
Chapter 3

Elastic Model of a Deformable Fingertip

3.1 Introduction

To date, much research has been done on the manipulation of objects by soft-
fingered robotic hands. Most of these studies, particularly the earlier ones,
focused only on contact mechanisms on various soft fingers. More recently,
there has been an increase in the number of studies investigating the sens-
ing mechanisms of the human hand and designing control systems in robotic
applications to emulate the human capabilities that are applicable to robotic
hands. Conventional studies, however, have not explicitly provided any ana-
lytical exploration of the simplicity in grasping and manipulating motions in
terms of soft-fingered handling. It has therefore been very difficult to derive
a fine elastic model of soft materials used in fingertips.

Yokokohji et al. proposed a control scheme with visual sensors that can
cancel the frictional twist/spin moment at the contact point of soft fingertips
and achieved stable grasping by spherical soft fingertips [YSY99, YSY00].
Maekawa et al. developed a finger-shaped tactile sensor covered with a soft,
thin material and proposed a control algorithm based on tactile feedback us-
ing a sensor that requires no information about the geometry of the grasped
object [MKT92, MTK+92]. They managed to control the position of an ob-
ject along a desired trajectory. In these papers, point-contacts were used
to represent the constraints of rolling contact in their theoretical models,
although the fingertips were made from a soft material such as rubber. Ari-
moto et al. verified the passivity of equations of motion for a total handling
system using a Lagrangian function incorporating the elastic potential en-
ergy due to the deformation of soft fingertips [ANH+00] and compensated
for the gravity effect in 3D space [ADN+02]. An elastic force model was also
derived for the elastic potential energy of a system in which, for simplicity,
virtual linear springs were arranged in a radial pattern inside hemispherical
soft fingertips. Doulgeri et al. discussed the problem of stable grasping with
deformable fingertips on which rolling constraints were described as nonholo-
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nomic because of the change in the effective rolling radius of the soft fingertip
[DFA02, DF03]. The above-mentioned studies, however, focused mainly on
deriving a control law to realize stable grasping and attitude control of the
grasped object rather than on revealing a physically appropriate deformation
model, which also contains the nonlinear characteristics of a hemispherical
soft fingertip.

On the other hand, Xydas et al. proposed an exact deformation model
based on the mechanics of materials having nonlinear characteristics and
performed finite element analysis (FEA) for a hemispherical soft fingertip
[XK99, XBK00]. Kao et al. experimentally demonstrated that the elastic force
due to deformation satisfied a power law with respect to the displacement
of the fingertip and insisted that their theory subsumed Hertzian contact
[KY04]. These studies, however, did not distinguish between the material
nonlinearity of the soft fingertip and the geometric nonlinearity caused by
the hemispherical shape of the fingertip; they also defined a parameter that
accounts for the effects of both nonlinearities. Consequently, the cause of the
discrepancy between the results of the simulation based on their model and
the results of actual experiments was not apparent. In addition, as a result of
the complexity of these models, these studies do not generally lend themselves
to the analysis of equations of motion for a soft-fingered manipulation system.
While FEA may enable us to derive a stress distribution and an elastic force
on the soft fingertip, these simulation results depend on the selected mesh
pattern. Although FEA based on a certain arbitrary mesh pattern may prove
the stability for equations of motion of the handling system, it does not always
provide proof of stability for equations derived from other mesh patterns.

We herein propose a static elastic model of a hemispherical soft finger-
tip in a physically reasonable and straightforward form suitable for theo-
retical analysis of robotic handling motions. This model is assumed to be
composed of 1D linear springs placed within a hemispherical soft fingertip
that stand perpendicularly on the bottom and is called a parallel-distributed
model. We distinguish between geometric nonlinearity due to the hemispher-
ical shape and material nonlinearity of soft materials, i.e., the nonlinearity
of the Young’s modulus of the soft material, allowing us to focus only on
the geometric nonlinearity of the soft fingertip and analytically formulate
the elastic force and elastic potential energy equations for the deformation
of the fingertip. We show that each equation is a function of two variables:
the maximum displacement of the fingertip and the orientation angle of the
contacted object. We also show that when the object is positioned normal to
the fingertips, the elastic potential energy is minimal. Finally, we validate the
static elastic model by conducting a compression test of the hemispherical
soft fingertip and evaluating the results.
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3.2 Static Elastic Model of a Hemispherical Soft
Fingertip

3.2.1 Fingertip Stiffness

We treat the fingertips as if they were composed of an infinite number of
virtual linear springs that are standing vertically. Figure 3.1 shows one such
spring. We formulate elastic force and elastic potential energy equations for
the deformation of the fingertip. In order to simplify the derivation process
of both equations, two assumptions associated with material characteristics
are given as follows: (1) The incompressibility of elastomer materials is not
considered and (2) Young’s modulus is assumed to be constant. Note that
the contact condition being discussed in the present study is restricted to
the case in which a force applied to the fingertip is assumed to be along the
z-axis of the fingertip. In addition, we assume that the object never comes
into contact with the bottom plane of the fingertip.

Let us apply an infinitesimal virtual spring QR with sectional area dS in-
side the soft fingertip, as shown in Fig. 3.1. Let dF be the infinitesimal elastic
force due to the shrinkage PQ of the virtual spring. Let θp be the orientation
angle of the contacting object, and let a be the fingertip radius. Let d be the
maximum displacement of the fingertip, and let ac =

√
a2 − (a − d)2 be the

radius of the contacting circle. Let P be the point at which the spring is in
contact with the object. Finally, let θ be the angle subtended between line
PQ and the z-axis, and let φ be the azimuthal angle on the xy-plane. Using
the contact surface equation, x sin θp + z cos θp = a − d (Appendix A.1), the
length of PR is then expressed as

PR =
a − d − x sin θp

cos θp
. (3.1)

Since the length of QR becomes
√

a2 − (x2 + y2) due to the hemispherical
feature, the infinitesimal elastic force dF on a single virtual spring QR is
given by

dF = k · PQ = k

{√
a2 − (x2 + y2) − a − d − x sin θp

cos θp

}
, (3.2)

where k is the linear spring constant of the spring QR. Note that k is pro-
portional to the sectional area dS and inversely proportional to the natural
length

√
a2 − (x2 + y2). Letting E be Young’s modulus of soft-finger mate-

rials, k is described as (Appendix A.2)

k =
E dS√

a2 − (x2 + y2)
. (3.3)
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Letting K be the fingertip stiffness on the entire deformed part illustrated in
Fig. 3.1, based on Eq. 3.3, K can be expressed as

K =
∫

ell

k = E

∫ ac

−ac

∫ b2(y)

b1(y)

dx dy√
a2 − (x2 + y2)

, (3.4)

where

b1(y) = (a − d) sin θp − cos θp

√
a2
c − y2, (3.5)

b2(y) = (a − d) sin θp + cos θp

√
a2
c − y2, (3.6)

and ell denotes the elliptical region shown in Fig. 3.2. Applying a numerical
integration to Eq. 3.4, we find that the fingertip stiffness is almost constant
with respect to the object orientation, which is depicted as continuous lines,
as shown in Fig. 3.3. This occurs even when the maximum displacement d
changes several values. This indicates that the fingertip stiffness K is inde-
pendent of the object orientation θp. Hence, in the present study we need
a third assumption: (3)The fingertip stiffness is independent of the object
orientation as long as the maximum displacement remains constant. Using
the above numerical assumption, we formulate the fingertip stiffness K as an
analytical formula.

Next, performing the substitution whereby x = r cosφ cos θp+(a−d) sin θp

and y = r sin φ, Eq. 3.4 is then transformed into (Appendix A.3)
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Fig. 3.3 Comparison between the numerical results of Eq. 3.4 (continuous lines) and
analytical simulations of Eq. 3.8 (dotted lines) for E = 0.2032 MPa

K = E

∫ ac

0

r

{∫ 2π

0

cos θp dφ√
a2 − {x2(r, φ) + y2(r, φ)}

}
dr

= E

∫ ac

0

r

∫ 2π

0

B(r, φ)dφ dr. (3.7)

Since assumption (3) requires that K is independent of θp, we can substitute
θp = 0 into Eq. 3.7 and obtain

K = E

∫ ac

0

r

{∫ 2π

0

dφ√
a2 − r2

}
dr = 2πEd. (3.8)
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Plotting the simulation result of Eq. 3.8 as dotted lines onto Fig. 3.3 together
with the results of Eq. 3.4, we find that these lines coincide with each other.
This implies that the third assumption due to the numerical observation is
appropriate, and the stiffness is a function of only the maximum displacement
d.

3.2.2 Elastic Force

Likewise, using the third assumption associated with the fingertip stiffness, we
formulate the elastic force and potential energy equations in a straightforward
manner. Using Eqs. 3.2 and 3.3, and a geometric relationship QT = PQ cos θp

(Fig. A.2 in Appendix A.3), the elastic force F on the total deformed region
can be written as

F =
∫

ell

kPQ =
1

cos θp

∫
ell

k · QT

=
E

cos θp

∫ ac

−ac

∫ b2(y)

b1(y)

QT(x, y) dx dy√
a2 − (x2 + y2)

. (3.9)

Performing the same variable conversion between the (x, y)-coordinate and
the (r, φ)-coordinate used in the derivation process of K, Eq. 3.9 is then
transformed as

F =
E

cos θp

∫ ac

0

QT(r) · r
{∫ 2π

0

B(r, φ) dφ

}
dr, (3.10)

where (Fig. A.2)

QT(r) =
√

a2 − r2 − (a − d). (3.11)

In Eq. 3.10, B(r, φ) corresponds to the integrand within the braces in Eq. 3.7.
Here, applying assumption (3) to B(r, φ) as well as Eq. 3.8, F is finally
calculated as

F =
E

cos θp

∫ ac

0

QT(r) · r
{∫ 2π

0

dφ√
a2 − r2

}
dr =

πEd2

cos θp
. (3.12)

Thus, we can obtain a straightforward equation that will be applicable to the
analytical validation for manipulation due to the simplicity.
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3.2.3 Elastic Potential Energy

Note that Eqs. 3.12 and 3.15 indicate that the elastic force and elastic po-
tential energy on the entire deformed part of a hemispherical soft fingertip
are functions of two variables, namely, the maximum displacement d and the
object orientation angle θp. Furthermore, we find that both formulae have
a local minimum when the orientation angle remains zero. In particular, we
describe the minimum value of elastic energy as the local minimum of elastic
potential energy (LMEE).

In addition to Eq. 3.9, the elastic potential energy P on the entire deformed
region is expressed as

P =
1
2

∫
ell

kPQ2 =
1

2 cos2 θp

∫
ell

k · {QT(x, y)}2

=
E

2 cos2 θp

∫ ac

−ac

∫ b2(y)

b1(y)

{QT(x, y)}2dx dy√
a2 − (x2 + y2)

. (3.13)

Performing the same variable conversion between the (x, y)-coordinate and
the (r, φ)-coordinate used in the derivation process of F , Eq. 3.13 is then
transformed as

P =
E

2 cos2 θp

∫ ac

0

{QT(r)}2 · r
{∫ 2π

0

B(r, φ) dφ

}
dr. (3.14)

Again, applying assumption (3) to B(r, φ) in Eq. 3.14, P is finally calculated
as

P =
E

2 cos2 θp

∫ ac

0

QT2(r) · r
{∫ 2π

0

dφ√
a2 − r2

}
dr

=
πEd3

3 cos2 θp
. (3.15)

Finally, in order to confirm the transformations of formulae from Eq. 3.9 to
Eq. 3.12 and from Eq. 3.13 to Eq. 3.15, we compare the numerical analysis
of Eqs. 3.9 and 3.13 with the simulation results of Eqs. 3.12 and 3.15. Figure
3.4 shows a good result, and concludes that both Eqs. 3.12 and 3.15 are
mathematically reasonable formulae in the present study.

3.2.4 Relationship Between Elastic Force and Elastic
Energy

While the individual virtual spring used in the present study is based on a
linear elasticity, the entire fingertip model obtained by completing the double
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Fig. 3.4 Comparison between the numerical integration and the analytical simu-
lation of F and P , respectively. The continuous lines correspond to the numerical
results of Eqs. 3.9 and 3.13, and the dotted lines correspond to the analytical results
of Eqs. 3.12 and 3.15

integration on an elliptical region exhibits a geometric nonlinearity caused
by the hemispherical shape of the fingertip. In other words, the completed
fingertip model has a variable fingertip stiffness with respect to d, which is
expressed as Eq. 3.8. Hence, when we compute the total force Eq. 3.12 from
the energy Eq. 3.15, we must define an equivalent displacement to be used
for the differential calculation.

In the case of normal contact corresponding to θp = 0 in Eq. 3.15, elastic
models are given as follows:

P =
πEd3

3
, (3.16)

∂P

∂d
= πEd2 = F, (3.17)

∂2P

∂d2
= 2πEd = K, (3.18)

where d corresponds to the equivalent displacement. Next, let us consider
the case of diagonal contact when θp �= 0. We define Δzeq as an equivalent
displacement, which must satisfy

∂P

∂Δzeq
=

1
3

∂
(
πEΔz3

eq cos θp

)
∂Δzeq

= πEΔz2
eq cos θp =

πEd2

cos θp
= F, (3.19)

∂2P

∂Δz2
eq

=
∂
(
πEΔz2

eq cos θp

)
∂Δzeq

= 2πEΔzeq cos θp = 2πEd = K. (3.20)

The displacement Δzeq to fulfill Eqs. 3.19 and 3.20 can be found such that
a geometric relationship d = Δzeq cos θp is maintained as shown in Fig. A.2.



3.3 Comparison with Hertzian Contact 27

Δzeq is the true maximum displacement among all of the virtual springs in
any case that includes θp = 0 and θp �= 0.

3.3 Comparison with Hertzian Contact

In 1881, Hertz proposed a contact theory for two elastic objects having arbi-
trary curved surfaces [Joh85]. He showed that a normal contact force gener-
ated between an elastic sphere and a plane, whose Young modulus is infinity,
can be expressed as

F =
4
√

R

3

(
E

1 − ν2

)
d

3
2 , (3.21)

where R is the radius, E is the Young modulus of the object, ν is the Poisson
ratio, and d is the maximum displacement of the sphere. Since the above
equation is useful from a practical viewpoint, it has been widely used for
computing the contact stress between, for example, a wheel and a rail, a roll
and material, or a retainer and a ball in a bearing. However, in Hertzian
contact, it is assumed that both elastic objects are open elliptic paraboloids
with an arbitrary radius of curvature. Consequently, no boundary conditions
are used in the Hertzian contact model.

Kao et al. defined the parameter cd corresponding to a material and geo-
metric nonlinearity [KY04] and transformed Eq. 3.21 into

F = cdd
ζ . (3.22)

They conducted a vertical compression test using a hemispherical soft finger-
tip and estimated the parameter cd empirically using a weighted least-squares
method (LSM). It has been shown that ζ is approx. 2.3 or 1.75 when the rate
of deformation of the finger is above or below 20%, respectively. In other
words, the parameter ζ is not identical to 3/2 in the contact model of soft
fingertips. Thus, the Hertzian contact theory cannot be adopted for deriving
the elastic model of the hemispherical soft fingertip.

Figure 3.5 shows a comparison result in which the elastic force value with
respect to the displacement d is plotted when a hemispherical soft fingertip of
radius 20 mm is compressed vertically. The vertically oriented spring model
is more suitable for deriving an elastic force up to the midrange displacement
of the fingertip. This is because our model contains a geometric nonlinearity
due to the hemispherical shape of the fingertip, that is, the present model
indicates that ζ becomes not 3/2, but 2, which appears within 1.75 and 2.3,
only by adopting an appropriate natural length for the individual springs.

Soft materials exhibit nonlinear characteristics, even for infinitesimal de-
formations. Tatara newly derived a nonlinear Young’s modulus with respect
to compressive strain [Tat91]. Furthermore, the concept of the contact angle



28 3 Elastic Model of a Deformable Fingertip

 0  1  2  3  4  5  6  7  8  9  10

Hertz

Experiment

0

10

20

30

40

50

60

70

80

F
[N

]

Displacement d [mm]

Theoretical force model
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of the object is not incorporated in the Hertzian contact theory. While the
Hertzian contact theory can be used for a simple contact pattern correspond-
ing to the normal contact, no contact at any other arbitrary angle or rolling
contact can be defined. On the other hand, the elastic models proposed in
this chapter cover any contact angle of the object, and therefore, these mod-
els can be used to analyze grasping and manipulating motions for various
possible types of contact by a soft-fingered robotic hand.

3.4 Measurement of Young’s Modulus

In the present study, the Young modulus of the soft fingertip was measured
by conducting a compression test on six cylinders of polyurethane gel. Three
cylinders were 20 mm in diameter and 15, 20, and 25 mm in height, and
three were 30 mm in diameter and 15, 20, and 25 mm in height, as shown in
Fig. 3.6a.

Figure 3.7a shows an overall view of a measured stress-strain diagram,
and an enlarged view of part of the diagram is shown in Fig. 3.7b. The nu-
merical values shown in both graphs denote the specimen height on the left
side and the specimen diameter on the right side. The data were averaged
and smoothed using the LSM, as shown in Fig. 3.8. We assumed the maxi-
mum deformation of the soft fingertip to be 50% of the radius. Furthermore,
in order to focus predominantly on the geometric nonlinearity due to the
hemispherical shape, we did not consider the material’s nonlinearity, which,
for soft materials, is directly related to the Young’s modulus. Consequently,
we performed a linear approximation for a 50% strain, as in Fig. 3.8 and
estimated the Young modulus as 0.2032 MPa.
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Fig. 3.6 Compression test of a hemispherical soft fingertip
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Fig. 3.7 Stress-strain diagram of polyurethane rubber

 0  10  20  30  40  50  60  70  80
Strain

Measurement

Linear
Approximation

Average

0

100

200

300

400

500

600

700

S
tre

ss
[k

P
a]

value

[%]

Fig. 3.8 Average value of stress-strain diagram

3.5 Compression Test

By compressing a hemispherical soft fingertip made of polyurethane gel along
the normal direction, as shown in Figs. 3.1 and 3.6b, we verified the validity of
the elastic force model represented in Eq. 3.12. Furthermore, by conducting
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Fig. 3.9 Simulation results of elastic force

multiple experiments with various contacting angles, we demonstrated the
existence of the local minimum of the elastic force. In the compression test,
we used a fingertip with a diameter of 40 mm and contacting rods of 13
different shapes. The rods were inclined from 0 to 30◦ in increments of 2.5◦,
as shown in Fig. 3.6b. Figure 3.10 compares the experimental results with the
simulation results. The horizontal axis represents the maximum displacement
of the compressed fingertip, while the vertical axis represents the elastic force
measured by a load cell placed in the compression machine.

In all of the graphs in Fig. 3.10, the simulation and experimental results are
almost identical up to d = 6.0 mm, after which the discrepancies increase with
the magnitude of the displacement. The discrepancies stem from the linear
approximation of the experimental stress-strain diagram shown in Fig. 3.8.
The effect leads directly to the nonlinearity of Young’s modulus, which is
outside the scope of the present study.

Figure 3.9a and 3.11a show the simulation and experimental results, re-
spectively. Enlarged views of both results are also shown in Figs. 3.9b and
3.11b. The numerical values in each graph denote the inclined angle of the
contacted object, and both results are plotted at intervals of 5.0◦. The elastic
force increases as the orientation angle increases under constant maximum
displacement. For confirmation, we plotted the elastic force with respect to
θp of Eq. 3.12 in Fig. 3.12 together with the Hertzian contact model and
the radially-distributed model derived by Arimoto’s group. The numerical
values shown in the graph denote the maximum displacement d. Note that
the Hertzian force is depicted at a point because the model does not define
the object orientation. At approx. 0◦, there is a clear local minimum of the
elastic force, and the change in elastic force with respect to θp is greatest
when the displacement is maximum, that is, 8.0 mm. The same tendency can
also be seen in the simulation results. The results therefore indicate that the
proposed elastic model is able to represent a distinctive phenomenon, i.e., a
local minimum elastic force, even when the derivation process is represented
simply using linear virtual springs aligned in the normal direction. On the
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Fig. 3.10 Elastic forces in experiments

other hand, the discrepancy in the large displacement shown in Fig. 3.12
would be reduced if the Young modulus could be defined as a nonlinear func-
tion of compression strain and be used to adopt the model to accommodate
the nonlinearity of the material. However, this elastic force model focuses on
the geometric nonlinearity, and the derivation process including both nonlin-
earities will be addressed in Chap. 9.
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Fig. 3.11 Experimental results of elastic force
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Fig. 3.12 Local minimum of elastic force

3.6 Concluding Remarks

We have proposed a parallel-distributed fingertip model, a static 1D elastic
force model, and formulated an elastic potential energy function based on
virtual springs inside a hemispherical soft fingertip. We have also proven the
existence of an LMEE and experimentally demonstrated that the elastic force
due to the deformation has a local minimum. The proposed model requires
only the measurement of the Young’s modulus of a corresponding material to
be used in robotic fingertips. In future studies, we will consider the constant-
volume deformation of incompressible elastomer materials and derive elastic
models incorporating a nonlinear elasticity.

By expanding the new concept of LMEE in the development of grasp-
ing and manipulation theory using a soft-fingered robotic hand, it is ex-
pected that the stable grasping and the pose control of a grasped object by
a minimal-DOF two-fingered hand may be achieved and a succinct control
system will be designed.
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