〉, (2.13)

where umin, umax and vmin, vmax are the minimal and maximal coordinate values
of all points (ui, vi) ∈ R in the x and y directions, respectively (Fig. 2.16 (a)).

Convex hull

The convex hull is the smallest convex polygon that contains all points of the
region R. A physical analogy is a board in which nails stick out in correspon-
dence to each of the points in the region. If you were to place an elastic band
around all the nails, then, when you release it, it will contract into a convex
hull around the nails (Fig. 2.16 (b)). The convex hull can be computed for
N contour points in time O(N logV), where V is the number vertices in the
polygon of the resulting convex hull [3].9

The convex hull is useful, for example, for determining the convexity or the
density of a region. The convexity is defined as the relationship between the
length of the convex hull and the original perimeter of the region. Density
is then defined as the ratio between the area of the region and the area of its
convex hull. The diameter, on the other hand, is the maximal distance between
any two nodes on the convex hull.

9 For O() complexity notation, see Vol. 1 [14, Appendix A.3].

1.001 0.672 0.086

36 2. Regions in Binary Images

(a) (b)

Figure 2.16 Example bounding box (a) and convex hull (b) of a binary image region.

2.4.3 Statistical Shape Properties

When computing statistical shape properties, we consider a region R to be
a collection of coordinate points distributed within a two-dimensional space.
Since statistical properties can be computed for point distributions that do not
form a connected region, they can be applied before segmentation. An im-
portant concept in this context are the central moments of the region’s point
distribution, which measure characteristic properties with respect to its mid-
point or centroid.

Centroid

The centroid or center of gravity of a connected region can be easily visualized.
Imagine drawing the region on a piece of cardboard or tin and then cutting it
out and attempting to balance it on the tip of your finger. The location on the
region where you must place your finger in order for the region to balance is
the centroid of the region.10

The centroid x̄ = (x̄, ȳ) of a binary (not necessarily connected) region is
the arithmetic mean of the coordinates in the x and y directions,

x̄ =
1
|R| ·

∑

(u,v)∈R
u and ȳ =

1
|R| ·

∑

(u,v)∈R
v . (2.14)

10 Assuming you did not imagine a region where the centroid lies outside of the region
or within a hole in the region, which is of course possible.

2.4 Properties of Binary Regions 37

Moments

The formulation of the region’s centroid in Eqn. (2.14) is only a special case of
the more general statistical concept of a moment. Specifically, the expression

mpq =
∑

(u,v)∈R
I(u, v) · upvq (2.15)

describes the (ordinary) moment of the order p, q for a discrete (image) func-
tion I(u, v) ∈ R; for example, a grayscale image. All the following definitions
are also generally applicable to regions in grayscale images. The moments of
connected binary regions can also be computed directly from the coordinates
of the contour points [64, p. 148].

In the special case of a binary image I(u, v) ∈ {0, 1}, only the foreground
pixels with I(u, v) = 1 in the region R need to be considered, and therefore
Eqn. (2.15) can be simplified to

mpq =
∑

(u,v)∈R
upvq. (2.16)

In this way, the area of a binary region can be expressed as its zero-order
moment,

A(R) = |R| =
∑

(u,v)∈R
1 =

∑

(u,v)∈R
u0v0 = m00(R), (2.17)

and similarly the centroid x̄ Eqn. (2.14) as

x̄ =
1
|R| ·

∑

(u,v)∈R
u1v0 =

m10(R)
m00(R)

, (2.18)

ȳ =
1
|R| ·

∑

(u,v)∈R
u0v1 =

m01(R)
m00(R)

. (2.19)

These moments thus represent concrete physical properties of a region. Specif-
ically, the area m00 is in practice an important basis for characterizing regions,
and the centroid (x̄, ȳ) permits the reliable and (within a fraction of a pixel)
exact specification of a region’s position.

Central moments

To compute position-independent (translation-invariant) region features, the
region’s centroid, which can be determined precisely in any situation, can be

38 2. Regions in Binary Images

used as a reference point. In other words, we can shift the origin of the coordi-
nate system to the region’s centroid x̄ = (x̄, ȳ) to obtain the central moments
of order p, q:

μpq(R) =
∑

(u,v)∈R
I(u, v) · (u− x̄)p · (v − ȳ)q. (2.20)

For a binary image (with I(u, v) = 1 within the region R), Eqn. (2.20) can be
simplified to

μpq(R) =
∑

(u,v)∈R
(u− x̄)p · (v − ȳ)q. (2.21)

Normalized central moments

Central moment values of course depend on the absolute size of the region since
the value depends directly on the distance of all region points to its centroid.
So, if a 2D shape is scaled uniformly by some factor s ∈ R, its central moments
multiply by the factor

s(p+q+2). (2.22)

Thus size-invariant “normalized” moments are obtained by scaling with the
reciprocal of the area μ00 = m00 raised to the required power in the form

μ̄pq(R) = μpq(R) ·
(1
μ00(R)

)(p+q+2)/2

(2.23)

for (p+ q) ≥ 2 [46, p. 529].
Program 2.3 gives a direct (brute force) Java implementation for comput-

ing the ordinary, central, and normalized central moments for binary images
(BACKGROUND = 0). This implementation is only meant to clarify the computa-
tion, and naturally much more efficient implementations are possible (see, for
example, [48]).

2.4.4 Moment-Based Geometrical Properties

While normalized moments can be directly applied for classifying regions, fur-
ther interesting and geometrically relevant features can be elegantly derived
from moments.

Orientation

Orientation describes the direction of the major axis, that is the axis that runs
through the centroid and along the widest part of the region (Fig. 2.18 (a)).
Since rotating the region around the major axis requires less effort (smaller
moment of inertia) than spinning it around any other axis, it is sometimes
referred to as the major axis of rotation. As an example, when you hold a

2.4 Properties of Binary Regions 39

1 import ij.process.ImageProcessor;
2
3 public class Moments {
4 static final int BACKGROUND = 0;
5
6 static double moment(ImageProcessor ip,int p,int q) {
7 double Mpq = 0.0;
8 for (int v = 0; v < ip.getHeight(); v++) {
9 for (int u = 0; u < ip.getWidth(); u++) {

10 if (ip.getPixel(u,v) != BACKGROUND) {
11 Mpq += Math.pow(u, p) * Math.pow(v, q);
12 }
13 }
14 }
15 return Mpq;
16 }
17 static double centralMoment(ImageProcessor ip,int p,int q)
18 {
19 double m00 = moment(ip, 0, 0); // region area
20 double xCtr = moment(ip, 1, 0) / m00;
21 double yCtr = moment(ip, 0, 1) / m00;
22 double cMpq = 0.0;
23 for (int v = 0; v < ip.getHeight(); v++) {
24 for (int u = 0; u < ip.getWidth(); u++) {
25 if (ip.getPixel(u,v) != BACKGROUND) {
26 cMpq +=
27 Math.pow(u - xCtr, p) *
28 Math.pow(v - yCtr, q);
29 }
30 }
31 }
32 return cMpq;
33 }
34 static double normalCentralMoment
35 (ImageProcessor ip,int p,int q) {
36 double m00 = moment(ip, 0, 0);
37 double norm = Math.pow(m00, (double)(p + q + 2) / 2);
38 return centralMoment(ip, p, q) / norm;
39 }
40
41 } // end of class Moments

Program 2.3 Example of directly computing moments in Java. The methods moment(),
centralMoment(), and normalCentralMoment() compute for a binary image the moments
mpq , μpq , and μ̄pq (Eqns. (2.16), (2.21), and (2.23)).

pencil between your hands and twist it around its major axis (that is, around
the lead), the pencil exhibits the least mass inertia (Fig. 2.17). As long as a
region exhibits an orientation at all (μ20(R) �= μ02(R)), the direction θR of the
major axis can be found directly from the central moments μpq as

40 2. Regions in Binary Images

R

Figure 2.17 Major axis of a region. Rotating an elongated region R, interpreted as a
physical body, around its major axis requires less effort (least moment of inertia) than rotating
it around any other axis.

tan(2 θR) =
2 · μ11(R)

μ20(R) − μ02(R)
(2.24)

and therefore

θR =
1
2

tan−1

(
2 · μ11(R)

μ20(R) − μ02(R)

)

(2.25)

=
Arctan

(
2 · μ11(R), μ20(R)−μ02(R)

)

2
. (2.26)

The resulting angle θR is in the range [−π
2 ,

π
2].11 Orientation measurements

based on region moments are very accurate in general.

Computing orientation vectors. When visualizing region properties, a fre-
quent task is to plot the region’s orientation as a line or arrow, that are usually
anchored at the center of gravity x̄ = (x̄, ȳ); for example, by a parametric line
of the form

x = x̄ + λ · xd =
(
x̄

ȳ

)

+ λ ·
(

cos(θR)
sin(θR)

)

, (2.27)

for some length λ > 0. To find the unit orientation vector xd = (cos θ, sin θ)T ,
we could first compute the inverse tangent to get 2θ (Eqn. (2.25)) and then
compute the cosine and sine of θ. However, the vector xd can also be obtained
without using trigonometric functions as follows. Rewriting Eqn. (2.24) as

tan(2θR) =
2 · μ11(R)

μ20(R) − μ02(R)
=
A

B
=

sin(2θR)
cos(2θR)

(2.28)

11 See Appendix A.1 for the computation of angles with the Arctan() (inverse tan-
gent) function and Vol. 1 [14, Appendix B.1.6] for the corresponding Java method
Math.atan2().

2.4 Properties of Binary Regions 41

θ

x̄

ra

rb
+x−x

+y

−y

+ π
2

−π
2

Figure 2.18 Region orientation and eccentricity. The major axis of the region extends
through its center of gravity x̄ at the orientation θ. Note that angles are in the range
[−π

2
,+ π

2
] and increment in the clockwise direction because the y axis of the image coordinate

system points downward (in this example, θ ≈ −0.759 ≈ −43.5◦). The eccentricity of the
region is defined as the ratio between the lengths of the major axis (ra) and the minor axis
(rb) of the “equivalent” ellipse.

we get (by Pythagoras’ theorem)

sin(2θR) =
A√

A2+B2
and cos(2θR) =

B√
A2+B2

,

where A = 2μ11(R) and B = μ20(R) − μ02(R). Using the relations cos2α =
1
2 [1 + cos(2α)] and sin2α = 1

2 [1 − cos(2α)], we can compute the region’s orien-
tation vector xd = (xd, yd)T as

xd = cos(θR) =

⎧
⎨

⎩

0 for A = B = 0
[

1
2

(
1+ B√

A2+B2

)] 1
2

otherwise,
(2.29)

yd = sin(θR) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for A = B = 0
[

1
2

(
1− B√

A2+B2

)] 1
2

for A ≥ 0

−
[

1
2

(
1− b√

A2+B2

)] 1
2

for A < 0,

(2.30)

straight from the central region moments μ11(R), μ20(R), and μ02(R), as de-
fined in Eqn. (2.28). The horizontal component (xd) in Eqn. (2.29) is always
positive, while the case clause in Eqn. (2.30) corrects the sign of the vertical
component (yd) to map to the same angular range [−π

2 ,+
π
2] as Eqn. (2.25).

The resulting vector xd is normalized (i. e., ‖(xd, yd)‖ = 1) and could be scaled

42 2. Regions in Binary Images

arbitrarily for display purposes by a suitable length λ, for example, using the
region’s eccentricity value described below.

Eccentricity

Similar to the region orientation, moments can also be used to determine the
“elongatedness” or eccentricity of a region. A naive approach for computing the
eccentricity could be to rotate the region until we can fit a bounding box (or
enclosing ellipse) with a maximum aspect ratio. Of course this process would
be computationally intensive simply because of the many rotations required. If
we know the orientation of the region (Eqn. (2.25)), then we may fit a bounding
box that is parallel to the region’s major axis. In general, the proportions of
the region’s bounding box is not a good eccentricity measure anyway because
it does not consider the distribution of pixels inside the box.

Based on region moments, highly accurate and stable measures can be ob-
tained without any iterative search or optimization. Also, moment-based meth-
ods do not require knowledge of the boundary length (as required for computing
the circularity feature in Sec. 2.4.2), and they can also handle nonconnected
regions or point clouds. Several different formulations of region eccentricity
can be found in the literature [2,46,47] (see also Exercise 2.11). We adopt the
following definition because of its simple geometrical interpretation:

Ecc(R) =
a1

a2
=
μ20 + μ02 +

√
(μ20 − μ02)2 + 4 · μ2

11

μ20 + μ02 −
√

(μ20 − μ02)2 + 4 · μ2
11

, (2.31)

where a1 = 2λ1, a2 = 2λ2 are multiples of the eigenvalues λ1, λ2 of the sym-
metric 2 × 2 matrix

A =
(
μ20 μ11

μ11 μ02

)

formed by the central moments μpq of the region R. The values of Ecc are in
the range [1,∞), where Ecc = 1 corresponds to a circular disk and elongated
regions have values > 1. Ecc itself is invariant to the region’s orientation and
size. However, the values a1, a2 contain information about the spatial extent
of the region. Geometrically, the eigenvalues λ1, λ2 (and thus a1, a2) directly
relate to the proportions of the “equivalent” ellipse, positioned at the region’s
center of gravity (x̄, ȳ) and oriented at θ = θR Eqn. (2.25). The lengths of the
ellipse’s major and minor axes, ra and rb, are

ra = 2 ·
(λ1

|R|
) 1

2
=
(2 a1

|R|
) 1

2
, (2.32)

rb = 2 ·
(λ2

|R|
) 1

2
=
(2 a2

|R|
) 1

2
, (2.33)

2.4 Properties of Binary Regions 43

Figure 2.19 Orientation and eccentricity examples. The orientation θ (Eqn. (2.25)) is dis-
played for each connected region as a vector with the length proportional to the region’s
eccentricity value Ecc(R) (Eqn. (2.31)). Also shown are the ellipses (Eqns. (2.32) and (2.33))
corresponding to the orientation and eccentricity parameters.

respectively, with a1, a2 as defined in Eqn. (2.31) and |R| being the number of
pixels in the region. The resulting parametric equation of the equivalent ellipse
is

(
x(t)
y(t)

)

=
(
x̄

ȳ

)

+
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

·
(
ra · cos(t)
rb · sin(t)

)

=
(
x̄ + cos(θ) · ra · cos(t) − sin(θ) · rb · sin(t)
ȳ + sin(θ) · ra · cos(t) + cos(θ) · rb · sin(t)

)

(2.34)

for 0 ≤ t < 2π. If entirely filled, the region described by this ellipse would
have the same (first and second order) central moments as the original region
R. Figure 2.19 shows a set of regions with overlaid orientation and eccentricity
results.

Invariant moments

Normalized central moments are not affected by the translation or uniform
scaling of a region (i. e., the values are invariant), but in general rotating the
image will change these values. A classical solution to this problem is a clever

44 2. Regions in Binary Images

combination of simpler features known as “Hu’s Moments” [37]:12

H1 = μ̄20 + μ̄02, (2.35)

H2 = (μ̄20 − μ̄02)2 + 4 μ̄2
11,

H3 = (μ̄30 − 3 μ̄12)2 + (3 μ̄21 − μ̄03)2,

H4 = (μ̄30 + μ̄12)2 + (μ̄21 + μ̄03)2,

H5 = (μ̄30 − 3 μ̄12) · (μ̄30 + μ̄12) ·
[
(μ̄30 + μ̄12)2 − 3(μ̄21 + μ̄03)2

]

+ (3 μ̄21 − μ̄03) · (μ̄21 + μ̄03) ·
[
3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]
,

H6 = (μ̄20 − μ̄02) ·
[
(μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]

+ 4 μ̄11 · (μ̄30 + μ̄12) · (μ̄21 + μ̄03),

H7 = (3 μ̄21 − μ̄03) · (μ̄30 + μ̄12) ·
[
(μ̄30 + μ̄12)2 − 3 (μ̄21 + μ̄03)2

]

+ (3 μ̄12 − μ̄30) · (μ̄21 + μ̄03) ·
[
3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]
.

In practice, the logarithm of the results (that is, log(Hk)) is used since the raw
values can have a very large range. These features are also known as moment
invariants since they are invariant under translation, rotation, and scaling.
While defined here for binary images, they are also applicable to grayscale
images; for further information, see [28, p. 517].

2.4.5 Projections

Image projections are one-dimensional representations of the image contents,
usually computed parallel to the coordinate axis; in this case, the horizontal, as
well as the vertical, projection of an image I(u, v), with 0 ≤ u < M , 0 ≤ v < N ,
defined as

Phor(v0) =
M−1∑

u=0

I(u, v0) for 0 ≤ v0 < N, (2.36)

Pver(u0) =
N−1∑

v=0

I(u0, v) for 0 ≤ u0 < M. (2.37)

The horizontal projection Phor(v0) (Eqn. (2.36)) is the sum of the pixel values
in the image row v0 and has length N corresponding to the height of the image.
On the other hand, a vertical projection Pver of length M is the sum of all the
values in the image column u0 (Eqn. (2.37)). In the case of a binary image
with I(u, v) ∈ 0, 1, the projection contains the count of the foreground pixels
in the corresponding image row or column.
12 In order to improve the legibility of Eqn. (2.35) the argument for the region (R)

has been dropped; as an example, with the region argument, the first line would
read H1(R) = μ̄20(R) + μ̄02(R), and so on.

2.4 Properties of Binary Regions 45

1 public void run(ImageProcessor ip) {
2 int M = ip.getWidth();
3 int N = ip.getHeight();
4 int[] horProj = new int[N];
5 int[] verProj = new int[M];
6 for (int v = 0; v < N; v++) {
7 for (int u = 0; u < M; u++) {
8 int p = ip.getPixel(u, v);
9 horProj[v] += p;

10 verProj[u] += p;
11 }
12 }
13 // use projections horProj, verProj now
14 // ...
15 }

Program 2.4 Computation of horizontal and vertical projections. The run() method for
an ImageJ plugin (ip is of type ByteProcessor or ShortProcessor) computes the projections
in x and y directions simultaneously in a a single traversal of the image. The projections are
represented by the one-dimensional arrays horProj and verProj with elements of type int.

Program Prog. 2.4 gives a direct implementation of the projection calcu-
lations as the run() method for an ImageJ plugin, where projections in both
directions are computed during a single traversal of the image.

Projections in the direction of the coordinate axis are often utilized to
quickly analyze the structure of an image and isolate its component parts;
for example, in document images it is used to separate graphic elements from
text blocks as well as to isolate individual lines (see the example in Fig. 2.20).
In practice, especially to account for document skew, projections are often
computed along the major axis of an image region Eqn. (2.25). When the
projection vectors of a region are computed in reference to the centroid of the
region along the major axis, the result is a rotation-invariant vector description
(often referred to as a “signature”) of the region.

2.4.6 Topological Properties

Topological features do not describe the shape of a region in continuous terms;
instead, they capture its structural properties. They are typically invariant
even under extreme image transformations. Two simple and robust topological
features are the number of regions NR(R) and the number of holes NL(R) in
those regions. NL(R) can be easily computed while finding the inner contours
of a region, as described in Sec. 2.2.2.

A feature that can be derived from the number of holes is the so-called
Euler number NE , which is the difference between the number of connected

46 2. Regions in Binary Images

Figure 2.20 Example of the horizontal projection Phor(v) (right) and vertical projection
Pver(u) (bottom) of a binary image.

regions NR and the number of their holes NH ,

NE(R) = NR(R) −NH(R). (2.38)

For a single connected region, the above formula simplifies to 1 −NH , so, for
example, for an image of the number “8”, NE = 1−2 = −1, while for an image
of the letter “D”, NE = 1 − 1 = 0.

Topological features are often used in combination with numerical features
for classification, for example in optical character recognition (OCR) [12].

2.5 Exercises
Exercise 2.1
Trace, by hand, the execution of both variations (depth-first and breadth-
first) of the flood-fill algorithm using the image shown in Fig. 2.21 and
starting at coordinates (5, 1).

Exercise 2.2
The implementation of the flood-fill algorithm in Prog. 2.1 places all the
neighboring pixels of each visited pixel into either the stack or the queue
without ensuring they are foreground pixels and that they lie within the
image boundaries. The number of items in the stack or the queue can be
reduced by ignoring (not inserting) those neighboring pixels that do not

2.5 Exercises 47

�

�

� � � � � � � � � � � � � �
� � � � � � � � �
� � � � � �
� � � � � � � � � � �
� �
� � � � �
� � � � � � � � � �
� � � � � � � � � � � � � �

� �
� � � � � �

� �
�

� � � � � �
� �

� � � � � �

�
�
�

� � � � � � � � �
��� �

Background

Foreground

Figure 2.21 Binary image for Exercise 2.1.

meet the two conditions given above. Modify the depth-first and breadth-
first variants given in Prog. 2.1 accordingly and compare the new running
times.

Exercise 2.3
Implement an ImageJ plugin that encodes a grayscale image using run
length encoding (Sec. 2.3.2) and stores it in a file. Develop a second plugin
that reads the file and reconstructs the image.

Exercise 2.4
Calculate the amount of memory required to represent a contour with 1000
points in the following ways: (a) as a sequence of coordinate points stored
as pairs of int values; (b) as an 8-chain code using Java byte elements,
and (c) as an 8-chain code using only 3 bits per element.

Exercise 2.5
Implement a Java class for describing a binary image region using chain
codes. It is up to you, whether you want to use an absolute or differential
chain code. The implementation should be able to encode closed contours
as chain codes and also reconstruct the contours given a chain code.

Exercise 2.6
While computing the convex hull of a region, the maximal diameter (max-
imum distance between two arbitrary points) can also be simply found.
Devise an alternative method for computing this feature without using the
convex hull. Determine the running time of your algorithm in terms of the
number of points in the region.

Exercise 2.7
Implement an algorithm for comparing contours using their shape numbers
Eqn. (2.3). For this purpose, develop a metric for measuring the distance
between two normalized chain codes. Describe if, and under which condi-
tions, the results will be reliable.

48 2. Regions in Binary Images

Exercise 2.8
Using Eqn. (2.10) as the basis, develop and implement an algorithm that
computes the area of a region from its 8-chain code encoded contour. What
type of discrepancy from the region’s actual area (the number of pixels it
contains) do you expect?

Exercise 2.9
Sketch an example binary region where the centroid lies outside of the
region.

Exercise 2.10
Implement the moment features developed by Hu (Eqn. (2.35)) and show
that they are invariant under scaling and rotation for both binary and
grayscale images.

Exercise 2.11
There are alternative definitions for the eccentricity of a region Eqn. (2.31);
for example,

Ecc2(R) =

(
μ20 − μ02

)2 + 4 · μ2
11

(
μ20 + μ02

)2 [47, p. 394],

Ecc3(R) =
(μ20 − μ02)2 + 4 · μ11

m00
[46, p. 531],

Ecc4(R) =
√
μ20 − μ02 + 4 · μ11

m00
[2, p. 255].

Implement all four variations (including the one in Eqn. (2.31)) and contrast
the results using suitably designed regions. Determine how these measures
work and what their range of values is, and propose a geometrical interpre-
tation for each.

Exercise 2.12
Write an ImageJ plugin that (a) finds (labels) all regions in a binary image,
(b) computes the orientation and eccentricity for each region, and (c) shows
the results as a direction vector and the equivalent ellipse on top of each
region (as exemplified in Fig. 2.19). Hint: Use Eqn. (2.34) to develop a
method for drawing ellipses at arbitrary orientations (not available in Im-
ageJ).

Exercise 2.13
The Java method in Prog. 2.4 computes an image’s horizontal and vertical
projections. For document image processing, projections in the diagonal
directions are also useful. Implement these projections and consider what
role they play in document image analysis.

http://www.springer.com/978-1-84800-194-7

