
Preface

The purpose of this volume is to provide a comprehensive view of the theory of
periodic systems, by presenting the fundamental analytical tools for their analysis
and the state of the art in the associated problems of filtering and control. This book
is intended to be useful as a reference for all scientists, students, and professionals
who have to investigate periodic phenomena or to study periodic control systems.
For teaching purposes, the volume can be used as a textbook for a graduate course,
especially in engineering, physics, economics and mathematical sciences. The treat-
ment is self-contained; only a basic knowledge of input–output and state–space rep-
resentations of dynamical systems is assumed.

Periodic Systems

Ordinary differential equations with periodic coefficients have a long history in
physics and mathematics going back to the contributions of the 19th century by
Faraday [134], Mathieu [230], Floquet [145], Rayleigh [250] and [251], Hill [184],
and many others. As an intermediate class of systems bridging the time-invariant
realm to the time-varying one, periodic systems are often included as a regu-
lar chapter in textbooks of differential equations or dynamical systems, such as
[123, 175, 237, 256, 303]. In the second half of the 20th century, the develop-
ment of systems and control theory has set the stage for a renewed interest in the
study of periodic systems, both in continuous and in discrete-time, see e.g., the
books [136, 155, 228, 252, 312] and the survey papers [29, 42]. This has been em-
phasized by specific application demands, in particular in industrial process control,
see [1, 43, 76, 266, 267, 299], communication systems, [119, 144, 282], natural sci-
ences, [225] and economics, [148, 161].
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Periodic Control

The fact that a periodic operation may be advantageous is well-known to mankind
since time immemorial. All farmers know that it is not advisable to always grow the
same crop over the same field since the yield can be improved by adopting a crops
rotation criterion. So, cycling is good.

In more recent times, similar concepts have been applied to industrial problems.
Traditionally, almost every continuous industrial process was set and kept, in pres-
ence of disturbances, at a suitable steady state. It was the task of the designer
to choose the optimal stationary regime. If the stationary requirement can be re-
laxed, the question arises whether a periodic action can lead to a better perfor-
mance than the optimal stationary one. This observation germinated in the field
of chemical engineering where it was seen that the performance of a number of
catalytic reactors improved by cycling, see the pioneer contributions [17, 153, 189].
Suitable frequency domain tests have been developed to this purpose in the early
1970s, [25, 62, 162, 163, 172, 173, 275]. Unfortunately, as pointed out in [15], peri-
odic control was still considered “too advanced” in the scenario of industrial con-
trol, in that “the steady-state operation is the norm and unsteady process behavior is
taboo”. Its interest was therefore confined to advanced applications, such as those
treated in [274] and [257]. However, in our days, the new possibilities offered by the
control technology, together with the theoretical developments of the field, opened
the way for a wide use of periodic operations. For example, periodic control is use-
ful in a variety of problems concerning under-actuated systems, namely systems
with a limited number of control inputs with respect to the degrees of freedom. In
this field, control is often performed by imposing a stable limit cycle, namely an
isolated and attractive periodic orbit, [97, 150, 179]. Another example comes from
non-holonomic mechanical systems, where in some cases stabilization cannot be
achieved by means of a time-invariant differentiable feedback control law, but it is
achievable with a periodic control law, [14, 86].

In contemporary literature, the term periodic control takes a wider significance, and
includes problems where either the controller or the system under control is a proper
periodic system.

Periodic Models in Time-Series and Signal-Processing

Periodic models are useful in signal-processing and time-series analysis as well. In
digital signal processing, periodicity arises whenever filter banks are used to im-
pose different sampling rates for data compression, see [282] for a reference book.
In time-series analysis, there are important phenomena that exhibit a periodic-like
behavior. A typical example is constituted by the Wolf series of the sun spot num-
bers, a series which presents a sort of periodicity of 11.4 years. A distinctive feature
of some seasonal series is that its lack of stationarity is not limited to the non-
stationarity of the mean value: higher order statistics do not match those of a sta-
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tionary process. In such cases, a model with periodic coefficients is more accurate
than time-invariant modeling, especially for prediction purposes. The theory of such
models is the subject of many publications, both theoretical and applied. The cor-
responding stochastic processes are named cyclostationary processes or periodic
correlated signals, [79, 146, 155, 160, 190–192, 199, 222–225].

Motivating Applications

Among all possible fields where periodic control has a major impact, we focus here
on a couple of motivating applications.

In aerospace, a considerable effort has been devoted to the development of active
control systems for the attenuation of vibrations in helicopters. Besides improving
the comfort of the crew and passengers, such attenuations would be profitable to
reduce fatigue in the rotor structure of the aircraft and to protect on-board equip-
ment from damage. Various approaches to this problem have been proposed in the
literature, [280]. Among them, the focus is on the Individual Blade Control (IBC)
strategies, [176, 196, 280] and references quoted therein. In an IBC framework, the
control input is the pitch angle of each blade of the main rotor, while the output
is the acceleration of the vibratory load transmitted from the blades to the rotor
hub. This IBC vibration control problem arises in various flight conditions. While
in hovering (motionless flight over a reference point), the dynamics of the rotor
blade can be described by a time-invariant model; in forward flight the dynamics
turns out to be time-periodic, with period 2π/Ω , where Ω is the rotor revolution
frequency, see [198]. More precisely, the matrices of the model are periodic and
take different values depending on the forward velocity of the aircraft. As for the
vibration effect, if only the vertical component of the vibratory load is considered, it
can be conveniently modeled by a periodic additive disturbance with frequency NΩ ,
where N is the number of blades. The reader interested in more details is referred
to [11, 71, 73, 75].

Another aerospace application can be found in satellite attitude control. The recent
interest in small earth artificial satellites has spurred research activity in the attitude
stabilization and control. The typical actuator is the magneto-torque, a device based
on the interaction between the geomagnetic field and the magnetic field generated
on-board by means of a set of three magnetic coils, typically aligned with the space-
craft principal axis. The current circulating in the coils is produced by means of solar
paddles. A time history of the geomagnetic field encountered by the satellite along
a (quasi) polar orbit shows a very strong periodic behavior, [302]. Consequently,
the effect of the interaction between the geomagnetic field and the on-board mag-
netic field is periodically modulated with a period equal to the period of rotation of
the satellite around the earth. It is therefore not surprising that the attitude model
obtained by linearization of the satellite dynamics around the orbit is essentially
periodic, [12, 135].



xii Preface

Turning to the field of economics and finance, a longstanding tradition in data
analysis is to adopt additive models where trend, seasonality, and irregularity are
treated as independent components none of which can be separately observed,
[84, 177, 188, 232, 283]. In economic data, the seasonal term is determined by the
natural rhythm of the series, typically 12 months or four quarters. The decomposi-
tion can be performed with various techniques. The US Bureau of Census seasonal
adjustment toolkit known as X −11 is one of the most used, [217]. The basic ratio-
nale behind “seasonal adjustment”, is to pre-filter data so as to obtain a new series
that can be described by an ARMA (AutoRegressive Moving Average) model. Solid
identification and forecasting methods are then available. Reality, however, is often
complex, and periodicity may be hidden in a more subtle form. This is the case of
the STANDARD & POOR’s 500 (S&P 500) stock index, or the UK non-durable
consumer’s expenditures, [147, 148, 161, 240]. The higher-order periodicity is bet-
ter captured by Periodic ARMA or Periodic GARCH (Generalized AutoRegressive
Conditional Heteroscedastic) models, so obtaining a significant improvement in the
accuracy of forecasts, [241].

Organization of the Book

As already said, this book aims to provide a theoretical corpus of results relative
to the analysis, modeling, filtering, and control of periodic systems. The primary
objective is to bring together in a coordinated view the innumerable variety of con-
tributions appeared over many decades, by focusing on the theoretical aspects.

We concentrate on discrete-time signals and systems. However, in Chap. 1 we pro-
vide an overview of the entire field, including the continuous-time case. In particu-
lar, we will present the celebrated Π -test aiming at establishing whether a periodic
operation of a time-invariant plant may lead to better performances than the opti-
mal steady-state operation, see [25, 62, 162, 163, 172, 274–276], in continuous-time
and [64, 65] in discrete-time.

The book proceeds with Chap. 2, devoted to the basic models and tools for the
analysis. Among the key ingredients of this chapter, we mention the periodic transfer
operator, the PARMA representation and the periodic state–space representation.

In Chap. 3, the discrete-time version of the Floquet theory is presented and the char-
acterization of stability is provided also in terms of Lyapunov difference inequal-
ities. Robust stability criteria are provided as periodic linear matrix inequalities.
Finally, the companion forms for periodic systems are introduced.

Chapter 4 is devoted to structural properties. Here we provide a thorough analysis
of reachability, controllability, observability, reconstructability, stabilizability, and
detectability. From this study, the canonical decomposition of a periodic system
follows. The structural properties allow the derivation of the so-called inertia results
for the Lyapunov difference equations.
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The study of periodic systems as input–output periodic operators is the subject of
Chap. 5. Here, a single-input single-output (SISO) periodic system is seen as the
(left or right) ratio of periodic polynomials. Instrumental to this study is the algebra
of such polynomials. The chapter ends with the definition and characterization of
input–output stability. A main tool for the analysis of periodic systems in discrete-
time is provided by the reformulation technique. This amounts to the rewriting of
a periodic system as a time-invariant one via a suitable transformation of variables.
This is indeed a powerful technique, often encountered in the literature. However,
in any design steps one has to explicitly take into account the constraints which a
time-invariant system must meet in order to be transformed back into a periodic one.

These considerations are at the basis of Chap. 6, where three time-invariant refor-
mulations are treated, namely, the time-lifted, the cyclic and the frequency-lifted
reformulations.

The state–space realization problem, in its various facets, is studied in Chap. 7. After
the definition of minimality for periodic systems, we first consider the determination
of a state–space model starting from the time-lifted transfer function. Then, the re-
alization of SISO systems from polynomial fractions is analyzed. The chapter ends
with the study of balanced realization.

The notions of poles and zeros are dealt with in Chap. 8. These notions are seen from
different angles, depending on the adopted type of model. Related to this study is
the analysis of the delay structure, leading to the notion of spectral interactor matrix.

Chapter 9 is devoted to the norms of periodic systems. In particular, the notions of
L2 and L∞ norms are widely discussed, and their characterizations are given both in
the time and frequency domain. The definition of entropy is also introduced. Finally
the role of the periodic Lyapunov difference equation in the computation of the l∞-l2
gain is pointed out.

Chapter 10 deals with the problem of factorization of a periodic system. The spectral
factorization and the J-spectral factorization are characterized in terms of the peri-
odic solutions of suitable periodic Riccati equations. Finally, the parametrization of
all stabilizing controllers is treated both in the field of rational periodic operators
and in the field of polynomial periodic operators.

Cyclostationary processes are concisely studied in Chap. 11, with special references
to their spectral properties.

Chapter 12 includes the typical estimation problems. First, filtering, prediction and
fixed-lag smoothing in L2 are considered via state–space and factorization tools. In
particular, the celebrated periodic Kalman filtering theory is recovered. Next, the
same problems are tackled in the L∞ framework.

In the last chapter, namely Chap. 13, we treat a large number of stabilization and
control problems. We begin with the characterization of the class of periodic state-
feedback controllers in terms of periodic linear matrix inequalities. The extension
to uncertain systems is also dealt with. Next, the classical problem of pole assign-
ment is considered. Both sampled and memoryless state-feedback control laws are
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considered. The chapter proceeds with the description of the exact model matching
problem and the H2 and H∞ state-feedback control problems. The static output-
feedback stabilization problem is dealt with next. The last section regards the dy-
namic output-feedback problem, including robust stabilization via a polynomial de-
scription, the LQG and the H∞ problems.
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