
Chapter 2
Energy Balance: Cumulative Fossil Fuel
Demand and Solar Energy Conversion
Efficiency of Transport Biofuels

2.1 Introduction

The adjective ‘sustainable’ is frequently used regarding biofuels (e.g. Abrahamson
et al. 1998; Krotscheck et al. 2000; Buckley and Schwarz 2003; Bhattacharya et al.
2003; Goldemberg and Teixeira Coelho 2004; Butterworth 2006; Demirbaş 2007;
Robèrt et al. 2007; Goldemberg et al. 2008; Karp and Shield 2008; Royal Society
2008). Also, biofuels are a regular subject in scientific journals dealing with re-
newable or sustainable energy. The apparent rationale of using ‘sustainable’ and
‘renewable’ in the context of biofuels is the following: biomass may be argued
to temporarily store solar energy, based on photosynthesis (see Chap. 1). In doing
so, carbon is sequestered, and on burning transport biofuel, it is de-sequestered. In
the meantime, photosynthesis proceeds, generating new feedstocks for biofuels. As
solar irradiation and photosynthesis are expected to last for many millions of year,
doing so would seem sustainable and transport biofuels renewable. However, this is
not the ‘whole story’. Energy inputs in the world economy are currently, as pointed
out in Chap. 1, overwhelmingly fossil fuels, and the use of fossil fuels extends to
the production and distribution of transport biofuels. This is at variance with renew-
ability and sustainability, as fossil fuels are non-renewables, and their use cannot
be sustained indefinitely at the present level. The cumulative life cycle fossil fuel
demand of biofuels will be discussed in Sect. 2.3.

For converting solar irradiation into transport kilometres, there are a variety of
technologies available with widely varying efficiencies. Such efficiencies matter:
they are major determinants of spatial requirements of energy supply. These spatial
requirements, in turn, are important determinants of competition of energy supply
with food production and habitats for living nature. Because this competition is
an important matter in the current transport biofuel debate and will return later in
this book, this chapter will deal with the solar conversion efficiency of transport
biofuels (Sects. 2.4 and 2.5). Other methods for solar energy conversion do not
involve organisms but rely on physical conversion technologies. Photovoltaic cells
generating electricity are examples thereof, for which the solar conversion efficiency
will be discussed in Sect. 2.6.
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50 2 Energy Balance

Biofuels and the output from photovoltaic cells can be used to perform work or
to deliver energy services. Work (a thermodynamic concept) or energy services (an
economic concept) include, for instance, car kilometres. The performance of work
often includes the use of intermediaries (e.g. power plants, batteries or motors). The
energy efficiencies of such intermediaries will be discussed in Sect. 2.6. In Sect. 2.6,
we will also consider the overall efficiency of a variety of methods to convert solar
energy to car kilometres, giving a ‘seed-to-wheel’ perspective.

As pointed out in Chap. 1, the production of biofuels is often accompanied by
by-products or co-products. For instance, in making biodiesel from rapeseed, both
glycerol and an ingredient of animal feed (rapeseed cake) are produced. Before we
go into the calculations of cumulative (fossil) energy demand, it should be decided
how much of that demand is allotted to biodiesel and how much to glycerol and
rapeseed cake. This is called ‘allocation’ and will be discussed in Sect. 2.2.

2.2 Allocation

There are three major ways to allocate. The first is based on prices, the second on
physical categories, such as weight or energy, and the third on subtracting avoided
processes (also called substitution). We will look at these in turn. The first way
to allocate is on the basis of price (market values). The idea behind this type of
allocation is that prices drive production (Weidema 1993). This method is, however,
not without problems. Firstly, market prices are not constants. So, if, for example,
ethanol prices go up, whereas the prices of other outputs do not, the emissions and
cumulative fossil energy demand allocated to this transport fuel increase. The same
happens when by-products go down in price, but the transport biofuel price remains
constant (or increases). A good example of the latter is the tenfold price decrease of
glycerol between 2004 and 2006 (Yazdani and Gonzalez 2007).

A second problem is that currently, much transport biofuel production is not
driven by market value but by market value plus subsidy. This leads to the question
of whether, for instance, in the case of ethanol production from cornstarch, alloca-
tion should be on the basis of the market value of cornstarch or on the basis of the
subsidized value. Another problem arises when wastes are considered. These may
well have negative prices (being a cost to the producer). For instance, the producer
of the waste may have to pay a price for the incineration or treatment of his waste. If
so, allocation on the basis of price may mean that the waste, because of its negative
price, is apparently associated with a negative cumulative energy demand (Reijnders
and Huijbregts 2005). Usually, this has been felt unsatisfactory by proponents of al-
location based on prices, and this often leads to the decision the give a zero price to
wastes. However, this seems inconsistent. An implication of a zero price is that the
life cycle leading to the generation of wastes has no impact on the environmental
evaluation of such biofuels. The problem may also arise as to whether something is
a waste or a by-product. An example thereof is sawdust. This may be used for firing
industrial installations or power plants, and then may be categorized as by-product
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(with a positive monetary value), but sawdust may also be left in the woods and
may then be categorized as a waste (with zero monetary value). Decisions regarding
such categorizations may be far from easy and may have a substantial impact on the
greenhouse gas emissions calculated.

Alternatively, one may allocate on the basis of physical categories such as ‘en-
ergy content’ (heating value) or weight. For instance, the European Union in its
2008 draft Renewables Directive has proposed to allocate on the basis of energy
(Eickhout et al. 2008). This type of allocation has the advantage of stable outcomes,
unaffected by movements of prices. However, there are curious consequences, too.
For instance, in this allocation system, there is an obvious way to improve the en-
vironmental performance of a transport biofuel, and that is to produce more waste.
To evade this problem, there is a tendency to restrict allocation to product outputs.
Matters related to quality may also emerge. If one, for instance, allocates to the out-
puts of electricity and low temperature heat on the basis of ‘energy content’, one
may be criticized for neglecting the quality of these outputs and be advised to use
exergy instead of energy. Thus, allocation on the basis of physical categories may
encounter criticism if the physical property chosen is at variance with the perceived
value of the co-products.

Another way to deal with a multi-output process is to ‘correct the system’. In
the case of biofuels, one may consider biofuel to be the only output and correct
for the other outputs by subtracting ‘avoided processes’ which such outputs can
substitute (Ekvall and Finnveden 2001). This approach has also been called substi-
tution. For instance, in the case of ethanol production from corn or wheat, it has
been argued that by-products such as dried distillers grains (DDG) or dried distillers
grains with solubles (DDGS) may be a substitute of soybean meal in cattle feed
(Kim and Dale 2005). Thus, producing DDG(S) may be valued on the basis of the
avoided process of producing soybean meal. However, soybean meal and DDG(S)
are not identical. This then raises the question of the basis for conversion: should
it be on the basis of price, or protein content, or metabolizable joules (energy)?
Moreover, DDG(S) is not a straightforward substitute of soybean meal, as its com-
position is relatively variable, and its consumption by animals may be linked to
increased mycotoxicosis risk and increased intakes of mycotoxins (Taylor-Pickard
2008). This has led to a more limited recommended use of DDG(S) in animal feed
than in the case of soybean meal (Taylor-Pickard 2008). Then there is the mat-
ter of applications other than animal feed. For instance, soybean meal may also
be used to generate vegetarian alternatives to meat, and DDG(S) may be used to
produce protease and peptones (Romero et al. 2007), methane (Murphy and Power
2008) or ethanol. Such alternative applications may have environmental impacts
that are very different from the use as an ingredient of animal feed. Suppose, fi-
nally, that DDG(S) is indeed valued on the basis of avoiding soybean meal; the
problem is that soybean meal is a co-product, just as DDG(S) is. This may be
argued to imply that substitution in this case means plugging one hole with an-
other.

So, each way to allocate has its weak points, and there is no agreement on the
best way to allocate. In this book, we will not make a choice in favour of a specific
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way to allocate but rather will explicitly indicate what type of allocation has been
used in arriving at specific results.

2.3 Cumulative Fossil Fuel Demand

2.3.1 Transport Biofuels from Terrestrial Plants

Most studies regarding cumulative fossil energy demand have been done for trans-
port biofuels from terrestrial plants, and most agree that the seed-to-wheel cumula-
tive demand for fossil fuels associated with transport biofuels from terrestrial plants
is lower than the well-to-wheel demand of fossil transport fuels. However, Patzek
and Pimentel (Pimentel 2003; Patzek 2004; Patzek and Pimentel 2005; Patzek 2006)
have presented calculations for cornstarch-derived ethanol, soybean- and sunflower-
derived biodiesel and lignocellulosic ethanol that suggest a higher cumulative de-
mand for fossil fuels. The difference between these studies of Patzek and Pimentel
and other studies is partly caused by difference in allocation, partly by higher es-
timates of fossil fuel input in agriculture and industrial processing, and partly by
factoring in the energy demand of the infrastructure needed for transport biofuel pro-
duction (factories, vehicles, etc.) into the calculations. However, along with assump-
tions that are more favourable to transport biofuels, there seems no denying that in
western industrialized countries, the cumulative fossil energy demand for transport
biofuels made from starch, sugar and edible oils may be quite high when alloca-
tion is on the basis of price. For ethanol from US corn or European wheat or rye, it
would seem unlikely that, when allocated on this basis, the ‘seed-to-wheel’ cumu-
lative fossil energy demand would be much lower than 80% of the corresponding
demand for petrol (Hammerschlag 2006; Hill et al. 2006; von Blottnitz and Curran
2007; Reijnders and Huijbregts 2007; Zah et al. 2007). In the case of biodiesel from
rapeseed and soybean, qualitatively good estimates usually suggest that, when allo-
cated on the basis of price, the cumulative energy demand may well be in the order
of 60–80% of the corresponding demand for diesel (Hill et al. 2006; Zah et al. 2007).

Cumulative fossil energy demand for transport biofuels may be considerably
lower when biofuels based on high-yielding crops from developing counties, such
as oil palm and sugar cane, are considered, especially when lignocellulosic biomass
is used for powering processing facilities (von Blottnitz and Curran 2007; Reijnders
and Huijbregts 2008a). When the latter applies, for instance, cumulative fossil fuel
inputs in ethanol from sugar cane may become energetically less than 10% of the
ethanol output (Macedo et al. 2008). Also, much lower cumulative fossil fuel de-
mands have been estimated for transport biofuels from lignocellulosic biomass such
as wood or switchgrass when processing is also powered by lignocellulosic biomass
(von Blottnitz and Curran 2007). When allocation is based on the energy content or
weight of outputs, cumulative fossil energy demand allocated to transport biofuels
will tend to be lower than in the case of allocation based on price. Note that cumula-
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tive mineral oil demand is often lower than cumulative fossil fuel demand, because
natural gas and coal can be significant contributors of energy to the transport biofuel
life cycle (Hammerschlag 2006; Kim and Dale 2008). For instance, coal is often an
important contributor to electricity supply, which is sometimes used by mills pro-
ducing ethanol (Kim and Dale 2008). Natural gas is important in production of fixed
nitrogen to be used in agriculture (Hammerschlag 2006).

2.3.2 Transport Biofuels from Wastes

Zah et al. (2007) have studied cumulative energy demand associated with methane
production from a variety of wastes using allocation on the basis of price and a zero
value for the waste itself. Thus, the calculation of energy demand and emissions
linked to methane production from wastes was restricted to the waste-to-wheel
stages of the life cycle. Comparison was with natural gas. The wastes considered
were: sewage sludge, ‘biowaste’, manure and manure plus co-substrates. Cumula-
tive fossil energy demand for methane from these wastes was typically in the order
of approximately 45% of the fossil reference. The outcomes of the study of Zah
et al. (2007) are more favourable to transport biofuels made from wastes than to
transport biofuels made from food crops. Zwart et al. (2006) made a more detailed
study of the conversion of manure from cattle and swine into biogas (methane) in the
Netherlands and concluded that the fossil fuel input energetically roughly equalled
the biogas output. One should keep in mind that these outcomes are based on the
assumption that life cycle impacts up to the waste can be neglected. When wastes
change into secondary resources, fetching a price, or when the seed-to-wheel allo-
cation is based on mass or energy, this would raise cumulative fossil energy demand
of transport biofuels made from residues (cf. Reijnders and Huijbregts 2005).

2.3.3 Transport Biofuels from Aquatic Biomass

Fossil fuel inputs in producing microalgae tend to be high. When microalgae are
grown in bioreactors, outputs are unlikely to energetically outperform inputs (Wijf-
fels 2008; Reijnders 2008). A claim has been made for ultrahigh bioproductivity
from algae in thin channel ultradense culture bioreactors indirectly irradiated by the
sun (Gordon and Polle 2007). The cultures are irradiated with pulsed light emitting
diodes, powered by photovoltaic cells. The efficiency of converting solar radiation
into biomass is probably below 0.2%, and the corresponding energetic yield is likely
to be exceeded by fossil fuel inputs (Wijffels 2008).

As to producing microalgal biofuels in open ponds, it is a remarkable aspect of
several recent publications strongly advocating algal transport biofuels (e.g. Chisti
2007; Huntley and Redalje 2007; Chisti 2008a; Dismukes et al. 2008) that inputs
of fossil fuels are not addressed. Two less recent studies are available that looked at
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energy inputs and outputs in open pond cultures of microalgae. They did not take
account of all inputs, though. For instance, fossil fuel input into the handling and
clean-up of discharges from ponds (which will probably be necessary in view of the
extreme pH and/or salt concentrations and high nutrient levels in algal ponds) was
considered by neither of the studies. Sawayama et al. (1999) studied operational
life cycle energy inputs in growing and processing Dunaliella tertiolecta to sup-
ply bio-oil. Processing was by thermal liquefaction (also Yang et al. 2004). Oper-
ational energy inputs (fossil fuels) exceeded energetic output by 56% when microal-
gal yield was 15 Mg ha−1 year−1. Hirano et al. (1998) studied Spirulina production
and processing to supply methanol (via synthesis gas). Here the assumed yield was
approximately 110 Mg ha−1 year−1. Both fossil fuel inputs in infrastructure and op-
eration were considered. The energetic output exceeded the life cycle fossil fuel
input by 10%. At more realistic estimates of Spirulina yield, which are in the order
of 10–30 Mgha−1 year−1 (Vonshak and Richmond 1988; Jiménez et al. 2003), fossil
fuel inputs would have exceeded energetic outputs. Chisti (2008b) has argued that
the energetic inputs used in the studies of Hirano et al. (1998) and Sawayama et al.
(1999) are ‘grossly overestimated’. However, even at Chisti’s (2008b) estimate, the
fossil fuel input energetically would equal an output of approximately 30 Mg dry
weight algal biomass ha−1 year−1, which is at the upper end of the range for the
commercial production of Spirulina (Jiménez et al. 2003).

Though experimentally, yields have been demonstrated that may energetically
exceed fossil fuel inputs (Hirano et al. 1998; Chisti 2008b), it is far from certain
that such yields can be achieved in actual commercial practice. Large differences
between experimental yields and average commercial yields are also common in
the production of terrestrial crops, as will be explained in Sect. 2.4.1.

A ‘high yield’ has furthermore been claimed for oil from Haematococcus plu-
vialis produced by a combination of a closed bioreactor and 1.3 days in a pond
(Huntley and Redalje 2007). This yield probably corresponds with a photosynthetic
efficiency in producing biomass of just over 1% and a photosynthetic efficiency in
producing algal oil of roughly 0.6% (Vasudevan and Briggs 2008). No data have
been published about the cumulative energetic inputs in this type of culture, but
from the above, it would seem unlikely that the energetic value of algal oil would
much exceed the cumulative energy input into the infrastructural and operational
inputs.

Studies regarding algal production of H2 suggest that the cumulative energy de-
mand for algal H2 production is probably of the same order of magnitude as the
energetic output, when the solar energy conversion efficiency does not exceed 1%
(Burgess and Fernández-Velasco 2007).

On the other hand, it may be that the yield of microalgae grown in water satu-
rated by CO2 from power stations may exceed fossil fuel inputs when there is no
allocation of the fossil fuel input into electricity production to these algae. However,
whether this application will actually become operational is unclear, as algal perfor-
mance has so far been disappointing, and sequestration of CO2 in abandoned gas
and oil fields and aquifers has a higher efficiency (Benemann et al. 2003; Vunjak-
Novakovic et al. 2005; Odeh and Cockerill 2008).
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The emergence of some saltwater and freshwater macroalgae and macrophytes
as pests offers scope for their conversion into transport biofuels. Only for one of the
macrophytes (water hyacinth) are data available about the overall energy efficiency
of conversion into ethanol. These data suggest a negative energy balance (Gunnars-
son and Petersen 2007).

2.4 Conversion of Solar Energy into Biomass

The intercept by the Earth of solar energy exceeds the present input of fossil and
uranium fuels into the world economy by a factor of about 10,000 (Lewis and No-
cera 2006). The average daily solar irradiation varies, dependent on latitude, climate
and season. When on the equator, maximum irradiation is on a horizontal plane, but
away from the equator, for the maximum intercept of solar radiation by a fixed
plane, the plane should have an angle corresponding to latitude (e.g. Çelik 2006).
Average daily solar irradiation (measured on a horizontal surface) that may support
feedstock for biofuel production varies roughly between 7 and 25 MJm−2. The daily
worldwide average irradiation is about 15.5 MJm−2, or 180 Wm−2. Differences be-
tween days can be large. For instance, in Amsterdam (52◦21′ N), the average daily
irradiation is approximately 3 MJm−2 in January and 17 MJm−2 in July (Akkerman
et al. 2002). The greatest annual input of solar radiation tends to occur in subtrop-
ical regions at latitudes between 20 and 30◦ and little cloud cover. Humid tropical
regions have somewhat lower irradiation (Sinclair and Muchow 1999). When go-
ing poleward from a latitude of about 30◦, solar irradiation tends to decrease. As
for major areas for current biofuel production, in Brazil, where sugar cane ethanol
is produced, daily solar irradiation is on average about 220 Wm−2 (approximately
19 MJday−1 m−2 or 694×102 GJyear−1 ha−1). In the US, average daily irradiation
varies between 12 and 22 MJm−2, whereas in the US Midwest, where there is large-
scale corn ethanol production, solar irradiation is about 170 Wm−2 (approximately
14.7 MJday−1 m−2 or 536×102 GJyear−1 ha−1) (Kheshgi et al. 2000; Vasudevan
and Briggs 2008).

In establishing the overall conversion efficiency of technologies for the conver-
sion of solar energy, there should be a correction for the cumulative energy demand
associated with the biofuel life cycle and the life cycle of physical conversion tech-
nologies (Reijnders and Huijbregts 2007). For instance, if the lower heating value of
fossil fuel inputs amounts to 20% of the lower heating value of a biofuel, the solar
energy conversion efficiency will be corrected by this percentage. The result thereof
is the overall energy efficiency of the biofuel. This is summarized in the following
equation:

SCEx =
Yx ·Ex ·FEx

Esolar
·100

where SCEx is the solar energy conversion efficiency of biomass or biofuel type x
(%), Yx is the yield of biomass type x (kg/ha/year), Ex the energy content of biomass
or biofuel type x (MJ/kg), FEx the correction factor for fossil fuel input in the life
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cycle of biomass or biofuel type x (MJ/MJ), and Esolar is the yearly solar irradiation
(MJ/ha/year). SCEx is a measure that can help in estimating the ability of biofuels
to displace fossil fuels.

As pointed out in Chap. 1, conversion of solar energy into biomass occurs by
photosynthesis. Harvestable biomass that can be used for energy generation (yield)
depends on a number of factors. At the present atmospheric CO2 concentration for
C4 terrestrial plants, the maximum conversion efficiency is estimated at 5.5–6.7%
and for C3 plants at 3.3–4.6% (Hall 1982; El Bassam 1998; Heaton et al. 2008b).
A 6.7% solar energy conversion efficiency would correspond with a dry biomass
yield of approximately 250 Mgha−1 year−1 at 40◦ latitude (El Bassam 1998). Ac-
tual yields are much lower than theoretical yields, because there are factors – such
as in the case of terrestrial plants, the absence of a full canopy, shading, photosatu-
ration and limited availability of nutrients and water – which in practice reduce the
efficiency. Due to such factors, the theoretical differences in conversion efficiency
between, for instance, C3 and C4 plants may not materialize in real life differences
in conversion efficiency. For instance, sorghum is a C4 plant that tends to be roughly
as efficient as the C3 cereals. And C3 plants such as sugar beet and oil palm are in
practice often more efficient in converting solar radiation into biomass than the C4

plant Miscanthus.

2.4.1 Terrestrial Plants

Terrestrial plants vary widely in their yearly yields per hectare. Yields are depen-
dent on insolation, temperature, the presence of nutrients and water and the nature
of plants (Coombs et al. 1987). In natural ecosystems on average, the efficiency of
photosynthesis in converting solar energy into plant material is usually in the or-
der of 0.1–0.3% (Mezhunts and Givens 2004; Rosing et al. 2006). In the case of
cultivated plants, higher conversion efficiencies are achievable. The highest yields
are usually achieved in experiments under ‘excellent’ conditions that are highly con-
ducive to plant growth. In large-scale commercial cultivation, yields are much lower.
In the following, we will use data from large-scale cultivation, as this should be the
basis for substantial feedstock production. As there is a tendency of gradual yield
increases over time, such data may be biased in favour of crops that have a long
tradition of large-scale cultivation. After a similar history of cultivation, the yields
of relatively new crops that may serve as biofuel feedstocks such as Miscanthus and
switchgrass may well be substantially higher than those that will be presented here.

In practice, the C4 plant sugar cane is relatively efficient in converting solar en-
ergy into biomass (Sinclair and Muchow 1999). In subtropical areas, sugar cane may
annually yield about 80 Mg per hectare of harvestable biomass (dry weight) when
the conditions are excellent (Bastiaanssen and Ali 2003; Braunack et al. 2006). Av-
erage sugar cane yields during the mid 1990s in Brazil were about 36.8 tons of
biomass (dry weight) ha−1 year−1 (Kheshgi et al. 2000). Under excellent condi-
tions, another C4 plant, Miscanthus, may yield annually up to about 30–60 Mg of
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dry weight harvestable biomass per hectare (Long et al. 2006; Heaton et al. 2008a),
but more commonly, yields are in the range of 10–13 Mg aboveground dry weight
biomass ha−1 year−1 (Lemus and Lal 2005; Christian et al. 2008).

Oil palms in Southeast Asia yield about 20 Mgyear−1 ha−1 as fresh fruit bunches
(dry weight) (Reijnders and Huijbregts 2008a). For sugar beets, good yearly dry
weight yields of biomass from large-scale commercial cultivation are also in the or-
der of 20 Mgha−1 (Şahin et al. 2004; Tzilivakis et al. 2005). For eucalyptus, yearly
biomass yields per hectare tend to be in the order of 10–20 tons (Sims et al; 1999;
van den Broek et al. 2001). Yearly dry biomass yields of large-scale cultivation un-
der good conditions for switchgrass are in the order of 10–15 Mgha−1, for willow
9 Mgha−1, and for poplar 11 Mgha−1 (Lemus and Lal 2005; Heaton et al. 2008a).
Total yearly (dry weight) aboveground biomass accumulation per hectare in the
USA is in the order of 17–18 Mg for corn (Heaton et al. 2008a), and under good
conditions, 10–11 Mg for wheat (world average is 5.5 Mg; Wright et al. 2001), in
the order of 9 Mg for peas and 4–5 Mg for canola (Lemus and Lal 2005; Malhi et al.
2006). High yields of photosynthesis in practice usually depend on substantial in-
puts of synthetic nutrients derived from non-renewable natural resources (Samson
et al. 2005). Sustainable yields that can be achieved when only recycling nutrients
that are present in biomass tend to be much lower as will be discussed in Chap. 3
(also Pimentel et al. 2002; Reijnders 2006). Table 2.1 shows the overall energy con-
version efficiency (taking account of inputs of fossil fuels) for a variety of crops
with relatively good yields.

The overall solar energy conversion efficiencies in Table 2.1 are below 1% and
range roughly between 0.15% (for rapeseed/canola) and 0.9% (for sugar cane).
For comparison, a percentage is added for sustainably grown wood in Western
Russia (Nabuurs and Lioubimov 2000). In this case, the conversion efficiency is
about 0.05%.

There have been efforts to improve the solar-energy-to-biomass conversion by
transgenic approaches. These have focused on increasing the net carboxylation ef-
ficiency of 1,5-biphosphate carboxylase and the introduction of enzymes charac-
teristic for C4 plants in C3 plants (Heaton et al. 2008; Raines 2006). So far, such
efforts have not led to a substantial improvement in the conversion of solar energy
to biomass (Raines 2006).

2.4.2 Terrestrial Biofuels

For some applications, biomass as it is produced in solar energy conversion may
be used as such. This applies, for instance, to the generation of electricity, which in
turn may be used for electrical traction. However, diesel or Otto motors or fuel cells
need the use of specific biochemicals (transport biofuels) such as specific alcohols
and acylesters, as discussed in Chap. 1. This has an impact on the efficiency of solar
conversion. Only a part of the biomass originating in solar energy conversion can be
turned into such chemicals. It may be that part of the biomass that cannot be con-
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Table 2.1 Solar energy to biomass conversion efficiencies, with correction for fossil fuel inputs

Inso-
lation
(MJ/
daym2)

Crop under
good condi-
tions (unless
otherwise
indicated)

Yield of
biomass ha−1

(Mg dry weight/
year); above-
ground except
for sugar beet

Energy con-
tent biomass
(lower heat-
ing value in
MJ/kg dry
weight)

Correction
factor for fos-
sil fuel input
(MJ in crop –
MJ fossil fuel
input/MJ in crop)

Solar energy
conversion
efficiency
(%)

19 Sugar cane
(average)

36.8
(Kheshgi et al.
2000)

17.5 0.97
(Dias de Oliveira
et al. 2005)

0.9

19 Oil palm 20
(fruit bunches)

31.7 0.95
(Reijnders and
Huijbregts 2003)

0.87

19 Eucalyptus 10–20 19 0.9 (estimate) 0.25–0.50

14 Wheat 10–11 17.5 0.8
(von Blottnitz
and Curran
2007)

0.27–0.30

14 Switchgrass 10–15 17.5 0.95 (estimate) 0.32–0.48

14 Sugar beet 20 17 0.9
(von Blottnitz
and Curran
2007)

0.62

14 Corn 17–18 17.5 0.8
(von Blottnitz
and Curran
2007)

0.46–0.49

14 Rapeseed/
Canola

4–5 21.8 0.9
(Zah et al. 2007)

0.15

14 Miscanthus 10–13 17.5 0.98
(Lewandowski
and Schmidt
2006)

0.34–0.44

14 Poplar 9.5
(Kheshgi et al.
2000)

19.8 0.98 0.36

14 Wood grown
sustainably in
Western Russia
(Nabuurs and
Lioubimov 2000)

1.4 19.8 0.95
(Reijnders and
Huijbregts 2003)

0.05
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Fig. 2.1 Estimated biomass to transport biofuel conversion efficiencies via synthesis gas (Chum
and Overend 2001; Ptasinki et al. 2002; Iwasaki 2003; Faaij 2006)

verted into the biochemicals needed is used to power the production from biomass
of specific biochemicals. It may also be that a part of the original biomass emerges
from processing as waste. Furthermore, in many processes generating biochemicals
from biomass, there is an input of fossil fuels that is to be taken into account when
determining overall conversion efficiencies. Figure 2.1 gives estimated efficiencies
for some conversions of biomass into transport biofuels.

Table 2.2 shows solar conversion efficiencies for a number of biofuels from ter-
restrial plants. In this case, the allocation has been done on the basis of energy
content of marketable products.

The efficiencies in the last column of Table 2.2 are typically lower than the effi-
ciencies shown in Table 2.1. Most of them are below 0.2%. For ethanol from Euro-
pean wheat starch, the efficiency is 0.024–0.03%, and for biodiesel from European
rapeseed, it is approximately 0.034%. Apart from Jatropha, which has quite an un-
certain conversion efficiency, the best efficiency in Table 2.2 is for ethanol from
switchgrass, with ethanol from sugar cane coming second. However, it was assumed
in this table that in the case of sugar cane, only sugar is to be converted into ethanol.
If also a substantial part of the lignocellulosic aboveground biomass of sugar cane
is converted into ethanol, sugar cane may as efficient as or better than switchgrass.
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2.4.3 Biofuels from Algae and Aquatic Macrophytes

As also pointed out in Chap. 1, estimates have been made of the maximum efficiency
for the conversion of incident sunlight into biomass by algae. These vary between
5.5 and 11.6% (Heaton et al. 2008b; Vasudevan and Briggs 2008). Several authors
have suggested that algal transport biofuels can beat terrestrial transport biofuels in
the conversion of solar energy to transport biofuel by at least one order of magnitude
(e.g. Chisti 2007; Chisti 2008a; Groom et al. 2008; Nowak 2008; Li et al. 2008).
Here we will survey the suggestions that have been made for producing transport
biofuels from algae and aquatic macrophytes and what is known about the solar
energy conversion efficiency of such biofuels.

Transport Biofuels from Marine Aquatic Biomass

As pointed out in Chap. 1, a variety of options for producing biofuels from marine
biomass have been suggested, such as biofuels from Macrocystis pyrifera or giant
kelp (Wilcox 1982; Bungay 2004), Laminaria (Horn et al. 2000; Chopin et al. 2001)
and Dunaliella (Ben-Amotz et al. 1982). Dunaliella has been found more suitable
to cultivation in open ponds (Joint et al. 2002; Ugwu et al. 2008). As to Macrocystis
pyrifera, it seems doubtful whether the energy balance for biofuel can be positive
(Bungay 2004).

Near-shore cultivation of macroalgae is substantial (Neushul and Wang 2000;
Wikfors and Ohno 2001; Chopin et al. 2001; Critchley et al. 2006; Troell et al.
2006). For Gracilaria in Taiwanese coastal waters, average yields of 4 Mgha−1

year−1 (dry weight) have been reported (van der Meer 1983). Yields of commer-
cial Eucheuma cultivation in the Philippines, Indonesia and Kiribati are about 6 Mg
(dry weight) ha−1 year−1 (Ask and Azanza 2002). Such yields suggest relatively low
solar energy conversion efficiencies if compared with cultivated terrestrial plants
(see Table 2.1). Cultivation is vulnerable to invasions of competing algae and her-
bivores, and major interventions may be necessary to limit losses in such cases
(Buschmann et al. 2001; Ask and Azanza 2002; Neill et al. 2006). As pointed
out in Chap. 1, prices for cultivated macroalgae are high, and thus it is hard to
see the emergence of a practical large-scale biomass-from-the-sea-for-transport-fuel
scheme based on macroalgae cultivation (Neushul and Badash 1998; Buschmann
et al. 2001).

Microalgal Biomass in Ponds and Bioreactors

Most proposals for microalgal biofuels from open ponds or bioreactors focus on
biodiesel made from algal oil (Scragg et al. 2002; Chisti 2007; Huntley and Redalje
2007; Wijffels 2008; www.oilgae.com; Liu et al. 2008). However, there have, for
instance, also been proposals to convert algal biomass into methanol via synthesis
gas or into bio-oil via pyrolysis (Hirano et al. 1998; Sawayama et al. 1999). The
alga Botryococcus braunii has been looked into, in view of its ability to produce
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substantial amounts of hydrocarbons, which may be turned into transport biofuels by
catalytic cracking (Bachofen 1982; Banerjee et al. 2002). As pointed out in Chap. 1,
current strains of this microalga are slow growing, which has not been conducive to
its application (Banerjee et al. 2002).

Of the microalgae commercially grown in open ponds, Spirulina apparently has
the best yields per hectare per year in commercial cultivation (Belasco 1997). Max-
imum productivities in open ponds are achieved under tropical or subtropical con-
ditions (Jiménez et al. 2003). Yields currently obtained in industrial facilities for
the cultivation of Spirulina located in these regions range from 10 to 30 Mg dry
biomass per hectare per year (Vonshak and Richmond 1988; Jiménez et al. 2003).
Low yields of, for example, Spirulina may however occur due to, for example, phage
infections and rainfall conducive to the growth of unfavourable organisms (Shima-
matsu 2004). For instance, Li and Qi (1997) reported that the 80 Chinese Spirulina
production plants had production on average of 3.5 Mgha−1 year−1.

It may be that in the future, microalgal yields from raceway ponds may be in-
creased over current levels, for instance through improving photosynthetic activ-
ity by minimizing light harvesting chlorophyll antenna size (Neidhardt et al. 1998;
Mussgnug et al. 2007). On the other hand, a focus on algal lipids for transport bio-
fuel production may well lead to biomass yield limitations, because nutrient lim-
itations are conducive to high lipid contents but not to maximizing biomass yield
(Wijffels 2008; Liu et al. 2008).

Hirano et al. (1998) studied Spirulina production and processing to supply
methanol (via synthesis gas) and assumed a yield of approximately 110 Mgha−1

year−1. When both fossil fuel inputs in infrastructure and operation are considered,
this would correspond with an overall solar energy to biofuel conversion efficiency
of about 0.12%.

Actual yearly yields much exceeding 30 Mgha−1 year−1 have been claimed for
microalgae growing in water that has been saturated in CO2 (Kheshgi et al. 2000;
Wang et al. 2008). Algal ponds that are to be saturated in CO2 have been proposed to
capture the CO2 of power plants (Kheshgi et al. 2000). Also, closed bioreactors have
been proposed for algal capture of CO2 from power plants (Skjånes et al. 2007). The
efficiency of algal CO2 capture in open ponds has been estimated to be in the order
of 30% (Benemann 1993; Kadam 2002), whereas an efficiency of 40% has been
suggested for algae in photobioreactors (Ono and Cuello 2006). Whether such per-
centages can be achieved is not certain. Yields from open ponds saturated with CO2

have proved disappointing, and maintaining desired algal cultures in such ponds has
turned out to be difficult (Benemann et al. 2003). There is also the matter of the
efficiency of CO2 sequestration by algae. The suggested efficiency for photobiore-
actors of 40% is, for instance, higher than efficiencies so far reported by Hsueh et al.
(2007) and Jacob-Lopes et al. (2008) for flue gases with high concentrations of CO2

handled by photobioreactors. Moreover, the latter efficiencies were achieved under
good irradiation, whereas the CO2 emission of power plants may also occur at night
and when solar irradiation is poor. CO2 capture and sequestration (CCS) in aquifers
or abandoned natural gas or oil fields would be able to reduce the emission of power
plants with an efficiency of about 90% (Odeh and Cockerill 2008). Thus, whether
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the application of CO2 capture by algae will be important in the future depends to
a large extent on the emission requirements for such plants.

Microalgal yields from closed bioreactors subject to solar irradiation may be
much higher than from current commercial open ponds (Eriksen 2008). For the
production of algal oil, a value of about 16 Mgha−1 year−1, has been suggested
as ‘possible with state of the art technology’ in closed systems (Wijffels 2008).
However, growing algae aiming at high outputs in bioreactors requires large inputs
of energy for building the reactors and for nutrients and intensive mixing. It has been
estimated that this could lead to a negative energy balance for flat panel bioreactors
and an even more negative energy balance for tubular bioreactors (Wijffels 2008).

H2 Produced by Microalgae

The use of a variety of algae has been considered because of their direct and indirect
biocatalytic effect on the splitting of water in H2 and O2 (Melis and Happe 2001;
Hallenbeck and Benemann 2002; Nath and Das 2004; Savage et al. 2008). In spite
of a nearly 70-year history of research, actual production of H2 by algal systems is
still very low, about 2 g of H2 per square metre of culture area per day (Melis and
Happe 2001), and H2 has to be withdrawn continually as the overall conversion of
glucose into H2 is energetically only slightly favourable to H2 (Savage et al. 2008).
At realistic solar irradiation, solar conversion efficiencies in optimized systems for
direct and indirect biophotolysis seem to be in the order of 1% or lower, when pure
cultures can be maintained (Hallenbeck and Benemann 2002; Yoon et al. 2006;
Rupprecht et al. 2006; Burgess and Fernández-Velasco 2007). And as pointed out
before, the cumulative energy demand for algal H2 production is probably of the
same order of magnitude as the energetic output, when the solar energy conversion
efficiency does not exceed 1% (Burgess and Fernándo-Velasco 2007).

Freshwater Macrophytes

The best-studied macrophyte is the water hyacinth (Eichhornia crassipes) (Gass-
mann et al. 2006; Gunnarsson and Petersen 2007). It has been found to produce up to
140 Mgha−1 year−1 of biomass (dry weight) (Gunnarsson and Petersen 2007). Two
energetic applications of Eichhornia crassipes which may produce transport bio-
fuels have been studied. The first is ethanol production from hemicellulose present
in water hyacinths. A yield of 0.14–0.17 (g ethanol) (g dry weight)−1 has been re-
ported (Mishima et al. 2008). However, studies of the overall energy efficiency of
the production of ethanol from the water hyacinth have so far suggested that the en-
ergy balance is negative (Gunnarsson and Petersen 2007). An alternative option is
the anaerobic conversion of water hyacinth biomass into CH4. Though the feasibility
thereof has been demonstrated, the process is complicated, among other things by
the floating behaviour of water-hyacinth-derived material (Malik 2007). Moreover,
the water hyacinth is very effective in adsorbing pollutants (Gunnarsson and Pe-
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tersen 2007; Malik 2007), and these may interfere with, for example, the sustainable
use of residuals (‘digestate’) remaining after anaerobic conversion. More limited re-
search has been done regarding another invasive macrophyte: water lettuce (Pistia
stratiotes L.), which has growth characteristics similar to water hyacinth (Mishima
et al. 2008). The yield of ethanol from hemicellulose conversion is 0.15–0.16 g per
gram of dry weight (Mishima et al. 2008); no study has been found regarding the
overall energy efficiency of this conversion.

2.5 Solar Conversion Efficiencies of Physical Methods

Besides biological processes, there are also physical conversion processes for solar
energy. Efficiencies for a number of physical methods of converting solar radiation
into heat, H2 or electricity are in Table 2.3. It can be seen that solar conversion
efficiencies of photovoltaic cells are much higher than the conversion efficiencies
for the transport biofuels in Table 2.2.

Table 2.3 Efficiencies for the conversion of solar radiation to electricity or heat

Type of
conversion

Output Conversion
efficiency

Correction factor for
fossil fuel input into
conversion apparatus
(MJ output – fossil
fuel input/MJ output)

Overall
energy
efficiency
(%)

Photovoltaic
silicon
(Mohr et al. 2007;
Fthenakis et al. 2008)

Electricity ∼14 0.75–0.8 ∼10.5–12

Hybrid
photovoltaic
silicon/
collector

Electricity/
heat

15%
(electricity)
+40% heat
(He et al. 2006;
Tripanagnostopoulos
et al. 2006)

0.9–0.95 49.5–52

Photovoltaic
III–V

Electricity 15–30
(Green et al.
2003)

0.8–0.9
(dependent on
insolation)
(Meijer et al. 2003;
Mohr et al. 2007)

12–27

Solar thermal
electricity
turbine

Electricity 10–28%
(Mancini et al.
1994)

0.93
(Norton et al.
1998)

9.5–26.5
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2.6 Overall Energy Efficiencies in Performing Work

Table 2.4, finally, shows overall estimated conversion efficiencies for solar irradia-
tion to car kilometres, corrected for the input of fossil fuels, which are calculated by

TSCEx,i = SCEx ·CEx,i

where TSCEx,i is the transport solar energy conversion efficiency (%) and CEx,i the
efficiency drive train of transport option i derived from biofuel type x (%).

According to the estimates in Table 2.4 regarding seed-to-wheel solar energy
conversion efficiency, ethanol from sugar cane outperforms ethanol from European
wheat by about a factor of five to ten, and biodiesel from European rapeseed by
about a factor of two to three. Electrical traction from lignocellulosic biomass, how-

Table 2.4 Overall efficiencies for the conversion of solar energy to car kilometres

Type of energy
supply

Conversion effi-
ciency solar radia-
tion to automotive
power source, cor-
rected for fossil
fuel inputs (%);
see Tables 2.2
and 2.3

Efficiency drive
train (%)

Overall
efficiency
energy
storage (%)

Overall efficiency
conversion solar
radiation to auto-
motive kilometres
(%)

Ethanol from
sugar cane
(Brazil) for
Otto motor

0.16 16–22
(Colella et al.
2005;
Crabtree et al.
2004)

0.026–0.035

Ethanol from
wheat (Europe)
for Otto motor

0.024–0.03 16–22
(Colella et al.
2005;
Crabtree et al.
2004)

0.0038–0.0066

Biodiesel from
rapeseed (Europe)
for diesel motor

0.034 29 (www.eere.
energy.gov/
vehiclesandfuels)

0.010

Electricity from
lignocellulosic
biomass
(switchgrass)
for electromotor

0.48 90–97
(Ahluwalia et al.
2005;
Colella et al.
2005)

41–90
(Rydh and
Sandén
2005)

0.18–0.42

Electricity
from solar cells
for electromotor

10.5–12 90–97
(Ahluwalia et al.
2005;
Colella et al.
2005)

41–90
(Rydh and
Sandén
2005)

3.9–10.5
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ever, in turn outperforms ethanol from sugar cane by roughly a factor of two to
four. The relatively high efficiency of using biomass for electricity production has
also been noted by other authors, such as Zhang et al. (2007). All biomass-based
automotive power is, however, far less efficient than electricity from solar cells that
is stored for use in electrical traction. This way of powering motor cars is roughly
at least two orders of magnitude better than ethanol from Brazilian sugar cane and
three orders of magnitude better than ethanol from European wheat. In calculating
the values for Table 2.4, it has been assumed that solar cells and the plug-in facil-
ity for cars are in the same region. When distances are large or conversion to H2

is necessary for long distance transport, the efficiency will be lower than indicated
in Table 2.4 because of transport-linked losses. For instance, an estimate has been
made regarding the life cycle emission of greenhouse gases linked to electrolysis
powered by concentrated solar power (CSP) in the Sahara, liquefaction of H2 and
transport to, and distribution of, hydrogen in Western Europe. In such a case, a re-
duction of the life cycle efficiency by somewhat less than 10% has been found (Ros
et al. 2009). Such a reduction applied to electricity from solar cells (last row of
Table 2.4) would reduce the overall efficiency in the last column to approximately
3.5–9.4%.

A lesson from this chapter is that conversions lead to substantial reductions in
solar conversion efficiency. In Chap. 1, quite a number of proposals have been sum-
marized that rely on such conversions. Examples are: the conversion of methane
(from the anaerobic conversion of biomass) to methanol, the conversion of lipids
and ethanol to hydrocarbons or H2 and the conversion of methanol to hydrocarbons.
As the starting products may in principle be used directly as transport biofuels, there
is good reason to be sceptical about such sequential conversions in view of the neg-
ative impact that they have on the overall solar energy conversion efficiency.

The data presented in this chapter allow for estimates of the ability of biofuels to
energetically displace fossil fuels. It appears that in this respect, palm oil and ethanol
from sugar cane do much better, especially when processing is powered by harvest
residues, than rapeseed oil or ethanol from corn or wheat, as produced in industrial-
ized countries. It should be noted, though, that the ability to energetically displace
fossil fuels may be at variance with their ability to do so in the economy. The lat-
ter is strongly impacted by prices and government policy. An interesting illustration
thereof concerns the use of corn-derived ethanol in US gasoline, which has mainly
been by E10 fuels, containing 10% ethanol and 90% conventional gasoline. The use
of E10 fuels has been stimulated by a federal excise tax which in recent years led
to E10 gasoline being cheaper than conventional gasoline (Tyner 2008; Vedenov
and Wetzstein 2008), which in turn had an upward effect on the overall consump-
tion of gasoline, thereby partly negating the downward effect of ethanol use on the
consumption of conventional gasoline (Vedenov and Wetzstein 2008).

The data in this chapter also allow for estimates of land requirements linked to
a large-scale displacement of fossil transport fuels by biofuels. This may be illus-
trated by the following back-of-the-envelope calculation. As explained in Chap. 1,
mineral oil is the dominating fossil fuel for powering transport, and about 60% of
all crude oil is used for this transport. Let us suppose that all mineral oil that is
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currently used as an input in worldwide transport were to be replaced by vegetable
oil. Corrected for the difference in lower heating value between crude oil and veg-
etable oil (see Table 1.2) and the cumulative fossil fuel input into vegetable oil
(estimated here at 40% of the energetic value of vegetable oil), this would require
an increase of vegetable oil production by about a factor of 37.5. Part of this in-
crease may be met with the increase of yields per hectare. Estimates made for the
23 most important food crops suggest that such an increase may range from 0.63–
1.76% year−1 for developing countries and from 0.59–0.79%year−1 for developed
countries up to 2050 (Balmford et al. 2005), to a large extent by intensification of
cropping (Tilman et al. 2001). Using intermediate values, this would allow for an
increase in yield by a factor of approximately 1.75 for developing countries and
by a factor of approximately 1.42 for developed countries between 2000 and 2050
(Balmford et al. 2005), far below the factor of 37.5 needed to displace all mineral
oil by vegetable oil. Moreover, it may well be that the average productivity of addi-
tional land is lower than that of land currently in use. Thus, even if yield increases
in the future would be much larger than currently estimated, there would seem no
way around large additional land requirements linked to large-scale displacement of
fossil fuels by biofuels. Current policy targets are estimated to require between 55
and 166 million ha (Mha) (Renewable Fuels Agency 2008).

Moreover, expanding transport may well lead to even larger land claims in the
future. Gurgel et al. (2007) studied an expansion of the production of cellulosic
biofuel to supply up to 368 EJ in 2100. This, according to their scenario, would
require about 2.5×103 Mha, an amount greater than any other land cover category.
For comparison: worldwide, current cropland is about 1.6×103 Mha, and the land
area that is currently considered fit for additional cropland is estimated at between
400 and approximately 1.2×103 Mha (Renewable Fuels Agency 2008).
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