
Chapter 2
Linear Periodic Systems

In this chapter, we set the basis for the study of linear periodic systems in discrete-
time. We start with the impulse response description, thanks to which the no-
tion of the periodic transfer operator is introduced. Then we move to the periodic
input–output difference equation representation (PARMA model). This represen-
tation plays a major role in data analysis and periodic systems identification. The
characterization in the frequency domain is carried out by means of the concept of
exponentially modulated periodic signals. Finally, the state–space representation is
discussed and related to the input–output descriptions. Historically, in the literature
of the field, the state–space description has received more attention. However, herein
we initially adopt an input–output viewpoint for reasons of generality, and postpone
to later sections the state–space realm.

2.1 The Periodic Transfer Operator

In the description of linear dynamical systems, a most used model makes reference
to the basic causal relationships supplying the output as a linear combination of
past values of the input up to the current time instant. In discrete-time, by denoting
with t the (integer) time variable, u(t) ∈ IRm the input and y(t) ∈ IRp the output, this
amounts to writing:

y(t) = M0(t)u(t)+M1(t)u(t−1)+M2(t)u(t−2)+M3(t)u(t−3)+ · · ·
=

∞

∑
j=0

Mj(t)u(t− j) . (2.1)

The matrix coefficients Mi(t), i = 0,1, · · · , are known as Markov coefficients and
completely capture the input–output behavior of the system. These Markov param-
eters are related to the impulsive response of the system.
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62 2 Linear Periodic Systems

Indeed, denote by δ (t) the impulsive function, i.e.,

δ (t) =
{

1 t = 0
0 otherwise .

(2.2)

When the input is a scalar variable (m = 1), from (2.1) it turns out that the response

y(i)
imp(t) produced by u(t) = δ (t− i) is given by

y(i)
imp(t) = Mt−i(t) .

To be precise, this is the output at time t when the input is an impulse applied at time
t = i. In the general multi-input case, the j-th column of the Markov coefficients
Mt−i(t) represents the output response of the system to an input with all elements
set to zero except the j-th entry u j(t) which is an impulse applied at time t = i.

Herein, we deal with periodic systems, namely systems for which there exists a
positive integer T such that

Mi(t +T ) = Mi(t)

for each t and for each i≥ 0. Obviously, this class of periodic systems includes the
class of time-invariant ones, characterized by constant Markov coefficients.

A compact notation is obtained by introducing the concept of periodic transfer op-
erator. To this purpose, introduce first the unit delay operator σ−1. With reference
to a generic discrete-time signal v(t), this operator acts as follows:

σ−1 · v(t) = v(t−1) .

Then, Expression (2.1) can be given the form

y(t) = G(σ , t) ·u(t) ,

where the periodic transfer operator G(σ , t) is defined as

G(σ , t) = M0(t)+M1(t)σ−1 +M2(t)σ−2 +M3(t)σ−3 + · · · (2.3)

Notice that for a given t in the interval [0,T −1], this formula is just a power series
in the variable σ−1. Hence, convergence is ensured provided that the parameters
Mi(t) are bounded with respect to i.

The periodicity of the Markov parameters reflects into a specific structure of this
operator. The first obvious consideration is that the operator G(σ , t) is periodic:

G(σ , t +T ) = G(σ , t) .

As for the dependence upon σ , it is easy to verify that

σ−kG(σ , t) = G(σ , t− k)σ−k .
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This property will be referred to as pseudo-commutative property with respect to the
delays. By setting the integer k as a multiple of the period T , say k = iT , this ex-
pression together with the previous one implies that the operators σ−iT and G(σ , t)
do commute. Notice in passing that, by means of the pseudo-commutative property,
one can write

G(σ , t) = M0(t)+σ−1M1(t +1)+σ−2M2(t +2)+σ−3M3(t +3)+ · · ·

in place of (2.3).

The periodicity of the Markov coefficients entails that the output response of the
system at a generic time instant t = kT + s, with s ∈ [0, T −1], can be written as a
finite sum of the output responses of T time-invariant systems indexed in the integer
s. As a matter of fact, consider again Eq. (2.1) and evaluate y(t) in t = kT + s. It
follows that

y(kT + s) =
T−1

∑
i=0

ŷi,s(k) ,

where

ŷi,s(k) =
∞

∑
j=0

MjT+i(s)ûi,s(k− j) ,

and
ûi,s(k) = u(kT + s− i) .

From these expressions, it is apparent that ŷi,s(k) is the output of a time-invariant
system having Mi(s), Mi+T (s), Mi+2T (s), ..., as Markov parameters. Note the role of
the different indexes appearing in these expressions: s is the chosen tag time index
for the output variable, s− i is the tag time index for the input variable, and k is
the sampled time current variable. For each i ∈ [0,T −1] and t ∈ [0,T −1], one can
define:

Hi(z,s) =
∞

∑
j=0

MjT+i(s)z− j . (2.4)

This is the transfer function from ui,s(k) to ŷi,s(k) (both signals seen as function
of k). By using z as the 1-step-ahead shift operator in time k (namely, z is the T -
steps-ahead shift operator in time t), and resorting to a mixed z/k notation, one can
write

y(kT + s) = H0(z,s)u(kT + s)+H1(z,s)u(kT + s−1)+ · · ·
+HT−2(z,s)u(kT + s−T +2)+HT−1(z,s)u(kT + s−T +1) (2.5)

or, equivalently

y(kT + s) = H0(z,s)u(kT + s)+HT−1(z,s)z−1u(kT + s+1)+ · · ·
+H2(z,s)z−1u(kT + s+T −2)+H1(z,s)z−1u(kT + s+T −1) . (2.6)
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The function Hi(z,s) will be referred to as the sampled transfer function at tag time
s with input–output delay i.

The above “uncombing” procedure in the time-domain has a natural counterpart in
the domain of transfer functions. Indeed, the transfer operator G(σ , t) can be written
as

G(σ , t) =
∞

∑
k=0

Mk(t)σ−k =
T−1

∑
i=0

[
∞

∑
j=0

MjT+i(t)σ− jT

]

σ−i .

By taking into account the Expression (2.4), it finally follows

G(σ , t) =
T−1

∑
i=0

Hi(σT , t)σ−i . (2.7)

This formula enables one to compute the periodic transfer operator from the sam-
pled transfer functions, as depicted in Fig. 2.1. Expression (2.7) can be, so to say,
“inverted”. To this purpose, we introduce for the first time a symbol φ which will be
often used in this book:

φ = exp(
2π j
T

) = cos(
2π
T

)+ jsin(
2π
T

) . (2.8)

Hence 1, φ , φ 2, · · · , φT−1 are the T -roots of the unit. Note that

1
T

T−1

∑
k=0

φ sk =
{

1 s = 0,±T,±2T, · · ·
0 otherwise .

(2.9)
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Fig. 2.1 The periodic transfer operator as a composition of (time-invariant) sampled transfer func-
tions
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Now, consider (2.7) evaluated in σφ k. By multiplying both sides by φ kr and sum-
ming w.r.t k, for k ranging from 0 to T −1, it easily follows from (2.9) that

Hr(σT , t) =
σ r

T

T−1

∑
k=0

G(σφ k, t− r)φ kr . (2.10)

The input–output periodic model is said to be rational if all transfer functions (2.4)
are indeed rational, i.e., they are transfer functions of finite–dimensional (time-
invariant) systems. In view of (2.7), the periodic transfer operator G(σ , t) is rational
in σ for each t. In this case also the periodic system can be given a state–space
finite–dimensional realization, as will be discussed in Chap. 7.

If the original periodic system is indeed time-invariant with transfer function G(σ),
the transfer function operator G(σ , t) does not depend on t and G(σ , t) actually
reduces to G(σ), i.e., G(σ , t) = G(σ),∀t.

2.2 PARMA Model

A most useful input–output representation of a rational periodic system is given by
the so-called Periodic Auto-Regressive and Moving Average (PARMA) model. This
corresponds to writing:

y(t) = a1(t)y(t−1)+a2(t)y(t−2)+ · · ·+ar(t)y(t− r) [AR part]
+b0(t)u(t)+b1(t)u(t−1)+ · · ·+bs(t)u(t− s) [MA part] , (2.11)

where the coefficients ai(t) and b j(t) are T -periodic matrices of suitable dimensions
and r and s are two positive integers. A generalization of this description is obtained
by letting r and s be periodically time varying as well. However, as it is obvious, one
can always rewrite the model with constant r and s, and for the sake of simplicity we
will focus on the above description. Denoting by I the identity operator and letting

dc(σ−1, t) = I−a1(t)σ−1−a2(t)σ−2−·· ·−ar(t)σ−r

nc(σ−1, t) = b0(t)+b1(t)σ−1 + · · ·+bs(t)σ−s

the Eq. (2.11) can be given the compact (operator) form

dc(σ−1, t) · y(t) = nc(σ−1, t) ·u(t) .

Define now the rational matrix d−1
c (σ−1, t) such that

d−1
c (σ−1, t)dc(σ−1, t) = dc(σ−1, t)d−1

c (σ−1, t) = I .
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Then the periodic transfer operator of the PARMA system can be written as:

G(σ , t) = d−1
c (σ−1, t)nc(σ−1, t) .

The fractional representation of a PARMA model can be equivalently written in
terms of polynomial matrices in the forward operator σ as well. Indeed, letting

d(σ , t) = σmax{r,s}dc(σ−1, t), n(σ , t) = σmax{r,s}nc(σ−1, t) ,

it follows that
G(σ , t) = d−1(σ , t)n(σ , t) . (2.12)

Notice that the ring of polynomials with periodic coefficients is not commutative,
so that multiplication must be handled with care. Particularly important is the case
in which the input and output variables are scalar, i.e., the system is SISO (Single
Input Single Output). Then, the two polynomial matrices are scalar polynomials.

In the input–output representations seen so far, the polynomial have periodic coef-
ficients. It is important to observe that, at the price of increasing the polynomials
order, it is possible to work out an equivalent input–output representation with the
“numerator” or the “denominator” having time-invariant coefficients. This fact is
illustrated in the following simple example. The general underlying theory will be
duly developed in Chap. 5.

Example 2.1 Consider the univariate PARMA model

y(t) = a(t)y(t−2)+b0(t)u(t)+b1(t)u(t−1)+b2(t)u(t−2) ,

where all parameters are periodic of period T = 2. The corresponding periodic
transfer operator is

G(σ , t) = (σ2−a(t))−1(b0(t)σ2 +b1(t)σ +b2(t)) .

The sampled transfer functions can easily be computed from (2.10) as

H0(σ2, t) =
b0(t)σ2 +b2(t)

σ2−a(t)
, H1(σ2, t) =

b1(t)σ2

σ2−a(t +1)
.

Interestingly enough, the original periodic transfer operator can be equivalently
rewritten with a denominator given by a polynomial in σ2 with constant parameters.
Indeed, write the PARMA model in the operator form (2.12) with

d(σ , t) = σ2−a(t), n(σ , t) = b0(t)σ2 +b1(t)σ +b2(t) .

Pre-multiplying both polynomials by

d∗(σ , t) = σ2−a(t +1) ,
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the transfer function G(σ , t) becomes

G(σ , t) = (d∗(σ , t)d(σ , t))−1d∗(σ , t)n(σ , t) ,

and the new denominator is

d∗(σ , t)d(σ , t) = σ4− ᾱ1σ2− ᾱ2

with
ᾱ1 = (a(t)+a(t +1)), ᾱ2 =−a(t)a(t +1) .

This is a time-invariant polynomial in σ2. Notice that the numerator is given by

d∗(σ , t)n(σ , t) = β0(t)σ4 +β1(t)σ3 + · · ·+β4(t) ,

where

β0(t) = b0(t), β1(t) = b1(t), β2(t) = b2(t)−a(t +1)b0(t)
β3(t) = −a(t +1)b1(t), β4(t) =−a(t +1)b2(t) .

Thus, the numerator still has periodic coefficients. With this new transfer function,
the corresponding PARMA representation becomes

y(t) = ᾱ1y(t−2)+ ᾱ2y(t−4)+β0(t)u(t)+β1(t)u(t−1)+ · · ·β4(t)u(t−4) .

The distinctive feature of this new PARMA representation is that the autoregressive
part of the model is a time-invariant polynomial in σ2. One can therefore conjec-
ture that the underlying dynamics of the system is dominated by the roots of the
polynomial

z2− ᾱ1z− ᾱ2 .

As a matter of fact, the roots of this polynomial determine the input–output stability
of the system, as will be explained in a forthcoming chapter.
Conversely, it is also possible to give G(σ , t) an expression in which the numerator
is a polynomial with constant coefficients. To this end, it suffices to pre-multiply
n(σ , t) and d(σ , t) by

n∗(σ , t) = b0(t +1)σ2−b1(t)σ +b2(t +1) ,

so yielding
n∗(σ , t)n(σ , t) = β̄0σ4 + β̄1σ2 + β̄2 ,

where

β̄0 = b0(t +1)b0(t)
β̄1 = (b0(t +1)−b1(t +1))b1(t)+b0(t)b2(t +1)
β̄2 = b2(t)b2(t +1) .
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In this second form, letting

α0(t) = b0(t +1), α1(t) = b1(t), α2(t) =−b2(t +1)+b0(t +1)a(t)
α3(t) = −b1(t)a(t +1), α4(t) = b2(t +1)a(t) ,

the denominator is

n∗(σ , t)d(σ , t) = α0(t)σ4−α1(t)σ3−·· ·−α4(t) .

This is a polynomial with periodic coefficients. The associated PARMA representa-
tion is

α0(t)y(t) = α1(t)y(t−1)+ · · ·α4(t)y(t−4)+ β̄0u(t)+ β̄1u(t−2)+ β̄2u(t−4) .

Now, it is the moving-average part of the model to be time-invariant in the power of
σ2. One can therefore conjecture that the underlying inverse dynamics is dominated
by the roots of the polynomial

β̄0z2 + β̄1z+ β̄2 .

Later on we will see that the roots of this polynomial are the transmission zeros of
the periodic system.

Among other things, in the example it is shown that the AR part or the MA part of
a PARMA model can be given an “invariantized” form. This holds in general. Pre-
cisely, consider any T -periodic polynomial p(σ , t) whose coefficients are matrices
of dimension n×m. If n≥m [n≤m], there exists an associated matrix periodic poly-
nomial p∗(σ , t) with coefficients of dimension n× n [m×m] such that the product
p∗(σ , t)p(σ , t) [p(σ , t)p∗(σ , t)] is indeed a polynomial in σT with constant coeffi-
cients. This can be shown by preliminarily introducing an auxiliary matrix P(σT , t),
whose entries are polynomials in σT with periodic coefficients. Precisely, if p(σ , t)
is n×m, the associated P(σT , t) is the nT ×mT matrix defined by the expression

⎡

⎢
⎢
⎢
⎣

In

σ In
...

σT−1In

⎤

⎥
⎥
⎥
⎦

p(σ , t) = P(σT , t)

⎡

⎢
⎢
⎢
⎣

Im

σ Im
...

σT−1Im

⎤

⎥
⎥
⎥
⎦

. (2.13)

It is worthy to point out that the periodic coefficients of matrix P(σ , t) obey the
following recursive formula

P(σT , t +1) = Δ ′n(σ−T )P(σT , t)Δm(σT ) , (2.14)

where the symbol Δk(z) denotes the matrix of dimension kT × kT given by

Δk(z) =
[

0 z−1Ik

Ik(T−1) 0

]

.
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This recursion is easily verified starting from Eq. (2.13). Matrix P(σ , t) is called
lifted polynomial at time t associated with the given periodic polynomial p(σ , t).
In the square case (n = m), the lifted polynomial has the distinctive feature that its
determinant has constant coefficients

det[P(σT , t)] = p̄(σT ) ,

namely p̄(σT ) is a polynomial in σT with constant coefficients. This fact derives
from (2.14) by noticing that det[Δn(σT )] = σ−nT .

The representation of a periodic system in terms of a couple of lifted polynomi-
als will be extensively studied in Chap. 5. Here we limit ourselves to exploiting
the above representation in order to understand the rationale underlying the poly-
nomial manipulations in Example 2.1. Precisely, the problem there is to pass from
a PARMA scalar model to a new PARMA model in which the AR or MA part is
time-invariant. In general, the procedure of “invariantization” of a given polynomial
p(σ , t) amounts to finding a polynomial p∗(σ , t) such that p∗(σ , t)p(σ , t) is a time-
invariant polynomial in σT . This problem can be solved by pre-multiplying (2.13)
by the row vector

[
det[P(σT , t)] 0 · · · 0

]
(P(σT , t))−1 which is indeed polynomial

in σT . In this way, one obtains

[
det[P(σT , t)] 0 · · · 0

]
(P(σT , t))−1

⎡

⎢
⎢
⎢
⎣

1
σ
...

σT−1

⎤

⎥
⎥
⎥
⎦

p(σ , t) = det[P(σT , t)] .

As already observed det[P(σT , t)] has constant coefficients. Therefore the polyno-
mial p∗(σ , t) is simply given by

p∗(σ , t) =
[

det[P(σT , t)] 0 · · · 0
]
(P(σT , t))−1

⎡

⎢
⎢
⎢
⎣

1
σ
...

σT−1

⎤

⎥
⎥
⎥
⎦

,

and it turns out that

p∗(σ , t)p(σ , t) = det[P(σT , t)] = p̄(σT ) .

2.3 The Transfer Operator in Frequency Domain

Periodic systems can be studied in the frequency domain by making reference to the
concept of exponentially modulated periodic (EMP) signal.
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A signal v(·) is said to be EMP if there exists a (complex) number λ �= 0 such that

v(t + kT ) = v(t)λ kT , t ∈ [τ,τ +T −1] .

Obviously, if one imposes λ = 1 (or equal to any T -th root of the unit), a T -periodic
signal is eventually recovered.

Notice that if v(·) is EMP relative to a (non-null) complex number λ �= 0, then
v̄(t) = v(t)λ−t is T -periodic. Conversely, if v̄(·) is T -periodic, then, for each non-
null λ , v(t) = v̄(t)λ t is EMP. Therefore any EMP signal can be written as

v(t) =
T−1

∑
k=0

v̄kφ ktλ t , (2.15)

where vk are the coefficients of the Fourier expansion of the periodic signal v(t)λ−t .
Expression (2.15) will be referred to as the EMP Fourier expansion.

Suppose now we feed the T -periodic System (2.1) with a λ -EMP input u(t), namely
u(t + kT ) = u(t)λ kT , t ∈ [0,T − 1] and assume that all the sampled transfer func-
tions Hi(z, t) are well defined in z = λT for each t. Notice that Hi(z, t) represents
a time-invariant system operating over the sampled time-variable k. If such a sys-
tem is subject to an exponential signal μk, then in an exponential regime, the output
is simply obtained by evaluating the transfer function in z = μ . In particular, this
applies when μ = λT . Then, considering that z = σT is the one period ahead shift
operator (one shift ahead in k), it follows that

Hi(z, t + r)u(kT + t + r) = Hi(λT , t)u(t + r)λ kT , ∀r ∈ [0,T −1] .

Consequently, from (2.6), for each t = 0,1, · · · ,T −1:

y(t + kT ) =
T−1

∑
i=0

Hi(z, t)u(t + kT − i)

= H0(z, t)u(t + kT )+

[
T−1

∑
i=1

Hi(z, t)z−1u(t + kT +T − i)

]

= H0(λT , t)λ kT u(t)+

[
T−1

∑
i=1

Hi(λT , t)λ kT−T u(t +T − i)

]

=

[

H0(λT , t)+

[
T−1

∑
i=1

Hi(λT , t)λ−TσT−i

]

u(t)

]

λ kT .

In an EMP regime, it suffices to set y(t +kT ) = y(t)λ kT . Hence in the EMP regime,
the values of the input and output over one period are related as follows

y(t) = Gλ (σ , t) ·u(t), t = 0,1, · · · ,T −1 (2.16)
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with

Gλ (σ , t) = H0(λT , t)+
T−1

∑
i=1

Hi(λT , t)λ−TσT−i . (2.17)

It is worthy to point out the relationship between the periodic transfer function
G(σ , t) as characterized in (2.7) and the EMP transfer operator Gλ (σ , t) in (2.17).
A direct inspection leads to

G(σ , t) = Gλ (σ , t)|λ=σ . (2.18)

In conclusion, it is possible to pass from the periodic transfer operator to the EMP
transfer operator and vice versa by means of (2.10), (2.17) and (2.18), respectively.

If the system is actually time-invariant, the EMP external signals take the form
u(t) = ūλ t and y(t) = ȳλ t . Therefore, one obtains Gλ (σ , t) = G(λ ), which is in-
deed the gain between the input and output “amplitudes” ū-ȳ.

Remark 2.1 Notice that Gλ (σ , t) is polynomial in σ . It is an anti-causal operator,
in that it maps u(t), u(t +1), · · · , u(t +T −1) to y(t), t ∈ [0,T −1]. Instead, one can
consider a causal operator Hλ (σ , t) defined as

Hλ (σ , t) = Gλ (σ , t)λTσ−T ,

which maps u(t−T ), u(t−T + 1), · · · , u(t− 1) to y(t). If one makes reference to
operator Hλ (σ , t), then the relation

G(σ , t) = Hλ (σ , t)|λ=σ .

follows.

The EMP transfer operator plays in the periodic realm the role that the transfer func-
tion plays in time-invariant systems. Indeed, consider, for each t ∈ [τ,τ+T −1], the
formal discrete-time series {u(t +kT )} and {y(t +kT )}, obtained by uniformly sam-
pling (with tag t) the input and output signals, and define the bilateral z-transform

U(z, t) =
∞

∑
k=−∞

u(t + kT )z−k

Y (z, t) =
∞

∑
k=−∞

y(t + kT )z−k .

Notice that U(zT , t) and Y (ZT , t) are EMP signals in t, since Y (zT , t + kT ) =
Y (zT , t)zkT , t ∈ [τ,τ + T − 1] and analogously for U(zT , t). Hence, Eq. (2.16) can
be used yielding

Y (zT , t) = Gz(σ , t) ·U(zT , t) .

The above equation shows that Gz(σ , t) can be interpreted as “transfer function at
t” since it maps the input z-transform U(zT , t) into the z-transform of the forced
output Y (zT , t). Of course, when the system is time-invariant (T = 1) one can set
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z = σ . Therefore, if G(z) is the transfer function of the time-invariant system, then
Gz(σ , t) = G(z).

Example 2.2 Consider a periodic system of period T = 2, characterized by the
PARMA model

y(t) = a(t)y(t−1)+b(t)u(t−1) .

The associated periodic transfer operator is

G(σ , t) = (1−a(t)σ−1)−1b(t)σ−1 = (σ −a(t +1))−1b(t +1) .

The sampled transfer functions can be derived by making reference to (2.10), thus
obtaining:

H0(σ2, t) = 0.5
(
(σ −a(t +1))−1b(t +1)− (σ +a(t +1))−1b(t +1)

)
.

The denominators of the two terms in this sum neither coincide nor commute. To
work out a common denominator, we preliminarily pre-multiply the first term by
(σ +a(t))(σ +a(t))−1 and the second term by (σ −a(t))(σ −a(t))−1. In this way,
one obtains:

H0(σ2, t) =
a(t)b(t +1)

σ2−a(t)a(t +1)
, t = 0,1 .

Analogously, it is possible to determine H1(σ2, t) as

H1(σ2, t) =
b(t)σ2

σ2−a(t)a(t +1)
, t = 0,1 .

Notice that, as expected, all the four sampled transfer functions are constant coeffi-
cient rational functions of σ2, a fact which was not explicit in the previous expres-
sion. These expressions for Hi(σ2, t) can alternatively be obtained by considering
the equivalent form of the periodic transfer operator

G(σ , t) =
a(t)b(t +1)+b(t)σ
σ2−a(t)a(t +1)

.

which can be derived from the previously given G(σ , t) by pre-multiplying it by
(σ +a(t))(σ +a(t))−1.
Finally, the EMP transfer operator can be obtained from Eq. (2.17) in view of the
previous expression of Hi(σ , t):

Gλ (σ , t) =
a(t)b(t +1)+b(t)σ
λ 2−a(t)a(t +1)

.

The causal equivalent form of this operator is

Hλ (σ ,0) =
a(t)b(t +1)σ−2 +b(t)σ−1

1−a(t)a(t +1)λ−2 .
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2.4 State–Space Description

A celebrated alternative to the input–output representation is provided by the state–
space description. In the finite–dimensional case, this amounts to consider the
model:

x(t +1) = A(t)x(t)+B(t)u(t) (2.19a)

y(t) = C(t)x(t)+D(t)u(t) , (2.19b)

where u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp are the input, state and output vectors, respec-
tively. Matrices A(·), B(·), C(·) and D(·) are real matrices, of appropriate dimen-
sions, which depend periodically on t:

A(t +T ) = A(t), B(t +T ) = B(t), C(t +T ) = C(t), D(t +T ) = D(t) .

A most useful concept is that of state-transition matrix; this matrix denoted by
ΦA(t,τ) with t ≥ τ is defined as:

ΦA(t,τ) =
{

A(t−1)A(t−2) · · ·A(τ), t > τ
I, t = τ .

The solution of System (2.19a) is given by

x(t) = ΦA(t,τ)x(τ)+
t−1

∑
j=τ

ΦA(t, j +1)B( j)u( j) . (2.20)

In this expression we distinguish the free state motion xL(t) and the forced state
motion xF(t)

xL(t) = ΦA(t,τ)x(τ), xF(t) =
t−1

∑
j=τ

ΦA(t, j +1)B( j)u( j) .

In this way, one can see the state evolution x(·) as the superposition of the free and
forced motions x(t) = xL(t)+ xF(t).

Remark 2.2 The free motion expression can be derived in an operator way. For,
write the state–space equation for the free motion originating in x(τ−1) = 0 as

x(t +1) = A(t)x(t)+ x(τ)δ (t +1− τ) ,

where δ (·) is the Kronecker function (2.2). By resorting to the σ operator, one ob-
tains

x(t) = (σ I−A(t))−1σx(τ)δ (t− τ)
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This operator expression can be elaborated as follows:

x(t) = (σ I−A(t))−1σx(τ)δ (t− τ)
=
(
I−σ−1A(t)

)−1
x(τ)δ (t− τ)

=
∞

∑
k=0

ΦA(t, t− k)σ−kx(τ)δ (t− τ)

=
∞

∑
k=0

ΦA(t, t− k)x(τ)δ (t− τ− k)

= ΦA(t,τ)x(τ)

so that the classical free motion formula is recovered.

As for the output, it is straightforward to see that

y(t) = C(t)ΦA(t,τ)x(τ)+
t−1

∑
j=τ

C(t)ΦA(t, j +1)B( j)u( j)+D(t)u(t) . (2.21)

Again one can write y(t) = yL(t)+ yF(t) where

yL(t) = C(t)ΦA(t,τ)x(τ), yF(t) =
t−1

∑
j=τ

C(t)ΦA(t, j +1)B( j)u( j)+D(t)u(t)

are the free and forced output motion, respectively. Letting

M0(t) = D(t), M1(t) = C(t)B(t−1), M2(t) = C(t)A(t−1)B(t−2),
M3(t) = C(t)A(t−1)A(t−2)B(t−3), · · · ,

the forced output motion can be written as

yF(t) =
t−τ
∑
j=0

Mj(t)u(t− j) .

In this formula, if one let τ →−∞, then Expression (2.1) is eventually recovered.
As already said, the parameters Mi(t) are known as Markov coefficients.

A particularly significant role is played by the so-called monodromy matrix, which
is defined as the transition matrix over a period [τ, τ +T −1]:

ΨA(τ) = ΦA(τ +T,τ) .

The eigenvalues of this matrix are named characteristic multipliers. The mon-
odromy matrix and the characteristic multipliers are fundamental tools in the analy-
sis of periodic systems, noticeably for the stability analysis, and will be extensively
studied in the next chapter.
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Thanks to periodicity, the Markov parameters can be written as

M0(t) = D(t), MjT+i(t) = C(t)ΨA(t) jΦA(t, t− i+1)B(t− i) , (2.22)

where j = 0,1,2, · · · and i ∈ [1,T ]. Moreover, a simple computation shows that the
sampled transfer functions Hi(z, t) defined in (2.4) are given by:

H0(z, t) = D(t)+C(t)(zI−ΨA(t))−1ΦA(t, t−T +1)B(t) (2.23a)

Hi(z, t) = zC(t)(zI−ΨA(t))−1ΦA(t, t− i+1)B(t− i), i ∈ [1,T −1] . (2.23b)

Hence, all Hi(z, t) are rational functions of z, and, according to the definition in
Sect. 2.1, the system is rational. From Expressions (2.7), (2.23), the periodic transfer
operator G(σ , t) can be given the compact form

G(σ , t) = D(t)+C(t)(σT I−ΨA(t))−1B(σ , t) (2.24a)

B(σ , t) =
T−1

∑
j=0

ΦA(t, t + j−T +1)B(t + j)σ j . (2.24b)

This expression is reminiscent of the classical formula of a transfer function of a
time-invariant system, the only difference being that the input matrix is replaced by
a polynomial matrix of σ -powers up to T −1.

Finally, consider the periodic System (2.19) fed by the EMP input function

u(t + kT ) = u(t)λ kT , t ∈ [τ,τ +T −1] ,

and assume that λT does not coincide with any characteristic multiplier of A(·).
Then the initial state

xλ (τ) = (λT I−ΨA(τ))−1
τ+T−1

∑
i=τ

ΦA(τ +T, i+1)B(i)u(i) (2.25)

is such that both the state and the corresponding output are still EMP signals, i.e.,

x(t + kT ) = x(t)λ kT , t ∈ [τ,τ +T −1]

y(t + kT ) = y(t)λ kT , t ∈ [τ,τ +T −1] .

Note that, for any t ∈ [τ,τ +T −1], the EMP output y(t) can be written as

y(t) = C(t)ΦA(t,τ)xλ (τ)+C(t)
t−1

∑
i=τ

ΦA(t, i+1)B(i)u(i)+D(t)u(t) .

Since xλ (τ) is given by (2.25) and the following property holds true

ΦA(t,τ)(λT I−ΨA(τ))−1 = (λT I−ΨA(t))−1ΦA(t,τ) ,
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a cumbersome computation shows that y(·) can be equivalently rewritten as

y(t) = C(t)(λT I−ΨA(t))−1
t+T−1

∑
i=t

ΦA(t +T, i+1)B(i)u(i)+D(t)u(t) .

This expression can be given a compact operator form as

y(t) = Gλ (σ , t)u(t) ,

where
Gλ (σ , t) = D(t)+C(t)(λT I−ΨA(t))−1B(σ , t) , (2.26)

and B(σ , t) was defined in (2.24b). This is the state–space version of the EMP
transfer operator introduced in the previous section.

Remark 2.3 As seen in Remark 2.1, the EMP transfer operator can be given a
causal expression Hλ (σ , t). In the state–space context, the causal expression is

Hλ (σ , t) = D(t)+C(t)(I−ΨA(t)λ−T )−1σ−T B(σ , t) . (2.27)

Example 2.3 Consider System (2.19) with T = 2, D(0) = D(1) = 0 and

A(t) =
{

2 t = 0
−5 t = 1

, B(t) =
{

1 t = 0
−2 t = 1

, C(t) =
{

0.5 t = 0
3 t = 1

.

From (2.23), it follows that

H0(z,0) =
−2.5
z+10

, H1(z,0) =
−z

z+10

H0(z,1) =
−12

z+10
, H1(z,1) =

3z
z+10

.

As for the polynomial B(σ , t), it can be computed from (2.24b):

B(σ , t) =
{−5−2σ t = 0
−4+σ t = 1 ,

so that the periodic transfer operator as in (2.24a) turns out to be given by:

G(σ ,0) =
−2.5−σ
σ2 +10

, G(σ ,1) =
−12+3σ
σ2 +10

.

Finally, from (2.26) and (2.27), the following relations are obtained:

Gλ (σ ,0) =
−2.5−σ
λ 2 +10

, Gλ (σ ,1) =
−12+3σ
λ 2 +10

Hλ (σ ,0) =
−2.5σ−2−σ−1

1+10λ−2 , Hλ (σ ,1) =
−12σ−2 +3σ−1

1+10λ−2 .
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A different way to work out the transfer operator from the state–space description
of the system is that of considering directly the action of the 1-step-ahead shift
operator σ on the state, input and output signals. Indeed, consider the System (2.19)
and notice that it is possible to regard the action of the initial state x0 = x(0) in the
following way

x(t +1) = A(t)x(t)+B(t)u(t)+ x0δ (t +1) (2.28)

y(t) = C(t)x(t)+D(t)u(t)
x(−1) = 0 ,

where δ (t) is the (discrete) impulse function defined in (2.2). Obviously in (2.28) is
has tacitly assumed that u(τ) = 0 for τ < 0. By resorting to the operator σ it follows
that

x(t) = (σ I−A(t))−1σx0 ·δ (t)+(σ I−A(t))−1B(t) ·u(t) ,

and

y(t) = C(t)(σ I−A(t))−1σx0 ·δ (t)+
[
C(t)(σ I−A(t))−1B(t)+D(t)

] ·u(t) .

Of course the transfer operator can be written as

G(σ , t) = C(t)(σ I−A(t))−1B(t)+D(t) . (2.29)

Equation (2.29) is formally identical to the usual formula of the transfer function
for time-invariant systems. Obviously, when computing the inverse of σ I−A(t), the
skew commutative role of the operator σ must be taken into account, as illustrated
in the subsequent example.

Example 2.4 Consider the matrix

A(t) =
[

0 1
1 α(t)

]

where α(t) is a 2-periodic scalar function. The inverse of the operator matrix σ I−
A(t) is given by:

(σ I−A(t))−1 =
[

(σ −α(t)) 1
1 σ

][
(σ2−α(t +1)σ −1)−1 0

0 (σ2−α(t)σ −1)−1

]

=
[

(σ2−α(t)σ −1)−1 0
0 (σ2−α(t +1)σ −1)−1

][
(σ −α(t)) 1

1 σ

]

The easy check of the above expression is left to the reader.

Compare the Expression (2.29) with the EMP transfer function Gλ (σ , t) as given
by Eq. (2.26). Since Relation (2.18) holds true, such comparison suggests that

(σT I−ΨA(t))−1B(σ , t) = (σ I−A(t))−1B(t) .
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The validity of such identity can be proven as follows:

(σ I−A(t))−1B(t) = (I−σ−1A(t))−1σ−1B(t)

=
∞

∑
k=0

ΦA(t, t− k)σ−k−1B(t)

=
∞

∑
p=0

T−1

∑
i=0

ΦA(t, t− i− pT )B(t− i−1)σ−i−1−pT

=
∞

∑
p=0

ΨA(t)σ−pT
T−1

∑
i=0

ΦA(t, t− i))B(t− i−1)σ−i−1

= (I−σ−TΨA(t))−1
T−1

∑
i=0

ΦA(t, t− i)B(t− i−1)σ−i−1

= (σT I−ΨA(t))−1
T−1

∑
j=0

ΦA(t, t + j−T +1)B(t + j)σ j

= (σT I−ΨA(t))−1B(σ , t) .

Example 2.5 Consider again the 2-periodic 1-dimensional system defined in Ex-
ample 2.3. The periodic transfer operator, as defined in (2.29), is

G(σ , t) = C(t)(σ −A(t))−1B(t) .

By noticing that

C(t)(σ −A(t))−1 = (σ −A(t)C(t +1)C(t)−1)−1C(t +1) ,

it follows
G(σ , t) = (σ −A(t)C(t +1)C(t)−1)−1C(t +1)B(t) .

Multiplying by

(σ +C(t)C(t +1)−1A(t +1))(σ +C(t)C(t +1)−1A(t +1))−1 ,

we have

G(σ , t) = (σ2−A(t)A(t +1))−1)(B(t +1)C(t)σ +C(t)A(t +1)B(t))

=
B(t +1)C(t)σ +C(t)A(t +1)B(t)

σ2−A(t)A(t +1)
,

which is easily proven to coincide with the one worked out in Example 2.3.

We end this section by pointing out the effect of a change of basis in the state–space.
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Consider the new state coordinates

x̃(t) = S(t)x(t)

where S(·) is a n×n T -periodic matrix, invertible for each t. The new representation
of the given system is

x̃(t +1) = Ã(t)x̃(t)+ B̃(t)u(t)
y(t) = C̃(t)x̃(t)+ D̃(t)u(t) ,

with

Ã(t) = S(t +1)A(t)S(t)−1, B̃(t) = S(t +1)B(t) (2.30a)

C̃(t) = C(t)S(t)−1, D̃(t) = D(t) . (2.30b)

In system theory, two systems defined by the quadruplets (A(·),B(·),C(·),D(·) and
(Ã(·), B̃(·),C̃(·), D̃(·) related as in (2.30) are said to be algebraically equivalent. It
is easy to see that the transition matrices and the monodromy matrices associated
with A(·) and Ã(·) are related to each other as follows

ΦÃ(t, i) = S(t)ΦA(t, i)S(i)−1 (2.31a)

ΨÃ(t) = S(t)ΨA(t)S(t)−1 . (2.31b)

Formula (2.31b) is a similarity transformation which, as is well-known, preserves
eigenvalues. This means that the characteristic multipliers of a periodic system are
independent of the state representation.
In the same vein, one can observe that the Markov parameters are invariant with
respect to the change of basis, as an easy computation starting from Expressions
(2.22) and (2.31a) reveals. As a consequence, the periodic transfer operator, the
sampled transfer functions, and the EMP transfer operators are invariant as well.
This conclusion is expected since all these quantities have to deal with the input–
output behavior of the system, and, as such, must be insensitive to the choice of
basis in state–space.

2.5 Adjoint Operator and Its State–Space Description

For a (discrete-time) time-invariant system with transfer function W (z), the adjoint
system is defined as the system with transfer function W∼(z) = W (z−1)′. Notice
that the adjoint transfer function W∼(z) may correspond to a system which is not
causal. This is indeed a major difference between discrete-time and continuous-time
systems. If (A,B,C,D) is a state–space realization of W (z), then

W (z) = D+C(zI−A)−1B, W∼(z) = D′+B′(z−1I−A′)−1C′ .
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Now, consider the periodic System (2.19) and the transfer operator

G(σ , t) = M0(t)+M1(t)σ−1 +M2(t)σ−2 +M3(t)σ−3 + · · ·
= D(t)+C(t)(σ I−A(t))−1 B(t) .

The adjoint operator is defined as

G∼(σ , t) = M0(t)′+σM1(t)′+σ2M2(t)′+σ3M3(t)+ · · ·
= M0(t)′+M1(t +1)′σ +M2(t +2)′σ2 +M3(t +3)σ3 + · · ·
= D(t)′+B(t)′

(
σ−1I−A(t)′

)−1
C(t)′ .

It is easy to check that the state–space system corresponding to the adjoint operator
is written in the form

A(t)′λ (t +1) = λ (t)−C(t)′v(t) (2.32a)

ς(t) = B(t)′λ (t +1)+D(t)′v(t) . (2.32b)

This form is referred to in the literature as the descriptor form. In general, a periodic
system in descriptor form is characterized by the modified state equation E(t)x(t +
1) = A(t)x(t)+B(t)u(t), where E(·) is T -periodic.

2.6 Bibliographical Notes

Most of the fundamental concepts presented in this chapter for periodic systems are
rooted in the core of basic system theory; classical textbooks are [85, 203, 204, 255,
316]. For time-varying systems, the notion of transfer function operator goes back
to the early 1950s, [315], and has been subsequently studied and elaborated further
by a number of authors, see e.g., [205, 206]. For the fractional representation of
PARMA models we refer to [132] and [47].
In the developments of the theory, further families of periodic models have been
introduced in the literature. Among them, we mention the so-called descriptor peri-
odic systems which, as said above, are characterized by the modified state equation
E(t)x(t +1) = A(t)x(t)+B(t) u(t), where E(t) is T -periodic too. Another interest-
ing approach is supplied by the behavioral modelization. We will not cover these
aspects, and the interested reader can refer to the literature, e.g., [215, 277].
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