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Internal Model

Abstract. In this chapter we are mainly concerned with modelling. What kind of model to
use, where to use it and how is the model implemented? A procedure to decompose the
model of an integrative process is presented and the free and forced solution of linear
dynamic process is reviewed.

Keywords: modelling, realigned model, independent model, disturbance, decomposition,
free solution, forced solution

2.1 Why Is Prediction Necessary?

The primary concern of any financier investing in the construction of an industrial
plant is to maximize the return on the financial investment. Consequently, a
systems engineer will always strive to design a plant that functions on, or near, the
operational boundaries dictated by the safety, technological and budgetary
limitations. Ultimately, it is the operational constraints that decide the success or
failure of a project. Typically, the constraints involved would arise from:

e actuators: e.g., maximum fluid flow, heating power;
e process limitations: e.g., maximum temperature gradient, distillation
column flooding.

If “tight” process control is to be achieved then the constraints involved must be
continuously respected in a dynamic fashion. As we shall see, this will lead to a
requirement for some mechanism of predicting the future behaviour of the process.

Returning to the automotive example of Chapter 1, assume some incident
occurs that requires the full application of the braking system. From the instant that
maximum brakes are applied, the future is completely defined, i.e., the stopping
time and distance are fixed by factors such as the car dynamics and road conditions
— both of which are out of the driver’s control.

However, common sense would dictate that a more prudent approach would be
to anticipate the situation and implement a controlled braking scheme commencing
an appropriate distance from the potential hazard. The future prediction of the
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process response, i.e., the stopping time and distance of the vehicle in this case, is
made with the aid of a mathematical model embedded in the controller from which
it derives the name “internal model”.

On the other hand, if infinite deceleration (no constraint) were possible, such
anticipation would not be required, as braking immediately prior to the obstacle
would suffice! Thus, there is a direct causal link between ‘“constraints” and
“prediction”: Constraints — Prediction .

In the real world, investors demand optimum profit for their investment that in
turn requires optimisation of systems with inevitable constraints thus giving the
overall connection between profit and prediction in the following: Profit —
Optimisation — Constraints — Prediction .

Predictive control possesses many interesting features. However, above all, it is
its natural ability to take constraints into account that led to the appearance of
predictive control in the 1970s, in the oil industry in particular.

2.2 Model Types

Figure 2.1 shows a first-order process, with a gain K and time constant 7,
subject to an input e . The response of the process s, is represented, in difference

equation form, by:

T,

s

s, (n)=apsp (n—l)+prpe(n—1), where a, =¢ ’ and b, =1-a,,

where T, is the sampling time. This may be modelled by a first-order system with

a gain K and atime constant 7 as:

A
sy (n)=a,s (n—-1)+b,K, e(n-1), where a, =e ™ and b, =1-a

m

Note that s* gives rise to two modelling approaches. The first approch uses a
model output that is realigned with past measured or estimated process values:

s*(n—l):sp (n—l) .

The second approach adopts an independent process model, where a common input
is supplied to both the process and model:

s*(n—1)=sm(n—l) .

Both approaches are of use and each possesses its own individual characteristics.
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2.2.1 Realigned Model

The above equations give rise to a model of the form:
sy (n)=ays, (n=1)+b, K e(n-1),

T,

T,

where a, =e ", b, =1—a, and e is the input. Intuitively, we know that using the

process output s, to re-adjust the model would yield the best prediction. This

operation is simplified if a difference equation form is used:
S (n—i) =S, (n—i) ,

i.e., all past outputs of the process are measured and stored in memory. However,
this representation has some limitations. If the order of the system is greater than
one, and if the poles are not stable, some numerical imprecision may result and
consequently the choice of sampling period becomes critical.

If a state-space representation is used, these difficulties disappear and it
becomes necessary to use an “observer”, ie., a mathematical procedure that
reconstructs the unmeasured state variables. But, the application of this technique
is not straightforward and, as a consequence, has experienced a reluctant
acceptance in the production industry.

Perturbation Perturbation
+ +
€ — Py Process » Sp e — Process [—» S
+
v ¢—
> Model > Sm > Model — Sm
a b

Figure 2.1. a Realigned and b independent models
2.2.2 Independent Model

The independent model is defined by:
Sw(n)=ays, (n—1)+b,k.e(n-1) .

In this configuration the process and independent models are supplied by the same
input variable. This value is always available since it is calculated by the
controller. As the process may be subjected to unknown disturbances, the resulting

outputs s, (n) and s, (n) may be very different. If the disturbances are constant,
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the process and model outputs will evolve in parallel. Thus, the model is used to
calculate a prediction of the increment of the process output and not to calculate
the absolute response of the process subjected to a particular input.

The advantage of such an approach is that any type of model may be used, e.g.,
mathematical, logical, or look-up table. The only requirement is that the model is
capable of answering the question “What will be the resulting output increment if
the process is subjected to a known input?”

Unfortunately, this approach is not valid for unstable models. In this case, using
an independent model configuration as the internal model within the regulator
produces an output that is open loop and unstable. However, the process may be
stabilised using a stable regulator in a feedback loop. We will see later how to
solve this problem.

These two approaches (realigned or independent models) result in the following
identification strategies, i.e., estimation of the model parameters:

e The realigned model method is equivalent to system identification using
the least squares technique where the explicit variables are physical
measurements derived from the process. If these variables are noisy, the
identified parameters will be biased in general.

e The independent model method [2] uses only the process input and the
error between the measured process and model predicted outputs, i.e., the
process-model error (PME). In this case the parameters of the model are
generally non-biased (see Figure 2.2). Note that the distance criteria for the
least-squares and model methods are usually different.

If a convolution-based model is used, the two approaches are identical as past
process outputs are not used to calculate future outputs:

sw(n)=ae(n-1)+a,(n-2)+ae(n-3)+ .. +aye(n—N) .

This form of representation is not appropriate for unstable systems since N is finite
but it is used frequently in the case of multivariable systems.

Noise
e » Process e » Process (>
\ 4
LS. z +
L.S. -S. PME /
Crlter|a+ » Mo;iel
Parameters
v (
3 Model 5 | Identification
a b

Figure 2.2. Estimation using the a realigned least-squares (LS) and b independent model
methods
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2.3 Decomposition of Unstable or Non-asymptotically Stable
Systems

The previous comparison of the independent model concept with that of system
identification gives an indication of the potential benefits that may be derived from
this independent model approach, i.e., absence of bias, universal application and
simplicity. The case of unstable or non-minimum phase systems, e.g., integrating
and unstable, must be approached with caution. But first, consider the case of
taking a measurable, external disturbance into account.

2.3.1 Measurable Disturbance Compensation

The real time, mathematical model implemented within the controller permits the
calculation of future responses to potential manipulated variable inputs. This same
technique may be used to compensate for the effects of an external, measured
disturbance that is not controllable (see Figure 2.3).

Remark 2.1. In Figure 2.3, the regulated (or controlled) variable is referred to as
CV and the manipulated variable is denoted by MV. These two notations will be
used frequently throughout this book.

Measured
disturbance
Feedforward
M, <
A\ 4
P
M; |«
A 4 +
. MV
Setpoint > R > Py —»CV
Predictive +
A Controller

Figure 2.3. Measured disturbance compensation

The procedure consists of making future predictions of the manipulated variable
and the measured disturbance using a procedure discussed in Section 2.4. An
output increment is then calculated and subsequently taken into account in the
control calculation (see Chapter 4).
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A practical example of such compensation can be easily found. For example,
assume we wish to regulate the interior temperature of a house heated by an
electric radiator. The exterior temperature varies randomly but is constantly
monitored. A transfer function relating the exterior and interior temperatures may
be determined using system-identification techniques. This information may then
be used to predict the action required to counteract the influence of the exterior
temperature variations at some fixed point in the future. However, any
compensatory actions must react faster than any exterior temperature variations.

This open-loop procedure should be used systematically as it does not present
any risk to stability and it puts all the necessary information to best use.

2.3.2 Decomposition

For reasons of implementation and initialisation, it is necessary that the closed loop
and the regulator be stable. This implies that the internal models of the regulator
must also be stable. If the process is an integrating or unstable system the output,
for a given steady-state, non-zero input, would escalate over time. This issue is
deal with by decomposing the unstable model into two stable processes. The first
model M, is supplied by the manipulated variable MV. The second model M,

effectively takes the form of a compensated input and is supplied by the output of
the physical process. The process models may be represented by their continuous
or discrete transfer functions.

The key point to note here is that M, is an unstable model. A stable equivalent,
in the form of the M, and M, combination, is sought in order to circumvent the

inability of any subsequently developed regulator to control the unstable plant.

My — Mo > Swu
+
MV — M — % S
M,

Figure 2.4. Decomposition principle



Internal Model 17

Referring to Figure 2.4: S,,=MMV-M,S,, and re-organising gives:

M .
Sy = LMV . Assume we have two transfer functions, M, and M, , such that
2

M . .
M, = " Al/[ , where both M, and M, are asymptotically stable. In the nominal
+ 2

case, if the process output is taken into account in the form of a compensator, the
blocks may be readily identified (see Figure 2.5).

MY ———p| Mi Sw

CV————— M,

Figure 2.5. Decomposition formulation

Consider the example of a non-asymptotically stable system with an integrator
represented by the continuous transfer function H (s):K /s (where s is the

Laplace operator) as illustrated in Figure 2.6.
The plant is decomposed using a first-order transfer function whose dynamics
resemble those of the desired closed-loop behaviour:

KT -1 KT K
= MV - Sy > Sy=—"MV=—MV .
1+sT 1+sT sT S

M

The case where the process is unstable with an “inverse response”™ should be
dealt with cautiously (see Chapter 9). As we shall see, a satisfactory response is
achieved without any particular difficulty when a coincidence point is placed
beyond the characteristic ‘dip’ generally associated with the initial response of
such systems. A typical example would be the temperature response of a chemical
reactor due to the introduction of a cold reagent.

In Chapter 10 we shall see that this decomposition procedure’ can be used
beneficially in many practical situations. It should be noted that the decomposition
principle is, in fact, a compromise solution between the realigned and independent
model approaches.

A non-minimum phase system with an “unstable zero”.

The benefit of this approach is that it only requires external measurements of the system
model and process (input and output) and makes no assumptions about the mathematical
representation, state observation or system characteristics.
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K
MV ———p ? ——————% Su
KT +
MV ———p Sw
1+sT _
CV——p —1
1+sT

Figure 2.6. Decomposition of a process with a single integrator

2.4 Prediction

The key to any model-based controller lies in its ability to predict the process
response using a model that may be physically realised, i.e., a causal model. We
will return to the issues of model and system identification in Chapter 7. In fact,
determining the response of a process over time is equivalent to the classical
problem of solving differential or difference equations. For convenience, we recall
the fundamental concepts used in solving such equations.

The solution of a linear differential or finite-difference equation, from the
instant =0 to the present time, consists of two terms; the free solution and the
forced solution.

2.4.1 The Free Solution Sy.(?)

The free solution (also referred to as the complementary, natural or homogeneous
solution) is defined as the output when the input e(t) is zero for ¢#>0, but was

non-zero in the past, i.e., the initial value of the process at time =0 is non-zero.
This solution represents the output when no further external stimulus is applied. If
the system is asymptotically stable the output will eventually decay to a zero state,
as illustrated in Figure 2.7.

Example 2.1. Consider the behaviour of the interior temperature of an oven when
the gas flow is cut-off. The temperature will decrease, at a rate broadly dictated by
the level of insulation in the oven, towards the ambient temperature.
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0 t

Figure 2.7. Free output response of a first-order system
2.4.2 The Forced Solution Sk (?)

The forced solution is also referred to as the particular, forced or inhomogeneous
solution. The forced solution makes the opposite assumption to that of the free
solution. This implies that all past signals, both input and output, are zero. The
future, non-zero input signal is known or determined, and the future output is
calculated by the model using only this non-zero input signal.

If the system is linear, the superposition theorem applies, and the future output

of the process s(t) is the sum of the free S; and forced Sy responses:

s(t)=8, (1) +8; (1) .

Thus, the future depends both on the past process responses and its future input.
The past is fixed, whereas the future input depends on the operator. Consider a
first-order, linear process with a gain K and a time constant 7"

Assume, for simplicity, that the future input is constant e(t) =¢, (see Figure
2.8), thus,

S, (¢) = Ke, (1—5} :

The future behaviour is then the sum of the two outputs:

s(t)=s(0)e;+Ke0{1—e;] .
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Already we can begin to see how a simple control signal such as
MV (n)=e(n)=¢, allows the system to be regulated. The first term on the right-

hand side takes the effects of the past into account. This, combined with the second
term, which includes the effects of the regulator, determines the future output of
the system.

As the first term is pre-defined by the past actions we can conclude that the
only way to influence the future output is by manipulating the second term. Thus,
from an intuitive standpoint, we can see that if we can somehow predict the
required control signal necessary to generate the desired change in the forced term,

and hence the objective s(t) , we have the regulator we require. We will see in the
next chapter that it is beneficial to dictate the manner in which the final objective is

reached. The name given to this manipulated objective path is the reference
trajectory.

Figure 2.8. Forced output response to a unit step input

2.5 Summary

e Two generic model types are used in the formulation of PFC:

1. Realigned: The input of the model is the process input and the state of
the model is realigned with the measured or estimated state of the
process.

2. Independent: The input of the model is the input of the process and
the state of the model is not realigned with the processs state. In this
case the only input is the actual MV and so the model output may be
different from the process output.

e Integrating processes may be represented using an independent model
supplied by the applied process MV. The model is only supplied with the
measured output of the process.
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Realigned and independent models are implemented in the control
computer.
The solution of a linear differential equation is composed of two terms:

1. Free mode: Response of the model to a zero input;
2. Forced mode: Response of the model starting from zero state and
subjected to the required future input.
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