
Preface

Astronomical Optics and Elasticity Theory is intended to serve both as a text and as
a basic reference on “active optics methods.” Mainly elaborated for astronomy, and
following a conceptual idea originated by Bernhard Schmidt, the first developments
of active optics began in the 1960s. These methods allow one to transform by a
highly continuous process a spherical surface into the desired aspherical surface, as
well as to correct tilt and decentering errors between telescope mirrors, to control the
focal position by curvature variation, etc, so as to achieve diffraction-limited perfor-
mance. The recent spectacular increase in telescope sizes, active image correction
of telescope errors and atmospheric degradation, and the advent of detectors having
nearly perfect quantum efficiencies has led to remarkable progress in observational
astronomy, whose large telescopes now currently operate with active optics.

The first chapter concerns optical design and elasticity theory; I thought it use-
ful to introduce these two topics by brief historical accounts. Most of the follow-
ing chapters are dedicated to the generation of axisymmetric aspheric mirrors, as
well as non-axisymmetric mirrors. Active optics methods are investigated for cor-
rections of focus, and for aberrations of third and higher orders. Optical aberration
modes that can be superposed by elastic flexure belong to a subfamily that I called
Clebsch-Seidel modes. Such aberration correction modes are generated by multi-
mode deformable mirrors. Depending on the adopted thickness class – constant or
variable – various active mirror configurations are discussed using the so-called
tulip, cycloid, vase, meniscus, and double-vase mirrors. Two chapters are dedicated
to optical designs with the Schmidt concept; the first includes my 1985 high-order
analysis of the axial wavefront reflected by a spherical mirror, the system resolv-
ing power for each option – with either a refractive, a reflective, or a diffractive
corrector – and the optimal corrector shape for each design type; in the second,
active optics aspherization methods of the corrector element are developed for cata-
dioptric or all-reflective telescope types and for aspherized grating spectrographs.
Another chapter on large mirror support systems treats the minimization of flexure
against gravity and in situ active optics control on large telescopes. A short chapter
concerns the flexure of thin lenses when bent by a uniform load; this is useful to pro-
duce stigmatic singlet lenses by active optics. Grazing incidence X-ray telescopes
can also greatly benefit from the ripple-free active aspherization process for vari-
ous two-mirror designs and particularly for a mirror pair strictly satisfying the sine
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condition; a theory of weakly conical shells is proposed in a special chapter where
the aspherization of the mirrors is obtained by pure extension (or contraction).

The book provides a foundation for finding a mirror thickness geometry and an
associated load configuration which can generate one or several fixed surface opti-
cal modes – this in the most practicable conditions. Computational modeling, the
third branch of science which bridges analytical theory and experimentation, is the
ultimate method for accurately solving the deformations of a solid for any config-
uration of equilibrium-force sets. In the final design stage for an active optics mir-
ror, finite element analysis of the three-dimensional deformations allows optimizing
its thickness geometry to obtain the desired mirror figure. However, geometrical
optimizations with such codes must require sufficient user knowledge in elasticity
theory, and a preliminary analytic solution of the problem by a first approximation
theory. This preliminary approach with the theory – the aim of this book – is all the
more necessary since there are generally several alternatives for generating a given
surface type – as, for instance, with the various solutions presented here for variable
curvature mirrors.

The beautiful theory of axisymmetric shallow shells, elaborated by Erik Reissner
in 1946, is one of the greatest analytic achievements in elasticity theory. In the ax-
isymmetric flexure case, this theory is here used for the aspherization of fast f-ratio
mirrors. In addition, a convergent iteration vector which acts towards the required
flexure is implemented for determining the thickness distribution of meniscus-,
vase-, and closed-form mirror shells. The method has proved sufficiently accurate
that no significant corrections were found necessary from finite element analysis.
Active optics aspherizations of primary and secondary telescope mirrors were car-
ried out by the Laboratoire d’Optique de l’Observatoire de Marseille (LOOM). The
results of stress figuring or in-situ stressing of all the axisymmetric mirrors directly
designed from Reissner’s theory – as for instance with the modified-Rumsey anas-
tigmatic telescope presented here – show that the axial wavefront correction errors
are within conventional diffraction limited criteria.

I am grateful to M. Ferrari for his contributions in the second chapter, to
J. Caplan, S. Mazzanti and K. Dohlen for fruitful discussions on several points of
the book, to optician engineer P. Montiel, G. Moreaux and P. Lanzoni for their ac-
tive implication in the development of the processes presently described, and also
to P. Joulié for the preparation of many figures in the book.

Marseille, October 2008 G. R. Lemaitre
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