
Chapter 2
Mobile Sensor Trajectory Optimization

2.1 Motivation and the Application Scenario

Thanks to technology advances, large-scale WSNs and mobile WSNs are now more
affordable than ever, and WSNs may be useful in many different applications. Many
current wired sensor systems in industry are used to monitor lumped parameter sys-
tems such as electrical motors. Replacing the wired systems by WSNs can be very
attractive, because wireless systems are much easier to install and maintain. In ad-
dition, if we deploy a larger number of wireless sensors, the system may be more
robust against sensor failures. However, WSNs are not simple replicas of their wired
counterparts. There exists a wide class of processes whose behaviors are described
by PDEs due to the inherent spatial and temporal variability of their states. These
are commonly referred to as DPSs. Since parameters of a DPS are, as the name sug-
gests, distributed, it makes sense to deploy many sensors to measure the parameters
at many different positions. This many result in a fine grid and more precise obser-
vation than traditional wired sensing systems, which are normally much smaller in
scale due to the difficulties of wired connections. Thus, it may be useful to apply
WSNs in a variety of scenarios, including the following applications:

• Wildfire monitoring [4]
• Landslide prediction [106]
• Volcano status monitoring [35]
• Diffusive pollution monitoring and control [84, 85]
• Water pollution monitoring [24]
• Chemical plume tracking [107]

2.2 System Identification for DPSs

Currently, DPSs occupy an important place in control and systems theories [108,
109, 110, 111, 112, 113]. One of the basic and most important questions in DPSs is

27



28 2 Mobile Sensor Trajectory Optimization

parameter estimation, which refers to the determination of unknown parameters in
the system model from observed data such that the predicted response of the model
is close, in some well-defined sense, to the process observations. For that purpose,
the system behavior or response is observed with the aid of some suitable collection
of discrete sensors, which reside at predefined spatial locations. However, the result-
ing measurements are incomplete in the sense that the entire spatial state profile is
not available. Moreover, the measurements are inexact by virtue of inherent errors of
measurement associated with sensing systems and also because of the measurement
environment. These factors lead to the question of where to locate sensors to ensure
that the information content of the resulting outputs with respect to the distributed
state and PDE model is as good as possible.

It is widely accepted that making use of sensors placed in an “intelligent” man-
ner may lead to dramatic gains in the achievable accuracy of the resulting parameter
estimates, so efficient sensor location strategies are highly desirable. In turn, the
complexity of the sensor location problem implies that there are very few sensor
placement methods that are readily applicable to practical situations and these are
not well known among researchers. This generates a keen interest in the potential
results, as the motivation to study the sensor location problem stems from practi-
cal engineering issues. Optimization of air quality monitoring networks is one such
issue of interest. One of the tasks of environmental protection systems is to fore-
cast expected levels of pollutant concentrations. To produce such a forecast, a smog
prediction model is necessary, which is usually presented in the form of a PDE. As
more sensor measurements unavoidably introduce higher energy costs and thereby
increase the maintenance budget, we are faced with the problem of how to optimize
their locations to obtain the most precise model with a limited number of sensors.
Other stimulating applications include, among other things, groundwater modeling,
recovery of valuable minerals and hydrocarbons from underground permeable reser-
voirs, gathering measurement data for calibration of mathematical models used in
meteorology and oceanography, automated inspection in static and active hazardous
environments where trial-and-error sensor planning cannot be used (e.g., in nuclear
power plants), and emerging smart material systems.

The sensor placement problem has been considered from various angles, but the
results communicated by most authors are limited to the selection of stationary sen-
sor positions [80, 114, 115]. An intuitively clear generalization is to apply sensors
that are capable of continuously tracking points, providing at any given moment the
best information about the parameters (such a strategy is usually called continuous
scanning). However, communications in this field are rather limited. One piece of
work [116] considers the determinant of the FIM associated with the parameters to
be estimated as a measure of the identification accuracy and looks for an optimal
time-dependent measure, rather than for the trajectories themselves. On the other
hand, Uciński [80, 115, 117, 118, 119] apart from generalizations of Rafajłwicz’s
results, develops some computational algorithms based on the FIM. The problem
is then reduced to a state-constrained optimal-control one for which solutions are
obtained via gradient techniques capable of handling various constraints imposed
on sensor motions. Another piece of work [120] attempted properly formulate and



2.2 System Identification for DPSs 29

solve the time-optimal problem for moving sensors, which observe the state of a
DPS so as to estimate some of its parameters. Notice that the idea of moving obser-
vations has also been applied in the context of state estimation [121, 122, 123, 124],
but those results can hardly be exploited in the framework considered here as those
authors make extensive use of some specific features of the problem addressed (e.g.,
the linear dependence of the current state on the initial state for linear systems).

It should be emphasized that technological advances in communication systems
and the growing ease in making small, low-power, and inexpensive mobile systems
now make it feasible to deploy a group of networked vehicles in a number of envi-
ronments [9,24,121,125,126]. A cooperative and scalable network of vehicles, each
equipped with a single sensor, has the potential to substantially improve the per-
formance of the observation systems. Applications in various fields of research are
being developed and interesting ongoing projects include extensive experimentation
based on testbeds. The problem to be discussed in this chapter caught our attention
while working on our MAS-net experimental platforms [83, 84, 85, 86, 87, 88].

The MAS-net project is proposed to combine the latest sensor network technolo-
gies with mobile robotics for an application-oriented high-level task, namely, char-
acterization, estimation, and control of an undesired diffusion process by networked
mobile actuators and sensors. One potential solution is to estimate the parameters
in a “closed-loop” or “online” approach [127]. This idea can be explained as fol-
lows. With the guessed initial values of the unknown parameters, the system starts
to drive sensors in an “optimal” trajectory with respect to the parameters. Sensor
data are then collected while the sensors are moving. Using the collected data, pa-
rameter estimates are improved and the moving sensor trajectories are then updated
accordingly. Then, the sensors are driven to follow the newly updated trajectories
based on the parameters estimated. Through this “closed-loop” iteration or recursive
online adaptation, the estimated parameters converge to the true values of the DPS.
This so-called “online” mode was listed as one of the important future research
efforts [127].

In this chapter, we focus on the “control for sensing” part of the procedure; that
is, given an estimate of the DPS parameters, how to drive the mobile sensors opti-
mally so that the effect of the sensor noise can be minimized. We present a numerical
solution for a mobile sensor motion trajectory scheduling problem under nonholo-
nomic constraints as in MASmotes [86], the two-wheeled differentially driven mo-
bile robots, in our MAS-net project. More details about the project are presented in
Chap. 1.

From the theoretical perspective, the key challenge is to develop real-time pa-
rameter estimation and state estimation of a class of DPSs by a swarm of mobile
sensors with nonholonomic constraints and limited communication capability. In
addition, mobile actuators (e.g., a mobile robot equipped with a chemical neutral-
izer dispenser or sprayer) with the same nonholonomic constraints will be added to
control the DPS (basically, to reduce the concentration) with the help of the mobile
sensors.

The model-based adaptive measurement and control problem in the MAS-net
project is formulated in our work [84, 85]. To implement this distributed control



30 2 Mobile Sensor Trajectory Optimization

system, the parameter estimation for the DPS is required, and the choice of the best
experimental conditions for that purpose is referred to as an OED problem [128,
129, 130, 131].

Recently, the dynamic-sensor-motion scheduling problem has been studied in-
tensively, with many practical considerations such as robust design and collision
avoidance [80, 127] using kinematic sensor models. In this chapter, we extend the
work in [80] by introducing realistic robot mechanical configurations and solving
the problem with RIOTS, a MATLAB R© optimal control toolbox.

The rest of this chapter is organized as follows. The formulation of the MAS-
net estimation problem is described in Sect. 2.3, in which the dynamic model for
differentially driven mobile robots is presented in Sect. 2.3.1 and a module for the
diffusion process is presented in Sect. 2.3.2. The objective function for the optimal
sensor motion scheduling is described in Sect. 2.3.3. Section 2.3.4 reformulates the
problem in the framework of optimal control. In Sect. 2.4, a numerical solution
procedure for this problem is presented. The RIOTS [132], a MATLAB R© optimal
control solver, is described briefly in Sect. 2.4.1 and Sect. 2.4.2 describes a method

to incorporate the MATLAB R© Partial Differential Equation Toolbox
TM

[133] and
RIOTS. Some illustrative simulation results are presented in Sect. 2.5 with remarks
on the results obtained. Section 2.6 concludes this chapter. Further comments on the
implementation of the simulation are presented in Appendix A.

2.3 Problem Formulation

2.3.1 The Dynamic Model of Differentially Driven Robots

MASmote [86] is a differentially driven ground mobile robot as illustrated in
Fig. 2.1. Its dynamic model can be described by (2.1), where the symbols are defined
as follows:

• m: the weight of the robot
• I: the inertia of the robot along the z axis. Note that I is a scalar
• l: the length of the robot’s axis
• r: wheel radius. The left and right wheels have the same radius
• b: the edge length of the robot’s square chassis. It is assumed that the wheels

and the axis are mounted on the square chassis
• α: the yaw angle as shown in Fig. 2.1
• (x, y): the coordinate of the center of the axis
• τl,τr: the torque applied on the left and right wheel, respectively

⎡
⎣
m 0 0
0 m 0
0 0 I

⎤
⎦

⎡
⎣

ẍ
ÿ
α̈

⎤
⎦ +

⎡
⎣
2b 0 0
0 2b 0
0 0 bl2/2

⎤
⎦

⎡
⎣

ẋ
ẏ
α̇

⎤
⎦ =

⎡
⎣

r cos(α) r cos(α)
r sin(α) r sin(α)
−rl/2 rl/2

⎤
⎦

[
τl

τr

]
. (2.1)



2.3 Problem Formulation 31

Left Wheel

Right Wheel

Axis
x1

x2

α

b

r

Fig. 2.1 A differentially driven mobile robot

In (2.1), the mobile robot is represented in the form of a second-order system.
For convenience, the corresponding state space form can be easily derived by intro-
ducing x, the extended system state vector, defined as

x :=

⎡
⎢⎢⎢⎢⎢⎢⎣

x
y
α
ẋ
ẏ
α̇

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and τ is defined as

τ =
[
τl

τr

]
.

Note that x �= x. x is the state vector, while x is the robot’s position on the x-axis.
In this chapter, x is always a function of time, t, so are the state variables, i.e., x, y,
α, ẋ, ẏ, and α̇. For simplicity, the time indices of these state variables are frequently
dropped, e.g., x(t) and x are interchangeable in this chapter.

To have a compact notation, let us define matrices A and B as



32 2 Mobile Sensor Trajectory Optimization

A :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 −2b/m 0 0
0 0 0 0 −2b/m 0
0 0 0 0 0 −bl2/(2I)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

B(x) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

r cos(α)/m r cos(α)/m
r sin(α)/m r sin(α)/m
−rl/(2I) rl/(2I)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus, the robot dynamics can be written as

ẋ = Ax + B(x)τ. (2.2)

For simplicity, B(x) is denoted B in this chapter.
In the following example, we assume that there are three robots in the network.

It is easy to generalize the result to a network with an arbitrary number of robotic
sensor nodes. To solve the multi-robot-motion-scheduling problems described in
Sect. 2.5, we need to write the dynamics of three robots as a single dynamic system.
Denote the states of each robot in (2.2) as x1, x2, and x3, respectively. After defining

xT :=

⎡
⎣
x1

x2

x3

⎤
⎦ , AT =

⎡
⎣
A1 0 0
0 A2 0
0 0 A3

⎤
⎦ ,

BT =

⎡
⎣
B1 0 0
0 B2 0
0 0 B3

⎤
⎦ , and τT =

⎡
⎣

τ1

τ2

τ3

⎤
⎦ ,

where Aj ,Bj are for the jth robot, the dynamics of all three robots can be written
compactly as follows:

ẋT = AT xT + BT τT . (2.3)

2.3.2 The Model of the Diffusion Process

For the purpose of comparison, here we use the same diffusion system model as in
Example 4.1 of book [80]. We rewrite it using our notation in the following form:

∂u(x, y, t)
∂t

=
∂

∂x

[
κ(x, y)

∂u(x, y, t)
∂x

]



2.3 Problem Formulation 33

+
∂

∂y

[
κ(x, y)

∂u(x, y, t)
∂y

]

+ 20 exp(−50(x− t)2),
(x, y) ∈ Ω = (0, 1)× (0, 1), t ∈ T,

u(x, y, 0) = 0, (x, y) ∈ Ω,
u(x, y, t) = 0, (x, y, t) ∈ ∂Ω × T,

T := {t|t ∈ (0, 1)},
κ(x, y) = c1 + c2x + c3y,

c1 = 0.1, c2 = −0.05, c3 = 0.2,

where u(x, y, t) is the concentration of the pollution, (x, y) is the spatial coordinate,
c1, c2, c3 are the nominal parameters, and t is the time.

2.3.3 The Objective Function for Sensor Motion Scheduling

In this chapter, the aim of the optimization is to reject sensor noise as much as
possible. For the ith mobile sensor, its observation is assumed to be the following:

zi(t) = u(xi(t), t) + ε(xi(t), t),

where ε is white noise with statistics

E{ε(x, y, t)} = 0,

E{ε(x, y, t)ε(x∗, y∗, t∗)} = σ2δ(x− x∗)δ(y − y∗)δ(t− t∗).

The positions are in the domain of the diffusion process, i.e., (x, y) ∈ Ω and
(x∗, y∗) ∈ Ω. δ is the Dirac delta function, and σ is a positive constant.

The objective function is chosen to be the so-called D-optimality criterion de-
fined on the FIM, which will be presented in detail soon. If a measurable random
variable x depends on parameter c and x follows the standard normal distribution,
then the FIM [80] is

M =
n∑

j=1

∫ tf

0

pjσ
−2
j

[
∂u(xj(t), t)

∂c

] [
∂u(xj(t), t)

∂c

]T

dt,

where n is the number of sensors; tf is the duration of the observation; pj and σj are
the number of sensors at the position xj(t) and the standard deviation of sensor j’s
noise, respectively; u(xj(t), t) is the expected sensor measurement under the noise-
free scenario on the time instance t and at the position xj(t); the column vector c
is the parameters of interest in the diffusion model. The derivatives of a scalar with
respect to a column vector is defined as



34 2 Mobile Sensor Trajectory Optimization

∂u

∂c
=

⎡
⎢⎣

∂u
∂c1
∂u
∂c2
...

⎤
⎥⎦ ,

where u ∈ R, c ∈ R
m, and c = [c1, c2, · · · , cm]T .

In this chapter, we assume that the sensors are identical, hence σi = σj for
i, j ∈ [1, 2, · · · , n]. In addition, no two sensors are placed at the same position, i.e.,
pi = pj = 1 for i, j ∈ [1, 2, · · · , n]. The constant values pj and σj are ignored in
the following, since they do not affect the optimization process.

Up to a constant multiplier, the FIM constitutes the inverse of the covariance
matrix for the LS estimator, defined by the following criterion:

J1(c) =
1
2

∫ tf

0

‖z(t)− û(x, t; c)‖2dt. (2.4)

The notation ˆ in (2.4) indicates the predicted value. For n robots, J1(c) becomes

J1(c) =
n∑

j=1

1
2

∫ tf

0

‖zj(t)− ûj(x, t; c)‖2dt.

Then, the FIM of n robots is defined as follows:

M =
n∑

j=1

∫ tf

0

[
∂u(xj(t), t)

∂c

] [
∂u(xj(t), t)

∂c

]T

dt, (2.5)

where the vector c is defined as follows in this particular diffusion case:

c =

⎡
⎣

c1

c2

c3

⎤
⎦ .

Note that xj is the state vector of the jth robot. Here, c is the parameter vector
in the DPS to be identified, and the partial derivatives are evaluated at c = c0, a
preliminary estimate of c.

Note that the FIM, M, is a matrix. Thus, there are many metrics that can be
defined to indicate the “size” of the matrix. The D-optimality criterion [134] used
in this chapter is defined as

Ψ(M) = − ln det(M).

Other optimality criteria are applicable but not discussed in this chapter. The com-
parisons among different criteria are presented in Chap. 3.

The objective function for the MAS-net estimation problem is to minimize
J2(x) = Ψ(M). Our goal here is to find the optimal control function τ ∈ L2n

∞ [t0, tf ]
for n two-wheel differentially driven mobile sensors together with the initial states



2.3 Problem Formulation 35

x(t0) = ξ ∈ R
K where K = 6n and t ∈ [t0, tf ] = [0, 1], such that J2(x) is min-

imized. The notation Ln∞[t0, tf ] represents the space of Lebesgue measurable and
bounded functions [a, b]→ R

m.

2.3.4 Problem Reformulation in the Optimal Control Framework

We use RIOTS to solve the proposed problem. More details on RIOTS will be
presented later. According to the general optimal control problem formulation in
RIOTS [135], our optimal mobile sensor motion scheduling problem can be formu-
lated as follows:

min
(τ,ξ)∈L2n∞ [t0,tf ]×RK

J(τ, ξ), (2.6)

where

J(τ, ξ) = g0(ξ,x(tf )) +
∫ tf

t0

lo(t,x, τ)dt

is subject to the following conditions and constraints:

ẋ = h(t,x, τ),
x(t0) = ξ, t ∈ [t0, tf ],
τj,min(t) ≤ τj(t) ≤ τj,max(t), j = 1, · · · , n, t ∈ [t0, tf ],
ξj,min(t) ≤ ξj(t) ≤ ξj,max(t), j = 1, · · · , k, t ∈ [t0, tf ],
lti(t,x(t), τ(t)) ≤ 0, t ∈ [t0, tf ],
gei(ξ,x(tf )) ≤ 0, gee(ξ,x(tf )) = 0,

where τj,min(t), τj,max(t), ξj,min(t), ξj,max(t) are upper or lower bounds; lti(·),
gei(·), gee(·) are equality or inequality constraints. For our optimal motion schedul-
ing problem, ẋ = h(t,x, τ) = Ax + Bτ for the single robot case and for the three-
robot case ẋT = h(t,xT , τT ) = ATxT + BT τT . Here, we define l0(ξ,x(tf )) = 0
and g0(ξ,x(tf )) = Ψ(M) to simplify the numerical computation. This technique is
called solving an “equivalent Mayer problem” [136]. To understand the equivalent
Mayer problem, let us start from the definition of some new notation. g(xi) is called
the sensitivity function, where

g(xi, t) :=
[
∂u(xi, t)

∂c

]T

.

Then, the FIM in (2.5) is

M =
n∑

j=1

∫ tf

t0

g(xj(t), t)gT (xj(t), t)dt. (2.7)



36 2 Mobile Sensor Trajectory Optimization

Define the Mayer states as

χ(i,j)(t) :=
∫ t

t0

�(i,j)(τ)dτ, (2.8)

where

�(i,j)(t) :=
n∑

l=1

g(i)(xl(t), t)g(j)(xl(t), t).

Therefore, �(t) is a matrix, so is χ(t). Denote χdl(t) the stack vector which stacks
all the entries on the diagonal and below the diagonal of the matrix χ(t) to a vector.
For example, if χ(t) is a 2× 2 matrix,

χdl(t) =

⎡
⎣

χ(1,1)(t)
χ(2,1)(t)
χ(2,2)(t)

⎤
⎦ .

Then, the extended Mayer state vector x̃(t) can be expressed as

x̃(t) :=
[

x(t)
χdl(t)

]
.

Comparing (2.7) and (2.8), one can easily observe the key idea. That is, χ(tf ) = M
and χdl(t) contains all the information of M since M is symmetric. Ignoring the
time indices, after replacing the extended state vector x with the extended Mayer
vector x̃, we can get M without explicit integration.

Thus, when considering the equivalent Mayer problem, the models used for
RIOTS are as follows:

˙̃x =
[
Ax + Bτ

�dl

]
,

˙̃xT =
[
AT x + BT τT

�dl

]
.

2.4 Finding a Numerical Solution for the Problem

2.4.1 A Brief Introduction to RIOTS

RIOTS stands for “recursive integration optimal trajectory solver.” It is a MATLAB R©

toolbox designed to solve a very broad class of optimal control problems as defined
in (2.6). When executing under MATLAB R© script mode, the following configura-
tion files need to be provided:sys l.m, sys h.m, sys g.m, sys init.m,
sys acti.m. They are the lo, h, go functions in (2.6) and two initial conditions,
respectively. Detailed instructions on how to prepare these files and many sample



2.4 Finding a Numerical Solution for the Problem 37

problems can be found in [135]. The most important function in this optimal control
toolbox is riots, explained in detail in [132], p.73.

[u,x,f,g,lambda2] = riots([x0,{fixed,{x0min,x0max}}],
u0,t,Umin,Umax, params,[miter,{var,{fd}}],
ialg,{[eps,epsneq,objrep,bigbnd]},{scaling},
{disp},{lambda1}).

The parameters useful for understanding our numerical experiments here are as
follows:

• x0: initial values of x̃
• fixed: a vector to specify which entries in x0 are fixed and which entries are

not. Later in Sect. 2.5, results for two configurations are presented by changing
fixed, which are cases of “fixed initial states” and “unfixed initial states,”
respectively. For the first case, the robots’ initial conditions, x0, are fixed. For
the second case, χdl is fixed so that the robots start from the optimal starting
positions
• x0min, x0man: bounds of the initial conditions
• u0: initial values of the control functions τ
• t: time
• Umin, Umax: bounds for τ

The definitions of other parameters are described in the manual [132].

2.4.2 Using MATLAB R© PDE Toolbox Together with RIOTS

The sensitivity function is generated before the function call of riots by MATLAB R©

PDE Toolbox . The procedure for solving the sensitivity function amounts to finding
solutions for the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= ∇ · (κ∇u) + 20 exp(−50(x1 − t)2),

∂g(1)

∂t
= ∇ · ∇u +∇ · (κ∇g(1)),

∂g(2)

∂t
= ∇ · (x∇u) +∇ · (κ∇g(2)),

∂g(3)

∂t
= ∇ · (y∇u) +∇ · (κ∇g(3)),

where∇ = (∂/∂x, ∂/∂y). Note that there are three g functions since there are three
parameters c1, c2, c3 in Sect. 2.3.2.



38 2 Mobile Sensor Trajectory Optimization

2.5 Illustrative Simulations

2.5.1 Differentially Driven and Omnidirectionally Driven

One type of robot model is a simple kinematic model [80]:
[
ẋ(t)
ẏ(t)

]
= rω(t),

[
x(0)
y(0)

]
=

[
x0

y0

]
, (2.9)

where ω(t) is the angular speed vector, and r is the radius of the wheels. Obviously,
(2.9) is an approximation. In this chapter, we refer to a robot that is subject to the
kinematic in (2.9) as a proximal “omnidirectionally driven robot” since the velocity
can be set arbitrarily. When the robot is differentially driven, we are interested to see
the difference in the optimal sensor motion scheduling. The following four cases are
compared first:

• Case 1: omnidirectionally-driven robots starting from a fixed initial state vector.
In the context of the MAS-net project, the fixed initial positions are the homes
of those robots.
• Case 2: differentially driven robots with a fixed given initial state vector. More-

over, we consider two subcases. Case 2a has an initial yaw angle of 15◦ and
case 2b of -15◦.
• Case 3: omnidirectionally driven robots without a fixed initial state vector. We

assume that the optimal static sensor location problem is solved first, then use
this optimal position obtained as the initial state and seek the optimal sensor
trajectories.
• Case 4: the same as in case 3 but using differentially driven mobile robots.

According to the above definitions, Fig. 2.2 shows the results for case 1; Fig. 2.3 for
case 2a; Fig. 2.4 for case 2b; Fig. 2.5 for case 3; and Fig. 2.6 for case 4. From these
figures, we note the following observations:

• Differentially driven robots are less likely to change the orientation. The optimal
mobile sensor trajectories in cases 2 and 4 have smaller curvatures compared
with that in cases 1 and 3.
• No matter what the robot dynamics are, the robots tend to move along the same

rough direction. This can be observed by comparing cases 1, 2a, 2b and cases
3, 4.
• For multi-robot cases, the final positions of the robots tend to be evenly dis-

tributed. A comparison of Fig. 2.3 and Fig. 2.4 is especially interesting. The
two figures support each other, as the trend of the trajectories tend to align with
each other.



2.5 Illustrative Simulations 39

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Robot 1
Robot 2
Robot 3
Start
End

Fig. 2.2 The optimal sensor trajectories of omnidirectionally driven robots (case 1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Robot 1
Robot 2
Robot 3
Start
End

Fig. 2.3 The optimal sensor trajectories of differentially driven robots: 15◦ initial yaw angle (case
2a)



40 2 Mobile Sensor Trajectory Optimization

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Robot 1
Robot 2
Robot 3
Start
End

Fig. 2.4 The optimal sensor trajectories of differentially driven robots: -15◦ initial yaw angle (case
2b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Robot 1
Robot 2
Robot 3
Start
End

Fig. 2.5 The optimal sensor trajectories of omnidirectionally driven robots using optimal initial
conditions (case 3)



2.5 Illustrative Simulations 41

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

Robot 1
Robot 2
Robot 3
Start
End

Fig. 2.6 The optimal sensor trajectories of differentially driven robots using optimal initial condi-
tions (case 4)

2.5.2 Comparison of Robots with Different Capabilities

Here we consider two more cases to compare robots with different capabilities.

• Case 5: using a single weak-and-heavy robot, whose weight is 0.5 and the range
of its torque for each wheel is ±10.
• Case 6: using a single strong-and-light robot, whose weight is 0.05 and the

range of its torque for each wheel is ±100.

With the same fixed initial states and the same time interval, the robot in case 5
moves a shorter distance than that in case 6, as seen from Fig. 2.7 and Fig. 2.8. This
matches our intuition that it is desirable for the sensors to measure the DPS states at
more spatial locations whenever possible. This simulation also implies that mobile
sensors are more favorable than static sensors, if the cost issues are ignored. The
static sensors can be considered as extremely weak and infinitely heavy robots.

2.5.3 On the Effect of the Initial Orientation

In addition to case 2a and case 2b, the effects of different initial yaw angle is studied
in this section. The robots associated with each figure in this section have the same
mechanical configurations and the same initial conditions.



42 2 Mobile Sensor Trajectory Optimization

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

time

co
nt

ro
l

Control signals in the time domain.

τ
l

τ
r

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Trajectory of the robot.

x

y

Start
End

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

time

si
gn

al

Position and angle states in the time domain.

x
y
α

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time

si
gn

al

Position and angle states in the time domain.

v
x

v
y

ωα

Fig. 2.7 The optimal trajectory of a weak-and-heavy differentially driven robot (case 5)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

time

co
nt

ro
l

Control signals in the time domain.

τ
l

τ
r

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Trajectory of the robot.

x

y

Start
End

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

time

si
gn

al

Position and angle states in the time domain.

x
y
α

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

3

4

5

time

si
gn

al

Position and angle states in the time domain.

v
x

v
y

ωα

Fig. 2.8 The optimal trajectory of a strong-and-light differentially driven robot: initial yaw angle
is 15◦ (case 6)



2.6 Chapter Summary 43

Let us compare the following figures:

• Figure 2.3: three robots with 15◦ initial yaw angle
• Figure 2.4: three robots with −15◦ initial yaw angle
• Figure 2.8: one robot with 15◦ initial yaw angle
• Figure 2.9: one robot with −15◦ initial yaw angle

The initial yaw angle affects the curvature of the optimal trajectory, but does not
change the trend of the optimal trajectory. This indicates that the initial yaw angle
matters, but is not critical. Figures 2.8 and 2.9 support the above statement. With dif-
ferent initial yaw angles, the two robots starting at the same position have different
trajectories, but their final positions are close. For multi-robot cases, the formation
pattern of the robots tends to be similar.

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

time

co
nt

ro
l

Control signals in the time domain.

τ
l

τ
r

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Trajectory of the robot.

x

y

Start
End

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

3

time

si
gn

al

Position and angle states in the time domain.

x
y
α

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

time

si
gn

al

Position and angle states in the time domain.

v
x

v
y

ωα

Fig. 2.9 The optimal trajectory of a strong differentially-driven robot: initial yaw angle -15◦ (case
6)

2.6 Chapter Summary

This chapter presents a numerical procedure for optimal sensor-motion scheduling
for diffusing plume observation. Given a DPS with nominal parameters, differen-
tially driven mobile robots move along their optimal trajectories such that the sen-
sor noise effect on the estimation of system parameters is minimized. This optimal



44 2 Mobile Sensor Trajectory Optimization

measurement problem is an important module for a potential closed-loop DPS pa-
rameter identification algorithm. This chapter reformulates a differentially driven
robot dynamic model in the framework of optimal control. Through the combined
use of two existing MATLAB R© toolboxes for optimal control (RIOTS) and PDEs

(MATLAB R© Partial Differential Equation Toolbox
TM

), the optimal sensor-motion
scheduling problem can be solved numerically. Simulation results and their obser-
vations are presented.



http://www.springer.com/978-1-84882-655-7


