Chapter 2
Model-Driven Engineering of Workflow
User Interfaces

Josefina Guerrero Garcia, Christophe Lemaigre, Jean Vanderdonckt
and Juan Manuel Gonzalez Calleros

Abstract A model-driven engineering method is presented that provides designers
with methodological guidance on how to systematically derive user interfaces of
workflow information systems from a series of models. For this purpose, a workflow
is recursively decomposed into processes that are in turn decomposed into tasks.
Each task gives rise to a task model whose structure, ordering, and connection with
the domain model allows a semi-automated generation of corresponding user inter-
faces by model-to-model transformation. Reshuffling tasks within a same process
or reordering processes within a same workflow is straightforwardly propagated as
a natural consequence of the mapping model used in the model-driven engineering.
The various models involved in the method can be edited in a graphical editor based
on Petri nets and simulated interactively. This editor also contains a set of work-
flow user interface patterns that are ready to use. The output file generated by the
editor can then be exploited by a workflow execution engine to produce a running
workflow system.

2.1 Introduction

The introduction of Workflow Management Systems (WfMS) in organizations has
emerged as a major advantage to plan, control, and organize business process. The
WIMS in a modern organization should be highly adaptable to the frequent
changes. The adaptability of the WIMS includes changes on User Interfaces (Uls)
that are used to control business process. To increase adaptability of contemporary
WIMS, a mechanism for managing changes within the organizational structure and
changes in business rules needs to be reinforced [1, 2]. Even that several approaches
have addressed workflow modeling problems, including: graphical notations [3, 4],

J.G. Garcia (<), C. Lemaigre, J. Vanderdonckt and J.M.G. Calleros
Université Catholique de Louvain, Louvain School of Management (LSM),
Place des Doyens 1, 1348, Louvain-la-Neuve, Belgium

e-mail: josefina.guerrero@uclouvain.be

V. Lépez-Jaquero et al. (eds.), Computer-Aided Design of User Interfaces VI, 9
DOLI: 10.1007/978-1-84882-206-1_2, © Springer-Verlag London Limited 2009

10 J.G. Garcia et al.

description languages [3-5], supporting tools [1, 4, 6, 7], workflow patterns [8],
and Uls derivation from workflow specifications [9, 10]; integrate all the domains
have been poorly explored. Some issues encountered while deriving UI from a
workflow specification are the following:

e User interface hand coded design. Ul derivation from a workflow specification
has been used on commercial tools [9], even though the UI is still manually
designed and correlated to workflow components. In some cases, several Uls
can be predefined for basic UI action types, for instance, Open a File.

e Lack of integration models of the organization and Ul generation. There are
some efforts [4] trying to model the organization and workflow. This second
category refers to a totally different problem and is not intended to generate
information systems (IS) but to model workflow.

* Lack of adaptation to organizational changes. Workflow tools allow managers
to design their organization “how it is” and simulate changes on the workflow
models to compare whether there are improvements in time, cost, etc. The prob-
lems arise when the changes are applied to the organization. Especially when IS
are affected. The correct propagation of changes is very difficult to assure, what
is more, this work must be hand coded.

These shortcomings stem from the need for a logical definition of workflow models
to derive Uls that further allows a computational handling of them as opposed to a
physical handling hard coded in particular software. The remainder of this chapter
is structured as follows. Section 2.2 explains the conceptual model. Section 2.3
illustrates the different steps that followed in order to derive Uls. Section 2.4 intro-
duces a case study using a tool support. Section 2.5 provides a brief discussion and a
comparison with the related work. Section 2.6 gives a final conclusion.

2.2 Conceptual Model of a Workflow Information System

FlowiXML is a methodology [11] for developing the various user interfaces (Uls)
of a workflow information system (WIS), which are advocated to automate processes,
following a model-driven engineering based on requirements and processes of the
organization. The methodology applies to (1) integrate human and machines based
activities, in particular those involving interaction with IT applications and tools;
(2) identify how tasks are structured, who perform them, what their relative order
is, how they are offered or assigned, and how tasks are being tracked. Figure 2.1
represents the UML class diagram of this meta-model without any attributes or
methods, more details about the attributes and methods of these classes could be
found in [11]. The meta-model involves the following models:

o Workflow model. Tt describes how the work in organization flows by defining
models of process (what to do?), tasks (how to do it?), and the organizational
structure (where and who will perform it?). A workflow model has at least one
process and each process has at least two tasks. The heuristics to identify a

2 Model-Driven Engineering of Workflow User Interfaces 11

processModel
1 1

on
processOperator

3

1.n
process | 1-N parallel Split simple Merge
I

1.1n

‘synchromzalion exc\uswvechoice‘ ‘mu\lichoice
F 1]

||
H I]

22 0.n
organizationalUnit job
1.nE—

on 7 1.n 0.n
.. —/
2.n
logEntry ‘0--“ /\J taskResource ‘ 1.0 task 1
T <1 i T

El

[
L] 0..nl 1.n

|

1.n
|
i
]

|
|

1 [[
‘ machine ‘ ‘ hardwareM ‘ [soItware‘ [services
[1 1 il 1 —
J L J L] L —— /]
0..n
agendaltem
1 on——
‘ binaryRelationship ‘ ‘uua.y. i ‘
[|

L] L]

Fig. 2.1 Partial view of meta-model

workflow model are: it is associated to the operational and/or administrative
objectives of organization, is performed within the same organization and it is
associated to the automation of a business process.

e Process model. The definition of a process indicates the ordering of tasks in
time, space, and resources. Our model is an adaptation of the Petri net notation
proposed in [2, 12] and is compatible with the workflow resource patterns
proposed in [8]. The concept of work List is introduced, which stocks the processes
of the whole organization. Managers are benefited as they can identify resources
performing tasks, status of the workflow, bottlenecks in the processes and the
identification of the organizational unit where the task is performed. The heuris-
tics to identify a process model are same group of resources, continuous period
of time, specific ordering of tasks, the work is developed within groups, among
groups, or by a group as a whole, is not further divided into sub-processes and
it could be primary (production), secondary (support), or tertiary (managerial).

e Task model. Task models are used to collect the requirements of a workflow
system. Task models are mechanisms to represent user’s tasks along with their
logical and temporal ordering. An adapted version of ConcurTaskTree (CTT)
[13] is used in this work. A task is an activity that has to be performed by users
(human, systems, humans interacting with systems, or a combination of them)

12

J.G. Garcia et al.

to reach a given goal related to the business processes. Introducing task models
description to the workflow models corresponds, but is not limited, to the
following reasons: (1) Task models describe, opposed to process models, end users’
view of interactive tasks while interacting with the system. This allows describing
how a task is performed. (2) It is true that in a process model we can add the
detail desired, with process hierarchies, to represent a detailed task description.
However, we consider that specific temporal operators, iteration, suspend/
resume, applied to task, can be more naturally defined in a task model rather into
a process model, that implies the creation of dummy transitions. The heuristic to
identify a task model are same place, same type of resource, same period of
time, and the work is developed by one resource (individual), it could be user,
interactive, system or abstract task. Based on the organizational model, we can
add a machine task (develop by any mechanical or electrical device that transmits
or modifies energy to perform or assist in the performance of tasks. For instance:
fax, robot).

Organizational model. Tt describes the places where work is performed, the
users that perform the work, and so on. This part contributes to UI adaptation to
different categories of users and security of IS by blocking access to Uls when
the user does not have the permission to perform the task. An organizational
Unit describes a formal group of people working together with one or more
shared goals or objectives. It could be composed of other organizational units.
Inside these units a task resource is directly or indirectly involved in carrying out
the work. The LogEntry describes specific characteristics of the resources. Each
resource may have a log Entry associated with them. A Job represents the total
collection of tasks, duties, and responsibilities assigned to one or more positions
which require work of the same nature and level, for instance, a surgeon. At this
level an Agenda is defined showing assigned tasks to the user. It allows the
description of the different status of a task (for instance: not started, in progress),
the date when the task begins, the deadline, the date when the task could be
assigned or delegated, and the date when the task is completed.

Mapping model. In a model-based approach [14] all the components are models.
Even transformation among models and relationships are described in terms of a
meta-model. The mapping model defines the relationships between the models.
This mapping model allows the specification of the link of elements from hetero-
geneous models and viewpoints. Several relationships can be defined to explicit
the relationships between models. We extended the existing mapping model of
UsiXML (www.usixml.org(as depicted in Fig. 2.2. The extended model contains
mappings describing task execution (rules to specify: complex and dynamic
users’ interaction within the organization), such as: Is Grafted On mapping, this
relationships is useful when a task (7}) has been executed, and a task complemen-
tary (7i) is defined to realize the first task where 7i is completely autonomous to
Tj. When work is executed tasks are defined by a userStereotype. Then, they can
be allocated to task Resources, following the set of predefined workflow resource
patterns, proposed in [8]. These patterns represent the different ways in which
tasks are advertised and ultimately bound to specific resources for execution.

13

[opow Surddejy 7'z “S1q

2 Model-Driven Engineering of Workflow User Interfaces

selepdn | UG oEmeuoco Bug muhznmmn_m_a:_:c.& ojujpaje|suel] si Agpayays
UOPeYEIS! Buing : Ayiqisivgg
- Buuig : peigoineqs
Buwg : selwiojuonebsleply] Buuig : uonenspQg
aleq : ajep Buuig : Buibeuewige sealgsqo
uesjoog _ﬁEEcohmm_nm_swmzm_m Agpauysgs! Buuig “m%_a_oacn_co:ﬁo__w uIpeInex3si
uesjoog : aulpeaquOa|qelobapst uuisS : uolnguis!
Bug : ad4 uonebajeple) Buuis : wawubisseqs| cwpewensayer] | ([=00ur |
0| pajebejags! SelenaIuEw paonsey 0] pajeao||ysi _ | _
| |

Buus EEEE@;

.| erow
% burddew

1bie} B
V
oo s QLERTLRLTET
T Buuls : UOISIBABWBYIS QY
Buws : plaunosqel” U Buus : alquoneaingg
a2inos |3pojyIn

14 J.G. Garcia et al.

2.3 A Method to Design Workflow User Interfaces

A User Interface Description Language (UIDL) consists of a high-level computer
language for describing characteristics of interest of a UI with respect to the rest of
an interactive application; it helps define Uls linguistically with a general trend to
do so in an XML-complaint way. In a previous work [15] a number of XML-
compliant languages for defining user interfaces were identified and analyzed. We
select for our work UsiXML as a UIDL for several reasons. The most relevant is its
flexibility to be expanded with the models that we proposed. Also, more than a
language, UsiXML is a methodology to generate Uls on a model-based approach.
The conceptual framework of UsiXML relies on the Cameleon Reference Framework
[16]. Reusing this mechanism the Ul of a workflow model, that includes task models,
can be generated. Model-based approach is intended to assist in designing Uls with
a more formal computer supported methodology rather than the more common
information paper design, such as storyboarding. It attempts to explicitly represent
knowledge that is often hidden in the application code. The problem of generating
user interfaces from a workflow specification has several dimensions to be tackled.
It is necessary to have Uls to support user’s tasks specified in task models, user’s
communication with agendas which must be updated accordingly as tasks are
assigned or ended, and tasks allocation with workflow resource patterns. Also we
need a framework not just to generate those Uls automatically but also to specify
workflows and task models, integrating the concepts that we propose in previous
section. Hence, our method is composed on the following steps to achieve these
goals: (1) define the organizational units, (2) define the jobs and user stereotypes,
(3) define the workflow, which includes process model, (4) define workflow patterns,
(5) define the task models, (6) mapping model from task models to Uls, (7) generate
Uls: agendas, Ul for each task model.

2.4 Case Study and Tool Support

The purpose of the case study is to give a concrete application of the concepts
through the specification of a workflow representing a medical center. We developed
a tool (Fig. 2.3) to support the description of workflow models. This workflow editor
allows the graphical specification of workflow.

o Step 1: where? Organizational units’ specification. The first step, which is not
mandatory to be the first, consists in specifying the location in which the work
must be done. Organizational units’ attributes are then specified in the editor and
graphically the workflow designer identifies the different components of the
organization. Organizational units are represented by rectangles (big rectangles in
Fig. 2.3), which will contain a set of ordered tasks and the available resources.
It is the way to locate those elements inside the organization. The following
organizational units are the structural decomposition of the hospital: (i) reception:

2

Model-Driven Engineering of Workflow User Interfaces 15

)

LIIH

S
| comes [Process
0 o [g R Q|
Petri . |
net | L
icons | Task
&) N i '!
=r: i == [
[mcarcus | ;
° —_
] p—— ')

wadme s Organizational unit
Worklow

Fig. 2.3 Workflow editor

patients coming to this unit will be dispatched through the medical units of the
hospital; (ii) general medicine: diagnostic and simple medical acts are realized in
this unit; (iii) surgery: patients will be operated in this unit; (iv) dermatology: unit
involved in every dermatological resource and the performance of the related
medical acts; (v) payment service.

Step 2: who? Specification of jobs and user stereotypes. This step consists in the
description of all the actors involved in the workflow. For this purpose we define
different levels of users, who are the resources that will be in charge of performing
the organization work. Jobs are ways to structure the crew of people inside the
organization (Fig. 2.4). It involves the complete collection of knowledge and
practices needed by a definite human resource to perform a task. Jobs specified
in the definition of the case study are the following: Receptionist, Generalist,
Surgeon, Anesthetist, Nurse, Dermatologist, and Cashier. Once jobs are defined
it is possible to incorporate user stereotypes, people able to carry out tasks of a
particular job. The workers editor (Fig. 2.5) is used for this purpose. Workers are
defined in terms of attributes (name, experience, hierarchy level) and the list of
jobs they can perform. For instance, we define a user stereotype called Robert
Wink, having 4 years experience in the third hierarchy level. He is able to carry
out tasks as a generalist and surgeon. Also, it is necessary to assign them a place
into the organizational scheme. A user stereotype may be assigned to several
organizational units. The graphical representation used for the workflow editor
is based on a first resource container inside the organizational unit. It allows the
workflow designer to group resources. Job boxes are put inside of the main
resource box. Each job box is instantiated by user stereotypes able to perform

16 J.G. Garcia et al.

= Job handler

Choice Create new job

Job selection: Name:

[New job]] SURGEON ‘

Specifications:

REALIZATION OF OPERATIONS

Famihy:

MEDICINE

Grade:

UNIVERSITY LEVEL

Privileges:

INSURAMCES, 13RD MONTH

Create job

Clear

Fig. 2.4 Job handler editor

the job of the box. This leads to the kind of representation given in Fig. 2.3
(small rectangles). The organizational unit contains a resource box made of three
job boxes. Every job box instantiates user stereotypes of a certain job (there are
two surgeons, one anesthetist and one in the given example). This lets managers
know which resources are available for execute a task in an organizational unit.

o Step 3: what? Workflow specification. The workflow specification, depicted in
the process model, takes place inside of the organizational unit framework.
Concretely, the workflow represents the business process and determines the right
resource for the right task at the right time. This part of the graphical notation
(Fig. 2.3) of the workflow is based on Petri nets [12].

o Step 4: whom? Defining workflow resource patterns. It is important to specify who
will be in charge of what. For that purpose, we use workflow resource patterns [8]
to assign or offer tasks. As, we have already defined jobs and user stereotypes, now
we add rules defining the way work will be undertaken. The resource pattern
editor (Fig. 2.6) allows the workflow designer to specify resource patterns. At first
a list of jobs required to carry out task is specified in the editor. The workflow
designer selects one ore more jobs allowing a user stereotype to realize the task.
For the moment, 43 workflow resource patterns [8] have been incorporated so that

= Workers editor

Choice Create new worker

Worker selection: Name:

[New worker] H ‘ROBERTWINK |

Experience :

] [

Hierarchy level :

P [

Jobs list :
‘SURGEON |

Add job:

SURGEON ‘ x

Adid this job

Remove job:

SURGEON ‘ -

Remove this job

Action:

Create worker

Clear

Fig. 2.5 Workers editor

= Resource patterns handler - POST-OPERATION

Design time Values
Allowed jobs Required experience :
Select ‘ '{ o
Creation
= " \ Ok
Capability-based v
Ok
Distribution type
Offer to single resource ‘ v
Resource
Ok
Pattern for a
Distribution time
job
Early ‘ v
Ok

Fig. 2.6 Resource patterns editor

18 J.G. Garcia et al.

A file1

[tasks | relationships |

e
;_'ﬁ| o] n]ea]e]iz]>>]o] [m]r

[»

RTIFICATE

9%

CHOOSE CERTIFICATE TYPE
W —H—9 —H—9 -H-

9

INSERT PERSONAL DATAS

SCHOOLAR PRENUPTIAL HEALTH WORKER

W > —o_ 19 > -1

NAME LAST NAME ADDRESS cITY PHOME AGE

[4]

I]

Fig. 2.7 Task model editor

the designer may apply them directly using a predefined UI. Each UI pattern is
expressed in UsiXML and is stored in a pattern repository. For the moment, there
is a one-to-one mapping between the workflow pattern and the UI pattern. In the
future, we plan to expand this mapping with parameters.

e Step 5: how? Task models specification. For each process a task model can be
specified to describe in detail how the task is performed. By exploiting task
model descriptions different scenarios could be conducted. Each scenario repre-
sents a particular sequence of actions that can successfully be performed to
reach a task goal (Fig. 2.7).

o Step 6: Mapping the workflow to Ul Finally we have to deal with the problem of
generating the complete Uls set to support all the designed workflow in run-time.
This step is achieved by relying on the UsiXML method that progressively moves
from a task model to a final user interface. This approach consists of three steps:
deriving one or many abstract user interfaces from a task model, deriving one or
many concrete user interfaces from each abstract one, and producing the code of
the corresponding final user interfaces. To ensure these steps, transformations are
encoded as graph transformations performed on the involved models expressed
in their graph equivalent. For each step, a graph grammar gathers relevant graph
transformations for accomplishing the sub-steps. For instance, applying this
method to the task model we obtain its correspondent Ul (Fig. 2.8).

2 Model-Driven Engineering of Workflow User Interfaces 19

< Medical Services
Medical Certificate |

~Type of certificate
[] Schoolar
[_] Prenuptial
[Health

[| worker

“Personal Data

Name

Last Name
Address

City

Phone Number

Age

‘ OK ‘ l Cancel ‘

Fig. 2.8 User interface (UI) derived from task model

2.4.1 The Simulator Tool

After we develop all the Uls for each task, we have control of how the work is flowing
inside the organization, for this purpose we have a workflow editor. Following the
Petri net representation, resource choice is made when a token is in place preceding
a transition. It is managed following resource patterns defined with the editor.
When a task is started the associated token goes from a place to the associated
transition. In this way, work in progress is represented in the workflow simulation
diagram. Each user that participated in the workflow should have an agenda to view
and manage the tasks that are assigned or offered to him. Each agenda can be visu-
alized as a queue of tasks assigned to a resource. Through agendas we can support
the work among resources or groups (Fig. 2.9). As we said, one important aspect to
consider is any change in the workflow and to have the possibility to manage it.

2.5 Discussion and Related Work

While reviewing the literature one can easily see the extensive research of the organi-
zation, their process, adaptability, etc. In the same venue, WfMS research includes
graphical notations [3, 4], description languages [3—5], supporting tools [1, 4, 6, 7],

20 J.G. Garcia et al.

[

= N
\)‘. Test . -
Fleiar
= =
4{' E Ten - .‘\
Ivorion : e Ll [ar’
o 1 ny L rebrg
- | Brescas 1 -
Finiwtn. [
Wl ol e B e
Foscate e
JOrter od CrfTnad
e offer Moot oty

Fig. 2.9 Workflow manager tool

and workflow patterns [8], each tackling specific and independent issues of modern
organizations. In this chapter we introduced a model that includes all these aspects,
which are relevant and have an impact one to each other when changes are applied.
We use a model-driven engineering approach for the user interface design, as it aids
in creating interactive software that considers multiple factors, such as users, tasks,
and so on. Still there are missing points regarding our model. First, we consider that
it is fundamental to address Mandviwalla & Olfman [17] criteria for support group
interactions, such as the following ones: (a) support multiple group tasks, (b) support
multiple work methods, (c) support the development of the group, d) provide inter-
changeable interaction methods, (e) sustain multiple behavioral characteristics,
(f) accommodate permeable group boundaries, (g) adjustability to the group context.
In [18] there are usability guidelines that can be considered, for a future work, as a
principle that has to be taken into account for building Uls respecting cognitive and
sensory-motor capabilities of users. By linking user interfaces of a WIMS we expect
to solve the problem of synchronizing the communication between Uls (agendas and
task Uls) and the workflow view. One option can be client—server architecture. So far
we can just simulate agendas interaction. The solution should provide communication
channels from the workflow manager application (server) to every userStereotype
agenda (clients). In the domain of model-driven engineering, Stavness [1] presents a
progression model in order to support workflow execution, but not a complete
decomposition of processes along with jobs and organizational units is included.

2 Model-Driven Engineering of Workflow User Interfaces 21

The same observation holds for [6, 10]. In particular, in [10], a task model is indeed
used, but only its hierarchical decomposition is used. Therefore, our method and our
supporting tool differ from the state-of-the-art in that it is based on several models
(not just data or tasks), some coming from theory of organizations. The graphical
notation is based on Petri nets as in [2, 3]. In [19] a method called AMOMCASYS is
presented, this method is also based on Petri nets, it is aimed at modeling and simulating
complex administrative systems.

2.6 Conclusion

This chapter defined a method for designing UI of WISs where UI are directly
derived from a model of the workflow, which is decomposed into processes to end
up with tasks. Based on workflow patterns, it is possible to model an entire workflow
with high-level mechanisms and automatically generate the workflow specifica-
tions and their corresponding Uls. All models are uniformly expressed in the same
XML-based specification language so that mappings between models are preserved
at design-time and can be exploited at run-time in needed. Then, the different steps
of the approach have been properly defined based on the underlying models and a
tool has been developed to support the method enactment. The major benefit of the
above method is that all the design knowledge required to progressively move from
a workflow specification to its corresponding Uls is expressed in the model and the
mapping rules. The method preserves continuity (all subsequent models are derived
from previous ones) and traceability of its enactment (it is possible to trace how a
particular workflow is decomposed into processes and tasks, with their corresponding
user interfaces). In this way, it is possible to change any level (workflow, process,
task, and UI) and to propagate the changes throughout the other levels by navigating
through the mappings established at design time. In order to partially support this
method, a software tool has been developed in Java 1.5 that supports the graphical
editing of the concepts introduced in an integrated way. It then enables designers to
pick any of the predefined 43 workflow resource patterns that are later attached to
a corresponding UI pattern in UsiXML. This method has been so far validated on
four real-world case studies (e.g., a hospital dept., a triathlon organization, a cycling
event, and personalized order of compression stockings over Internet). More infor-
mation, including a video demo of the software can be found at: http://www.usixml.
org/index.php?mod=pages&id=40.

References

1. Stavness, N., Schneider, K.A.: Supporting Flexible Business Processes with a Progression
Model. In: Proc. of the 1st Int. Workshop on Making model-based user interface design practical:
usable and open methods and tools MBUI’2004 (Funchal, January 13, 2004) CEUR Workshop
Proceedings, Vol. 103. Accessible at http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS//Vol-103/stavness-et-al.pdf.

22

10.

11.

12.

13.
14.

15.

18.

19.

J.G. Garcia et al.

van der Aalst, W.M.P.,, van Hee, K.: Workflow Management: Models, Methods, and Systems.
The MIT Press, Cambridge (2002).

. van der Aalst, WM.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language.

Information Systems 30, 4 (2005) 245-275.

. van Hee, K., Oanea, O., Post, R., Somers, van der Werf, J.M.: Yasper: a tool for workflow

modeling and analysis. In: Proc. of 6th Int. Conf. on Application of Concurrency to System
Design (2006) 279-282.

. Dumas, M., ter Hofstede, A.: UML Activity Diagrams as a Workflow Specification Language.

In: Proc. of 4th Int. Conf. on the Unified Modeling Language, Concepts, and Tools UML'2001
(Toronto, October 1-5, 2001). Lecture Notes in Computer Science, Vol. 2185. Springer, Berlin
(2001) pp. 76-90.

. Lee, H. B., Kim, J. W,, Park, S. J.. KWM: Knowledge-based Workflow Model for Agile

Organization. Journal of Intelligent Information Systems 13 (1999) 261-278.

. van der Aalst, W.M.P., Kumar, A.: XML Based Schema Definition for Support of Inter-

organizational Workflow. In: Proc. of 21st Int. Conf. on Application and Theory of Petri Nets
ICATPN’2000. LNCS, Vol. 1825. Springer, Berlin (2000) 475-484.

. Russell, N., van der Aalst, W.M.P,, ter Hofstede, A.H.M., Edmond, D.: Workflow Resource

Patterns: Identification, Representation, and Too Support. In: Proc. of 17th Conf. on Advanced
Information Systems Engineering CAiSE’2005 (Porto, June 13-17, 2005). Lecture Notes in
Computer Science, Vol. 3520. Springer, Berlin (2005) 216-232.

. Kristiansen, R., Tratteberg, H.: Model-Based User Interface Design in the Context of Workflow

Models. In: Proc. of 6th Int. Workshop on Task Models and Diagrams for User Interface Design
TAMODIA’2007 (Toulouse, November 7-9, 2007). Lecture Notes in Computer Science, Vol.
4849. Springer, Berlin (2007) pp. 227-239.

Stolze, M., Riand, Ph., Wallace, M., Heath, T.: Agile Development of Workflow Applications
with Interpreted Task Models. In: Proc. of 6th Int. Workshop on Task Models and Diagrams
for User Interface Design TAMODIA’2007 (Toulouse, November 7-9, 2007). Lecture Notes
in Computer Science, Vol. 4849. Springer, Berlin (2007) 2-14.

Guerrero, J., Vanderdonckt, J., Gonzalez, J.M.: FlowiXML: A Step Towards Designing Workflow
Management Systems. Journal of Web Engineering 4, 2 (2008) 163—182.

van der Aalst, WM.P.: The application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8, 1 (1998) 21-66.

Paterno, F. Model-based design and evaluation of interactive applications. Springer (1999).
Puerta, A.R.: A Model-Based Interface Development Environment. IEEE Software 14, 4
(1997) 41-47.

Souchon, N., Vanderdonckt, J.: A review of XML-compliant user interface description languages.
In: Proc. of DSV-IS’2003. Springer, Berlin (2003) 377-391.

. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A

Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Computers
15, 3 (2003) 289-308.

. Mandviwalla, M., Olfman, L.: What do groups need? A proposed set of generic groupware

requirements. ACM Transactions on Computer-Human Interaction 1, 3 (1994) 245-268.
Palanque, P., Farenc, Ch., Bastide, R.: Embedding Ergonomic Rules as Generic Requirements
in a Formal Development Process of Interactive Software. In: Proc. of IFIP TC 13 Int. Conf.
on Human-Computer Interaction Interact’99 (Edinburgh, September 1-4, 1999). IOS Press,
Amsterdam (1999) 408—416.

Adam, E., Kolski, C., Mandiau, R., Vergison, E.: A software engineering workbench for
modeling groupware activities. In: C. Stephanidis (Ed.), Universal Access in HCI: inclusive
design in the information society. Lawrence Erlbaum Associates, Mahwah, NJ (2003) pp.
1499-1503.

2 Springer
http://www.springer.com/978-1-84882-205-4

Computer-Aided Design of User Interfaces I

Lopez Jaquero, V.; Montero Simarreo, F.; Molina Masso,
|.P.; Vanderdonckt, |. (Eds.)

2009, X, 319 p. 139 illus., Hardcowver

ISBEN: @78-1-84882-205-4

