
Chapter 2
Petri Nets

Abstract This chapter presents a mathematical treatment of Petri nets, including

their formal definitions, structural and behavioral properties such as invariants,

siphons, traps, reachability graphs, and state equations that are necessary to under-

stand the subjects presented in this book. A number of important subclasses of Petri

nets are introduced such as state machines and marked graphs. They are essential

for the development of manufacturing-oriented Petri net models and the deadlock

control strategies. The basics of automata are also covered in this chapter to facil-

itate the reader to understand well the deadlock prevention policy based on theory

of regions. The concepts of a plant model, supervisor, and controlled system are

defined.

2.1 Introduction

Though Petri nets and automata lack the full modeling and decision power of Tur-

ing machines, they still rank the top popular modeling tools for DES. As for Petri

nets, this is partially attributed to their capability to provide the simple, direct, faith-

ful, and convenient graphical representation of DES. Moreover, the well-established

set of mathematical approaches employing linear matrix algebra makes them par-

ticularly useful for the modeling, analysis, and control of DES [44]. This chapter

presents a mathematical treatment of Petri net theory. It is fundamental for under-

standing of the ideas presented in the following chapters.

2.2 Formal Definitions

A Petri net is a directed bipartite graph. It consists of two components: a net struc-

ture and an initial marking. A net (structure) contains two sorts of nodes: places and

transitions. There are directed arcs from places to transitions and directed arcs from

17

18 2 Petri Nets

transitions to places in a net. Places are graphically represented by circles and transi-

tions by boxes or bars. A place can hold tokens denoted by black dots, or a positive

integer representing their number. The distribution of tokens over the places of a

net is called a marking that corresponds to a state of the modeled system. The ini-

tial token distribution is hence called the initial marking. Let N denote the set of

non-negative integers and N+ the set of positive integers.

Definition 2.1. A generalized Petri net (structure) is a 4-tuple N = (P, T , F , W)
where P and T are finite, non-empty, and disjoint sets. P is the set of places and

T is the set of transitions with P∪ T �= /0 and P∩ T = /0. F ⊆ (P× T)∪ (T ×P)
is called a flow relation of the net, represented by arcs with arrows from places to

transitions or from transitions to places. W : (P×T)∪ (T ×P) → N is a mapping

that assigns a weight to an arc: W (x,y) > 0 iff (x,y)∈ F , and W (x,y) = 0 otherwise,

where x,y ∈ P∪T .

Definition 2.2. A marking M of a Petri net N is a mapping from P to N. M(p)
denotes the number of tokens in place p. A place p is marked by a marking M iff

M(p) > 0. A subset S ⊆ P is marked by M iff at least one place in S is marked by M.

The sum of tokens of all places in S is denoted by M(S), i.e., M(S) = ∑p∈S M(p). S
is said to be empty at M iff M(S) = 0. (N,M0) is called a net system or marked net

and M0 is called an initial marking of N.

We usually describe markings and vectors using a multiset (bag) or formal sum

notation for economy of space. As a result, ∑p∈P M(p)p is used to denote vector M.

For instance, a marking that puts four tokens in place p2 and two tokens in place p4

only in a net with P = {p1–p6} is denoted by 4p2 +2p4 instead of (0,4,0,2,0,0)T .

In general, (N,M0) is directly called a net where there is no confusion. N =
(P,T,F,W) is called an ordinary net, denoted by N = (P,T,F), if ∀ f ∈ F,W (f) =
1. Note that ordinary and generalized Petri nets have the same modeling power.

The only difference is that the latter may have improved modeling efficiency and

convenience for some systems. For convenience, (P,T,F,W,M0) is sometimes used

to denote a marked net. It is also called a net system.

Example 2.1. Figure 2.1a shows a simple Petri net with P = {p1–p5}, T = {t1–t3},

F = {(p1, t1), (t3, p1), (p2, t2), (t1, p2), (p3, t3), (t2, p3), (p4, t2), (t3, p4), (p5, t1),
(p5, t2),(t3, p5)}, W (p1, t1)=W (t3, p1)=W (p2, t2)=W (t1, p2)=W (p3, t3)=W (t2,

p3) = W (p4, t2) = W (t3, p4) = W (p5, t1) = 1, W (p5, t2) = 2, and W (t3, p5) = 3.

Places are graphically represented by circles and transitions are represented by

boxes. It is clear that the net is not ordinary because of the multiplicity of arcs

(p5, t2) and (t3, p5).
Each of places p1 and p5 has three tokens, denoted by three black dots or num-

ber 3 inside. Place p4 holds two tokens and there is no token in p2 and p3. This

token distribution leads to the initial marking of the net with M0 = 3p1 +2p4 +3p5.

The net’s alternative graphical representation is given in Fig 2.1b, where multiple

arcs are replaced with an arc with its weight and multiple tokens in a place can be

replaced by a corresponding number for the sake of simplicity. For example, the

number of tokens in place p1 is denoted by number 3.

2.2 Formal Definitions 19

p 1

p 5

p 3 p 4

p 2

t 1

t 3

t 2

(a)

p 1

p 5

p 3 p 4

p 2

t 1

t 3

t 2
2

3

(b)

3

Fig. 2.1 A Petri net (N,M0) with M0 = 3p1 +2p4 +3p5 represented by (a) multiplicity of arcs and
(b) weight of arcs

Definition 2.3. Let x ∈ P ∪ T be a node of net N = (P,T,F,W). The preset of

x is defined as •x = {y ∈ P∪T |(y,x) ∈ F}. While the postset of x is defined as

x• = {y ∈ P∪T |(x,y) ∈ F}. This notation can be extended to a set of nodes as fol-

lows: given X ⊆ P∪T , •X = ∪x∈X
•x, and X• = ∪x∈X x•. Given place p, we denote

max{W (p, t) | t ∈ p•} by maxp• .

For t ∈ T , p ∈•t is called an input place of t and p ∈ t• is called an output place

of t. For p ∈ P, t ∈•p is called an input transition of p and t ∈ p• is called an output

transition of p.

Example 2.2. In Fig. 2.1a, we have •t1 = {p1, p5}, •t2 = {p2, p4, p5}, t•2 = {p3},

t•3 = {p1, p4, p5}, •p3 = {t2}, p•3 = {t3}, •p5 = {t3}, and p•5 = {t1, t2}. Let S =
{p3, p5}. Then, •S = •p3 ∪•p5 = {t2, t3} and S• = p•3 ∪ p•5 = {t1, t2, t3}. It is easy to

see that maxp•5 = 2 and ∀p ∈ P\{p5}, maxp• = 1.

Definition 2.4. A transition t ∈ T is enabled at a marking M iff ∀p ∈•t, M(p) ≥
W (p, t). This fact is denoted by M[t〉. Firing it yields a new marking M′ such that

∀p ∈ P, M′(p) = M(p)−W (p, t)+W (t, p), as denoted by M[t〉M′. M′ is called an

immediately reachable marking from M. Marking M′′ is said to be reachable from M
if there exists a sequence of transitions σ = t0t1 · · · tn and markings M1,M2, · · ·, and

Mn such that M[t0〉M1[t1〉M2 · · ·Mn[tn〉M′′ holds. The set of markings reachable from

M in N is called the reachability set of Petri net (N,M) and denoted by R(N,M).

Example 2.3. In Fig. 2.2a, t1 is enabled at initial marking M0 = 3p1 + 2p4 + 3p5

since •t1 = {p1, p5}, M0(p1) = 3 > W (p1, t1) = 1, and M0(p5) = 3 > W (p5, t1) = 1.

Firing t1 leads to M1 with M1(p1) = M0(p1)−W (p1, t1)+W (t1, p1) = 2, M1(p2) =
M0(p2)−W (p2, t1)+W (t1, p2) = 1, M1(p3) = M0(p3)−W (p3, t1)+W (t1, p3) = 0,

20 2 Petri Nets

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

t 1 f i r e s p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

t 3 f i r e s t 1 f i r e s t 2 f i r e s

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

(a)

(d) (c)

(b)

t 1 f i r e s

p 1
p 5

p 3

p 4

p 2

t 1

t 3

t 2

2

3

(e)

Fig. 2.2 The evolution of a Petri net: (a) (N,M0), (b) (N,M1), (c) (N,M2), (d) (N,M3), and (e)
(N,M4)

M1(p4) = M0(p4)−W (p4, t1)+W (t1, p4) = 2, and M1(p5) = M0(p5)−W (p5, t1)+
W (t1, p5) = 2, as shown in Fig 2.2b.

In marking M1, both t1 and t2 are enabled. Firing t2 at M1 leads to M2 as shown

in Fig. 2.2c. Firing t1 at M1 leads to M3 as shown in Fig. 2.2d. Only t1 is enabled

at M3. Figure 2.2e is the net after t1 fires at M3 and corresponds to M4. At M2,

only t3 is enabled. Firing it leads back to M0. As a result, the reachability set of the

net in Fig. 2.2a is R(N,M0) = {M0,M1,M2,M3,M4}, where M0 = 3p1 +2p4 +3p5,

2.2 Formal Definitions 21

M1 = 2p1 + p2 + 2p4 + 2p5, M2 = 2p1 + p3 + p4, M3 = p1 + 2p2 + 2p4 + p5, and

M4 = 3p2 +2p4. Note that at M4, no transition is enabled.

Definition 2.5. A Petri net (N,M0) is safe if ∀M ∈ R(N,M0), ∀p ∈ P, M(p) ≤ 1 is

true. It is bounded if ∃k ∈ N+, ∀M ∈ R(N,M0), ∀p ∈ P, M(p) ≤ k. It is said to be

unbounded if it is not bounded. A net N is structurally bounded if it is bounded for

any initial marking.

Note that a net is bounded iff its reachability set has a finite number of elements.

The reachability set of a net (N,M0) can be expressed by a reachability graph. A

reachability graph is a directed graph whose nodes are markings in R(N,M0) and

arcs are labeled by the transitions of N. An arc from M1 to M2 is labeled by t iff

M1[t〉M2.

Example 2.4. Figure 2.3 shows the reachability graph of the Petri net depicted in

Fig. 2.2a. The net is bounded and its reachability graph is finite.

M 0 = 3 p 1 + 2 p 4 + 3 p 5
t 1

M 1 = 2 p 1 + p 2 + 2 p 4 + 2 p 5

t 2 t 1

M 2 = 2 p 1 + p 3 + p 4

M 3 = p 1 + 2 p 2 + 2 p 4 + p 5

t 1

M 4 = 3 p 2 + 2 p 4

t 3

Fig. 2.3 The reachability graph of net (N,M0) shown in Fig 2.2a

Definition 2.6. A net N = (P,T,F,W) is pure (self-loop free) iff ∀x,y ∈ P ∪ T ,

W (x,y) > 0 implies W (y,x) = 0.

Definition 2.7. A pure net N = (P,T,F,W) can be represented by its incidence ma-

trix [N], where [N] is a |P|× |T | integer matrix with [N](p, t) = W (t, p)−W (p, t).
For a place p (transition t), its incidence vector, a row (column) in [N], is denoted

by [N](p, ·) ([N](·, t)).
According to the definition, it is easy to see the physical meanings of an ele-

ment in an incidence matrix of a Petri net N. Specifically, [N](p, t) indicates that

p receives (loses) |[N](p, t)| tokens if [N](p, t) > 0 ([N](p, t) < 0) after t fires. The

number of tokens in p does not change if [N](p, t) = 0 after t fires. Vector [N](p, ·)
shows the token variation in p with respect to the firing of each transition once

in the net N. Let S ⊆ P be a subset of places in net N. [N](S, ·) is used to denote

∑p∈S[N](p, ·).

22 2 Petri Nets

Example 2.5. The incidence matrix of the net in Fig. 2.1a is shown below:

[N] =

⎛
⎜⎜⎜⎜⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞
⎟⎟⎟⎟⎠ .

[N](p1, t1) = −1 implies that p1 loses a token after firing t1. [N](p1, t3) = 1 in-

dicates that p1 gets a token after t3 fires. [N](p1, t2) = 0 means that the number of

tokens in p1 does not change after t2 fires. Note that [N](p5, ·) = (−1, −2, 3). It

implies that firing t1 removes one token from p5, firing t2 removes two tokens from

p5, and firing t3 deposits three tokens into p5.

Let S = {p3, p5}. [N](S, ·) = [N](p3, ·)+[N](p5, ·) = (−1, −1, 2). It indicates that

firing t1 or t2 removes one token from S, and firing t3 puts two tokens into S.

It is important to note that the change of the number of tokens in a place p caused

by firing some transition t does not depend on the current marking. Instead, it is

completely determined by the structure of a net. In this sense, the incidence ma-

trix suffices to characterize the relative change of tokens for every place when a

transition fires.

The incidence matrix [N] of a net N can be naturally divided into two parts

[N]+ and [N]− according to the token flow by defining [N] = [N]+ − [N]−, where

[N]+(p, t) = W (t, p) and [N]−(p, t) = W (p, t) are called input (incidence) matrix

and output (incidence) matrix, respectively. Note that the input and output matrices

can completely describe a net structure, but it is not the case for incidence matri-

ces in general. Two nets that have the same incidence matrices may have different

net structures. This case likes an expression a− b = c− d but a = c and b = d are

not necessarily true. However, if there are no self-loops in a Petri net, its incidence

matrix can completely determine its structure.

Example 2.6. For the net in Fig. 2.1a, its input matrix and output matrix are as fol-

lows:

[N]+ =

⎛
⎜⎜⎜⎜⎝

0 0 1

1 0 0

0 1 0

0 0 1

0 0 3

⎞
⎟⎟⎟⎟⎠ , [N]− =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

0 1 0

1 2 0

⎞
⎟⎟⎟⎟⎠ .

Accordingly, the enabling condition of a transition t can be rewritten as M ≥
[N]−(·, t).
Definition 2.8. Given a Petri net (N,M0), t ∈ T is live under M0 iff ∀M ∈ R(N,M0),
∃M′ ∈ R(N,M), M′[t〉. (N,M0) is live iff ∀t ∈ T , t is live under M0. (N,M0) is dead

under M0 iff �t ∈ T , M0[t〉. (N,M0) is deadlock-free (weakly live or live-locked) iff

∀M ∈ R(N,M0), ∃t ∈ T , M[t〉.

2.2 Formal Definitions 23

Definition 2.9. Petri net (N,M0) is quasi-live iff ∀t ∈ T , there exists M ∈ R(N,M0)
such that M[t〉 holds.

A live Petri net guarantees deadlock-freedom no matter what firing sequence is

chosen but the converse is not true. However, this property is costly to verify.

Example 2.7. The net shown in Fig. 2.4a is deadlock-free since transitions t1 and t2
are live, while the net in Fig 2.4b is live since all transitions are live. The net in Fig.

2.2e is dead since no transition is enabled under the current marking M4.

(a)

t 1

 p 3

p 1

t 2

 p 2

t 3

 2

 (b)

t 2

t 3

t 1

 p 3

 p 2

p 1

 p 4

Fig. 2.4 Two Petri nets: (a) is deadlock-free and (b) is live

Definition 2.10. Let N = (P,T,F,W) be a net and σ be a finite sequence of tran-

sitions. The Parikh vector of σ is −→σ : T → N which maps t in T to the num-

ber of occurrences of t in σ . Define −→t1 = (1,0, . . . ,0)T , −→t2 = (0,1,0, . . . ,0)T , and−→tk = (0,0, . . . ,0,1)T assuming k = |T |.
Example 2.8. Let σ1 = t1t3t2t4t5t2 and σ2 = t1 be two sequences of transitions of

some net N with |T | = 6. Their Parikh vectors are −→σ1 = (1, 2, 1, 1, 1, 0)T and −→σ2 =
(1, 0, 0, 0, 0, 0)T , respectively. Clearly, we have −→σ2 = −→t1 = (1, 0, 0, 0, 0, 0)T . For

the transition sequence σ = t1t1t1 in the net shown in Fig. 2.1a, −→σ = (3, 0, 0)T .

It is trivial that for each transition t, we have [N](·, t) = [N]−→t . Note that M[t〉M′
leads to M′ = M +[N](·, t). Consequently, if M[t〉M′, we have M′ = M +[N]−→t . For

an arbitrary finite transition sequence σ such that M[σ〉M′, we have

M′ = M +[N]−→σ . (2.1)

Equation 2.1 is called the state equation of a Petri net (N,M), which presents

an algebraic description of the marking change in a Petri net. In other words, it

is a compact way to express the interrelation between markings and numbers of

transition occurrences in a transition sequence. Such a linear algebraic expression is

24 2 Petri Nets

very helpful because it allows one to apply the concepts and results of linear algebra

to the domain of Petri nets.

Any reachable marking fulfils the state equation but the converse is not true. In

this sense, the state equation provides a necessary condition for a marking M to be

reachable from an initial marking M0. That is to say, if marking M is reachable from

M0, the state equation M = M0 + [N]−→σ must have a vector solution for σ with its

components in N. Conversely, if the marking equation is not soluble, marking M is

not reachable from M0.

Example 2.9. In Fig. 2.1a, σ = t1t1t1 is a firable transition sequence with −→σ = (3, 0,

0)T . From Fig. 2.2d, we have M0[σ〉M4, which can be verified by (2.1) as follows:

M0 +[N]−→σ =

⎛
⎜⎜⎜⎜⎝

3

0

0

2

3

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞
⎟⎟⎟⎟⎠

⎛
⎝ 3

0

0

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

3

0

0

2

3

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−3

3

0

0

−3

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

3

0

2

0

⎞
⎟⎟⎟⎟⎠ = M4.

Let σ = t1t2t3. It is a firable transition sequence with −→σ =(1, 1, 1)T . From Fig.

2.2, we have M0[σ〉M0 that can be verified by (2.1) as follows.

M0 +[N]−→σ =

⎛
⎜⎜⎜⎜⎝

3

0

0

2

3

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

−1 0 1

1 −1 0

0 1 −1

0 −1 1

−1 −2 3

⎞
⎟⎟⎟⎟⎠

⎛
⎝ 1

1

1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

3

0

0

2

3

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝

0

0

0

0

0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

3

0

0

2

3

⎞
⎟⎟⎟⎟⎠ = M0.

Definition 2.11. Let (N,M0) be a net system. Its linearized reachability set by using

the state equation over the real numbers is defined as RS(N,M0) = {M|M = M0 +
[N]Y,M ≥ 0,Y ≥ 0}.

We have R(N,M0) ⊆ RS(N,M0) since the state equation does not check whether

there is a sequence of intermediate markings such that some transition sequence σ is

actually firable. The markings in RS(N,M0)\R(N,M0) are called spurious markings

(with respect to the state equation).

Although the reachability set derived from the state equation may contain spuri-

ous markings, in some cases its linear description facilitates the analysis of a Petri

net.

For example, the verification of predicate min{M(S)|M ∈ R(N,M0)} ≥ k1 is dif-

ficult due to a potentially huge number of reachable markings in R(N,M0), where S
is a subset of places and k1 is a non-negative integer. However, the minimal number

of tokens holding by S in RS(N,M0) can be found by solving the following linear

programming problem (LPP):

MIN M(S)
s.t.

M = M0 +[N]Y

2.3 Structural Invariants 25

M ≥ 0

Y ≥ 0

It is known that an LPP can be solved in polynomial time. Let k2 be a feasible

solution of the above LPP. Obviously, we have k2 ≤ min{M(S)|M ∈ R(N,M0)}. If

k1 ≤ k2, one gets k1 ≤ k2 ≤ min{M(S)|M ∈ R(N,M0)}, leading to the truth of this

predicate. Certainly, if k1 > k2, one cannot give a definite answer to the truth of this

predicate.

Example 2.10. S = {p1, p3, p4} is a set of places in the net shown in Fig 2.5, where

M0 = p3. A question is whether S can be always marked. By solving an LPP, we

have min{M(S)|M = M0 + [N]Y , M ≥ 0, Y ≥ 0} = 1. This leads to the fact that S
can never be emptied, i.e., under any reachable marking, there is at least one place

that is marked.

t 3

t 2

t 1

t 4 p 5

 p 4 p 3

 p 2

 p 1

Fig. 2.5 A Petri net (N,M0)

2.3 Structural Invariants

One important feature of Petri nets is that their structural properties can be obtained

by linear algebraic techniques [13,18,42]. These properties that depend on only the

topological structure of a Petri net and are independent of the initial marking are

called invariants. Invariants are an important means for analyzing the behavior of a

Petri net from a structural viewpoint.

Definition 2.12. A P-vector is a column vector I : P → Z indexed by P and a T -

vector is a column vector J : T → Z indexed by T , where Z is the set of integers.

We denote column vectors where every entry equals 0(1) by 0(1). IT and [N]T

are the transposed versions of vector I and matrix [N], respectively. A P(T)-vector

is non-negative if no element in it is negative.

Definition 2.13. P-vector I is called a P-invariant (place invariant) iff I �= 0 and

IT [N] = 0T . T -vector J is called a T -invariant (transition invariant) iff J �= 0 and

[N]J = 0.

26 2 Petri Nets

Definition 2.14. P-invariant I is a P-semiflow if every element of I is non-negative.

||I|| = {p|I(p) �= 0} is called the support of I. ||I||+ = {p|I(p) > 0} denotes the

positive support of P-invariant I and ||I||− = {p|I(p) < 0} denotes the negative

support of I. I is called a minimal P-invariant if ||I|| is not a superset of the support

of any other one and its components are mutually prime.

Definition 2.15. T -invariant J is a T -semiflow if every element of J is non-negative.

||J|| = {t|J(t) �= 0} is called the support of J. ||J||+ = {t|J(t) > 0} denotes the

positive support of T -invariant J and ||J||− = {t|J(t) < 0} denotes the negative

support of J. J is called a minimal T -invariant if ||J|| is not a superset of the support

of any other one and its components are mutually prime.

Note that a set of numbers is mutually prime if their common divisor is one. For

example, 4, 7, and 16 are mutually prime. But 4, 6, and 16 are not since 2 is their

common divisor. A P-invariant corresponds to a set of places whose weighted token

count is a constant for any reachable marking. It follows immediately from the state

equation.

Theorem 2.1. Let (N,M0) be a net with P-invariant I and M be a reachable marking
from M0. Then

IT M = IT M0.

A fundamental property of a T -invariant follows immediately from the state

equation.

Theorem 2.2. Let (N,M0) be a net with a transition sequence σ such that M0[σ〉M.
M = M0 iff −→σ is a T -invariant of N.

Note that for a specific marked net, the existence of a T -invariant does not imply

that there exists a transition sequence whose Parikh vector is the T -vector such that it

is firable and its firing leads the net from the initial marking back to it. Furthermore,

it is easy to see that any linear combination of P(T)-invariants of a net is still a

P(T)-invariant of the net.

Property 2.1. If I is a P-semiflow of a net, •||I|| = ||I||•.

Example 2.11. In the net shown in Fig. 2.1a, there are three minimal P-invariants:

I1 = p1 + p2 + p3, I2 = p3 + p4, and I3 = p2 + 3p3 + p5, since ∀i ∈ {1,2,3},

IT
i [N]=0T . ∀M ∈ R(N,M0), IT

1 M = IT
1 M0 = M0(p1)+ M0(p2)+ M0(p3) = 3. This

indicates that the token count in places p1, p2, and p3 keeps three under any reach-

able marking, which can be verified from the reachability graph, which is identical

with the one shown in Fig 2.3.

The net has a unique T -invariant J = t1 + t2 + t3 and the transition sequence

σ = t1t2t3 is firable. As a result, M0[t1〉M1[t2〉M2[t3〉M0.

Since I1 and I2 are P-invariants, I = I1−I2 = p1 + p2− p4 is a P-invariant as well.

Note that I is not a P-semiflow due to its negative component. Moreover, one can

get ||I1|| = {p1, p2, p3}, ||I||+ = {p1, p2}, and ||I||− = {p4}. It is easy to see that
•||I1|| =• p1 ∪• p2 ∪• p3 = {t3}∪{t1}∪{t2} = {t1, t2, t3} and ||I1||• = p1

• ∪ p2
• ∪

p3
• = {t1}∪{t2}∪{t3} = {t1, t2, t3}. ||I1||• =• ||I1|| will not be surprising since I1

is a P-semiflow.

2.4 Siphons and Traps 27

A Petri net is strongly connected if ∀x,y ∈ P∪T , there is a sequence of nodes x,

a, b, . . ., c, y such that (x,a), (a,b), . . ., (c,y) ∈ F , where {a,b, . . . ,c} ⊆ P∪T . A

string x1 . . .xn is called a path of N iff ∀i ∈ Nn−1, xi+1 ∈ x•i , where ∀x ∈ {x1, · · ·, xn},

x ∈ P∪T . An elementary path from x1 to xn is a path whose nodes are all different

(except, perhaps, x1 and xn). A path x1 · · ·xn is called a circuit iff it is an elementary

path and x1 = xn.

The liveness of a Petri net is close to its connectedness. A result is given in [17]:

Each connected net with a live and bounded marking is strongly connected. A result

that establishes a bridge between strong connectedness and invariants is given as

follows owing to [18]:

Theorem 2.3. Each connected net with a positive place invariant and positive tran-
sition invariant is strongly connected.

2.4 Siphons and Traps

P-invariants that can be derived from the state equation of a Petri net are marking

invariants. The token count in their corresponding places stays constant, i.e., the in-

variant law associated with a P-invariant holds for any reachable marking. In a Petri

net, siphons and traps are also structural objects that involve marking invariants.

However, the invariant laws associated with them do not hold under any reachable

marking, but once they become true they remain true for any subsequently reachable

markings. A siphon remains empty once it loses all tokens. A trap remains marked

once it has any token in it. Siphons and traps have been extensively investigated and

used for the structural analysis of a Petri net. They also play an important role in the

liveness analysis of a net, particularly in ordinary ones.

Definition 2.16. A non-empty set S ⊆ P is a siphon iff •S ⊆S•. S ⊆ P is a trap iff

S•⊆•S. A siphon (trap) is minimal iff there is no siphon (trap) contained in it as a

proper subset. A minimal siphon S is said to be strict if •S � S•.

Property 2.2. Let S1 and S2 are two siphons (traps). Then, S1 ∪S2 is a siphon (trap).

Example 2.12. In the net shown in Fig. 2.1a, S1 = {p1, p2, p3}, S2 = {p4, p3}, S3 =
{p2, p3, p5}, and S4 = {p3, p5} are siphons, among which S1, S2, and S4 are minimal

since the removal of any place from each of these sets leads to the fact that the

resultant set is not a siphon any more. Note that •S1 = S•1, •S2 = S•2, and •S3 = S•3.

S1, S2, and S3 are also traps. By •S4 = {t2, t3} and S•4 = {t1, t2, t3}, we have •S4 ⊂ S4
•.

S4 = {p3, p5} is therefore a strict minimal siphon.

Corollary 2.1. If I is a P-semiflow, then ||I|| is both a siphon and trap.

Note that the converse of Corollary 2.1 is not true since a P-invariant depends on

not only the topological structure of a net but also the weights attached to the arcs.

However, a siphon or trap depends on the topological structure only. For example,

28 2 Petri Nets

S = {p1, p2} in Fig. 2.6 is both a siphon and trap. However, it is not the support of

a P-semiflow. In this sense, the converse of Corollary 2.1 is true in the domain of

ordinary nets.

 p 2 t 1 p 1 t 2
 2

Fig. 2.6 A siphon and trap in a net without P-semiflow

If a siphon contains the support of a P-semiflow and the support is initially

marked, then it can never be emptied. In addition, traps and siphons have the fol-

lowing marking invariant laws.

Property 2.3. Let M∈R(N,M0) be a marking of net (N,M0) and S a trap. If M(S) >
0, then ∀M′ ∈ R(N,M), M′(S) > 0.

This property implies that once a trap is marked under a marking, it is always

marked under the subsequent markings that are reachable from the current one.

Property 2.4. Let M∈R(N,M0) be a marking of net (N,M0) and S a siphon. If

M(S) = 0, then ∀M′ ∈ R(N,M), M′(S) = 0.

Property 2.4 indicates that once a siphon loses all its tokens, it remains unmarked

under any subsequent markings that are reachable from the current marking. An

empty siphon S causes that no transition in S• is enabled. Due to the definition

of siphons, all transitions connected to S can never be enabled once it is emptied.

The transitions are therefore dead, leading to the fact that the net containing these

transitions is not live.

As a result, deadlock-freedom and liveness of a Petri net are closely related to its

siphons, which is shown by the following known results [16].

Theorem 2.4. Let (N,M0) be an ordinary net and Π the set of its siphons. The net
is deadlock-free if ∀S ∈ Π , ∀M ∈ R(N,M0), M(S) > 0.

This theorem states that an ordinary Petri net is deadlock-free if no (minimal)

siphon eventually becomes empty.

Theorem 2.5. Let (N,M) be an ordinary net that is in a deadlock state. Then, {p ∈
P|M(p) = 0} is a siphon.

This result means that if an ordinary net is dead, i.e., no transition is enabled,

then the unmarked places form a siphon.

Example 2.13. The net shown in Fig. 2.7a is a famous example as first discussed by

Zhou et al. [61, 62] and later by Chu and Xie [12] and many other researchers [6].

It has four minimal siphons S1 = {p1, p2, p3, p4}, S2 = {p3, p5}, S3 = {p2, p4, p6},

2.4 Siphons and Traps 29

and S4 = {p4, p5, p6}. S1, S2 and S3 are also traps that are initially marked. Note that

S4 is a strict minimal siphon since •S4 = {t2, t3, t4} and S4
• = {t1, t2, t3, t4}, leading

to the truth of •S4 � S4
•.

In Fig. 2.7a, σ = t1t2t1 is a firable transition sequence whose firing leads to a

new marking as shown in Fig. 2.7b. The net in Fig. 2.7b is dead since no transition

is enabled in the current marking. The unmarked places p1, p4, p5, and p6 form a

siphon S = {p1, p4, p5, p6} that is not minimal since it contains S4. The emptiness

of S disables every transition in S• such that no transition in this net is enabled. As

a result, the net is dead.

Based on Theorem 2.5, we can achieve the following results.

p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6 p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6 p 1

t 2

t 3

t 1

 p 3

 p 2

 p 5

t 4

 p 4

 p 6

 p 7

(a) (c) (b)

Fig. 2.7 (a) A Petri net [61], (b) a dead marking, and (c) a controlled siphon

Corollary 2.2. A deadlocked ordinary Petri net contains at least one empty siphon.

Corollary 2.3. Let N = (P,T,F,W) be a deadlocked net under marking M. Then, it
has at least one siphon S such that ∀p ∈ S, ∃t ∈ p• such that W (p, t) > M(p).

Definition 2.17. A siphon S is said to be controlled in a net system (N,M0) iff ∀M ∈
R(N,M0), M(S) > 0.

Clearly, any siphon that contains a marked trap is controlled since it can never be

emptied. In an ordinary Petri net, a siphon that is controlled does not imply a dead-

lock. This is not the case in a generalized Petri net. For example, there are two min-

imal siphons in the generalized Petri net shown in Fig 2.4a. They are S1 = {p1, p3}
and S2 = {p2}. Both of them can never be unmarked. However, the insufficient num-

ber of tokens in S2 disables t3. In fact, t3 is a dead transition in the net. Hence, the net

is not live even though each siphon is always marked. Chapter 3 shows that a siphon

in a generalized Petri net does not lead to dead transitions if it is max-controlled [4].

30 2 Petri Nets

For a siphon that can be emptied in a net, some external control mechanism can

be exerted on the net such that it becomes controlled. In Fig. 2.7a, S4 is a strict

minimal siphon whose emptiness leads to the deadlock of the net. To prevent S4

from being unmarked, a place p7 is added with •p7 = {t3} and p•7 = {t1}, as shown

in Fig. 2.7c. The initial marking of p7 is one. Such an additional place is called a

monitor or control place in terms of its role. In Fig. 2.7c, the addition of p7 leads

to an extra minimal siphon S5 = {p2, p3, p7} that is a marked trap. As a result, no

siphon can be emptied in the net and it is deadlock-free (actually, live). This example

motivates one to explore the mechanism to make a siphon controlled by adding a

monitor.

When we talk about siphon control, we are usually concerned with minimal

siphons since the controllability of a minimal siphon implies that of those containing

it.

A natural problem is to decide whether a set of places S in a Petri net is a minimal

siphon. It is shown in [2] that the decision can be done in polynomial time with

complexity O(m2 +mn2), where m = |S•| and n = |S|.
Definition 2.18. Let N = (P,T,F,W) be a Petri net with PX ⊆ P and TX ⊆ T . NX =
(PX ,TX ,FX ,WX) is called a subnet generated by PX ∪TX if FX = F ∩ [(PX ×TX)∪
(TX ×PX)] and ∀ f ∈ FX , WX (f) = W (f).

Property 2.5. Let S be a minimal siphon in a net N. The subnet generated by S∪•S
is strongly connected.

The following definition is from [12, 32].

Definition 2.19. Siphon S in an ordinary net system (N,M0) is invariant-controlled

by P-invariant I under M0 iff IT M0 > 0 and ∀p ∈ P\S, I(p) ≤ 0, or equivalently,

IT M0 > 0 and ||I||+ ⊆ S.

If S is controlled by P-invariant I under M0, S cannot be emptied, i.e., ∀M ∈
R(N,M0), S is marked under M.

Example 2.14. In Fig. 2.7c, one can verify that I1 = p3 + p5, I2 = p2 + p4 + p6, and

I3 = p2 + p3 + p7 are P-invariants. As a result, I = I1 + I2 − I3 = p4 + p5 + p6 − p7

is a P-invariant as well. It is easy to see that siphon S4 = {p4, p5, p6} is controlled

by P-invariant I since ||I||+ = {p4, p5, p6} = S4 and IT M0 = M0(p4) + M0(p5) +
M0(p6)−M0(p7) = 2−1 = 1 > 0. The controllability of S4 = {p4, p5, p6} implies

that of siphon S = {p1, p4, p5, p6} that is not minimal. Note that •S4 = {t2, t3, t4}.

The subset generated by S4∪•S4 is shown in Fig. 2.8. It is clearly strongly connected

since S4 = {p4, p5, p6} is a minimal siphon.

In essence, the controllability of siphon S by adding a monitor is ensured by

the fact that the number of tokens leaving S is limited by a marking invariant law

imposed on the Petri net, which is implemented by a P-invariant whose support

contains the monitor.

In order to test whether a siphon S is controlled by a P-invariant I, it is sufficient

to solve the following system of linear homogeneous inequalities and equations:

2.4 Siphons and Traps 31

t 2

t 3

 p 5

t 4

 p 4

 p 6

Fig. 2.8 A subnet generated by a minimal siphon and its preset

IT [N] = 0T

IT M0 > 0

I(p) ≤ 0, ∀p ∈ P\S
For the above system, the existence of a solution can be proved through Phase I

of the simplex algorithm applied to the following LPP:

maximize 0T I
s. t.

IT [N] = 0T

IT M0 > 0

I(p) ≤ 0, ∀p ∈ P\S

Phase I of the simplex algorithm computes a basic feasible solution of the set of

constraints of the LPP if it exists.

An empty or insufficiently marked siphon in a Petri net can cause some transi-

tions not to be enabled. A siphon in an ordinary Petri net can be made invariant-

controlled as defined above. The case in a generalized Petri net is much more com-

plicated and is treated as follows.

Definition 2.20. Let (N,M0) be a net system and S be a siphon of N. S is said to be

max-marked at a marking M ∈ R(N,M0) iff ∃p ∈ S such that M(p) ≥ maxp• .

Definition 2.21. A siphon is said to be max-controlled iff it is max-marked at any

reachable marking.

Definition 2.22. (N,M0) satisfies the maximal cs-property (maximal controlled-

siphon property) iff each minimal siphon of N is max-controlled.

The following results are owing to [4]. In case of no confusion, maximal cs-

property is called cs-property for the sake of simplification.

Property 2.6. If (N,M0) satisfies the cs-property, it is deadlock-free.

32 2 Petri Nets

Property 2.7. If (N,M0) is live, it satisfies the cs-property.

A siphon satisfying the max-controlled property can be always marked suffi-

ciently to allow firing a transition once at least. In order to check and use the cs-

property, Barkaoui et al. [4] propose the conditions to determine whether a given

siphon is max-controlled.

Proposition 2.1. Let (N,M0) be a Petri net and S be a siphon of N. If there ex-
ists a P-invariant I such that ∀p ∈ (||I||− ∩ S), maxp• = 1, ||I||+ ⊆ S and IT M0 >

∑p∈S I(p)(maxp• −1), then S is max-controlled.

Example 2.15. Figure 2.9a shows a generalized net and I1 = p2 + p6 and I2 =
p2 +3p3 + p5 are its two P-invariants. Trivially, I = I2 − I1 = 3p3 + p5 − p6 is also

a P-invariant. Let S = {p3, p5} be a set of places. Since •S ⊂ S•, S is a strict mini-

mal siphon. Next we show that it is max-controlled by P-invariant I. It is clear that

||I||− ∩S = /0 and ||I||+ = S. We then check the truth of IT M0 > ∑p∈S I(p)(maxp• −
1). IT M0 = M0(p5) + 3M0(p3) − M0(p6) = 3 − 1 = 2. ∑p∈S I(p)(maxp• − 1) =
I(p3)(maxp•3 − 1)+ I(p5)(maxp•5 − 1). Considering maxp•3 = 1 and maxp•5 = 2, we

have ∑p∈S I(p)(maxp• −1) = 1. Therefore, IT M0 > ∑p∈S I(p)(maxp• −1) and S is

max-controlled. Figure 2.9b shows the reachability graph of the net in Fig. 2.9a.

p 1

p 5

p 3

p 4

p 2

t 1

t 3

t 2
2

3

p 6

(a)

M 0 = 3 p 1 + 2 p 4 + 3 p 5 + p 6

t 1

M 1 = 2 p 1 + p 2 + 2 p 4 + 2 p 5

t 2

M 2 = 2 p 1 + p 3 + p 4 + p 6

t 3

(b)

Fig. 2.9 A max-controlled siphon in a net (N,M0) (a) Petri net model and (b) reachability graph

By comparing the net in Fig. 2.9a with Fig 2.1a as well as their reachability

graphs as shown in Fig. 2.9b and Fig. 2.3, respectively, one concludes that the addi-

tion of p6 removes two markings M3 and M4 in Fig. 2.3: one is a deadlock marking

and the other is a marking that inevitably leads the system to deadlock.

Remark 2.1. The number of siphons (minimal siphons) grows fast with respect to the

size of a Petri net and in the worst case grows exponentially with a net size. However,

many deadlock control approaches depend on the complete or partial enumeration

of siphons in a plant net model [23, 33, 34, 40, 50–52, 58, 59]. It is well known that

the complete siphon enumeration is time-consuming. Extensive studies have been

2.5 Subclasses of Petri Nets 33

conducted on the siphon computation, leading to a variety of methods [1,14,22,31,

35, 53, 54]. A recent work [15] by Cordone et al. claims that their proposed siphon

computation method can find more than 2×107 siphons in less than one hour.

2.5 Subclasses of Petri Nets

There are a number of interesting subclasses of ordinary Petri nets. The reasons that

they are interesting are twofold. First, they play an important role in the develop-

ment of certain application of Petri nets [11, 12]. Second, some relevant analysis

problems in these classes can be solved in polynomial time [3,21,36]. For example,

the problem of deciding whether a free-choice Petri net is live and bounded can be

solved in O(nm) [21], where n and m are the number of places and transitions of the

net, respectively. In turn, many analysis problems of live and bounded free-choice

nets are also shown to have polynomial time complexity [16].

Definition 2.23. A Petri net N = (P,T,F) is called a state machine iff ∀ t ∈ T , |•t|=
|t•| = 1.

In a state machine, each transition has exactly one input place and exactly one

output place. Each transition allows tokens to flow from one place to another. Mul-

tiple transitions may allow tokens to flow from their respective places to the same

place. In addition, a single token in a place p enables all transitions in p•. Firing any

of them disables the others. This is called a conflict. Note that all finite automata

can be described as the state machines of Petri nets.

Theorem 2.6. A state machine (N,M0) is live iff N is strongly connected and M0

marks at least one place.

Definition 2.24. A Petri net N = (P,T,F) is said to be a marked graph iff ∀p ∈ P,

|•p| = |p•| = 1.

In a marked graph, each place has exactly one input transition and exactly one

output transition. A transition may have multiple input places and output places. In

this sense, a marked graph allows concurrent and synchronization structure. A state

machine admits no synchronization and a marked graph allows no conflict.

Theorem 2.7. A marked graph (N,M0) is live iff M0 places at least one token on
each circuit in N.

Definition 2.25. A Petri net is a free-choice net iff ∀p1, p2 ∈P, p•1∩ p•2 �= /0⇒|p•1|=
|p•2| = 1.

In a free-choice net, every arc from a place is either a unique outgoing arc or

a unique incoming arc to a transition. A free-choice net allows both conflict and

synchronization, i.e., state machines and marked graphs fall under the class of free-

choice nets.

34 2 Petri Nets

Theorem 2.8. A free-choice net (N,M0) is live iff every siphon in it contains a
marked trap.

Definition 2.26. A Petri net is an extended free-choice net iff ∀p1, p2 ∈ P, p•1∩ p•2 �=
/0 ⇒ p•1 = p•2.

Definition 2.27. A Petri net is an asymmetric choice net iff ∀p1, p2 ∈ P, p•1 ∩ p•2 �=
/0 ⇒ p•1 ⊆ p•2 or p•2 ⊆ p•1.

Theorem 2.9. An asymmetric choice net (N,M0) is live if (but not only if) every
siphon in N contains a marked trap.

Example 2.16. Figure 2.10 shows some subclasses of Petri nets.

(a)

(f) (c)

(e)

(d)

(b)

Fig. 2.10 Subclasses of Petri nets: (a) a state machine but not marked graph, (b) a marked graph
but not state machine, (c) a free-choice net, (d) an extended free-choice net, (e) an asymmetric net,
and (f) a Petri net

2.6 Petri Nets and Automata

Since the reachability graph of a Petri net is an automaton, this section presents

some basics of finite-state automata [26], which are helpful to understand what is

presented in this book.

2.6 Petri Nets and Automata 35

Definition 2.28. A (deterministic) finite-state automaton is a 5-tuple G = (Q, Σ , δ ,

q0, Qm), where Q is a finite set of states, Σ is a finite alphabet of symbols that we

refer to as event labels, δ : Q×Σ the (partial) transition function, q0 the initial state,

and Qm ⊆ Q the set of marker states.

δ is a partial function since δ (q,α) may not be defined for all (q,α) ∈ Q×Σ .

When δ (q,α) is defined, it implies that ∃ q′ ∈ Q and α ∈ Σ , the occurrence of event

α transits the automaton from states q to q′.

 q 2

b

 q 1 q 0 a , b

a a
b

Fig. 2.11 An automaton

The operation of a finite-state automaton is always illustrated in a state diagram.

Graphically, the initial state is marked with an input arrow and the marker states

are denoted by double circles. For instance, Figure 2.11 shows an automaton G,

where Q = {q0,q1,q2}, Σ = {a,b}, the initial state is q0, Qm = {q1}, δ (q0,b) = q0,

δ (q0,a) = q1, δ (q1,b) = q1, δ (q1,a) = q2, δ (q2,a) = q1, and δ (q2,b) = q1.

The behavior of a system modeled by an automaton can be characterized by the

language that the automaton speaks, i.e., a set of sequences of symbols of events

from Σ , which are physically possible. For example, σ = abab is a possible se-

quence of events in the automaton in Fig. 2.11. The set of all finite sequences over

Σ is denoted by Σ ∗, which includes the empty string whose length is zero and which

is denoted by ε .

Definition 2.29. A labeled Petri net is a net with a labeling function l : T →
2Σ ∪{ε}, where Σ is the set of events and ε is a null event. A net is said to be

free-labeled if each transition t ∈ T is labeled by a single event a ∈ Σ and different

transitions bear different labels.

The reachability graph of a free-labeled Petri net corresponds to a deterministic

automaton. A finite automaton can easily be converted into a labeled Petri net by

inserting a transition that is labeled by the symbol between two connected states.

The states in the automaton are differently numbered by places. Figure 2.12 is the

equivalent labeled Petri net of the automaton depicted in Fig. 2.11.

For supervisory control of DES in a Petri net formalism, we are more concerned

with a free-labeled Petri net representation. Unfortunately, it is shown that not all

finite automata admit a free-labeled Petri net representation. It remains unanswered

what finite automata do have a free-labeled Petri net realization. Figure 2.13 shows

two finite automata that have no such realizations.

36 2 Petri Nets

b

b p 3

b

 p 2 p 1

aa

a

Fig. 2.12 The equivalent labeled Petri net of a finite automaton (a) Petri net A and (b) Petri net B

c

 b
a

a b a

(a)

a

cd

b

(b)

Fig. 2.13 Two finite automata without Petri net realizations

2.7 Plants, Supervisors, and Controlled Systems

In traditional supervisory control theory of DES, a system to be controlled is called

a plant or a plant net model if Petri nets are used as a formalism. The external

agent that forces the system to behave to satisfy given control specifications and

requirements is usually called a supervisor. In a Petri net formalism, a supervisor

is a Petri net that usually consists of a set of monitors, sometimes called control

places, and a set of transitions of the plant net model. There are no places of the

plant model in its supervisor. The role of the monitors in a supervisor is to supervise

the plant such that its behavior satisfies the control specifications. The compound of

a plant net model and its Petri net supervisor is called the controlled (net) system

of the plant, whose behavior does not violate the given control specifications and

requirements. To formally define a controlled system, it is necessary to first define

a class of compositions of two Petri nets via shared transitions. This composition is

also called synchronous synthesis of Petri nets.

Definition 2.30. Let (N1, M1) and (N2, M2) be two nets with Ni = (Pi, Ti, Fi, Wi),
i = 1,2, satisfying P1 ∩P2 = /0. (N,M) with N = (P,T,F,W) is said to be a syn-

chronous synthesis net resulting from the merge of (N1,M1) and (N2,M2), denoted

by (N1,M1)⊗ (N2,M2), iff

1. P = P1 ∪P2

2. T = T1 ∪T2

3. F = F1 ∪F2

4. W (f) = Wi(f) if f ∈ Fi, i = 1,2
5. M(p) = Mi(p) if p ∈ Pi, i = 1,2.

2.8 Bibliographical Remarks 37

Definition 2.31. Let (N1,M1), (N2,M2), . . ., and (Nk,Mk) be k nets satisfying Pi ∩
Pj = /0, ∀i, j ∈ Nk, i �= j. The synchronous synthesis of the k Petri nets (N1,M1),
(N2,M2), . . ., and (Nk,Mk) is defined as (N,M) = (Nk,Mk)⊗ (⊗k−1

i=1 (Ni,Mi)).

In a Petri net formalism, a supervisor is a Petri net that usually consists of a set

of monitors and a set of transitions, which is a subset of the set of transitions in the

plant net model. The controlled system is the synchronous synthesis of a plant net

model and its supervisor via shared transitions.

Definition 2.32. Let (Np,Mp) with Np = (P,T,F,W) be a plant model and (Nsup,

Msup) with Nsup = (PV ,TV ,FV ,WV) its supervisor, where P∩PV = /0 and TV ⊆ T .

The controlled system of the plant model is (Np,Mp)⊗ (Nsup,Msup).

Example 2.17. The Petri net shown in Fig. 2.14a is a plant model. The control spec-

ification is that the number of tokens in place p2 is not greater than one at any

reachable marking. The net depicted in Fig. 2.14b is a supervisor that can imple-

ment this control specification, where p3 is a monitor, PV = {p3}, and TV = {t1, t2}.

Figure 2.14c shows the controlled system that can be obtained by synchronous syn-

thesis of the nets in Fig. 2.14a, b. It is easy to verify that the number of tokens in p2

can never be greater than one.

p 3

t 1

t 2

(b)

p 1 p 2

t 1

t 2

(a)

p 1 p 3 p 2

t 1

t 2

(c)

Fig. 2.14 (a) a plant net model, (b) the supervisor, and (c) the controlled system

2.8 Bibliographical Remarks

All the material covered in this chapter can be found in standard books [16, 39,

43] and survey papers [37, 38]. A good paper on siphons is [2], which presents an

effective characterization of minimal siphons and traps from the viewpoint of graph

theory. The algorithms calculating siphons and traps can be found in [5,9,10,14,15,

22, 29, 31, 48, 54, 57, 60]. For a general introduction to the subclasses of Petri nets,

we refer readers to [37]. Good surveys of Petri nets from a system theory view can

be found in [24, 46].

38 2 Petri Nets

For a more extensive discussion of the original framework of DES supervisory

control based on formal languages and automata, we refer readers to the tutorial

surveys, papers and books [7, 8, 25, 27, 30, 41, 49].

Problems

2.1. It is known that the siphons are closely related to the deadlock or the existence

of dead transitions in a Petri net. Suppose that (N,M0) is a net without siphons. Is it

live? Results can be found in [55].

2.2. INA [47] is a widely used tool that supports the behavioral and structural anal-

ysis of Petri nets. Let us define the size of a net (N,M0) as ||N || = |P|+ |T |+
∑p∈P M0(p). By using INA, compute the reachability graphs for a number of Petri

nets with different sizes 5, 10, 20, . . ., and 100, and observe the relationship between

the CPU-time and the size of a Petri net.

2.3. Figure 2.15 shows the reduced version of the reachability graph of the net in

Fig. 2.1a. It is clear that M4 is a deadlock marking and M3 is a marking that definitely

leads the system to a deadlock state. These are “bad” states , which the system is

not allowed to enter. M1 is called a dangerous marking since, at this marking, the

system may enter M3 if supervisory control is not properly imposed.

Therefore, M0, M1, and M2 form the good behavior of the system. An intuitive

idea is to design an online supervisor that supervises the system such that if the

system reaches M1, it disables t1 and directs the system to M2.

Combining with the results for Problem 2.2, discuss the disadvantages of this

intuitive control idea. Try to implement this idea by some programming language

and check the size of the problem that can be processed by your computer.

 M 0

 M 4

 M 3 M 2

 M 1

 t 1

 t 1

 t 1

 t 3

 t 2

Fig. 2.15 A reachability graph

2.8 Bibliographical Remarks 39

2.4. Prove Corollary 2.3.

2.5. Find and compare the strict minimal siphons in Fig 2.16a, b. Change the ini-

tial markings of places p1 and p4 and verify the liveness of the two nets by INA.

This verification may find an interesting problem about deadlocks and siphons in a

generalized Petri net.

p 1

p 3

p 2

t 3

t 2

p 5

p 6

t 6

t 4

t 5 1 5

t 1

1 5

p 4 p 8

p 7
6

4
2

4

4

4

4

2

(a)

p 1

p 3

p 2

t 3

t 2

p 5

p 6

t 6

t 4

t 5 1 5

t 1

1 5

p 4 p 8

p 7

6

4

(b)

Fig. 2.16 Two Petri nets (a) a generalized one and (b) an ordinary one

2.6. The reachability graph of a Petri net (N,M0) can be constructed using the fol-

lowing algorithm that terminates in a finite number of steps if its reachability set is

finite. Starting with M0, all the enabled transitions can be fired. These firings can

lead to new markings that may enable other transitions. Taking each of the new

markings as a new root, we can recursively generate all the reachable markings. The

following reachability graph generation algorithm can be found in [37, 39].

Algorithm 2.1 Reachability graph

1: The root node is M0. This node has initially no label.

2: while There are nodes with no label do
3: Consider a node M with no label.

4: (a) For each transition t enabled at M:

5: Let M′ = M +[N](·, t).
6: if There does not exist a node M′ in the graph then
7: Add it.

8: Add an arc t from M to M′.
9: end if

10: (b) Label the node M “old”.

11: end while
12: Remove all labels from nodes.

Implement the algorithm in a programming language and find the reachability

graphs for all the Petri nets in Chap. 2 and those used in Problem 2.2. Check the

40 2 Petri Nets

maximal size of a reachability graph that your computer can process in reasonable

time. Compare the CPU-times needed by your program and INA.

Let M, M′ ∈ R(N,M0) be two reachable markings of a Petri net (N,M0) with

N = (P,T,F,W). M is said to cover M′ if M ≥ M′, i.e., ∀p ∈ P, M(p) ≥ M′(p).
For an unbounded Petri net, its reachability graph can grow indefinitely. To re-

duce and keep the size of the graph finite, a special symbol ω is usually introduced,

which represents a number of tokens that can be made arbitrarily large. For any

finite integer a, ω is subject to the following four rules:

a ≤ ω ,

ω ≤ ω ,

ω +a = ω ,

ω −a = ω .

By using the above notations, a special graph called a coverability graph can be

constructed using the algorithm stated in [19]. If there is no symbol ω in a graph, it is

also a reachability graph. A coverability graph is finite and contains every reachable

marking from an initial marking M0, which is either explicitly represented by a node,

or is covered by a node through the use of ω . For details, the reader can be referred

to [19] and [37].

Additional work related to the check of liveness of unbounded Petri nets can be

found in [20, 28, 45, 56]. The liveness analysis problem of generalized unbounded

Petri nets remains open.

References

1. Abdallah, I.B., ElMaraghy, H.A., ElMekkawy, T. (1997) A logic programming approach for
finding minimal siphons in S3PR nets applied to manufacturing systems. In Proc. IEEE Int.
Conf. on Systems, Man, and Cybernetics, pp.1710–1715.

2. Barkaoui, K., Lemaire, B. (1989) An effective characterization of minimal deadlocks and
traps in Petri nets based on graph theory. In Proc. 10th Int. Conf. on Applications and Theory
of Petri Nets, pp.1–21.

3. Barkaoui, K., Minoux, M. (1992) A polynomial time graph algorithm to decide liveness of
some basic classes of Petri nets. In Proc. 13th Int. Conf. on Applications and Theory of Petri
Nets, Lecture Notes in Computer Science, vol.616, pp.62–75.

4. Barkaoui, K., Pradat-Peyre, J.F. (1996) On liveness and controlled siphons in Petri nets. In
Proc. 17th Int. Conf. on Applications and Theory of Petri Nets Lecture Notes in Computer
Science, vol.1091, pp.57–72.

5. Boer, E.R., Murata, T. (1994) Generating basis siphons and traps of Petri nets using the sign
incidence matrix. IEEE Transactions on Circuits and Systems I–Fundamental Theory and
Applications, vol.41, no.4, pp.266–271.

6. Bogdan, S., Lewis, F.L., Kovacic, Z., Mireles, J. (2006) Manufacturing Systems Control De-
sign. London: Springer.

7. Cassandras, C.G., Lafortune, S. (1999) Introduction to Discrete Event Systems. Boston, MA:
Kluwer.

8. Cassandras, C.G., Lafortune, S. (2008) Introduction to Discrete Event Systems. Springer.
9. Chao, D.Y. (2006) Computation of elementary siphons in Petri nets for deadlock control.

Computer Journal, vol.49, no.4, pp.470–479.
10. Chao, D.Y. (2006) Searching strict minimal siphons for SNC-based resource allocation sys-

tems, Journal of Information Science and Engineering, vol.23, no.3, pp.853–867.

References 41

11. Cheung, K.S. (2004) New characterization for live and reversible augmented Petri nets. In-
formation Processing Letters, vol.92, no.5, pp.239–243.

12. Chu, F., Xie, X.L. (1997) Deadlock analysis of Petri nets using siphons and mathematical
programming. IEEE Transactions on Robotics and Automation, vol.13, no.6, pp.793–804.

13. Colom, J.M., Campos, J., Silva, M. (1990) On liveness analysis through linear algebraic tech-
niques. In Proc. of Annual General Meeting of ESPRIT Basic Research Action 3148 Design
Methods Based on Nets DEMON.

14. Cordone, R., Ferrarini, L., Piroddi, L. (2003) Some results on the computation of minimal
siphons in Petri nets. In Proc. 42nd IEEE Conf. on Decision and Control, pp.3754–3759.

15. Cordone, R., Ferrarini, L., Piroddi, L. (2005) Enumeration algorithms for minimal siphons in
Petri nets based on place constraints. IEEE Transactions on Systems, Man and Cybernetics,
Part A, vol.35, no.6, pp.844–854.

16. Desel, J., Esparza, J. (1995) Free Choice Petri Nets. London: Cambridge University Press.
17. Desel, J., Reisig, W. (1998) Place/transition Petri nets. In Lectures on Petri Nets I: Basic

Models, Lecture Notes in Computer Science, vol.1491, W. Reisig and G. Rozenberg (Eds.),
pp.122–174.

18. Desel, J. (1998) Basic linear algebraic techniques for place/transition nets. In Lectures on
Petri Nets I: Basic Models, Lecture Notes in Computer Science, vol.1491, W. Reisig and G.
Rozenberg (Eds.), pp.257–308.

19. Desrocher, A.A., AI-Jaar, R.Y. (1995) Applications of Petri Nets in Manufacturing Systems:
Modeling, Control, and Performance Analysis, Piscataway, NJ: IEEE Press.

20. Ding, Z.J., Jiang, C.J., Zhou, M.C. (2008) Deadlock checking for one-place unbounded Petri
nets based on modified reachability trees. IEEE Transactions on Systems, Man, and Cyber-
netics, Part B, vol.38, no.3, pp.881–882.

21. Esparza, J., Silva, M. (1992) A polynomial-time algorithm to decide liveness of bounded free
choice nets. Theoretical Computer Sciences, vol.102, no.1, pp.185–205.

22. Ezpeleta, J., Couvreur, J.M., Silva, M. (1993) A new technique for finding a generating family
of siphons, traps, and st-components: Application to colored Petri nets. In Advances in Petri
Nets, Lecture Notes in Computer Science, vol.674, G. Rozenberg (Ed.), pp.126–147.

23. Ezpeleta, J, Colom, J.M., Martinez, J. (1995) A Petri net based deadlock prevention policy
for flexible manufacturing systems. IEEE Transactions on Robotics and Automation, vol.11,
no.2, pp.173–184.

24. Giua, A., Seatzu, C. (2007) A systems theory view of Petri nets. In Advances in Control
Theory and Applications, Lecture Notes in Control and Information Science, vol.353, C.
Bonivento et al. (Eds.), pp.99–127.

25. Holloway, L.E., Krogh, B.H., Giua, A. (1997) A survey of Petri net methods for controlled
discrete event systems. Discrete Event Dynamic Systems: Theory and Applications, vol.7,
no.2, pp.151–190.

26. Hopcroft, J.E., Motwani, R., Ullman, J.D. (2000) Introduction to Automata Theory, Lan-
guages, and Computation, 2nd ed., New York: Addison-Wesley.

27. Hruz, B., Zhou, M.C (2007) Modeling and Control of Discrete-Event Dynamic Systems: With
Petri Nets and Other Tools. London: Springer.

28. Jeng, M.D, Peng, M.Y. (1999) Augmented reachability trees for 1-place-unbounded general-
ized Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol.29, no.2,
pp.173–183.

29. Jeng, M.D., Peng, M.Y., Huang, Y.S. (1999) An algorithm for calculating minimal siphons
and traps in Petri nets. International Journal of Intelligent Control and Systems, vol.3, no.3,
pp.263–275.

30. Kumar, R. Garg, V. (1995) Modeling and Control of Logical Discrete Event Systems. Boston,
MA: Kluwer.

31. Lautenbach, K. (1987) Linear algebraic calculation of deadlocks and traps. In Concurrency
and Nets, K. Voss, H. J. Genrich and G. Rozenberg (Eds.), pp.315–336.

32. Lautenbach, K., Ridder, H. (1993) Liveness in bounded Petri nets which are covered by T-
invariants. In Proc. 13th Int. Conf. on Applications and Theory of Petri Nets, Lecture Notes in
Computer Science, vol.815, R. Valette (Ed.), pp.358–375.

42 2 Petri Nets

33. Li, Z.W., Zhou, M.C. (2004) Elementary siphons of Petri nets and their application to dead-
lock prevention in flexible manufacturing systems. IEEE Transactions on Systems, Man, and
Cybernetics, Part A, vol.34, no.1, pp.38–51.

34. Li, Z.W., Wei, N. (2007) Deadlock control of flexible manufacturing systems via invariant-
controlled elementary siphons of Petri nets. International Journal of Advanced Manufactur-
ing Technology, vol.33, no.1–2, pp.24–35.

35. Li, Z.W., Zhou, M.C. (2008) On siphon computation for deadlock control in a class of Petri
nets. IEEE Transactions on Systems, Man, and Cybernetics, A., vol.38, no.3, pp.667–679.

36. Minoux, M., Barkaoui, K. (1990) Deadlocks and traps in Petri nets as horn-satisfiability solu-
tions and some related polynomially solvable problems. Discrete Mathematics, vol.29, no.2–
3, pp.195–210.

37. Murata, T. (1989) Petri nets: Properties, analysis, and applications. Proceedings of the IEEE,
vol.77, no.4, pp.541–580.

38. Peterson, J.L. (1977) Petri nets. Computing Surveys, vol.9, no.3, pp.223–252.
39. Peterson, J.L. (1981) Petri Net Theory and the Modeling of Systems. Englewood Cliffs, NJ:

Prentice-Hall.
40. Piroddi, L., Cordone, R., Fumagalli, I. (2008) Selective siphon control for deadlock preven-

tion in Petri nets, IEEE Transactions on Systems, Man, and Cybernetics, Part A, vol. 38, no.
6, pp.1337–1348.

41. Ramadge, P., Wonham, W.M. (1989) The control of discrete event systems. Proceedings of
the IEEE, vol.77, no.1, pp.81–89.

42. Recalde, L., Teruel, E., Silva, M., (1998) On linear algebraic techniques for liveness analysis
of P/T systems. Journal of Circuits, Systems, and Computers, vol.8, no.1, pp.223–265.

43. Reisig, W. (1985) Petri Nets: An Introduction. New York: Springer.
44. Reutenauer, C. (1990) The Mathematics of Petri Nets. Translated by I. Varig, Englewood

Cliffs, NJ: Prentice-Hall.
45. Ru, Y., Wu, W.M., Hadjicostis, C.N. (2006) Comments on “A modified reachability tree ap-

proach to analysis of unbounded Petri nets”. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B, vol.36, no.5, p.1210.

46. Silva, M., Teruel, E. (1996) A systems theory perspective of discrete event dynamic systems:
The Petri net paradigm. In P. Borne, J. C. Gentina, E. Craye, and S. El Khattabi, (Eds.),
Symposium on Discrete Events and Manufacturing Systems, IMACS Multiconference, Lille,
France, pp.1–12.

47. Starke, P. H. (2003) INA: Integrated Net Analyzer. http://www2.informatik.hu-berlin.de/∼star
ke/ina.html.

48. Tanimoto, S., Yamauchi, M., Watanabe, T. (1996) Finding minimal siphons in general Petri
nets. IEICE Transactions on Fundamentals, vol.E79-A, no.11, pp.1817–1824.

49. Thistle, J.G. (1996) Supervisory control of discrete event systems. Mathematical and Com-
puter and Modeling, vol.23, no.11–12, pp.25–53.

50. Tricas, F., Garacı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A partial approach to the prob-
lem of deadlocks in processes with resources. Research Report, GISI-RR-97-05, Departa-
mento de Informática e Ingenierı́a de Sistemas, Universidad de Zaragoza, Spain.

51. Tricas, F., Garcı́a-Vallés, F., Colom, J.M., Ezpeleta, J. (1998) A structural approach to the
problem of deadlock prevention in processes with shared resources. In Proc. 4th Workshop
on Discrete Event Systems, pp.273–278.

52. Tricas, F., Ezpeleta, J. (1999) A Petri net solution to the problem of deadlocks in systems of
processes with resources. In Proc. IEEE Int. Conf. on Emerging Technologies and Factory
Automation, pp.1047–1056.

53. Tricas, F., Ezpeleta, J. (2003) Some results on siphon computation for deadlock prevention in
resource allocation systems modeled with Petri nets. In Proc. IEEE Int. Conf. on Emerging
Technologies and Factory Automation, pp.322–329.

54. Tricas, F., Ezpeleta, J. (2006) Computing minimal siphons in Petri net models of resource
allocation systems: A parallel solution. IEEE Transactions on Systems, Man, and Cybernetics,
Part A, vol.36, no.3, pp.532–539.

References 43

55. Tsuji, K., Murata, T. (1993) On reachability conditions for unrestricted Petri nets. In Proc.
IEEE Int. Symp. on Circuits and Systems, pp.2713–2716.

56. Wang, F.Y., Gao, Y.Q., Zhou, M.C. (2004) A modified reachability tree approach to analy-
sis of unbounded Petri nets. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol.34, no.1, pp.303–308.

57. Watanabe, T., Yamauchi, M., Tanimoto, S. (1998) Extracting siphons containing specified set
of places in Petri nets. In Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics, pp.142–
147.

58. Xing, K.Y., Hu, B.S., Chen, H.X. (1996) Deadlock avoidance policy for Petri-net modelling
of flexible manufacturing systems with shared resources. IEEE Transactions on Automatic
Control, vol.41, no.2, pp.289–295.

59. Xing, K.Y., Hu, B.S. (2005) Optimal liveness Petri net controllers with minimal structures for
automated manufacturing systems. In Proc. IEEE Int. Conf. on Systems, Man and Cybernet-
ics, pp.282–287.

60. Yamauchi, M., Watanabe, T. (1999) Algorithms for extracting minimal siphons containing
specified places in a general Petri net. IEICE Transactions on Fundamentals, vol.E82-A,
no.11, pp.2566–2575.

61. Zhou, M.C., DiCesare, F. (1991) Parallel and sequential exclusions for Petri net modeling for
manufacturing systems. IEEE Transactions on Robotics and Automation, vol.7, no.4, pp.515–
527.

62. Zhou, M.C., DiCesare, F. (1993) Petri Net Synthesis for Discrete Event Control of Manufac-
turing Systems. Boston, MA: Kluwer.

http://www.springer.com/978-1-84882-243-6

