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“Ot en étes-vous? Que faites-vous? Il faut travailler” (on his death-bed, to
his devoted pupils, watching over him).

The Spontaneous Generation Controversy

(340 BCE-1870 CE)

“Omne vivium ex Vivo.”

(Latin proverb)

Although the theory of spontaneous generation (abiogenesis) can be traced
back at least to the Ionian school (600 B.C.), it was Aristotle (384-322 B.C.)
who presented the most complete arguments for and the clearest statement of
this theory. In his “On the Origin of Animals”, Aristotle states not only that
animals originate from other similar animals, but also that living things do
arise and always have arisen from lifeless matter. Aristotle’s theory of sponta-
neous generation was adopted by the Romans and Neo-Platonic philosophers
and, through them, by the early fathers of the Christian Church. With only
minor modifications, these philosophers’ ideas on the origin of life, supported
by the full force of Christian dogma, dominated the mind of mankind for more
that 2000 years.

According to this theory, a great variety of organisms could arise from
lifeless matter. For example, worms, fireflies, and other insects arose from
morning dew or from decaying slime and manure, and earthworms originated
from soil, rainwater, and humus. Even higher forms of life could originate
spontaneously according to Aristotle. Eels and other kinds of fish came from
the wet ooze, sand, slime, and rotting seaweed; frogs and salamanders came
from slime.



1846 CE 271

Rather than examining the claims of spontaneous generation more closely,
Aristotle’s followers concerned themselves with the production of even more
remarkable recipes. Probably the most famous of these was van Helmont’s
(1577-1644) recipe for mice. By placing a dirty shirt into a bin containing
wheat germ and allowing it to stand 21 days, live mice could be obtained.
Another example was the slightly more complicated but equally ”foolproof”
recipe for bees. By killing a young bullock with a knock on the head, burying
him in a standing position with his horns sticking out of the ground, and
finally sawing off his horns one month later, out will fly a swarm of bees.

The more exact methods of observation that were developed during the
seventeenth century soon led to a realization of the complex nature of the
anatomy and life cycles of certain living organisms. Equipped with this better
understanding of the complexity of living organisms, it became more difficult
for some to accept the theory of spontaneous generation. This skepticism sig-
naled the beginning of three centuries of heated controversy over a theory that
had gone unchallenged for the previous 2000 years. What is more significant
is that the controversy was to be resolved not by powerful arguments but by
ingeniously designed, simple experiments.

The controversy went through four phases:

I. REDI (1688) VS. ARISTOTELIAN SCHOOL AND CHURCH DOGMA

Redi was first to use carefully controlled experiments to test the theory
of spontaneous generation. He put some meat in two jars. One he left open
to air (the control); the other he covered securely with gauze. At that time
it was well recognized that white worms would arise from decaying meat or
fish. Sure enough, in a few weeks, the meat was infested with the white
worms but only in the control jar which was not covered. This experiment
was repeated several times, using either meat or fish, with the same result.
On closer examination he noted that common houseflies went down into the
meat in the open jar, later the white worms appeared, and then new flies.
Redi reported that he had observed the flies deposit their eggs on the gauze;
however, worms developed in the meat only when the eggs got to the meat.
He therefore concluded from his observations that the white worms did not
arise from the putrid meat. The worms developed from the eggs that the flies
had deposited. The white worm then was the larva of the fly, and the meat
served only as food for the developing insect.
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Redi’s experiment provided the impetus for testing other well-established
recipes. In all cases that were examined carefully, it was demonstrated that
the living organism arose not by spontaneous generation, but from a parent.
Thus it was shown that the theory of spontaneous generation was based on
a combination of the weakness of the human eye and bits and snatches of
information gathered by accidental observation. The early biologists had seen
earthworms coming out of the soil and frogs emerging from the slime of pond
water, but they had not been able to see the tiny eggs from which these or-
ganisms arose. Because their observations had not been systematic, they had
not seen how the mice invaded the grain bin in search of food, so they thought
that the grain produced the mice. Based on the more exact methods of ob-
servation, the evidence that supported the theory of spontaneous generation
of animals and plants was largely demolished by the end of the seventeenth
century.

IT. SPALLANZANI VS. NEEDHAM (1767-1768)

As soon as the discoveries of Leeuwenhoek'?? became known, the propo-
nents of spontaneous generation turned their attention to these microscopic
organisms and suggested that surely they must have formed by spontaneous
generation. Finally, experimental “proof” for this notion was published in
1748 by an Irish priest, John Tuberville Needham (1713-1781).

Needham reported that he had taken mutton gravy fresh from the fire,
transferred it to a flask, heated it to boiling, stoppered it tightly with a cork,
and then set it aside. Despite boiling, the liquid became turbid in a few days.
When examined under a microscope, it was teeming with microorganisms
of all types. The experiments were repeated by and gained the support of
the famous French naturalist, Georges Louis Le-clerc, Comte de Buf-
fon (1707-1788). Needham’s demonstration of spontaneous generation was
generally accepted as a great scientific achievement, and he was immediately

199 The development of microscopy started with Janssen (1590) and continued
with Hooke (1660), Leeuwenhoek (1676) and Zeiss (1883). Just as the theory
of the abiogenesis of higher organisms was being refuted, the controversy was
reopened, more heated than ever, because of the discovery of microorganisms
by Antony van Leeuwenhoek. Leeuwenhoek patiently improve his microscopes
and developed his techniques of observation for 20 years before he reported any
of his results.
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elected into the Royal Society of England and the Academy of Sciences of
Paris.

Meanwhile in Italy, Lazzaro Spallanzani (1729-1799) performed a series
of brilliantly designed experiments of his own that refuted Needham’s con-
clusions. Spallanzani found that if he boiled the food for one hour and her-
metically sealed the flasks (by fusing the glass so that no gas could enter
or escape), no microorganisms would appear in the flasks. If, however, he
boiled the food for only a few minutes, or if he closed the flask with a cork,
he obtained the same results that Needham reported. Thus he wrote that
Needham’s conclusions were invalid because (1) he had not heated the gravy
hot enough or long enough to kill the microorganisms, and (2) he had not
closed the flask sufficiently to prevent other microbes from entering.

Count Buffon and Father Needham immediately responded that, of course,
Spallanzani did not generate microorganisms in his flasks because his extreme
heating procedures destroyed the vegetative force in the food and the elasticity
of the air. Regarding Spallanzani’s experiments, Needham wrote, “from the
way he has treated and tortured his vegetable infusions, it is obvious that he
has not only much weakened, and maybe even destroyed, the vegetative force
of the infused substances, but also that he has completely degraded ... the
small amount of air which was left in his vials. It is not surprising, thus, that
his infusions did not show any sign of life.”

Rather than engage in theoretical arguments over the possible existence of
these mystical forces, Spallanzani returned to the laboratory and performed
another set of ingenious experiments. This time he heated the sealed flasks
to boiling not for one hour, but for three hours, and even longer. If Needham
was right, this treatment should certainly have destroyed the vegetative force.
As Spallanzani had previously observed, nothing grew in these heated, sealed
flasks. However, when the seal was broken and replaced with a cork, the
broth soon became turbid with microbes. Since even three hours of boiling
did not destroy anything in the food necessary for the production of microbes,
Needham could no longer argue that he had killed the vegetative force by the
heat treatment.

Spallanzani continued to perform experiments that led him to the con-
clusion that properly heated and hermetically sealed flasks containing broth
would remain permanently lifeless. He was, however, unable to answer ad-
equately the criticism that by sealing the flasks he had excluded the ”vital
forces” in the air that Needham claimed were also necessary ingredients for
spontaneous generation. With the discovery of oxygen gas in 1774 and the
realization that this gas is essential for the growth of most organisms, the
possibility that spontaneous generation could occur, but only in the presence
of air (oxygen), gained additional support.
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ITI-1. SCHWANN Vs. BERZzELIUS, LIEBIG AND WHOLER (1836-1839)
— THE FERMENTATION CONTROVERSY

The art of brewing was developed by trial and error over a 6000-year pe-
riod and practiced without any understanding of the underlying principles.
From long experience, the brewer learned the conditions, not the reasons, for
success. Only with the advent of experimental science in the eighteenth and
nineteenth centuries did man attempt to explain the mysteries of fermenta-
tion. Let us, then, from our vantage point in time, trace the observations,
experiments, and debates from which evolved our present understanding of
fermentation and biological catalysis.

For centuries, fermentation had a significance that was almost equivalent
to what we would now call a chemical reaction, an error that probably arose
from the vigorous bubbling seen during the process. The conviction that
fermentation was strictly a chemical event gained further support during the
early part of the nineteenth century, when French chemists led by Lavoisier
and Gay-Lussac determined that the alcoholic fermentation process could
be expressed chemically by the following equation:

CGH1206 — 202H5OH + 2002

glucose ethyl alchohol carbon dioxide

It was, of course, known that yeast must be added to the wort in order to
ensure a reproducible and rapid fermentation. The function of the yeast,
according to the chemists, was merely to catalyze the process. All chemists
agreed that fermentation was in principle no different from other catalyzed
chemical reactions.

Then in 1837, the French physicist Charles Cagniard-Latour and the
German physiologist Theodor Schwann independently published studies
that indicated yeast was a living microorganism. Prior to their publications,
yeast was considered a proteinaceous chemical substance. The reason the two
workers came up with the same observations at approximately the same time
is most likely due to the production of better microscopes.

It should be mentioned that one of the reasons it was difficult to ascertain
whether or not yeast is living was because, like most other fungi, yeast is
not motile. The organized cellular nature of yeast was discovered only when
improved microscopes became available. Schwann and Cagniard-Latour also
observed that alcoholic fermentation always began with the first appearance
of yeast, progressed only with its multiplication, and ceased as soon as its
growth stopped. Both scientists concluded that alcohol is a by-product of the
growth process of yeast.

The biological theory of fermentation advanced by Cagniard-Latour and
Schwann was immediately attacked by the leading chemists of the time. The
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eminent Swedish physical chemist Jons Jakob Berzelius reviewed the two
papers in his Jahresbericht for 1839 and concluded that microscopic evidence
was of no value in what was obviously a purely chemical problem. According
to Berzelius, nothing was living in yeast.

This opinion was supported by Justus von Liebig and Friedrich
Wéhler. Liebig argued that:

1. Certain types of fermentation, such as the lactic acid (souring of milk)
and acetic acid (formation of vinegar) fermentations, can occur in the
complete absence of yeast.

2. Even if yeast is living, it is not necessary to conclude that the alcoholic
fermentation is a biological process. The yeast is a remarkably unstable
substance which, as a consequence of its own death and decomposi-
tion, catalyzes the splitting of sugar. Thus, fermentation is essentially
a chemical change catalyzed by breakdown products of the yeast.

Liebig’s views were widely accepted, partly because of his powerful influ-
ence in the scientific world and partly because of a desire to avoid seeing an
important chemical change relegated to the domain of biology. And so the
stage was set — biology against chemistry — for the entrance of Louis Pasteur.

ITI-2. PASTEUR VS. LIEBIG AND BERZELIUS (1857-1860)

In 1851, Pasteur published his first paper on the topic of fermentation.
The publication dealt with lactic acid fermentation, not alcoholic fermenta-
tion. Utilizing the finest microscopes of the time, Pasteur discovered that
souring of milk was correlated with the growth of a microorganism, but one
considerably smaller than the beer yeast. During the next few years, Pasteur
extended these studies to other fermentative processes, such as the formation
of butyric acid as butter turns rancid. In each case he was able to demon-
strate the involvement of a specific and characteristic microorganism; alcoholic
fermentation was always accompanied by yeasts, lactic acid fermentation by
nonmotile bacteria, and butyric acid fermentation by motile rod-shaped bac-
teria. Thus, Pasteur not only disposed of one of the opposition’s strongest
arguments, but also provided powerful circumstantial evidence for the biolog-
ical theory of fermentation.

Now Pasteur was ready to attack the crucial problem, alcoholic fermenta-
tion. Liebig had argued that this fermentation was the result of the decay of
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yeast; the proteinaceous material that is released during this decomposition
catalyzes the splitting of sugar. Pasteur countered this argument by devel-
oping a protein-free medium for the growth of yeast. He found that yeast
could grow in a medium composed of glucose, ammonium salts, and some
incinerated yeast. If this medium is kept sterile, neither growth nor fermen-
tation takes place. As soon as the medium is inoculated with even a trace
of yeast, growth commences and fermentation ensues. The quantity of al-
cohol produced parallels the multiplication of the yeast. In this protein-free
medium, Pasteur was able to show that fermentation takes place without the
decomposition of yeast. In fact, the yeast synthesizes protein at the expense
of the sugar and ammonium salts. Thus Pasteur concluded in 1860:

“Fermentation is a biological process, and it is the subvisible organisms
which cause the changes in the fermentation process. What’s more, there are
different kinds of microbes for each kind of fermentation. I am of the opinion
that alcoholic fermentation never occurs without simultaneous organization,
development and multiplication of cells, or continued life of the cells already
formed. The results expressed in this memoir seem to me to be completely
opposed to the opinion of Liebig and Berzelius.”

Pasteur argued effectively, and more important, all the data were on his
side. Thus the vitalistic theory of fermentation predominated until 1897, when
an accidental discovery by Eduard Buchner (1860-1917) demonstrated that
the alcoholic fermentation of sugars is due to action of enzymes contained in
the yeast.

The controversy was thus finally resolved and the door was thrown open
to modern biochemistry.

IV. PASTEUR AND TYNDALL Vs. POUCHET (1859-1885)

The spontaneous generation controversy was brought to a crisis in 1859
when Felix Archiméde Pouchet (1800-1872), a distinguished scientist and
director of the Museum of Natural History in Rouen, France, reported his ex-
periments on spontaneous generation. Pouchet claimed to have accomplished
spontaneous generation using hermetically sealed flasks and pure oxygen gas.
These experiments, he argued, demonstrated that “animals and plants could
be generated in a medium absolutely free from atmospheric air and in which
therefore no germ of organic bodies could have been brought by air.”

The impact of Pouchet’s experiments on his contemporaries was so great
that the French Academy of Sciences offered the Alhumpert Prize in 1860 for



1846 CE 277

exact and convincing experiments that would end this controversy once and
for all. Pasteur first set out to demonstrate that air could contain numerous
microorganisms. From his microscopic observation, Pasteur concluded that
there are large numbers of organized bodies suspended in the atmosphere.
Furthermore, some of these organized bodies are indistinguishable by shape,
size, and structure from microorganisms found in contaminated broths. Later
he showed that these organized bodies that collected on the cotton fibers
not only looked like microorganisms, but when placed in a sterile broth were
capable of growth!

Pasteur’s second series of experiments provided further circumstantial evi-
dence that it was the microbes on floating dust particles and not the so-called
vital forces that were responsible for sterilized broth’s becoming contaminated.
In these experiments, Pasteur carried sterile-sealed flasks to a wide variety of
locations in France. At the various sites, he would break the seal, allowing air
to enter the flask. The flask was immediately resealed and brought back to
Paris for incubation. The conclusion from these numerous experiments was
that where considerable dust existed, all the flasks would become turbid. For
example, if he opened sterile flasks in the city, even for a brief period, they
all became turbid, whereas in the mountainous regions, especially at high
altitudes, a large proportion of the flasks remained sterile.

His third and most conclusive experiment utilized the now famous swan-
neck flask. As a result of the experiments described, Pasteur hypothesized
that the source of contamination was dust. If true, then it should be possible
to keep a broth sterile even in the presence of air as long as the dust is
kept out. In order to test this hypothesis. Pasteur constructed several bent-
neck flasks. After placing broth into the flask, he boiled the liquid for a few
minutes, driving the air from the orifice of the flask. As the flask cooled, fresh
air entered the flask. Despite the fact that the broth was in contact with
the gases of the air, the fluid in the swan-neck flask always remained sterile.
Pasteur reasoned correctly that the dust particles that entered the flask were
absorbed onto the walls of the neck and never penetrated into the liquid. As
an experimental control, Pasteur demonstrated that nothing was wrong with
the broth. If he broke the neck off the flask or tipped liquid into the neck (in
both cases dust would enter the broth), the fluid soon became turbid with
microorganisms.

With these simple, ingenious experiments, Pasteur not only overcame the
criticism that air was necessary for spontaneous generation but he was also
able to explain satisfactorily many of the sources (dust) of the contradictory
findings of other investigators. Although Pasteur’s conclusions gained wide
support in both the scientific and the lay communities, they did not convince
all the proponents of spontaneous generation.
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Pouchet and his followers continued to publish reports of spontaneous gen-
eration. They claimed their techniques were as rigorous as those of Pasteur.
Where Pasteur failed to obtain spontaneous generation they succeeded in ev-
ery case. For example. they carefully opened 100 flasks at the edge of the
Maladetta Glacier in the Pyrenees Mountains at an elevation of 10,850 feet.
In this region which Pasteur had found to be almost dust free, all 100 of
Pouchet’s flasks became turbid after a brief exposure to the air. Even when
Pouchet used swan-neck flasks, there was growth.

To Pasteur, this disagreement no longer revolved around the interpretation
of experiments; rather, either Pouchet was lying or his techniques were faulty,
Pasteur had complete faith in his own procedures and results and had no
respect for those of his opponents. Thus he challenged Pouchet to a contest in
which both of them would repeat their experiments in front of their esteemed
colleagues of the Academy of Science. Pouchet accepted the challenge with
the added statement, “If a single one of our flasks remains unaltered, we shall
loyally acknowledge our defeat.”

A date was set, and the place was to be the laboratory in the Museum
of Natural History at the Jardin des Plantes, Paris?’’. Pasteur arrived early
with the necessary apparatus for demonstrating his techniques. Newspaper
photographers and reporters were also on hand for this event of great public
interest. However, Pouchet did not show up, and Pasteur won by default. It is
difficult to ascertain whether Pouchet was intimidated by Pasteur’s confidence
or, as he later stated, he refused to take part in the “circus” atmosphere
that Pasteur had created, and that their scientific findings should instead
be reported in the reputable scientific journals. At any rate, in Pouchet’s
absence, Pasteur repeated his experiments in front of the referees with the
same results he had previously obtained. As far as the scientific community
was concerned, the matter was settled?°'. The law Omne vivium ex vivo (All
life from life) also applied to microorganisms.

In retrospect, however, the most ironic aspect of this extraordinary contest
was not that Pouchet failed to show up, but rather that if he had appeared, he
would have won! Pouchet’s experiments are reproducible. Pouchet performed
his experiments in the following manner: He filled swan-neck flasks with a

200 Henri Milne-Edwards (1800-1885), a French naturalist and zoologist (then
a professor at the Museum and from 1864, its director) lent political and scien-
tific support to Pasteur during the Pasteur-Pouchet debate. He wrote important
works on crustaceans, mollusks, and corals and wrote a major opus on compar-

ative anatomy and physiology.

201 Yet, the Pasteur-Pouchet debate had a chilling effect on French evolutionary

research for decades.



1846 CE 279

broth made from hay, boiled them for one hour, and then allowed the flasks
to cool. He obtained growth in every flask. Pasteur’s experiments differed
in only two respects. Pasteur used a mixture of sugar and yeast extract for
broth and boiled it for just a few minutes. Pasteur never obtained growth
in his swan-neck flasks. The reason for their contradictory results was not
understood until 1877, 17 years later.

Mainly because of the careful work of the English physicist Tyndall (1820-
1893), Pouchet’s experiments could be explained without invoking sponta-
neous generation. Tyndall found that foods vary considerably in the length
of boiling time required to sterilize them. For example, the yeast extract and
sugar broth of Pasteur could be sterilized with just a few minutes of boiling,
whereas the hay medium of Pouchet required heating for several hours to ac-
complish sterilization. Tyndall postulated that certain microorganisms can
exist in heat-resistant forms, which are now referred to as spores. Further-
more, studies by Tyndall and the French bacteriologist Ferdinand Cohen
revealed that hay media contain a large number of such spores. Thus the
contradictory results of Pasteur and Pouchet were due to differences in the
broths they used.

Tyndall went on to demonstrate that nutrient medium containing spores
can be sterilized easily by boiling for one-half hour on three successive days.
This procedure of discontinuous heating, now called Tyndallization, works as
follows: The first heating kills all the cells that are not spores and induces
the spores to germinate (in the process of germination, the spores lose their
heat resistance as they begin to grow); on the second day, the spores have
germinated and are thus susceptible to the heating. The third day heating
“catches” any late germinating spores. Thus, with the publication of Tyndall’s
work, all the evidence that supported the theory of spontaneous generation
was destroyed. Since that time, there has been no serious attempt to revive
this theory.

It should be pointed out, however, that by its very nature, the theory of
spontaneous generation cannot be disproved. One can always argue that the
conditions necessary for spontaneous generation have not yet been discov-
ered. Pasteur was well aware of the difficulty of a negative proof, and in his
concluding remarks on the controversy, he merely showed that spontaneous
generation had never been demonstrated.

There is no known circumstance in which it can be affirmed that micro-
scopic beings came into the world without germs, without parents similar to
themselves. Those who affirm it have been duped by illusions, by ill-conducted
experiments, and by errors that they either did not perceive, or did not know
how to avoid.
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1847 CE Augustus De Morgan (18062°2-1871, England). Mathemati-
cian and logician, a contemporary of Boole. Laid the foundation of modern
symbolic logic and developed new technology for logical expressions. Formu-
lated De Morgan’s laws. Introduced and vigorously defined the term math-
ematical induction. He endeavored to reconcile mathematics and logic, but
compared with Boole, his impact on modern mathematics and its applications
is small?®3, and he is remembered mainly as a logical reformer. He is most
noteworthy as the founder of the logic of relations and as a developer of the al-
gebra of logic which reconstructed the logic of Aristotle upon a mathematical
basis.

De Morgan was born in India, and taught at University College in London
during 1836-1866. Although a convinced theist, he never joined a religious
congregation. He renounced his professorship in 1866 when a colleague was
denied a chair at University College because he was a unitarian.

The Basic Ideas of Topology

I. POLYHEDRA AND SURFACES204

A simple polyhedron is a body enclosed by faces, all of which are plane
polygons (some examples of polyhedra are: pyramid, prism, frustum). It has

202 pe Morgan was always interested in odd numerical facts; thus in 1849, he
noticed that he had the distinction of being z years old in the year z* (z = 43).

203 Nevertheless, he shall be remembered in mathematics proper due to his discov-
ery of the summation formula:

N 27171

T 1 1
ZmQ”—lzx—l_:c?N—l (@#1).

n=1

204 For further reading, see:
e Cundy, H.M., Mathematical Models, Oxford University Press, 1961, 286 pp.

e Coxeter, H.S.M., Regular Polytopes, Dover, 1973, 321 pp.

e Fauvel, T. et al (eds), Mobius and his band, Oxford University Press, 1993,
172 pp.
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no holes, and can be continuously deformed into a sphere. A convez polyhe-
dron?%® is said to be regular if its faces are regular and congruent polygons
(e.g. cube, tetrahedron). The study of polyhedra held a central place in Greek
geometry, which already recognized most of their salient geometrical features.
Greek geometers correctly concluded that the only polygons that can occur as
faces of a regular polyhedron are the regular polygons having 3, 4 or 5 sides,
bringing the total number of possible regular polyhedra to five.

Now, all five of these possible forms actually exist. They were well known
as early as Plato (ca 390 BCE), and he gave them a very important place
in his Theory of Ideas, which is why they are often known as the “Platonic
Solids”%. The most important data on the regular polyhedra are given in
Table 4.3 (L = length of edge, R = radius of circumsphere).

While the sphere encloses the most volume of all shape having a given sur-
face area, the tetrahedron, of all polyhedra, encloses the least volume with a

given surface area [this ratio is equal to (£av2)/a?V3 = & \/g,

the side length]. Table 4.3 suggests that for simple polyhedraV — E + F = 2,
a fact first stated by Descartes (1635), proved incompletely by Euler (1751)

where a is

e Henle, M., A Combinatorial Introduction to Topology, Dover: New York,
1994, 310 pp.

e Flegg, H.G., From Geometry to Topology, Dover: New York, 2001, 186 pp.

205 The designation ‘convex’ applies to every polyhedron that is entirely on one
side of each of its faces, so that it can be set on a flat table top with any face
down. Although convexity is not a topological property it implies a topological
property, since every convex polyhedron is necessarily simple.

There is a peculiar difference between the convex and the non-convex polyhedra:
whereas every closed convex polyhedron is rigid, there are closed non-convex
polyhedra whose faces can be moved relative to each other.

206 Tt seems probable that Pythagoras (c. 540 BCE) brought the knowledge of
the cube, tetrahedron and octahedron from Egypt, but the icosahedron and the
dodecahedron have been developed in his own school. He seems to have known
that all five polyhedra can be inscribed in a sphere. These solids played an
important part in Pythagorean cosmology, symbolizing the five elements: fire
(tetrahedron), air (octahedron), water (icosahedron), earth (cube), universe or
earth (dodecahedron). The Pythagoreans passed on the study of these solids to
the school of Plato. Euclid discusses them in the 13th book of his Elements,
where he proves that no other regular bodies are possible, and shows how to
inscribe them in a sphere. The latter problem received the attention of the
Arabian astronomer Abu al-Wafa (10th century CE), who solved it with a single
opening of the compass.
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for convex polyhedra, and proved generally by Cauchy (1811). It may have
been known to Archimedes (ca 225 BCE), although the Greeks usually asso-
ciated geometrical properties with measurements and not with mere counting.

We have extant specimens of icosahedral dice that date from about the
Ptolemaic period in Egypt. There are also a number of interesting ancient
Celtic bronze models of the regular dodecahedron still extant in various mu-
seums. There was probably some mystic or religious significance attached to
these forms. Since a stone dodecahedron found in northern Italy dates back
to a prehistoric period, it is possible that the Celtic people received their
idea from the region south of the Alps, and it is also possible that this form
was already known in Italy when the Pythagoreans began to develop their
teachings in Crotona.



Table 4.3 REGULAR POLYHEDRA
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The five regular polyhedrons attracted attention in the Middle Ages chiefly
on the part of astrologers. At the close of this period, however, they were
carefully studied by various mathematicians. Prominent among the latter
was Pietro Franceschi, whose work De Corporibus Regularibus (c. 1475)
was the first to treat the subject with any degree of thoroughness. Following
the custom of the time Pacolli (1509) made free use of the works of his con-
temporaries, and as part of his literary plunder he took considerable material
from this work and embodied it in his De Divina Proportione.

Albrecht Diirer, the Niirnberg artist, showed how to construct the fig-
ures from a net in the way commonly set forth in modern works.

Thus, Platonic and Archimedean polyhedra have sparked the imagination
of creative individuals from Euclid to Kepler to Buckminster Fuller?®”. These
polyhedra are rich in connections to the worlds of art, architecture, chemistry,
biology, and mathematics. In the realm of life, the Platonic Solids present
themselves in the form of microscopic organisms known as radiolaria.

Three other groups of polyhedra drew the attention of mathematicians
throughout the ages:

o Archimedean Solids: characterized by having all their angles equal and
all their faces regular polygons, not necessarily of the same species.
Archimedes’ own account of them is lost. Thirteen such solids exist
mathematically, some realized in crystaline forms: truncated tetrahe-
dron (8 faces); cuboctahedron (14); truncated cube (14); truncated
octahedron (14); rhombicuboctahedron (26); icosidodecahedron (32);
truncated icosahedron (V = 60, E = 90, F' = 32); snub cube (38); rhom-
bicosidodecahedron (62); snub dodecahedron (92). Recently, the trun-
cated icosahedron showed up in chemistry as the molecule Cgo, known
as a fullerene (after Buckminster Fuller).

e Kepler-Poinsot Polyhedra have as faces congruent regular polygons, and
the angles at the vertices all equal, but their center is multiply en-
wrapped by the faces (convex polyhedra).

207 American engineer and inventor (1895-1983); among his numerous inventions is
his geodesic dome structure (1947), based on 3-dimensional structural principles
that were developed to achieve maximum span with a minimum material. His
designs find parallels to such natural molecular geometries as the tetrahedron
and the truncated icosahedron (Ceo, named “Buckeyball” or “Fullerene” in his
honor).

Fuller also built the geodetic dome at the American Pavillion in the 1970 World
Fair in Montreal.
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Four such solids exist: small stellated dodecahedron (F' =12, V =12,
E = 30); great dodecahedron (F =12, V =20, E = 30); great icosahe-
dron (F =20,V =12, E=30). They were described and studied by
Kepler (1619), Poinsot (1810), Cauchy (1813) and Cayley (1859).

o Semi-regular Polyhedra: solids which have all their angles, faces, and
edges equal, the faces not being regular polygons. Two such solids
exist: rhombic dodecahedron, a common crystal form; and semi-regular
triacontahedron.

On the basis of Euler’s formula it is easy to show that there are no more
than five regular polyhedra. For suppose that a regular polyhedron has F
faces, each of which is an n-sided regular polygon, and that r edges meet at
each vertex. Counting edges by faces, we see that

nF =2F,;

for each edge belongs to two faces, and hence is counted twice in the product
nF'; but counting edges by vertices,

rV =2F,

since each edge has two vertices. Hence from V — E + F = 2 we obtain the
equation

2E  2E
i Z_E=2
n T
or
11 1 1
St -=ct—

n o or 2 F

We know to begin with that n > 3 and r > 3, since a polygon must have at
least three sides, and at least three sides must meet at each polyhedral angle.
But n and r cannot both be greater than three, for then the left hand side
of the last equation could not exceed %, which is impossible for any positive
value of E. Therefore, let us see what values r may have when n = 3, and
what values n may have when r = 3. The totality of polyhedra given by these
two cases yields the number of possible regular polyhedra.

For n = 3 the last equation becomes

_1.
- =i

S|
| =

r can thus equal 3, 4, or 5. (6, or any greater number, is obviously excluded,
since 1/E is always positive.) For these values of r we get E = 6,12, or 30,
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corresponding respectively to the tetrahedron, octahedron, and icosahedron.
Likewise, for r = 3 we obtain the equation

1

=%

| =

1
n

from which it follows that n = 3,4, or 5, and E = 6,12, or 30, respectively.
These values correspond respectively to the tetrahedron, cube, and dodeca-
hedron.

While Euler’s formula is valid for simply-connected polyhedra (regular
and truncated polyhedra, pyramids, prisms, cuboids, frustums, crystal-lattice
unit cells of various kinds) which are all topological spheres, it fails for solids
with holes in them and non-convex star-polyhedra. Thus, Kepler (1619)
described the small and great stellated dodecahedra with V =12, F =12,
E=30, V —E+F =—6 and Lhuilier (1813) noticed that Euler’s for-
mula was wrong for certain families of solid bodies. For a solid with g holes
Lhuilier showed that V — E+ F =2 — 2g.

Consider for example a non-simply-connected polyhedron such as the pris-
matic block, consisting of a regular parallelepiped with a hole having the
form of a smaller parallelepiped with its sides parallel to the outer faces of
the block. Introducing just enough extra edges and faces to render all faces
simply-connected polygon interiors (rectangles and trapezoids), this polygon
is seen to have V =16, FE =32and F =16suchthat V —E+ F =0.
This corresponds to Lhuilier’s formula with g = 1.

To understand the significance of the number g and its role in the topo-
logical classification of surfaces?°8, we compare the surface of the sphere with
that of a torus. Clearly, these two surfaces differ in a fundamental way: on
the sphere, as in the plane, every simple closed curve separates the surface
into two disconnected parts. But on the torus there exist closed curves that
do not separate the surface into two parts — for example, the two generator
circles on the torus surface. Furthermore, such a closed curve cannot be con-
tinuously shrunk to a point — whereas any closed curve on a sphere can be
so shrunk. This difference between the sphere and the torus marks the two
surfaces as belonging to two topologically distinct classes, because this shows
that it is impossible to deform one into the other in a continuous way.

Likewise, on a surface with two holes we can draw four closed curves each
of which does not separate the surface into disjoint components; these can be

208 For the time being, we consider only two-sided and closed surfaces — i.e., we
assume the surface has no boundary and that an ant, walking on one of its
two sides, can never reach the opposite side without puncturing the surface. A
2-sided surface is also known as an oriented surface.
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chosen to be the four generator curves (two per hole). Furthermore, one can
draw two (non-intersecting) closed curves that, drawn simultaneously, still do
not separate the two-hole surface. The torus is always separated into two
parts by any two non-intersecting closed curves. On the other hand, three
closed non-intersecting curves always separate the surface with two holes.

These facts suggest that we define the genus of a (closed and 2-sided)
surface as the largest number of non-intersecting simple closed curves that
can be simultaneously drawn on the surface without separating it. The genus
of the sphere is 0, that of the torus is 1, while that of a 2-holed doughnut is
2. A similar surface with g holes has the genus g. The genus is a topological
property of a surface and thus remains the same if the surface is deformed.
Conversely, it may be shown that if two closed 2-sided (oriented) surfaces
have the same genus, then one may be continuously deformed into the other,
so that the genus g = 0,1,2,... of such a surface characterizes it completely
from the topological point of view.

For example, the two-holed doughnut and the sphere with two “handles”
are both closed surfaces of genus 2, and it is clear that either of these surfaces
may be continuously deformed into the other. Since the doughnut with g
holes, or its equivalent, the sphere with g handles, is of genus g, we may take
either of these surfaces as the topological representative of all closed oriented
surfaces of genus g.

Suppose that a surface S of genus g is divided into a number of regions
(faces) by marking a number of vertices on S and joining them by curved
arcs. As stated above, it has been shown that

V-E+F=2-2g,

where V' = number of vertices, E = number of arcs, and F' = number of faces
or regions®®®. The topological invariant on the L.H.S. is usually denoted x
and is known as the Euler characteristic of the surface (this invariant admits
a generalization to even-dimensional manifolds of dimension higher than two).
We have already seen that for the sphere, V — E + F = 2, which agrees with
the above equation, since g = 0 for the sphere.

Another measure of non-simplicity which is used in the classification of
surfaces will emerge from the following example. Consider two plane domains:
the first of these, a, consists of all points interior to a circle, while the second,
b, consists of all points contained between two concentric circles. Any closed

209 An outline of the proof: S can be constructed from a particular partitioning of
the sphere by identifying 2g distinct sphere faces pairwise. This reduces F and
V' by the same integer, and reduces F' by 2g, thus resulting in a reduction of
V — E + F by 2g from its sphere value (2), as claimed.
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curve lying in the domain a can be continuously deformed or “shrunk” down
to a single point within the domain. A domain with this property is said
to be simply connected. The domain b, however, is not simply connected.
For example, a circle concentric with the two boundary circles and midway
between them cannot be shrunk to a single point within the domain, since
during this process the curve would necessarily sweep through the center of
the circles, which is not a point of the domain. A domain which is not simply
connected is said to be multiply connected. If the multiply connected domain
b is cut along a radius, the resulting domain is simply connected.

More generally, we can construct domains with two “holes”. In order to
convert this domain into a simply connected domain, two cuts are necessary.
If h—1 non-intersecting cuts from boundary to boundary are needed to
convert a given multiply connected planar domain D into a simply connected
domain, the domain D is said to be h-tuply connected. The degree of con-
nectivity of a domain in the plane is an important topological invariant of the
domain. The number h is called the connectivity number assigned to every
surface. It extends also, mutatis mutandis, to 3-dimensional bodies.

As an example, consider a closed, non-self-intersecting polygon (a chain)
consisting of edges of a polyhedron. If the surface of the polyhedron is divided
into two separate parts by every such closed chain of edges, we assign the
connectivity h =1 to the polyhedron. Clearly, all simple polyhedra have
connectivity 1, since the surface of the sphere is divided into two parts by
every closed curve lying on it. Conversely, it is readily seen that all polyhedra
with connectivity 1 can be continuously deformed into a sphere. Hence the
simple polyhedra are also called simply connected.

A polyhedron is said to have connectivity h if h—1 is the greatest
possible number of chains that, when simultaneously drawn, do not cut the
surface in two. Since h —1=2 for the prismatic block, its connectivity
is h = 3.

We thus set h =1 for the sphere and h = 3 for the torus. Surfaces of
higher connectivity can be constructed by flattening a sphere made of a plastic
material, cutting holes into it, and identifying (sewing together) each pair of
stacked hole-boundary closed curves.

We shall call such surfaces pretzels. It can be proved that a pretzel with
g holes (i.e. a g-handle surface) must have connectivity —h = 2g+ 1.

On a general surface, the curves can be chosen more freely than on a
polyhedra, where we restricted the choice to chains of edges. Various other
definitions can be given for the connectivity of surfaces — for example, the
following:
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On a closed surface of connectivity h, we can draw h —1  closed curves
without cutting the surface in two, but every system of h closed curves cuts the
surface into at least two separate parts. On a closed surface of connectivity
h =2g+1 there is at least one set of g closed, mutually non-intersecting
curves — and no set of more than g such curves — having the property that the
curves in the set do not cut the surface in two when drawn simultaneously.

All the polyhedra and closed surfaces we have considered thus far had
odd connectivity numbers h and even Euler characteristics (x = 2 — 2g),
related by the formula x = 3 — h. If we extend both concepts to surfaces
with boundaries (i.e. open) — with x still defined as V — E + F and
h now defined as the maximal number of simultaneous cuts (along closed
or boundary-to-boundary open curves) leaving the surface connected — the
formula becomes®'® x = 2 — h. And for such surfaces, x and h may be both
even or both odd.

The numbers x, g and h are all topological invariants. So Iis the
orientability /non-orientability property, which we explain next.

The question arises whether there are any closed (boundary-less) surfaces
at all with even connectivities or odd x values; or whether there are boundary-
less surfaces for which genus and connectivity are not related by h =2g+ 1.
Indeed, such surfaces do exist and are called one-sided (or non-orientable)
surfaces.

Hitherto we have been dealing with “ordinary” surface, i.e. those having
two sides. This restriction applied to closed surfaces like the sphere or the
torus and to surfaces with boundary curves, such as the disk, a sphere with
two holes (i.e. with two disks removed) — equivalent to a cylinder — or a torus
from which a single disk has been removed.

The two sides of such a surface could be painted with different colors to
distinguish them. If the surface is closed, the two colors never meet. If the
surface has boundary curves, the two colors meet only along these curves.
A bug crawling along such a surface and prevented from puncturing it or
crossing boundary curves, if any exist, would always remain on the same side.

Mébius made the surprising discovery that there exist surfaces with only
one side. The simplest such surface is the so-called Mdébius strip (Figure 2),
formed by taking a long rectangular strip of paper and pasting its two ends

210" Also, the formula h = 2g + 1 does not always apply for a non-closed surface.
For instance, a cylinder with g handles — equivalent to a g-handle sphere with
two disks cut out — has h = 2g + 2; for ¢ = 0 (a simple cylinder) h = 2, since
it can be cut once (1 = h — 1) while maintaining connectedness — e.g. from
boundary to boundary along the cylinder axis.
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together after giving one end a half-twist. A bug crawling along this surface,
keeping always to the middle of the strip, will return to its original position
upside down and on the opposite side of the surface! The surface is thus
indeed one-sided when considered globally; only local portions of it can be said
to have two sides. The Moébius strip also has but one edge, for its boundary
consists of a single closed curve. The ordinary two-sided surface formed by
pasting together the two ends of a rectangle without twisting has two distinct,
disconnected closed boundary curves; topologically it is a cylinder (or a sphere
missing two disks).

If this surface is cut along a plane separating the two closed boundary-
curves, it falls apart into two such disjoint cylinder surfaces, each with a
new closed-curve component to its boundary. Like the cylinder, the Mo6bius
strip has a continuous family of closed curves in its interior, each having the
property of not being continuously deformable to a single point. And, as in
the case of the cylinder, all such curves of unit winding-number (i.e. consisting
of a single component if the surface is cut back into the original rectangle)
can be deformed into each other, and are thus topologically equivalent.

However, unlike the cylinder, if the Mobius strip is cut along one of its
non-shrinkable closed curves, we find that it remains in one piece®'l. It is
rare for anyone not familiar with the Mo6bius strip to predict this behavior, so
contrary to one’s intuition of what “should” occur. If the surface that results
from cutting the Mébius strip along the middle is again cut along its middle,
two separate but intertwined strips are formed.

The connectivity of the MGébius strip is  h = 2, just as the untwisted
open cylinder. It also may be characterized by means of another important
topological concept which can be formulated as follows: Imagine every point of
a given surface (with the exception of boundary points, if any) to be enclosed
in a small closed curve that lies entirely on the surface. We then try to fix a
certain sense (handedness) on each of these closed curves in such a way that
any two curves that are sufficiently close together have the same sense. If
such a consistent determination of sense of traversal is possible in this way,
we call it an orientation of the surface and call the surface orientable.

While all two-sided surfaces are orientable, one-sided surfaces are not.
Thus the classification of surfaces into two-sided and one-sided surfaces is
identical to the classification into orientable and non-orientable surfaces.

211 The cut strip is in fact equivalent to a rectangular strip subjected to two half-
twists before identifying its two (short) opposite sides — both half-twists being
in the same sense. This strip is topologically equivalent to a cylinder, yet cannot
be deformed into it without self-intersection if embedded in 3-D space (R?).
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It is easy to see that a surface is non-orientable if and only if there exists on
the surface some closed curve such that a continuous family of small oriented
circles whose center traverses the curve will arrive at its starting point with
its orientation reversed.

The Mobius strip is an open one-sided surface and does not intersect itself.
But it can be proven that all one-sided closed surfaces embedded in R® (Eu-
clidean 3-dimensional space) have self-intersections. However, the presence
of curves of self-intersection need not represent a topological property in the
sense that in some cases it can be transformed away by deformation, or elim-
inated by defining the surface intrinsically (without embedding it in a 3-D
R? space), or else by embedding it in an R™ space with n > 3. If this is not
the case we say that the surface has singular points which are a topological
property.

This raises the question of whether there can exist any one-sided closed
surface (2-D intrinsic manifold) that has no singular points. Such a surface
was first constructed mathematically by Felix Klein, as follows. Consider an
open tube (cylinder). A torus®'? is obtained from it by bending the tube until
the ends meet and then gluing (identifying) the boundary circles together. But
the ends can be welded in a different way:

Taking a tube with one end a little thinner than the other, we bend the thin
end over and push it through the wall of the tube, molding it into a position
where the two circles at the ends of the tube have nearby and concentric
positions. We now expand the smaller circle and contract the larger one
a little until they meet, and then join them together (Fig. 7). This does
not create any singular points and gives us Klein’s surface, also known as the
Klein bottle. It is clear that the surface is one-sided and, in any R* embedding,
intersects itself along a closed curve where the narrow end was pushed through
the wall of the tube.

The connectivity number of the Klein bottle is 3, like that of a torus. It
can be shown that any closed, one-sided surface of genus g is topologically

212 Torus: a surface (intrinsic or embedded in R®). The intrinsic torus is a rectangle
with opposite ends identified without twists (Fig. 9(f)). An R*-embedded torus
is generated by revolving a circle about a line (in its plane) that does not
intersect the circle. One of its parametric representations in Gaussian surface
coordinates (u,v) is

r(u,v) = [(a+bcosv)cosu; (a+bcosv)sinu; bsinv],
a>b>0; 0<u<2r, 0<v<2m.

a and b are the two radii of the R® torus, while the coordinates u, v are azimuths
along two generating circles.
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Fig. 1: Sewing up a cylinder to yield a representation of the Md&bius strip as
a topological sphere with cross-cap. The two copies of point A are identified,
and similarly for B and the directed arcs a, b.

Fig. 3: The Real Projective Plane (sphere with one cross-cap).



294 4. Abstraction and Unification

Fig. 4: Klein bottle represented as a topological sphere with two cross-caps.

Fig. 5: The triple-crosscap surface (topological sphere with three cross-caps).

Fig. 6: Cutting the Klein bottle along to closed curves while maintaining
connectivity.
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Fig. 7: A Klein bottle represented as a self-intersecting, nonsingular embed-
ding (immersion) in R3.

(a) Two Mobius strips with their boundaries sewn (identified) yield a Klein bottle.

A A B’ A B o A
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Fig. 9: Surfaces (open and closed, orientable and non-orientable) obtained
from a rectangle by identifying (sewing) edges in various ways. Broken-line
edges are not identified; arrows (single-line or double lines) are identified with
same-type arrows (head with head and tail with tail). (a): topological disk;
(b): Klein bottle; (¢): Mobius strip; (d): real projective plane; (e): sphere;
(f): torus; (g): cylinder (tube).
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Fig. 10: Deforming the standard Mobius-strip representation into a disk-with-
crosscap.

equivalent to a sphere from which g disks have been removed and replaced by
local topological constructs called cross-caps.?'3

213 Cross-Caps: Modular building blocks for non-oriented surfaces.

The M&bius strip is the basic unit of non-oriented surfaces. It can be represented
as described above: by half-twisting a rectangle and then identifying a pair of
opposite sides (Figs. 2 and 9(c)). In the latter, the two corners labeled “A”
are identified — “sewn” together — as are the two corners labeled “B”; and the
two solid edges are identified in accordance with the arrow-indicated directions.
But in this representation the Mobius strip has a complicated-looking bound-
ary. Figures 1 and 10(a) to 10(c) show how to continuously deform this into
the standard disk-with-crosscap representation. Unfolding the solid-line closed
boundary of 10(a) yields 10(b) (the dotted lines indicate the M&bius-strip inte-
rior). Then, untwisting the boundary of 10(b) into a circle yields Fig. 10(c). In
10(c) it was necessary to cut the surface along some closed curve ABA to avoid
intersections among the broken lines. This cut results in the rectangle depicted
in 10(c), in which the two single-solid lines are identified along their arrows —
as are the two double-solid lines. Re-sewing the cut ABA, as depicted in Fig. 1,
results in a disk with one crosscap. This is a convenient representation of the
Mobius strip, because its boundary is a simple curve (a circle if we wish), and
also because any non-orientable surface (open or closed) is topologically equiv-
alent to a sphere with some number of local disks removed, with some or all of
these disks replaced by cross-caps. On the other hand — as clearly seen in Fig. 1
— the cross-cap representation of the Mobius strip makes it self-intersecting in
a 3-D embedding (though it has no singular point).
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From this it easily follows that the FEuler characteristic V — E + F' of such
a surface is related to g by the equation

V-_-E+F=2-—g.

Thus for the Klein bottle, g = 2. For an orientable closed surface we have
X = 2 — 2g, while for a non-orientable closed surface x =2 — g.

Figs. 3-5 depict the three simplest classes of closed non-orientable surfaces, rep-
resented as a sphere with one, two and three local cross-caps, respectively. The
class shown in Fig. 3 includes the real projective plane (RPz), obtained from R?
by identifying all points (Az, Ay, Az) with fixed (x,y, z) and all real numbers X;
this class is also a Mobius strip with its boundary sewn to a disk. Fig. 4 — a
sphere with two cross-caps — is equivalent to a Klein bottle (Fig. 7). This is
because a Klein bottle can be constructed by sewing together the boundaries
of two Mobius strips — as shown in two different ways in Figs. 8(a) and 8(b).
Fig. 8(a) shows how two standard (twisted-strip) representations of Md&bius
strips are sewn along their boundaries to yield a single Klein bottle. In Fig. 8(b)
it is done another way, by identifying the boundaries of two Mobius strips. Each
separate Mdobius strip is represented as a rectangle with two of its edges iden-
tified, as in Fig. 9(c). The final Klein bottle can be represented as a rectangle
with its four edges identified pairwise as in Fig. 9(b). The vertices A, A’ are
identified with each other, as are B and B’; the two single-broken-line arrows
are identified with each other (base with base and arrow-tip with arrow-tip),
and the two double-solid-line arrows are similarly identified. The two remaining
arrow pairs are separately identified within each Mobius strip, as in Fig. 9(c)
(single-solid-arrows identified with each other, as are the single-dotted-arrows).
Proceeding from left to right, the first solid-whit arrow indicates the sewing
together of the boundaries of the two Mobius strips. The second solid-white
arrow indicates two further operations: a 180° twisting of the right closed curve
ABA to align it with the left closed ABA curve, followed by a cut along a curve
between the two copies of point A. Neither operation changes the Klein bottle’s
topology.

Fig. 5 shows a sphere with three cross-caps; this can be shown to be topo-
logically equivalent to a torus with a small disk removed and replaced with a
cross-cap (Dyck’s theorem).

Fig. 6 shows how a Klein bottle can be simultaneously cut along two closed
curves while remaining a connected surface: the two cuts open the surface’s
two cross-caps, converting them into two closed-curve boundaries — the Klein
bottle is thus converted into a topological cylinder.

Finally, Figs. 9(a)-9(g) show how to obtain various surfaces — open and closed,
orientable and one-sided — by sewing (identifying) the vertices and edges of a
single rectangle in various ways.
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In general, for a closed orientable surface S of genus g, for which the
R? — R3 mapping r(u, v) is twice continuously differentiable, the integral cur-
vature is equal to ffs K dA =4n(1 —g), where K is the Gaussian curvature
(this follows from the Gauss-Bonnet theorem). For the torus (g = 1) the right-
hand side vanishes. And indeed, in terms of the parametric representation of
the R3-embedded torus given above:

CoS v

K:m, dA = (a + bcosv)bdudv

and therefore the integral curvature is zero as claimed, as fo% dvcosv = 0.
Another interesting feature of the torus is that an elliptic function defines a
mapping of a plane into a torus. It arises from the notion that the curve
y? = ax® + bx?® + cx + d can be parametrized as v = f(z), y = f'(z), where f
and f' are elliptic functions (Jacobi, 1834).
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II. TOPOLOGICAL MAPPINGS

Starting with the concept of a set (such as points in a plane, lines through
a point, rotations in 3-D, etc.) one can generalize the idea of a function to
that of a map: A map is a relation between two specified sets that associates
a unique element of the second to each element of the first.

To establish topological equivalence between sets, one must have a math-
ematical machinery that is able to transform one of the sets into the other,
and this transformation must be a map endowed with various properties.

There are various methods of mapping one surface (or higher-dimensional
manifold space, whether intrinsically defined or embedded) onto another.
The most faithful image of a surface is obtained by an isometric, or length-
preserving, mapping®'4. Here the geodesic distance between any two points
is preserved (assuming the surface or space is endowed with a metric*'9), all
angles remain unchanged, and geodesic lines are mapped into geodesic lines.
An isometry also preserves the Gaussian curvature at corresponding points.
Hence the only surfaces that can be mapped isometrically into a part of the
plane are surfaces whose Gaussian curvature is everywhere zero; this excludes,
for example, any portion of the sphere. In consequence, no geographical map
(i.e. map of the earth’s surface) can be free of distortions.

Less accurate, but also less restrictive, are the area-preserving mappings.
They are defined by the condition that the area enclosed by every closed curve
be preserved. With the aid of such a mapping portions of the sphere can be
mapped onto portions of the plane, and this is frequently used in geography.
It is achieved in practice by projecting points of the sphere onto the cylinder
along the normals of the cylinder. If the cylinder is now slit open along a
generator and developed into a plane, the result is an area-preserving image
of the sphere in a plane; the distortion increases the further we are from the
circle along which the cylinder touches the sphere.

Another type of mapping, especially useful for navigation, is that of
geodesic maps, where geodesics are preserved. If, for example, a portion of

214 1n the Euclidean plane all isometries can be generated by combining a two-
parameter translation, a one-parameter rotation, and a single reflection about
some fixed axis. In Euclidean R3, there are 3 translations parameters and 3
rotation-angle parameters, but still only one independent reflection, which can
be implemented with the help of a mirror. No more than 3 mirrors (i.e. three
reflection planes) are needed to generate any isometry in R,

215 1n the case of a 2D surface embedded in R?, the natural surface metric is the

one inherited from the Euclidean metric of the “host” R? space.
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a sphere is projected from its center onto a plane, then the great circles are
mapped into straight lines of the plane, and the map is therefore geodesic.
At the same time, this gives us a (local) geodesic mapping of all surfaces of
constant positive Gaussian curvature into the plane, because all these surfaces
can be mapped isometrically into spheres. All surfaces with constant negative
Gaussian curvature can also be mapped into the plane by a geodesic mapping.

Yet another type of mapping is that of the conformal, or angle-preserving,
mappings, for which the angle at which two curves intersect is preserved. The
simplest examples of conformal mapping, apart from the isometric mapping,
are stereographic projections and the circle-preserving transformations®'6. A
stereographic projection map, in which a sphere (with its north-pole removed)
is placed atop a plane and projected onto it by drawing straight lines from
that pole, is also a circle-preserving map.

It can be shown that very small figures suffer hardly any distortion at all
under general conformal transformations; not only angles are preserved, but
the ratios of distances (although not the distances themselves) are approxi-
mately preserved. In the small, the conformal mappings are thus the nearest
thing to isometric mappings among all the types of mappings mentioned ear-
lier, for area-preserving and geodesic mappings may bring about arbitrarily
great distortions in arbitrarily small figures.

The most general mappings that are at all comprehensible to visual intu-
ition are continuous invertible mappings (homeomorphisms). The only condi-
tion here is that the mapping is one-to-one and that neighboring points (and
only such) go over to neighboring points. Thus a homeomorphic mapping
may subject any figure to an arbitrary amount of distortion, but it is not per-
mitted to tear connected regions apart or to stick separate regions together.
Yet, continuous mappings do not always exist that can map (which we refer
to here as “continuous” for simplicity’s sake) two given surfaces onto each
other (Example: the circular disk and the plane annulus bounded by two con-
centric circles cannot be mapped continuously into each other, even not their
boundaries alone!). Clearly, the class of continuous mappings embraces all the
types of mapping mentioned so far. The question of when two surfaces can
be mapped onto each other by a continuous mapping is one of the problems
of topology.

The simplest type of topological mapping of a surface consists of a con-
tinuous mapping (homeomorphism) which is such as to transform the surface

216 Ap example of a circle-preserving map is the R? — R? inversion map w.r.t.
. . . . . . . 2
a given circle. If the latter is z? 4+ y? = a?, this inversion is = — xza—fyz,

2
y — ﬁ It is a special type of conformal transformation that maps any
circle into another circle.
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as a whole onto itself, and which is arcwise-connected with the trivial (unity)
map (in which each surface point is mapped to itself?*”). This type of map-
ping is called a deformation. The reflection of a plane about a straight line,
on the other hand, is an example of a topological mapping which is not a
deformation; for a reflection reverses the sense of traversal (orientation) of
every circle, whereas deformations cannot reverse the sense of traversal.

A point that is mapped onto itself under the mapping is called a fized
point of the mapping. In the applications of topology to other branches of
mathematics, “fixed-point” theorems play an important role. The theorem of
Brouwer states that every continuous deformation of a circular disk (with
the points of the circumference included) onto itself has at least one fixed
point. On a sphere, any continuous transformation which carries no point
into its diametrically opposite points (e.g. any small deformation) has a fixed
point.

Fixed point theorems provide a powerful method for the proof of many
mathematical “existence theorems” which at first sight may not seem to be
of a geometrical character. Also, topological methods have been applied with
great success to the study of the qualitative behavior of dynamical systems.
A famous example is a fixed point theorem conjectured by Poincaré (1912),
which has an immediate consequence: the existence of an infinite number of
periodic orbits in the restricted problem of three bodies.

Apart from the choice of the mapping transformation there is yet another
problem that must be resolved; in describing a surface or other manifold,
there is the freedom of choice of a suitable coordinate system (CS). In general
we cannot restrict ourselves to manifolds which can be covered by a single CS
such as is suitable for an n-dimensional Euclidean space R™; simple examples
of various kinds of surfaces embedded in E® indicate that, in general, no single
CS can exist which covers a given surface completely.?!8

The simplest example is a 2-dimensional spherical surface in E3 (the latter
having Cartesian coordinates (1, 22, x3)), which we wish to map onto a planar

217 Two continuous mappings f: A — B, g: A — B from aset A to aset B
are said to be arcwise-connected (or continuously deformable into each other) if
there exists an arc of continuous functions h(s): A — B, s € [0,1], such that
h(0) = f, (1) =g, and h is a continuous map from [0,1] X A to B.

218 E" is the space R™ with a Euclidean metric (norm). A CS (coordinate system)

is a homeomorphism between a region (open subset) of the surface (or higher-

dimensional manifold) and R™, m being the manifold’s dimension (m = 2

for a surface). For a manifold requiring more than one CS, it is assumed that

the open subsets cover the manifold, and that in the intersection of any two
subsets, the two CS maps compose to yield a R™ — R"™ homeomorphism.
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disc. To obtain a one-to-one correspondence in the mapping, one may choose
the hemisphere for which x1 > 0, which is then continuously mapped onto
a disk in the xox3 plane. Accordingly, this hemisphere is referred to as a
coordinate neighborhood.

Similarly, 5 other hemispheres corresponding to the respective restrictions
x1 < 0; 22 > 0; z2 < 0; z3 > 0; x3 < 0 can be regarded as coordinate neigh-
borhoods. The totality of these 6 hemispheres covers the sphere completely,
and in the overlap of any pair of them, composing the two corresponding maps
yields a continuous map of one planar disk onto another. In general, the exis-
tence and overlap structure of suitable coordinate neighborhoods depends on
the topological properties of the surface taken as a whole. This shows that
one must give up on the construction of a unique CS for all points of a space
under consideration and use different CS for different parts of the space.

A surface, however curved and complicated, can be thought of as a set of
little curved patches glued together; and topologically (though not geometri-
cally) each patch is just like a patch in the ordinary Euclidean plane. It is not
this local patch-like structure that produces things like the hole in a torus: it
is the global way all the patches are glued together. Once this is clear, the
step to n dimensions is easy: one just assembles a space from little patches
carved out of n-dimensional space instead of a plane. The resulting space is
an n-dimensional manifold. For example: the motion of three bodies under
mutual gravitational forces involves an 18-dimensional phase-space manifold,
with 3 position coordinates and 3 velocity coordinates per body.

III. ALGEBRAIC TOPOLOGY

Algebraic topology is the study of the global properties of spaces by means
of abstract algebra. One of the earliest examples is Gauss’s linkage formula
which tells us whether two closed space curves are linked, and — if so — how
many times does any one of them wind around the other. The linkage number
remains the same even if we continuously deform the space curves. The central
idea here is that continuous geometric phenomena can be understood by the
use of integer-valued topological invariants.

One of the strengths of algebraic topology has always been its wide degree
of applicability to other fields. Nowadays that includes fields like theoretical
physics, differential geometry, algebraic geometry, and number theory. As an
example of this applicability , here is a simple topological proof that every
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non-constant polynomial p(z) has a complex zero (root) — a key component
in proving the fundamental theorem of algebra.

Consider a circle of radius R and center at the origin of the complex plane.
The polynomial transforms this into another closed curve in the complex
plane. If this image curve ever passes through the origin, we have our zero.
If not, suppose the radius R is very large. Then the highest power of p(z)
dominates and hence p(z) transforms the circle into a curve which winds
around the origin the same number of times as the degree of p(z). This
is called the winding number of the curve around the origin. It is always an
integer and it is defined for every closed curve which does not pass through the
origin. If we deform the curve, the winding number has to vary continuously
but, since it is constrained to be an integer, it cannot change and must be a
constant unless the curve is deformed through the origin.

Now deform the image curve by shrinking the radius R to zero and suppose
that the image curve never passes through the origin, that is to say, the original
circle, in shrinking, never passes through a zero of the polynomial. The image
curve gets very small since p(z) is continuous; hence it must have winding
number 0 around the origin unless it is shrinking to the origin (which cannot
be the case unless p(0) = 0). If the image curve is shrinking to the origin, the
origin is a zero of p(z). If not, the winding number is 0 which means that the
polynomial must have degree 0; in other words, it is a constant.

The winding number of a curve illustrates two important principles of
algebraic topology. First, it assigns to a geometric object, the closed curve,
a discrete invariant, the winding number which is an integer. Second, when
we deform the geometric object, the winding number does not change, hence,
it is called an invariant of deformation or, synonymously, an invariant of
homotopy. The field is called algebraic topology because an equivalence class
of geometric entities possessing the same invariant — e.g. linkage number
between curves; winding numbers of curves about points, or of closed surfaces
in many-to-one mappings about other closed surfaces; winding numbers of
non-shrinkable generator curves on the surface of a surface of nonvanishing
genus; et cetera — turn out to form algebraic structures, such as rings and
groups, under various geometric operations.

IV. FROM CURVES AND KNOTS TO MANIFOLDS

A simple closed curve (one that does not intersect itself) is drawn in the
plane. What property of this figure persists even if the plane is regarded as
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a sheet of rubber that can be deformed in any way? The length of the curve
and the area that it encloses can be changed by a deformation. But there is a
topological property of the configuration which is so simple that it may seem
trivial: A simple closed curve C' in the plane divides the plane into exactly two
domains, an inside and an outside. By this is meant that those points of the
plane not on C' itself fall into two classes — A, the outside of the curve, and
B, the inside — such that any pair of points of the same class can be joined
by a curve which does not cross C, while any curve joining a pair of points
belonging to different classes must cross C. This statement is obviously true
for a circle or an ellipse, but the self-evidence fades a little if one contemplates
a complicated curve like the twisted polygon. This problem was first stated
by Camille Jordan (1882) in his Cours d’analyse. It turned out that the
proof given by Jordan was invalid.

The first rigorous proofs of the theorem were quite complicated and hard
to understand, even for many well-trained mathematicians. Only recently
have comparatively simple proofs been found®'®. One reason for the difficulty
lies in the generality of the concept of “simple closed curve”, which is not
restricted to the class of polygons or “smooth” curves, but includes all curves
which are topological images of a circle. On the other hand, many concepts
such as “inside”, “outside”, etc., which are so clear to the intuition, must be
made precise before a rigorous proof is possible.

It is of the highest theoretical importance to analyze such concepts in their
fullest generality, and much of modern topology is devoted to this task. But
one should never forget that in the great majority of cases that arise from the
study of concrete geometrical phenomena it is quite beside the point to work
with concepts whose extreme generality creates unnecessary difficulties. As
a matter of fact, the Jordan curve theorem is quite simple to prove for the
reasonably well-behaved curves, such as polygons or curves with continuously
turning tangents, which occur in most important problems.

A knot is formed by first looping and interlacing a piece of string and then
Jjoining the ends together. The resulting closed curve represents a geometri-
cal figure the “knotiness” of which remains essentially the same even if it is
deformed by pulling or twisting without breaking the string. But how is it
possible to give an intrinsic characterization that will distinguish a knotted
closed curve in space from an unknotted curve such as the circle? The answer
is by no means simple, and still less so is the complete mathematical analysis
of the various kinds of knots and the differences between them. Even for the
simplest case this has proved to be a daunting task.

219 A generalization of the Jordan theorem to arbitrary surface is used in proving
the surface classification theorem cited earlier.
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Consider, for example, two knots which are completely symmetric mirror
images of one another. The problem arises whether it is possible to deform
one of these knots into the other in a continuous way. The answer is in the
negative, but the proof of this fact requires considerable knowledge of the
technique of topology and group theory.

Knots are the most immediate topological features of curves in space.
Beyond curves come surfaces; beyond surfaces come multidimensional gener-
alizations called manifolds, introduced by Riemann.

Whereas mathematical analysis and the theory of differential equations
deal primarily with “local” properties of a function (only infinitesimally adja-
cent points are considered), geometry studies the “global” properties of func-
tions (i.e. their properties are analyzed by considering finitely spaced points).
This intuitive idea of globality has given rise to the fundamental concept of
manifold as a generalization of the concept of domain in Euclidean space.

A coordinate system describing the positions of points in space is an in-
dispensable tool for studying geometrical objects. Using coordinate systems,
we can apply the methods of differential and integral calculus to solve various
problems. Therefore, an analysis of spaces which admit such concepts as dif-
ferentiable or smooth functions, differentiation and integration, has emerged
as an independent branch of geometry.

Topologists would like to do for manifolds what they have already done
for surfaces and knots. Namely:

(1) Decide when two manifolds are or are not topologically equivalent.
(2) Classify all possible manifolds.

(3) Find all the different ways to embed one manifold in another (e.g. a
knotted circle in 3-space).

(4) Decide when two such embeddings are, or are not, the same.

The answer to problems (1) and (2) lies in an area called homotopy theory
which is part of algebraic topology. It endeavors to associate various algebraic
invariants with topological spaces. Poincaré was one of the fathers of this
theory. But problems (1) and (2) have not yet been fully resolved. Problem
(3) led topologists to some surprising and counter-intuitive results, as the
following example shows. It has been asked: when can two 50-dimensional
spheres be linked [i.e. embedded such that they cannot be separated by a
topology-preserving transformation of the surrounding n-dimensional space].
The answer is:
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cannot link for n > 102

can link for n =101, 100, 99, 98
cannot link for n =97, 96

can link for n=95,...,52.

V. NETWORKS

Graph (or Network) theory had its origin in a paper by Euler (1736)
including the famous problem of the bridges of Konigsberg. Euler saw that
the problem could more easily be studied reducing island and banks to points
and drawing a network (graph) in which two points are connected by an edge
whenever there is a bridge connecting the corresponding two land masses.
In this way Euler was able to abstract the problem so that only information
essential to solving it was highlighted, and he could dispense with all other
aspects of the problem. He could thus rephrase the problem as follows: “Given
a connected graph, find a path that traverses each edge of the graph without
retracing any edge.” Such a path is called a eulerian traversal or eulerian
path??0, Some experimentation and application of logic lead to the conclusion
that in order to have a eulerian path, it is necessary that for any edge along
which the path enters a vertex, there must correspond a distinct edge along
which the path leaves it — and that all such edge-pairs be distinct for any
given vertex. The only exception occurs for the beginning and ending vertices
of the path, if these points are different.

Networks can be used to solve mazes and guarantee that one can find a
path through a maze, if such a path exists, even when no map is explicitly
given. Other procedures enable people to retrace their steps to the beginning
of a labyrinth. Some of these procedures have applications to problems of
computer processing, traffic control, electrical engineering, and many other
fields.

During the ten generations elapsed since 1736, mathematicians have de-
veloped a new branch of geometry — a geometry of dots and lines, otherwise
known as graph theory — that preserves geometrical relations only in their
most general outlines. Here lines do not have to be straight, nor are there
such things as perpendicular or parallel lines, and it does not make sense to
talk about bisecting lines or measuring lengths or angles. The power of graph
theory (a sub-field of topology) is that it can be used to model many patterns

220 4 practical architectural application: In the hallways of a museum, pictures are
hung on one side of each hall. How does one design a tour that will enable a
person to see each exhibit exactly once?
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in nature — from the branching of rivers to the cracking or brittle of surfaces
to subdivision of cellular forms, as well as many abstract concepts. It gives us
a way to study spatial structures unencumbered by the details of Euclidean
geometry.

A geographical map shows countries, borders and corners. From such a
map we may prepare an abstract mathematical map in which countries are
faces (F'), borders are chains of pairs of adjacent edges (E) and corners are
vertices (V). In order to study the topology of a map in the technical lan-
guage of mathematics, we must forget its geographical significance and treat
it as merely a network, or graph, being a set of faces, edges and vertices,
M ={F,E,V}, with certain incidence relations among them (e.g. face fi
has edges (ez,e3); edge eq is shared by faces { f1, f3}; vertex vy is shared by
{f1, f2, f3} and also by {es,e3,e4}; etc.). In this context the face is repre-
sented by some polygon and each edge lies in exactly two faces. Copies of a
map formed by placing it on a flexible membrane and stretching the mem-
brane without cutting, are considered identical or homeomorphic. Edges and
faces thus become distorted but the sets E, F and V and their relational
structure (incidence relations) maintain their integrity.

From a mathematical point of view, maps on a plain and maps on the
sphere, with one point removed, are isomorphic. Since all the enclosed areas,
including one additional outer one, are now considered to be faces, and maps
are always considered to be in one piece (connected), one can show that Euler’s
formula V — E+ F =2 holds for connected planar maps on either a plane
or a sphere.

There is a family of maps for which each vertex, edge or face is like every
other vertex, edge or face. They are called regular maps and are said to
have perfect symmetry. Upon finding oneself stranded in a mathematical
country defined by such a map, one would experience vistas of sameness in
all directions and be hopelessly lost.

There are only five??'such regular maps and they correspond to the five
3-dimensional Platonic Solids. In fact, they are obtained by projecting the
edges of a Platonic polyhedron onto a plane from a point directly above the
center of one of its faces, and counting the infinite area outside the boundary
as an additional face. These are known as Schlegel diagrams.

Visually, this amounts to holding one face of a polyhedron quite close to
one’s eyes, looking at the structure through the face, and drawing the projec-
tion of the structure as seen in this exaggerated perspective. The number of
vertices, faces and edges for the Schlegel diagrams then becomes identical to
those of the corresponding Platonic Solids.

221 Except for two trivial families, one of which consist of all regular polygons.
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Just as there are only five regular maps on the sphere (or plane), there are
only three classes of regular maps that can be created on a torus.

For a surface homeomorphic to a sphere with g handles Euler’s formula
becomes V —E+F =2-—2g.

On a torus, for example, we have (withg=1) V —E+ F =0.

G. R. Kirchhoff enunciated (1845) laws which allow calculations of cur-
rents, voltages and resistances of electrical networks. In the framework of
these laws he became interested in the mathematical problem of the number
of independent circuit equation in a given network. Considering the electri-
cal network as a geometrical object (map) constructed from points (vertices,
V) and lines (edges, E), Kirchhoff proved that, in general, the number of
independent circuits?*%is equal to (E —V + 1).

His paper is quite modern in its approach, and he used various construc-
tions which we now think of as standard in graph theory. But he did not
have the algebraic techniques that are needed to extend the results to higher
dimensions. However, the basic ideas were latent in Kirchhoff’s paper, and it
was just those ideas which mathematicians were able to develop in the sec-
ond half of the 19th century, in order to create what we now call ’algebraic
topology’. This development did not happen overnight.

The apparatus of vectors, matrices, and what we call now linear algebra,
as well as the abstract algebra of groups, rings, homeomorphisms etc., were not
available to Kirchhoff, Listing, and the other mathematicians of the 1840’s.
However, in the course of time all these ingredients developed into a program
which turned some very vague and descriptive ideas about the ’holeyness’ of
solids into an impressive general theory — an algebraic context within which
these ideas can be formulated independently of any intuitive notions. There
are many famous names associated with this program. One of them was
the Italian mathematician Enrico Betti, who introduced numbers, knows as
Betti numbers, which turn out to be a generalization of the Kirchhoff number
(E-V +1).

But the person who made the greatest advances, in a series of papers
published around 1895, was the French mathematician Henri Poincaré. He
formulated everything in terms of multi-dimensional objects (complezes), built
out of what he called simplexes, and he showed how the rules by which they
are fitted together can be described by means of matrices. He also showed
how the ’holeyness’ of complexes can be described algebraically in terms of
properties of these matrices. Veblen (1916) gave a modern treatment of
Poincaré’s theory.

222 Thisis compatible with Euler’s formula if we equate the number of independent
circuits to (F' —1).
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1847 CE Johann Benedict Listing (1806-1882, Germany). Mathemati-
cian. Started the systematic study of topology as a branch of geometry, and
coined the word ‘topology’. Some topological problems are found in the works
of Euler, Mdbius and Cantor, but the subject only came into its own in
1895 with the work of Poincaré.

1847-1852 CE Matthew O’Brien (1814-1855, England). Mathemati-
cian. A forerunner of Gibbs and Heaviside. Introduced the modern symbols
for vector multiplication.

History of the Wave Theory of Sound??3

The speculation that sound is a wave phenomenon grew out of observations
of water waves. The rudimentary notion of a wave is that of an oscillatory
disturbance that moves away from some source and transports no discernible
amount of matter over large distances of propagation.

The possibility that sound exhibits analogous behavior was emphasized by
the Greek philosopher Chrysippos (ca 240 BCE), by the Roman architect

223 For further reading, see:

e Crighton, D.G. et all, Modern Methods in Analytical Acoustics, Springer
Verlag: Berlin, 1992, 738 pp.

e Pierce, A.D., Acoustics, American Institute of Physics, 1989, 678 pp.

e Dowling, A.P. and J.E. Ffowcs Williams, Sound and Sources of Sound, Ellis
Horwood, 1983, 321 pp.

e Lord Rayleigh, Theory of Sound, Vols I-1I, Dover: New York, 1945.

e Morse, P.M. and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, 1968,
927 pp.
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and engineer Vitruvius (ca 35 BCE), and by the Roman writer Boethius®?*
(ca 475-524).

The pertinent experimental result that the air motion generated by a vi-
brating body (sounding a single musical note) is also vibrating at the same
frequency as the body??°, was inferred with reasonable conclusiveness in the

early 17" century by Marin Mersenne (1636) and Galileo Galilei (1638).

Mersenne’s description of the first absolute determination of the frequency
of an audible tone (at 84 Hz) implies that he had already demonstrated that
the frequency ratio of two vibrating strings, radiating a musical note and its
octave, is as 1: 2. The perceived harmony (consonance) of two such notes
would be explained if the ratio of the air oscillation frequency is also 1: 2,
which in turn is consistent with the source-air motion frequency equivalence
hypothesis.

The analogy with water waves was strengthened by the belief that air mo-
tion associated with musical sound is oscillatory and by the observation that
sound travels with finite speed. Another matter of common knowledge was
that sound bends around corners, which suggested diffraction, a phenomenon
often observed in water waves. Also, Robert Boyle’s (1660) classic experi-
ment on the sound radiation by a ticking watch in a partially evacuated glass
vessel provided evidence that air is necessary, both for the production and
transmission of sound.

The apparent conflict between ray and wave theories played a major role
in the history of the sister science of optics, but the theory of sound developed
almost from the beginning as a wave theory.

When ray concepts were used to explain acoustic phenomena (as was done
by Reynolds and Rayleigh in the 19" century ), they were regarded, either
explicitly or implicitly, as mathematical approximations to a well-developed
wave theory.

224 Born into an aristocratic Christian family and became a consul (510). He wrote
texts on geometry and arithmetic which were of poor quality but used for many
centuries during a time when mathematical achievements in Europe were re-
markable low. Boethius fell from favor and was imprisoned and later executed

for treason and magic.

225 The history of this is intertwined with the development of the laws of vibrating

strings and the physical interpretations of musical consonances, which goes back
to Pythagoras (ca 550 BCE) and perhaps earlier. Thus,the dual nature of
wave-motion in both time and frequency domains goes back all the way to the
ancient Greeks.
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The successful incorporation of geometrical optics into a more comprehen-
sive wave theory had demonstrated that viable approximate models of com-
plicated wave phenomena could be expressed in terms of ray concepts. This
recognition has strongly influenced 20" century development in architectural
acoustics, underwater acoustics, and noise control.

The mathematical theory of sound propagation began with Isaac New-
ton (1642-1727), whose Principia (1686) included a mechanical interpreta-
tion of sound as being pressure pulses transmitted through neighboring fluid
particles®26. Substantial progress toward the development of a viable theory
of sound propagation resting on firmer mathematical and physical concepts
was made in 1759-1816 by Euler, d’Alembert, Lagrange and Laplace.
During this era, continuum physics, or field theory, began to receive a definite
mathematical structure. The wave equation emerged in a number of contexts,
including the propagation of sound in air. The theory ultimately proposed
for sound in the 18" century was incomplete from many standpoints, but the
modern theories of today can be regarded for the most part as refinements of
that developed by Euler and his contemporaries.

The linearized equations of the acoustic field are derived directly from the
general equations of fluid motion on the basis that the fluid velocity w, the
change of pressure p, and the change of density p — are all small compared
to the sound velocity c, average ambient density pg, and average background
pressure pg, respectively, such that products of the small entities can be ne-
glected in the equations.

There are three fundamental equations relating the above entities:

(1) Newton’s equation of motion (conservation of the fluid linear momen-
tum) relating the pressure gradient to the linear fluid acceleration:

ou
vp - _PO§7

(2) the equation of continuity (conservation of mass):

dp
di ==
podive + = =0;

226 The fundamental relation Af = ¢ [A = wavelength; f = frequency; ¢ = phase
velocity] appeared explicitly for the first time in Newton’s Principia (1686). The
first measurement of the sound speed in air was evidently made by Mersenne
(1635, 1644). The time was measured from the visual sighting of a firing of a
cannon to the reception of the transient sound pulse at a known distance from
the source.
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(3) the equation of state, specifying the functional dependence p = p(p),
subjected to the expansion

d
p—po=(p—po)<d_p> +em (p = po)?,
p PO

2 __ dp

where c¢* = a and c the ambient velocity of sound.

Po
Newton (1686), applying Boyle’s law p = pf(T) [isothermal process],

obtained ¢ =, /7;—2 = 290 sﬂec at T =293°K, 15% lower than the observed

value.

Laplace (1816) improved on Newton’s result by correctly assuming that
sound waves pass too rapidly for a significant exchange of heat to take place.
For an adiabatic expansion in a perfect gas, he used pp~" = pop, ', which
led him to

d
02__]9:7@ RT

Cdp Po
with ¢ = 343 % at T =293°K,
v =cp/cy = ratio of specific heats,
and
R = universal gas constant.

[Clearly, the theoretical prediction of the speed of sound in liquids is more
difficult than in gases. For example, ¢ in sea water depends on the pressure,
salinity, water temperature and the amount of dissolved and suspended gas.]

The above equations then imply the approximate relations

p= pc2 -+ const.,

p)
k divu + a_]Z —0,

where k = poc” is the incompressibility. The combination of the conservation
laws for mass and momentum leads to the wave equation
2 1 9%

2o
for the acoustic pressure changes. The further assumption uw = grad, im-
plies that the fluid velocity w also obeys the same wave equation. It then
follows that all field entities are expressible in terms of the potential 1:

= —py Y.
P—Po=—pogi

2
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For one-dimensional motion,

b=v¢(@—c)  u=1

implies at once the relations p = pocu; p= pO%u. Certain entities formed
of the basic field elements {p,u,c,po} are of use in acoustic engineering:

Z = poc =/ pok (impedance);

| |27 |p|2
poc?

1 1
W = Spoluf® + o lpl? = polu

(wave energy density = fluid momentum flux );

I=pu=Wc

(sound intensity = rate at which acoustic energy crosses a unit area per unit
time ).

The application of the Fourier transform to the pressure wave equation
yields the Helmholtz equation (1860):

2
w
Vp + =P =0,

where w is the angular frequency of the harmonic Fourier component.

It is of interest to note that Euler, in his “Continuation of the Researches
on the Propagation of Sound” (1759, 1766), already derived the Helmholtz
spectral wave equation for the particle displacement (or velocity ).

The solution of the Helmholtz equation for a symmetrical point-source
vields the well-known result that the sound intensity falls of as the square of
the distance from the source in a free open space. For sources of large area,
the approximation does not hold and the sound intensity may at first fall off
proportionally to the first power of the distance. Finally, in enclosed regions
the sound intensity may decrease very slowly, or not at all, with distance.

Pressure is measured in units of Pascal, denoted Pa = % =10 g;'l‘;

[Newton = 10° dyn, Joule = Newtonx meter; Watt = Newtonx meter/sec].
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Another unit is the  bar = 10° Newton/m? = 10% dyn/cm? ~ Kg/cm?;
lubar = 1075 bar = dyn/cm?. Atmospheric pressure ~ 10°Pa ~ Kg/cm?.

1847-1856 CE Jean Frederic Frenet (1816-1888, France). Mathemati-
cian. Contributed to differential geometry of curves and surfaces. Introduced
the so-called Frenet-Serret?*” formulae for the moving-trihedral on a space
curve. He was a man of wide erudition and a classical scholar.

Frenet was born at Perigueux and graduated from the Ecole Normale
Superior (1840). He was a professor at Toulouse and Lyons.

1847-1861 CE Ignaz Philipp Semmelweis (1818-1865, Hungary). Ob-
stetrician. Pioneer of antisepsis??®. Proved (1847-1849) that puerperal fever
(childbed fever) is brought to the woman in labor by the hands and instru-
ments of examining physicians and can be eliminated through a thorough
cleansing, in a solution of water with chloride of lime, of the hands, instru-
ments, and other items brought in contact with the patient. Published (1861)
Die Aetiologie, der Begrift und die Prophylaxis des Kindbettfiebers.

Semmelweis was born in Buda to Jewish parents and was educated at
the Universities of Pest and Vienna, graduating M.D. in 1844. At the time
when he was appointed assistant professor in a maternity ward, the mortality
rate from puerperal fever stood at about 20 percent. His antiseptic measures
caused this rate to drop to 1.2 percent by May 1847. His superior, Johann
Klein, apparently blinded by jealousy and vanity, and supported by other
reactionary teachers, drove Semmelweis from Vienna (1849).

Fortunately, in the following year Semmelweis was appointed obstetric
physician at Pest in the maternity department, then as terribly afflicted as
Klein’s clinic had been. In the course of his six years of tenure there he
succeeded, by antiseptic methods, in reducing the mortality rate to 0.85 per-
cent. However, constant conflicts with his uncooperating superiors brought

227 Joseph Alfred Serret (1819-1885, France). Mathematician. Graduated from
the Ecole Polytechnique (1840). Professor of celestial mechanics at College
de France (1861); Professor of Mathematics at Sorbonne (1863). Succeeded
Poinsot in the Academie des Sciences (1860).

228 In 1854, Heinrich Schrdder and Theodor von Dusch showed that bacteria
could be removed from air by filtering through cotton-wool. In 1867, Joseph
Lister (18271912, England) reported his method of antiseptic surgery [son of
Joseph Jackson Lister (1786-1869)].
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him within the gates of an asylum (1865). He brought with him into this
retreat an infected dissection wound which caused his death — a victim of
the very disease for the relief of which he had already sacrificed health and
fortune.

1847-1894 CE Hermann Ludwig Ferdinand von Helmholtz
(1821-1894, Germany). One of the foremost scientists of the 19*" century.
Surgeon, physiologist, physicist, mathematician, chemist, musical scientist
and philosopher. Helmholtz was among the last of the universalists: his re-
search spanned almost the entire gamut of science.

In one of the epoch-making papers of the century, he formulated in 1847
the universal law of conservation of energy. Presented (1858) the first math-
ematical account of rotational fluid flow, introducing the important concepts
of worticity, circulation, vortexr flow??° and vortex lines. In 1860, Helmholtz

229 Circulatory flow that is irrotational everywhere (except possibly at r =0)
is possible and is known as circulatory flow without rotation. In this case
if the fluid is also incompressible and the flow stationary the velocity field
has to satisfy both the matter conservation (div(V') =0) and irrotationality
(2=curlV =0) conditions. The simplest solution of this class exhibiting
circulatory flow about r = 0 has

V = wug(r)eg,
while irrotationality requires
0- O(rug) _ 0.
ror

It therefore follows that
rug = K = constant

(which is the law of conservation of angular momentum in disguise; the fluid
angular-momentum density is J = pugr]. Thus

e
V=K
r
representing irrotational motion except at the point r = 0, where the vorticity

{2 and the velocity become infinite (this is obviously an idealization of actual
such flows). The circulation along a steamline r = const. is

Fz?{V-dE:QWK

and the motion is known as vortex flow. It plays an important role in aerody-
namics. On the basis of experimental evidence and the theory of viscous flow,
one can assume that there is a fluid core or nucleus surrounding the center of
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developed the mathematical theory of Huygens’ principle for ‘monochromatic’
steady-state scalar waves. He also showed that an arbitrary continuously dif-
ferentiable vector-field can be represented at each point as a superposition of
the gradient of a scalar potential and a curl of a vector potential.23°

Helmholtz made a great contribution to our understanding of thermody-
namics; he was first to apply minimum principles to thermodynamics, and
showed that for reversible processes, the role of the action was played by the
“Helmholtz free energy’, F.

In 1854 Helmholtz seized upon the problem of the sun’s luminosity. Pre-
viously, Kant had calculated that if the sun’s light came from ordinary com-
bustion, it would have burned up in only 3000 years. Helmholtz then argued
that the tremendous weight of the sun’s outer layers, pressing radially in-
ward, should cause the sun to gradually contract: Consequently, its interior
gases will become compressed, and heat up. Hence gravitational contraction
causes the sun’s gases to become hot enough to radiate energy into space.
He was thus able to boost the theoretical age of the sun to some 20 million
years. This in turn meant that the sun extended beyond the earth’s orbit
only 20 millions years ago, to which geologists could not agree on the ba-
sis of the earth’s present surface features. Kelvin supported and ‘improved’
Helmholtz’s theory and it is known as Helmholtz- Kelvin contraction.

In other fields of science, Helmholtz contributed to the subjects of: fer-
mentation, animal heat and electricity, muscular contraction, velocity of nerve

the flow and that the core rotates approximately like a solid body. Within the
core we have circulatory flow with constant velocity and outside the core we
have circulatory flow without rotation. Inside the core

Ug ~ T

while outside 1

ug ~ —.
r
Such a combination is known as an eddy or simply a vortex. The central core
is called the vortex core. The tornado and water spout (or even the common
bathtub vortezx) are examples of such a flow. The stability of the vortex is
determined by its Reynolds’ number.
If an eddy occurs in a fluid that is otherwise undisturbed, the spatial location
of the eddy remains unaltered. However, if a uniform stream is superposed on

it, it will move with the stream. Such a vortex is known as a free vortex.

230 This theorem is now recognized as a special case of a result from Cartan’s

exterior calculus in an arbitrary, n-dimensional manifold. The more general
result relates to algebraic topology through the de Rham cohomology.
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impulses??!, invention of the ophthalmometer, physiological optics, color vi-
sion, physiological acoustics and meteorological physics.

From 1869 to 1871 Helmholtz involved himself in the verification of
Maxwell’s predictions concerning electromagnetic waves. He entrusted the
subject into the hands of his favorite pupil, Heinrich Hertz, and the latter
finally gave an experimental verification of their existence and velocity.

Helmholtz was born in Potsdam, near Berlin. His father was a high school
teacher and his mother was a lineal descendant of the Quaker William Penn
(founder of the state of Pennsylvania).

As his parents were poor and could not afford to allow him to pursue a
purely scientific career, he became a surgeon in the Prussian army. He lived
in Berlin from 1842 to 1849, when he became a professor of physiology in
Konigsberg. In 1855 he removed to assume the chair of physiology in Bonn.
In 1858 he became professor of physiology at Heidelberg, and in 1871 he was
called to occupy the chair of physics in Berlin.

Helmholtz married twice and had 4 children. He was a man of simple but
refined tastes, noble carriage and somewhat austere manner. His life, from
first to last, was one of devotion to science.

1848 CE A year of revolutions in almost every European country. It was
the natural climax of a process of reaction and revolt which began after the
defeat of Napoleon at Waterloo in 1815. Thereafter, Europe entered a period
of instability, characterized by a long series of upheavals. The revolution of
1848 was the culmination of the political, economical and social unrest of the
time — of the struggle between the aristocracy and the middle classes, the
rapid increase of population from 180 million in 1800 to 266 million in 1850,
the fact that more and more people now lived in cities, the conflict between
the bourgeoisie and the rising proletariat, and the movements for national
liberation and reunion. And it confounded all the protagonists, compelling a
reappraisal of ideas and a realignment of forces.

In some sense, the French Revolution and its sequel in Napoleonic impe-
rialism, disrupted the historic continuity of European society and shattered
most of its traditions.

All the significant problems of the period arose out of these events. This
break in continuity engendered a quest for new patterns of interpretation —
nationalism, socialism, vast philosophical systems like those of Marx and
Hegel, new conceptions of historical, scientific, literary and artistic ideas.

231 He actually measured the speed of nerve impulses (1852).
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Table 4.4 TIMELINE OF THE INDUSTRIAL REVOLUTION, 1770-1848

e ca 1770 — Consolidation of the steam engine by James Watt
e 1775-1783 — American Revolution

e 1780 — Industrial Revolution under way

e 1789-1794 — The French Revolution

e 1799-1815 — Reign of Napoleon

e 1800-1850 — Romanticism in literature and the arts

e 1815 — The Congress of Vienna and the congress system of European
diplomacy

e 1820 — Revolutions in Greece and Spain

e 1830 — Rise of liberalism and nationalism

e 1830, 1848 — Periods of revolution in Europe
e 1832 — Parliamentary reform in Great Britain

e 1848 — Karl Marx’s ‘Communist Manifesto’.

Europe’s search for stability after 1815 was marked by a contest between
the forces of the past and the forces of the future. For a while it seemed as
though the traditional agencies of power — the monarchs, the landed aris-
tocracy and the Church — might once again resume full control. But potent
new forces were ready to oppose relapse into the past. With the quickening
of industrialization, there was now not only a middle class of growing size
and significance but a wholly new class, the urban proletariat. Each class
had its own political and economical philosophy — liberalism and socialism
respectively — which stood opposed to each other as well as to the traditional
conservatism of the old order.

Nationalism as an awareness of belonging to a particular nationality was
nothing new. What was new was the intensity that this awareness now as-
sumed: for the mass of the people, nationalism became their most ardent
emotion, and national unification or independence their most cherished aim.

The Vienna settlement (1815) ignored the stirrings of nationalism and the
hopes for democracy that had been awakened by the French Revolution. It was
mainly interested in peace and order and the restoration of conditions as they
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were before the French Revolution?32 Indeed, there was no war among the
great European powers for 40 years, and no war of world-wide dimensions for a
whole century. The Triple Alliance of Austria, Russia and Prussia guaranteed
to maintain the territorial status quo in FEurope and the existing form of
government in every European country, i.e. aiding legitimate governments
against revolutions.

A first wave of reaction that followed the peace settlements of 1815, man-
ifested itself in the first wave of revolutions (1820-1829) in Spain, Portugal,
Italy, Greece and Russia. The second wave of Revolutions swept France, Bel-
gium and Poland during 1830-1833. The third wave (1848-1849) lasted for
over a year and affected most of Europe with the exception of England and
Russia. In Italy, Germany, Austria, and Hungary, the fundamental grievance
was still the lack of national freedom and unity. In Western Europe the chief
aim of revolutions was the extension of political power beyond the upper mid-
dle class. With the revolutions of 1848, socialism for the first time became an
issue of modern politics.

In addition, severe economic crises particularly affected the lower classes:
everywhere the small artisan was fighting against the competition of large-
scale industry, which threatened to deprive him of his livelihood. At the
same time, the industrial workers in the new factories were eeking out a
miserable existence on a minimum wage. There were also periodic upheavals
in agriculture, primarily as a result of crop failures.

The revolutions of 1848 had failed everywhere due to weaknesses in the
revolutionary camp (lack of widespread popular support, indecision among
their leaders and the lack of well-defined programs) and the continued strength
of the forces of reaction. The burden of the revolution fell on the workers
whereas the middle class, in most countries, did not really want a revolution.
It preferred to achieve its aims through reform, as had been done in England.
There was no attempt to coordinate the revolutions in different countries,
although the forces of reaction worked together.

Two forces emerged from the revolutions that henceforth were to domi-
nate the history of Europe — nationalism and socialism. These now became,
respectively, the main issues in the struggle of nation against nation and class
against class.

232 In Spain and Naples the returning Bourbons abolished the liberal reforms that
had been granted in 1812. In the Papal States, Pope Pius VII got rid of the
French legal reforms, re-established the Jesuits, put the Jews back into the
ghettos, and forbade vaccination against smallpox!

In Piedmont, Victor Emmanuel I had the French botanical gardens torn up by
the roots and the French furniture thrown out of the windows of his palace!
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