
Chapter 2
Dioptrics and Elasticity – Variable Curvature
Mirrors (VCMs)

The elastic deformation modes corresponding to the first-order modes of the optical
matrix characterizing the wavefront shape are the curvature (Cv 1) and tilt (T ilt 1).
These are the two fundamental modes involved in Gaussian optics. Because a tilt is
easily obtained by a global rotation of a rigid substrate, this chapter only reduces to
mirrors generating a Cv 1 mode. Such variable curvature mirrors (VCM) are also
sometimes called zoom mirrors.

Let us denote z(r) – instead ofw(r), because z is usual for representing an optical
surface – the optical figure achieved by flexure of a circular plate which is flat at rest.
In the thin plate theory, a curvature mode Cv 1 is represented by

z ≡ w = A20 r2 ≡ 1

2R
r2 , (2.1)

where R is the radius of curvature of the bent optical surface.
Two classes of substrate thicknesses provide the curvature mode as investigated

hereafter: Constant thickness distribution (CTD) and Variable thickness distribution
(VTD).

2.1 Thin Circular Plates and Small Deformation Theory

2.1.1 Plates of Constant Thickness Distribution – CTD

Let us consider a possibly holed plane circular plate with a constant thickness t and
rigidity D = Et3/[12(1 − ν2)] = constant, where E and ν are the Young modulus
and Poisson’s ratio, respectively. If an external pair of concentric circle forces or a
bending moment are applied to the perimeter region without surface load (q = 0),
then bilaplacian Poisson’s equation representing the flexure z of the plate reduces to

∇2∇2z = 0 , (2.2)

whose general solution

z = B20 + C20 ln r + D20 r2 + E20 r2 ln r (2.3)
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contains the curvature term D20. The external forces taken into consideration by
(2.2) can be a central one, a uniform distribution of forces onto a concentric circle,
and a uniform radial moment onto the inner and outer edges. Choosing the defor-
mation origin at the plate vertex leads to set B20 = 0.

We search for external forces and/or radial moments leading to the conditions
C20 = E20 = 0. The Laplacian is represented by

∇2z = 1

r

d

dr

(
r

dz

dr

)
= 4 (D20 + E20 + E20 ln r) (2.4)

so the radial shearing force per unit length [cf. (1.187)] is

Qr = − D
d

dr
(∇2z) = − 4 E20 D

1

r
. (2.5)

Condition E20 = 0 implies a null shearing force all over the plate, Qr = 0.
Therefore, the zeroing of r2 ln r coefficient in (2.3) implies that no central force
or circle-line force can be applied onto the plate to achieve a Cv 1 mode. From
conditions B20 = E20 = 0, the radial bending moment per unit length is

Mr = D

(
d2z

dr2 + ν
r

dz

dr

)
= D

[
2(1 + ν)D20 − (1 − ν)C20

1

r2

]
. (2.6)

Coefficients C20 and D20 are determined from the boundaries, i.e. the bending mo-
ments Mr {a} at the plate edge and Mr {b} at the edge of its central hole. After solving
the system, these coefficients are

C20 = 1

1 − ν
a2b2 [Mr {a} − Mr {b} ]

(a2 − b2) D
, (2.7a)

D20 = 1

2(1 + ν)
a2Mr {a} − b2Mr {b}

(a2 − b2) D
. (2.7b)

A pure curvature mode Cv 1 is obtained if the logarithm term vanishes, i.e. if
C20 = 0. From (2.7a), this leads to two solutions: one is with b = 0 and the
other with Mr {b} = Mr {a}. The coefficient D20 is identical for the two solutions
which are expressed by

B20 = C20 = E20 = 0 and D20 = Mr {a}
2(1 + ν)D . (2.8a)

Finally, by identifying the A20 coefficient in (2.1) with D20 coefficient, the cur-
vature of the flexure mode Cv 1 is

1

R
≡ 2A20 = Mr {a}

(1 + ν)D = 12 (1 − ν) Mr {a}
E t3 . (2.8b)
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• Conclusion for CTD solutions with bending moments: → A plate or a slightly
curved meniscus generates a Cv 1 deformation mode z = A20r2 if its thickness
t = T20 t0 is a constant such as

T20 = 1 with
t0
a

=
[

6(1 − ν) Mr {a}
A20 Ea3

]1/3

, (2.9)

and if a bending moment Mr is applied only. The two solutions providing such a
mode for variable curvature mirrors are:

1 . A plain plate, b = 0, with uniform bending moment Mr {a} applied to its edge,
2 . A holed plate with uniform bending moments Mr {b} = Mr {a} applied to edges.

From the stress-strain relation one shows that the radial and tangential stresses
σrr and σt t are equal. Their value are maximum at the surfaces of the plate, i.e. for
z = ± t/2, and expressed by

σrr = σt t = ± E t

2(1 − ν)R = ± 6Mr {a}
t2 . (2.10)

The basic solution for a plain plate providing a curvature mode Cv 1 is displayed
by Fig. 2.1. Two designs using an outer ring built-in at the perimeter plate are equiv-
alent and allow generating the bending moment by mean of axial forces (Fig. 2.1).
The intensity of these forces can be derived from the vase form study in Chap. 7.

Fig. 2.1 Variable Curvature Mirrors derived from the CTD class. Up: Basic solution – uniform
bending moment applied along the perimeter, Down: Axial forces on a vase form providing equiv-
alent bending moments

2.1.2 Plates of Variable Thickness Distribution – VTD –
Cycloid-Like form – Tulip-Like Form

Considering variable thickness distributions (VTDs), it is possible to find sev-
eral configurations which actively generate the first-order curvature mode Cv 1
(Lemaitre [35, 36]). We will see below, from the thin plate theory, that the possible
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VTD geometries depend on the load distributions and associated reactions at the
substrate boundaries. The radial and tangential bending moments Mr and Mt are
represented by

Mr = D

(
d2z

dr2 + ν
r

dz

dr

)
, Mt = D

(
ν

d2z

dr2 + 1

r

dz

dr

)
, (2.11)

where D(r) = Et3(r)/[12(1 − ν2)] is the variable rigidity. The static equilibrium
between the components Mr , Mt of the bending moments and the shearing force Qr

acting in a plate element is derived about a local tangential axis. This equilibrium
writes

Mr + r
d Mr

dr
− Mt + r Qr = 0 . (2.12)

After substitution of Mr , d Mr/dr , Mt and division by r D, this differential equation
becomes

d3z

dr3 +
(

1

D

d D

dr
+ 1

r

)
d2z

dr2 +
(
ν

r D

d D

dr
− 1

r2

)
dz

dr
= − Qr

D
,

that is,

D
d

dr
(∇2z) +

(
d2z

dr2 + ν
r

dz

dr

)
d D

dr
= − Qr . (2.13)

Notation (2.1) of a flexural curvature mode leads to ∇2z = 4A20. After substitutions,
the first derivative of the rigidity is

d D

dr
= − Qr

2(1 + ν)A20
≡ − R

1 + ν Qr , (2.14)

thus a direct function of the shearing force.
Three loading configurations and boundary reactions on the substrate are of inter-

est for practical applications. Each of them is associated with a particular shearing
force.

• VTD Type 1 – Uniform loading and reaction at edge: A uniform load q is
applied all over the surface of the substrate in reaction at the edge r = a. At a
current radius r of the substrate, the shearing force is defined by the equilibrium
πr2q + 2πr Qr = 0 of the inner element to r , that is

Qr = − 1

2
q r , (2.15)

and after substitution in (2.14), we obtain the rigidity

D = − q R

4(1 + ν) ( constant − r2 ) .

The interest of VTDs is to avoid the application of moments at the boundaries. We
can select a null bending moment at the edge, Mr (a) = 0. From (2.11), this is
satisfied by taking the rigidity D(a) = 0. Therefore, the rigidity is
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Fig. 2.2 Variable Curvature Mirrors derived from the VTD class. Dimensionless thicknesses T20
with ρ = r/a and ρ ∈ [ 0, 1 ] (after Lemaitre [35]). Up-left: Uniform loading and reaction at the
edge, T20 = (1−ρ2)1/3. Up-right: Axial force at center and edge reaction, T20 = (− lnρ2)1/3.

Down: Uniform loading and central reaction, T20 = (ρ2 − lnρ2 − 1)1/3

D = − q a2 R

4(1 + ν)
(

1 − r2

a2

)
,

and the thickness distribution is

t = −
[

3(1 − ν) q R

E a

(
1 − r2

a2

)]1/3

a .

Because of the smoothly decreasing profile for low values of r and vertical tangents
at the substrate edge r = a, we call this thickness distribution a cycloid-like form
(Fig. 2.2).

• Conclusion for VTD solution Type 1: → Variable curvature mirrors are ob-
tained by uniform loading q and reaction at the edge provided a cycloid-like thick-
ness t = T20 t0 is such as

T20 =
(

1 − r2

a2

)1/3

wi th
t0
a

= −
[

3(1 − ν) q R

E a

]1/3

, (2.16)

where 1/R = 2A20 is the curvature of the deformation, and the product q R nega-
tive.1

At mirror surfaces, the maximum stresses are derived from substitution of the
rigidity in the definition of Mr and Mt in (2.11). Their determinations are the fol-
lowing

1 We will obtain the same VTD for generating the third-order astigmatism mode Astm 3,
i.e. T22 = [1−r2/a2]1/3 where a cos 2θ shearing force is now applied to the edge (cf. Sect. 3.5.2).
Hence the superposition of both modes Cv 1 and Astm 3 allows, for instance, to generate cylindric-
like flexures on mirrors with circular contour (cf. Sect. 3.5.2).
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σrr = ± 6Mr

t2 = ± 3

2

a2

t2
0

q T20 = ±
[

3

8(1 − ν)2
a2

R2 q E2
]1/3

T20 ,

(2.17a)

σt t = ± 6Mt

t2 = σrr , (2.17b)

showing that the radial and tangential stresses are identical ∀ r – as for a CTD [see
(2.10)] – and maximal at the center of the substrate.

• VTD Type 2 – Axial force at center and reaction at edge: The substrate is
deflected by an axial force F applied to its center that gives rise to a reaction −F at
the edge. If we consider an equivalent uniform load q applied to all its surface, we
can define the central force by F = πa2q , and the associated shearing force by
πa2q + 2πr Qr = 0, thus

Qr = − q a2

2 r
. (2.18)

After substitution and integration of (2.14), the rigidity is represented by

D = − q R a2

2(1 + ν) ( constant − ln r ) .

Similarly as in the previous configuration, we select a null bending moment at the
edge by taking Dr (a) = 0 in (2.11). Therefore, the constant = ln a, and the rigidity
is

D = − q a2 R

4(1 + ν)
(

− ln
r2

a2

)
.

Because of an infinite thickness at r = 0 and vertical tangents at the substrate edge,
we call this thickness distribution a tulip-like form (Fig. 2.2).

• Conclusion for VTD solution Type 2: → Variable curvature mirrors are ob-
tained by axial force F at center and reaction at the edge provided a tulip-like
thickness t = T20 t0 such as

T20 =
(

− ln
r2

a2

)1/3

wi th
t0
a

= −
[

3(1 − ν)
F R

π E a3

]1/3

, (2.19)

where 1/R = 2A20 is the curvature of the deformation, and the product F R nega-
tive.2

2 In the region where the radius r is near the edge radius a, say 0.75 < r/a ≤ 1, we may compare
the asymptotic expansion of this VTD with that of Type 1, T20 = [1 − r2/a2]1/3, which also
allows generating the Astm 3 mode. We know that

ln x = x − 1 − 1
2 (x − 1)2 + 1

3 (x − 1)3 − · · · , 0 < x ≤ 2 ,

which, denoting ρ = r/a, entails for a VTD Type 2

(− ln ρ2)1/3 = [
1 − ρ2 + 1

2 (1 − ρ2)2 + 1
3 (1 − ρ2)3 + · · · ]1/3 .
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• VTD Type 3 – Uniform loading and reaction at center: The substrate is de-
flected by a uniform load q and in reaction at its center by a force F = − πa2q .
The associated shearing force at current radius r is defined by the static equilibrium
F + πr2q + 2πr Qr = 0, thus

Qr = q

2

(
a2

r
− r

)
. (2.20)

After substitution and integration of (2.14), the rigidity is represented by

D = q R a2

2(1 + ν)
(

constant + r2

2 a2
− ln r

)
.

Similarly as in the previous configurations, we select a null bending moment at the
edge by taking Dr (a) = 0 in (2.11). Therefore, the constant = 1/2 (ln a2 − 1), and
the rigidity is

D = q a2 R

4(1 + ν)
(

r2

a2
− ln

r2

a2
− 1

)
.

Because of an infinite thickness at r = 0 and vertical tangents at the substrate edge,
this thickness distribution is also a tulip-like form (Fig. 2.2).

• Conclusion for VTD solution Type 3: → Variable curvature mirrors are ob-
tained by uniform loading and reaction at the center provided a tulip-like thickness
t = T20 t0 such as

T20 =
(

r2

a2
− ln

r2

a2
− 1

)1/3

wi th
t0
a

=
[

3(1 − ν) q R

E a

]1/3

, (2.21)

where 1/R = 2A20 is the curvature of the deformation, and the product q R
positive.

Hence we obtain

lim

{T20 Type 2

T20 Type 1

}
ρ→1

= lim

{[
1 + 1

2 (1 − ρ2) + 1
3 (1 − ρ2)2 + · · · ]1/3} = 1 ,

so the two types are asymptotically the same near the edge. For ρ = 0.85, the ratio in the above
limit is � 1.05.

Since a Type 2 only requires a central force reacting at the edge, when superposing a Cv 1 mode
with an Astm 3 mode the number of actuators is lower than for the case of a Type 1 which requires
generating an edge-moment, a more difficult condition to achieve in practice. Hence, although
theoretically less perfect than for a Type 1, the superposition of Cv 1 and Astm 3 modes with a
Type 2 has been proposed by Hugot [24] for telescope integral field units (cf. Sect. 1.12.9). In this
development, one may find a more appropriate VTD of the form T = αT20 T 1 + (1 − α)T20 T 2,
where 0 ≤ α ≤ 1, which allows us to match the accuracy of both generated modes relative to the
wavefront tolerances.
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2.1.3 Optical Focal-Ratio Variation

From the three VTDs, we can determine the optical f-ratio variation, i.e. the zoom-
range, generated by the Cv 1 deformation of the VCM. Assuming a flat mirror when
in an unstressed state, let

� = | f/2a| = |R/4a| = |1/8a A20| (2.22)

be this f-ratio variation. After substitution, all three VTDs can be expressed by

t

a
=
[

12(1 − ν)� q

E

]1/3

T20 . (2.23)

For these distributions, the radial and tangential stresses are identical, σrr = σt t . In
practical applications, these stresses must be evidently lower than the tensile max-
imum stress σT max of the mirror substrate. Therefore, the maximal value of the
stresses σrr or σt t , derived from Eqs. (2.17a) and (2.17b), must satisfy

[
3

128(1 − ν)2�2 q E2
]1/3∣∣T20

∣∣
max < σT max . (2.24)

With the tulip-like VCMs, because of the point forces applied at the center,
T20(0)→ ∞ in (2.19) and (2.21), and also for the stresses (2.24). In fact, the stem of
the profile thickness is very narrow because of its logarithmic nature in (− lnρ2)1/3

that comes from the infinite pressure due to the central point-force. For practical
applications it is always possible to limit the central thickness to a finite value. The
stem truncation is done with respect to the Rayleigh quarter-wave criterion applied
to the central area; the axial force is not applied on a point but on a small area, say
of typical radius a/50.

With the cycloid-like VCM, |T20|max = T20(0) = 1 from (2.16).

2.1.4 Buckling Instability

A self-buckling instability may happen during a curvature change. This is similar to
the meniscus shell “jumping toy,” in polymer material, which is manually brought,
temporarily, to opposite curvature. Avoiding buckling instability requires taking into
account the radial tension Nr existing at the middle surface and showing that the
maximum compression value of Nr remains small compared to a critical value.
This self-buckling instability is avoided by restricting curvatures to always having
the same sign during zooming. Furthermore, all three VTDs T20 are decreasing to
zero at the edge which also prevents from this instability.
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2.2 Thin Plates and Large Deformation Theory – VTD

In the previous Section, the radial and tangential stresses in the middle surface of the
plate have not been considered, so that the results are valid only if the sags a2/2R
are small compared to the mean thickness < t > of the substrates. In order to de-
sign VCMs generating a large zoom range with the best accuracy, the analysis is
deepened by taking into account the strain of the middle surface. As for constant
thickness plates (cf. Timoshenko and Woinowsky-Krieger [58]) in the axisymmet-
ric case, the displacement of a point of the middle surface can be resolved into two
components: Assuming a plane middle surface before loading, let us denote z, u the
axial and radial displacements (instead of using the notation w, u which should be
more appropriate for a curved surface at rest). Then, considering the large deforma-
tion theory, the relative elongations, or strains, in the radial and tangential directions
are defined by

εrr = du

dr
+ 1

2

(
dz

dr

)2

, εt t = u

r
, (2.25)

where the second term of εrr takes into account the large deformation case, as can
be compared with the low deformation strains in (1.109b). The corresponding radial
and tangential tensile forces in the middle surface, Nr and Nt per unit length, are
defined by

εrr = 1

Et
(Nr − νNt ) , εt t = 1

Et
(Nt − νNr ) ,

which leads to

Nr = E t

1 − ν2
(εrr + νεt t) = E t

1 − ν2

[
du

dr
+ ν

u

r
+ 1

2

(
dz

dr

)2 ]
, (2.26a)

Nt = E t

1 − ν2
(νεrr + εt t) = E t

1 − ν2

[
ν

du

dr
+ u

r
+ ν

2

(
dz

dr

)2 ]
. (2.26b)

Taking into account the tensile forces (Fig. 2.3) and considering the equilibrium
of a segment of dimension dr, r dθ and thickness t , the sum of the projection of
theses forces onto the radial direction, after division by r dr dθ , is

Nr − Nt + r
d Nr

dr
= 0 . (2.27)

After calculation of the Nr derivative with respect to z, u, and t , substitution in
(2.27) and division by Etr/(1 − ν2), we obtain the first equation of equilibrium

d2u

dr2
+
(

1

t

dt

dr
+ 1

r

)
du

dr
+
(
ν

t

dt

dr
− 1

r

)
u

r
+ 1

2

(
1

t

dt

dr
+ 1 − ν

r

)(
dz

dr

)2

+ d2z

dr2

dz

dr
= 0.

(2.28)

The second equation is given by the equilibrium of the bending moments. This
is (2.13) in which Qr stands for the total shearing force Q∗

r that takes also into
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Fig. 2.3 Forces and moments providing the equilibrium of a plate segment

account the axial component of the radial force Nr in the middle surface. The total
shearing force Q∗

r is expressed by

Q∗
r = − Nr

dz

dr
+ Qr , (2.29)

where the shearing force Qr is defined by the external loading cases in (2.15), (2.18),
or (2.20). From the expression of Nr in (2.26a), we obtain

Q∗
r

D
= − 1

t2

[
du

dr
+ ν

u

r
+ 1

2

(
dz

dr

)2 ]dz

dr
+ Qr

D
. (2.30)

After substitution in (2.13), the second equation of equilibrium becomes

d

dr
(∇2z) +

(
d2z

dr2
+ ν

r

dz

dr

)
1

D

d D

dr
− 1

t2

[
du

dr
+ν u

r
+ 1

2

(
dz

dr

)2 ]dz

dr
+ Qr

D
= 0.

(2.31)

With the hypothesis (2.1) of paraboloid flexure generating a curvature 1/R =
2A20 when external forces are applied, and since d D/D = 3dt/t , the substitutions
in (2.28) and (2.31) lead to the system (Ferrari [17, 18])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2u

dr2 +
(

1

t

dt

dr
+ 1

r

)
du

dr
+
(
ν

t

dt

dr
− 1

r

)
u

r
+
(

1

t

dt

dr
+ 3 − ν

r

)
r2

2R2 = 0 ,

(2.32a)

du

dr
+ ν

u

r
− 3(1 + ν) t

r

dt

dr
+ r2

2R2 + 12(1 − ν2)
R

r

Qr

E t
= 0 , (2.32b)
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requiring a numerical integration. This was carried out for the design of some VCM
with large zoom range.

For each of three VTD types studied in Sect. 2.1.2, the associated shearing force
Qr is expressed by (2.15), (2.18), or (2.20). The boundary conditions are defined by
a null thickness at the edge and a finite radial elongation ε0 at the center

(
t
)

r = a
= 0 ,

(du

dr

)
r = 0

= ε0 . (2.33)

Given a VTD type, the integration is carried out by use of dimensionless variables

ρ = r

a
, U = u

r
, T20 = t

t0
, κ = q

E
, � =

∣∣∣ R

4a

∣∣∣ ,
where� is now the design optimal f-ratio of the zoom range (cf. Sect. 2.6.2). Notic-
ing that u(0) = 0 and considering one of the thicknesses obtained in (2.16), (2.19),
or (2.21) from the small deformation theory, we start the integration with T20{ρi = 1}

Fig. 2.4 Type 1: Uniform
loading and edge reaction –
Cycloid-like VCM. Results
of integration from large
deformation theory. Zoom:
[ f/∞–f/2.5 ]. The substrate
material is Fe87 Cr13
stainless steel alloy in a
quenched state (after Ferrari
[18])

Poisson’s ratio ν = 0.315 Young mod. E = 2.05 106 daN.cm−2

Diameter 2a = 16.00 mm Uniform load q = 5.280 daN.cm−2

Central thick. t0 = 0.300 mm Flexural sag z0 = − 0.300 mm
Rad. of curv. R =−106.6 mm Max. stress σr = ± 50.02 daN.mm−2
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from one of those equations and inject a value (dU/dρ)ρ1 = ε0 unknown, where
ρ1 is small. Equations (2.32b) and (2.32a) provide dT20/dρ and d2U/dρ2, respec-
tively, the latter gives Ui+2. Thus, all elements are known to increment for the next
step ρ2 = ρ1 + δρ with a very small δρ. We can continue the integration in the
radial direction by successive increases ρi+1 = ρi + δρ. Thus, by changing the
starting values of the radial elongation ε0, the numerical process is repeated up to
satisfy at edge T20{1} = 0.

The maximum radial stresses σrr on each surface of the substrate is the sum of
two components

σrr = Nr / t ± 6 Mr / t2 . (2.34)

Figures 2.4 and 2.5 display the reduced thickness T20 = t/t0, the radial defor-
mation u and the maximum stress σrr resulting from the integration for a cycloid-
like form (VTD Type 1) and a tulip-like form (VTD Type 2). The air pressure load
generates convex flexures all over the zoom range. The basic sag used for the inte-
gration is

z0 = A20a2 = a2/2R = − 2a/� , (2.35)

Fig. 2.5 Type 2: Axial force
at center and edge reaction –
Tulip-like VCM. Results of
integrations from large
deformation theory. Zoom:
[ f/∞ – f/2.5]. The substrate
material is Fe87 Cr13
stainless steel alloy in a
quenched state (after
Ferrari [18])

ν = 0.315 E = 2.05 106 daN.cm−2

Diameter 2a = 16.00 mm Uniform load F = 9.700 daN
Central thick. t0 = 0.600 mm Flexural sag z0 = − 0.400 mm
Rad. of curv. R =−106.6 mm Max. stress σr = ± 116.4 daN.mm−2

Poisson’s ratio Young mod.
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and negative in both cases (R < 0, q > 0 and F > 0). In the integrations
for VTDs Type 1 and 2, the thickness distributions are determined for the ba-
sic f-ratio value f/3.33 considered as the mean value of the zoom range, thus de-
termining z0. At the limit of the zoom range, the maximum deformation-ratio
in Type 1 reaches z0/t0 = − 1.33 at f/2.5, i.e. a flexure sag larger than the
thickness.

The forces Nr and Nt are both positive at the central zone of the substrate. At the
outer part, the force Nr decreases to zero at the perimeter but the force Nt becomes
negative. For much larger deformations, this could entail an elastic instability tra-
duced by multiple wavelets along the edge similarly as analytically developed by
Casal [7] in his theory of membranes.

The relations between the load q – or central force F – and the deformation-
ratio z/t0 over the zoom ranges [ f/∞ – f/2.5 ] have been determined by Ferrari [20].
These curves show the important non-linearity as well for a VTD Type 1 as for a
VTD Type 2 (Fig. 2.6).
From these results, the load q or F can be represented in an odd power series of the
deformation ratio z/t0 by

Fig. 2.6 Comparison of dimensionless load-flexure relations. Left: VTD Type 1 – Uniform load in
reaction at the edge. Right: VTD Type 2 – Central force in reaction at the edge
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, (2.36)

where αi are dimensionless coefficients.

2.3 The Mersenne Afocal Two-Mirror Telescopes

The Mersenne two-mirror telescopes, published in 1636 [45, 46], are made of two
confocal paraboloid mirrors thus providing afocal systems.

Let us consider a concave paraboloid primary mirror M1 of curvature 1/R1 and
two paraboloid secondary mirrors M2a and M2b, all having their focus located at the
origin of a cylindric coordinate frame. Their shape is represented by

zi = − R1

2ki
+ ki

2R1
r2 , (2.37)

where the suffix i = 1, 2a and 2b characterizes each mirror, and ki are dimension-
less parameters defined by

k1 = 1 , k2a = R1

R2a
> 0 , k2b = − k2a < 0 , (2.38)

so that the surfaces of M2a and M2b have opposite curvatures 1/R2b = − 1/R2a .
Assuming that each side of M2a and M2b mirrors may be used, Mersenne ob-

tained four distinct afocal forms (Fig. 2.7).

Fig. 2.7 Mersenne afocal two-mirror telescopes. Left: One of the four forms proposed by Mersenne
in 1636 [45]. Right: The four forms
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• FORM 1 uses the convex side of M2a mirror (Cassegrain form),
• FORM 2 uses the concave side of M2b mirror (Gregory form),
• FORM 3 uses the convex side of M2b mirror (retro-reflective form),
• FORM 4 uses the concave side of M2a mirror (retro-reflective form).

Forms 1 and 2 (see also Fig. 1.6) may be used in the paraxial zone as well as
in grazing incidences for both mirrors. Retro-reflective forms 3 and 4 preferably
applies to rays with large heights at the primary corresponding to conjugates with
low heights at the secondary and conversely; however the third-order aberration
theory that uses the classical Hamilton/Seidel formulation [53] may not be able to
correctly model those two latter forms.

Denoting in a general formulation

k = R1/R2 (2.39)

the algebraic radius ratio of the two mirrors, and h the height of an incident ray, it
can readily be shown that the conjugate height h′ of the system emerging ray is a
solution of

h′ 2 −
(

h − R2
1

h

)
h′

k
− R2

2 = 0 , (2.40)

from where the roots may be written as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h

h′ = k = constant for

{
Form 1

Form 2 (2.41a)

h h′ = − R2
1

k
= constant for

{
Form 3

Form 4 (2.41b)

With the two first forms, the heights of emerging rays vary in accordance with
(2.41a) as an homothetic transformation congruence of the Gaussian optics type.
With the two latter retro-reflective systems, the emerging rays get closer to the tele-
scope axis if the incident ray moves away from the axis. These heights vary in
accordance with (2.41b) that we call an inversion transformation congruence of the
conjugate heights; this latter case was certainly remarked by Marin Mersenne who
displayed numerous rays in his figure – actually Fig. 2.7–Left – of Harmonie Uni-
verselle (1636).

The four Mersenne forms are free from all order spherical aberration; thus, in the
third-order Seidel theory, the first sums relative to Sphe 3 are

�1 SI = �2 SI = (�3 SI ) = (�4 SI ) = 0 , (2.42)

where the parentheses point out that, because of the inversion transformation con-
gruence between the input and output conjugate rays, actually these sums cannot
be properly derived from this theory for Mersenne forms 3 and 4; in some optical
design codes, the selection of the second alternative intersection point of an optical
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surface is achieved by a special option as “alternate even” in Zemax. For instance
even for an extremely small field of view – typically of 1 or 10 arcsec – raytraces
with Mersenne form 3, k = − 2, and linear central obstructions of 0.3 or 0.4,
show huge field aberrations; when anastigmatically focalized, the residual blur im-
ages show a remarkable rotational symmetry.

• Quasi-perfect two-mirror systems: Restraining only to the Mersenne afocal
forms 1 and 2, we must mention that for three and a half centuries, all of the
additional properties of these systems remained unknown. We now know that they
are remarkable anastigmatic systems, i.e. also free from Coma 3 and Astm 3,

�1 SI I = �2 SI I = �1 SI I I = �2 SI I I = 0 , (2.43)

and that Dist 3 can be cancelled, � SV = 0, if the input pupil is conveniently
located.

Astonishingly on may notice, first, that the aplanatic property of these two simple
systems has not been clearly understood, say, up to the 1960s. Second, the demon-
stration of the anastigmatic property came much later.3

The Petzval theorem or Seidel sums � SI V allow deriving the Petzval curvature
(cf. Sect. 1.10.1). For Mersenne form 1 or 2, the Petz 3 curvature is also the field
curvature. Whatever the position of the pupil and mirrors, for a two-mirror system
this curvature is

1/RP = − 2/R1 + 2/R2 , (2.44)

which entails that the absolute value of the Petzval curvature is the smallest for any
Cassegrain form, thus for Mersenne form 1.

A generalized Schwarzschild theorem formalized by Wilson [62] states that

→ n separated aspheric mirrors or lenses in any geometry allow the correction of
n conditions.

It must be added that some particular geometries are more favorable than
others.

For instance, the particular confocal geometry of Mersenne forms 1 and 2 pro-
vides the correction of the three conditions � SI = � SI I = � SI I I = 0 with
only two aspherical surfaces and then are absolutely fundamental optical systems.
Because also correcting the spherical aberration and linear coma at all aberration
orders, the Mersenne two-mirror systems are important designs for the development
of 3-, 4- and 5-mirror telescopes.

3 Although the Seidel theory has been well established since the 1860s, the aplanatism property
of a confocal Mersenne mirror-pair seems to have been only remarked in the 1960s probably from
raytrace designs of long-slit spectrographs for telescope prime focus. The complete demonstration
of the anastigmatism property seems to have been first given by Martin Krautter [29] in 1986 by
use of coefficients first formalized by Schwarzschild in his general aberration theory of a two-
mirror telescope (1905). Using the Seidel sums, other demonstrations of the anastigmatism were
later given by D. Korsch [28] and with a more classical formalism by R. Wilson [62].

It is surprising for those who know the work of M. Paul in 1935 [51] that he did not at that time,
in setting up his well-known anastigmatic three-mirror telescope, depart from the principle of the
Mersenne telescope. Instead, he derived his telescope form from a paraboloidal primary corrected
by an afocal field corrector consisting of two separated mirrors. It is clear he was referring in no
way to the properties of Mersenne telescopes.
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Another special case is the remarkable geometry of the flat-field anastigmat
three-mirror Rumsey telescope [52] where M1-M2 is a quasi-confocal pair allowing
the system to satisfy the four conditions � SI = � SI I = � SI I I = � SI V = 0
with only three aspherical mirrors. In a modified design, a Rumsey-Lemaitre tele-
scope [39] was built by active optics methods starting from the same sphere for M1
and M3 mirrors that are both on a single substrate, thus aspherizing the three surfaces
of the telescope by only figuring two stressed spherical surfaces (see Sect. 6.6.7 for
the aspherization of the M1-M3 double vase form mirrors and Sect. 3.3.5 for that of
the M2 tulip form mirror).

2.4 Beam Compressors, Expanders and Cat’s Eyes – Active
Optics Pupil Transfers

Two-arm interferometers developed for high spatial or high spectral resolutions,
require the use of retro-reflective systems. Because retro-reflective Mersenne tele-
scopes (forms 3 and 4) cannot be used with all rays in the paraxial space [cf. Sect. 2.3
(2.41b)], then considering the Mersenne anastigmat of Gregory type (form 2) hav-
ing real intermediate focus, we may obtain a retro-reflective system by addition of a
mirror M2 at the common focus of M1 and M3 paraboloids (Fig. 2.8). When M2 de-
viates from a flat shape, the system is no longer anastigmatic but remains aplanatic.

Such a three-mirror beam compression system or a beam expander system can
also be characterized by its compression ratio. The form corresponding to a com-
pression ratio equal to unity is called a cat’s eye system. If mirror M2 is a VCM,
then the system allows an active pupil transfer.

Let us define the beam compression ratio by k = R1/R3. Considering retro-
reflective forms for which always k > 0, a coordinate system with its origin at the
vertex of the M1 mirror – fi = Ri/2 are all negative in Fig. 2.8 – and an object
pupil at abscissa p1, the conjugate distance equation

(p′
1 − f1)(p1 − f1) = f 2

1 , (2.45)

Fig. 2.8 Active pupil transfer by VCM-M2 retro-reflective systems. These systems are aplanats if
M1 and M3 are confocal paraboloids
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provides the abscissa of the pupil image p′
1. Translating the system origin to the

vertex of M2, this image pupil corresponds to an object pupil of abscissa p2. The
passing equation is p2 = p′

1 − f1 which provides the image pupil p′
2 by using the

conjugate distance equation of M2

p′
2 = f 2

2

f 2
1

p1 − f1
− f2

+ f2 .

Finally, from the passing equation p3 = p′
2 + f3, the abscissa p′

3 of the output
pupil with respect to p1, in the M3 frame, is

p′
3 = f 2

3

f 2
2

f 2
1

p1 − f1
− f2

+ f2

+ f3 ,

thus after transformation,

p′
3 = −

(
f3

f1

)2

p1 +
(

1 + f3

f1
+ f3

f2

)
f3 , (2.46)

where f3/ f1 = 1/k is the reciprocal beam compression ratio.

For retro-reflective beam compressors, the pupil conjugate distances are with
k > 1.

For retro-reflective beam expanders, the pupil conjugate distances are with
0 < k < 1.

For retro-reflective cat’s eyes, k = 1, the sections of input and output beams
have an identical size since paraboloids M1 and M3 are coinciding, R3 = R1.
Thus, the conjugate distances of the pupils p1 and p′

3 with respect to the vertex of
the M1 mirror are linked by

p′
3 = − p1 +

(
2 + f1

f2

)
f1 . (2.47)

When the VCM M2 has a plane shape, R2 = ∞, this formula reduces to p1 +
p′

3 = 2 f1. In this case, if p1 = f1, then p′
3 = f1: → Both input and output

pupils are at focus abscissa.
The aplanatic properties of these retro-reflective systems are useful in high-

resolution interferometry which always requires a small field of view.

2.5 VCMs as Field Compensators of Interferometers

A VCM installed at the focal plane of a cat’s eye system allows us to control the
output pupil distance and to maintain it at a convenient location where the beams
are recombined. At the same time, the pupil conjugation provides the convenient
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correction of optical paths in the field of view, so that these systems are also field
compensators.

Fourier transform spectrometers and telescope array interferometers require
VCMs that are used by active optics control systems.

2.5.1 Fourier Transform Spectrometers

Two-arm interferometers are particularly useful for the spectral analysis in the in-
frared and far-infrared - typically in the range 1–20μm. A plane parallel plate splits
the collimated beam into two channels as with a Michelson-type interferometer. The
translation of one arm provides a variation of the optical path difference. After re-
combination, the beams are imaged on a monopixel detector. The spectral recording
is achieved by measuring the intensity of the resulting interferences during the arm
translation; then, the spectrum is obtained by calculations using a Fourier transform
analysis. The largest Fourier transform spectrometers (FTSs) were built by the Lab-
oratoire de Physique Moleculaire et Applications (LPMA) of the University Pierre
and Marie Curie, Paris (Fig. 2.9).

Fig. 2.9 Optical design of the Large FTS at Jussieu LPMA. The maximal optical path difference
is 22 m. 1 – Infrared source and collimator, 2 – Beam splitters, 3 – Fixed cat’s eye, 4 – Movable
cat’s eye with VCM, 5 – Camera optics and detector, 6 – Control of path difference by He-Ne laser
(− · − · −) (after Valentin [60])
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FTSs have been proposed and developed by Jacquinot [25, 26] in order to achieve
high spectral resolutions without requiring use of diffraction gratings. Although
some FTS concepts not requiring use of on-line computation – by recording sta-
tionary interferences on holographic plates – have been proposed and built (Stroke
[56]), most instrument concepts are based on a multiplex computational analysis.

In the astrophysical case, high-resolution FTSs have been built for infrared stud-
ies of the Sun, Jupiter, and Saturn at Meudon, at McMath-Pierce Solar Telescope
of the National Solar Observatory (NSO) and other institutes (Connes [9], Brault
[5]), and lower-resolution FTSs for infrared studies of stars (Maillard [41]). In the
case of molecular physics studies at the laboratory, very high resolution FTSs have
been built (Valentin [60]). Recent developments of FTS methods have led to a large
variety of instruments, each of them being specialized to the physics study of a par-
ticular problem (see Bracewell [4], Mertz [47], Thorne [57], Smith [54], Davis [11],
Christy et al. [8]).

Compact FTSs for broadband studies have proved useful by use of 1D and 2D de-
tectors. A FTS concept with a 1D detector and slightly tilted mirrors (Dohlen [14])
can be used without translation of a mirror; the same design with a 2D detector pro-
vides the long slit mode (Dohlen [15]). Replacing the Michelson mirrors by diffrac-
tion gratings (Dohi and Suzuki [13]), a 2D detector also allows the fast recording
of a temporal chemical reaction, similar to the conventional long slit mode. These
instruments do not need to vary the optical path and all optical pieces are statics.

In using 2D infrared detectors and varying the optical path, cat’s eye FTSs pro-
vide 3D super-imaging and become integral field spectrometers similar to integral
field spectrographs in the visible (cf. Sect. 1.12.9), but with the advantage of a free
spectral resolution, i.e. which is not preselected by the optical design. 3-D or super-
imaging FTSs have been developed at CFHT by Maillard [42] for observations in
the spectral range 1–5μm.

VCM and cat’s eye systems were originally developed by Lemaitre in 1975 (cf.
Connes and Michel [10]) for the mobil arm of the FTS of Aimé Cotton Labora-
tory in Bellevue. Such a system was recently implemented on the Large FTS of
the Molecular Physics Laboratory and Applications (LPMA) at University P. and M.
Curie, Paris-Jussieu, by Valentin and Henry [61] (see Fig. 2.9).

For large optical path variations (�� = 22 m at Jussieu LPMA) in dual arm
interferometers, thus providing high spectral resolutions in the infrared, a VCM and
cat’s eye system allows a substantial increase in luminosity and S/N ratios. This
is due to the gain on the optical Étendue which is typically increased by a factor
of 100.

2.5.2 Stellar Interferometers and Telescope Arrays

Following Young’s and Fizeau’s ideas of observing interferences from the light of a
single wavefront passing through a pair of holes, interferometric methods have been
developed in astronomy for the measurement of stellar diameters. The first approach
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used two sub-apertures (lunules) oppositely separated at a 65 cm distance on the
80-cm Foucault telescope; although the small size of the subapertures overcame the
degradation of the atmospheric seeing, Stephan [55] deduced in 1873 that his optical
baseline was too small to observe a fringe pattern which related to an angular star di-
ameter and rightly concluded that the diameters of proximate bright stars are smaller
than 0.15 arcsec. The first measurements of stellar diameters – 0.05–0.04 arcsec –
where obtained by Michelson [48] by using two aperture mirrors of larger base-
line mounted and driven by the 100-inch Mount Wilson Telescope. This class of
interferometers has been developed to resolve stellar diameters up to 0.02 arcsec.

Another class of stellar interferometers has been developed by recombining the
beams of a pair of telescopes, thus allowing a longer baseline and corresponding
higher resolutions. Progress in pointing accuracy and cell sensitivity led Hanbury
Brown [6] to resolve star diameters up to 0.7 10−3 arcsec with two radio-telescopes
and intensity correlation methods. Progress in 2D detectors for the visible and laser
positioning control allowed Labeyrie [32, 33] to coherently recombine two optical
telescopes (I2T), thus, opening the way to telescope arrays.

By using a sufficiently large number of unit telescopes, a telescope array allows
to us recover the high-resolution imaging that should be provided by a monolithic
telescope of the same aperture as the baseline. By increasing the amount of light
with large unit telescopes, telescope arrays joined to adaptive optics compensations
allow the study of much fainter objects. Giant baselines are planned for use in space
where diffraction limited images are immediately available. For ground based as-
tronomy, the remarkable advance realized with GI2T by Vakili and Percheron [59]
and Mourard et al. [49] has led astronomers to develop the array concept in symbio-
sis with those of very large telescopes.

The construction by the European Southern Observatory (ESO) of the Very Large
Telescope (VLT) and its associated Interferometer (VLTI) realizes a symbiosis ap-
proach in combining deep field programs, high-resolution imaging, and interfero-
metric programs by implementation of four 8 m unit telescopes and several auxiliary
telescopes. The main features of the ESO interferometric array have been developed
and described in Woltjer et al. [63], Beckers [1–3], Merkle [44], von der Lühe
et al. [30, 31], Mariotti et al. [43], Glindeman et al. [23], Koehler and Flebus [27]
(Fig. 2.10).

The VLTI was designed for recombining the light of four 8 m unit telescopes
and four 1.8 m auxiliary telescopes. This is the first telescope array allowing a field
compensation, sometimes called field cophasing. Eight delay lines equipped with
cat’s eye carriages by Derie [12], allow us to maintain the equality of optical paths
during the interferometric acquisitions at the recombining laboratory (Fig. 2.11).

Starting to operate in 2006, the VCMs provide a compensation over 2-3 arcsec
sky field diameter (Ferrari et al. [19]). Each VCM is installed at the Cassegrain
focus of a translating f/1.6–f/6.5 Ritchey-Chrétien telescope of 550 mm clear aper-
ture. Such cat’s eye systems open the way to dual object studies with large format
detectors (Leinert and Graser [34], Paresce et al. [50]). Each VCM provides the con-
trol of the pupil transfer to the recombination laboratory. With a large zoom range
[ f/∞–f/2.5 ], the convex curvatures of the VCMs are in closed-loop control with
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Fig. 2.10 View of the VLT Interferometer at Cerro Paranal (courtesy ESO)

Fig. 2.11 Views of VLTI delay lines and translation cat’s eye (courtesy ESO). The cat’s eyes are
Ritchey-Chrétien telescopes with a VCM at focus (after F. Derie [12])

the location of the cat’s eye carriages. A carriage translation can compensate for
optical-path differences up to 120 m.

2.6 Construction of VCMs with VTDs

2.6.1 Elastic Deformability and Choice of Material Substrate

In active optics applications, an important choice is that of the material. This ma-
terial must be extremely linear, in the sense of Hooke’s law of a linear stress-strain
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relationship. Glass, vitro ceramics and some metal alloys possess this linear char-
acteristic. If large deformations are required, an additional important feature is the
elastic deformability ratio.

To define this quantity, one may express the parabolic flexure which corre-
sponds to the curvature mode Cv 1 as a function of physical quantities depending on
the substrate material. For this, one may use either constant thickness distribution
(CTD) or variable thickness distribution (VTD) mirrors. For instance, from (2.1),
and (2.8b) (2.10) for CTD, the flexure can be represented as

z = 1

2R
r2 = ± (1 − ν) |σ|

E t
r2, (2.48a)

where the positive sign is for R > 0 and from which the sag at mirror full aperture
is

z{a} = ± (1 − ν) |σ|
E

a2

t
, (2.48b)

where σ = σrr = σt t are the stresses arising at the surfaces of the plate. We
would obtain, for instance, an identical result for a Type 1 VTD mirror which shows
a continuous thickness t0 at center so that now t → t0 in (2.48b), the stress σ arising
in the plate is for r = 0 and is the same as before in CTD.

From material mechanical testing, it is well known that the tensile ultimate
stress is much lower than the compression ultimate stress. Let σT max be the ten-
sile maximum stress of a material as an acceptable limit that must not be exceeded
to avoid rupture or plastic strain. Since a tension σ is positive in our sign con-
vention, from (2.48b), and given a plate of diameter 2a and thickness t , the elas-
tic deformability ratio of a material may be characterized by the dimensionless
quantity

(1 − ν) σT max

E
. (2.48c)

As most materials used in active optics have a Poisson’s ratio ν ∈ [ 0.11, 0.33 ], it
is more convenient to simply define the elastic deformability as

elastic deformability = σT max

E
. (2.48d)

For instance from Table (1.10), comparing a Zerodur vitroceram (where σt max =
22 MPa and E = 90.2 GPa), with a quenched stainless steel Fe87 Cr13 (where
σt max = 1.4 × 103 MPa and E = 201 GPa), the gain in elastic deformability is
∼ 28-times in favor of this metal alloy; taking into account the Poisson ratio would
lead to a gain ∼25.

Other linear alloys usable for mirrors, such as Ti90Al6V4 or Be95Cu5, could
also provide large gains in elastic deformability, but their practical machining to the
convenient geometry of a VTD seems more difficult. For large zoom range VCMs,
stainless steel Fe87 Cr13 in a quenched state has been found preferable.
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2.6.2 Zoom Range and Choice of a Thickness Distribution

For a small zoom range, the design of a VCM using a VTD is straightforward.
With the examples in Fig. 2.6, if the zoom range is corresponding to a variation of
[ f/∞–f/7 ] with VTD Type 1 or a variation of [ f/∞–f/5 ] for VTD Type 2, the stress-
strain relations are quasi-linear and any thickness profile T20 provides accurate cur-
vatures which are affine paraboloids.

For a large zoom range such as [ f/∞–f/2.5 ], it is not possible to obtain affine
paraboloids all over the range. Assuming that the VCM is polished flat or slightly
convex at an f-ratio�0 close to infinity when at rest, and that the zoom range varies
down to �min, a balance of the surface deviation to a paraboloid can be obtained
if the thickness T20 is determined for an �-value such as � ∈ [�0,�min ]. In this
range the full sag variation is subdivided into four equal segments and the optimal
design f-ratio � for the calculation of T20 is determined for the junction of the last
two segments by using the balance criterion

1

�
= 1

�0
+ 3

4�min
. (2.49)

Therefore with a flat or quasi-flat VCM at rest, i.e. �0 � ∞, this criterion for
the determination of T20 means that the mirror is a paraboloid when at f/�, while
maximum spherical aberration residuals of the optical surface occur with opposite
signs at ∼f/2�min and f/�min.

2.6.3 Achievement of Boundary Conditions

Considering the VTD class, the boundary condition at the VCM perimeter is a free
supported edge for Type 1 and Type 2, and free edge for Type 3. From (2.34), no
radial bending moment and no radial tension must be applied,

Mr (a) = 0 and Nr (a) = 0 .

With metal mirrors, taking into account that only the axial reaction acts at
the edge of Type 1 and Type 2, these conditions can be approximated by using
a small cylindric collaret that links the VCM to an outer thick ring (Fig. 2.12).
Convenient axial length and radial thickness of the collaret can be defined with
respect to the thickness T20 at the edge proximity, for instance from the value of
T (0.99).

Because of the instable equilibrium of the acting forces in Type 3, the boundaries
only require the VCM to be radially maintained into an outer ring. Since there is no
reaction exerted to the edge, a possible solution is to use a very thin linking plate
at the edge proximity and compensate for the sag by axial displacement of the zone
of central contact during the deformation. Although these boundaries are difficult to
fulfill, the comparison of the dimensionless thicknesses displayed by Fig. 2.2 shows
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Fig. 2.12 Holosteric solutions linking active substrate and outer ring. Left: VTDs Type 1 and
2: Boundaries achieved by a thin cylinder. Right: VTD Type 3: Boundaries achieved by a thin
plane plate

that Type 3 VCMs are much thinner towards the edge. Therefore compared to Type 1
and 2, Type 3 VCMs are less sensitive to surface deviations from the paraboloid
shape and should theoretically provide largest zoom ranges.

2.6.4 Design and Results with VTD Type 1 – Cycloid-Like Form

Type 1 VCMs have been built for optical telescope array interferometers and Fourier
transform spectrometers (Ferrari et al. [21]). The following results are obtained with
the design parameters of Fig. 2.4 and a thickness distribution T20 determined for
f/� = f/3.33 allows optimizing the zoom range [ f/∞–f/2.5 ]. An air pressure load
generates convex shapes. The substrate is a stainless steel Fe87 Cr13 quenched at a
Brinell hardness BH = 330. The integration of system (2.32) provides the dimen-
sionless thickness T20 and then thickness t . A small positive lens-like thickness is
added to t in order to compensate for the plastic deformation resulting from the pre-
stressing. The resulting thickness t∗(r) was executed by a numeric command lathe
on the rear face of the substrate (Table 2.1).

The prestressing was carried out by slightly overpassing the maximum curvature
of the zoom-range (cf. next Section). After prestressing and final plane resurfacing,
the mean aspect-ratio of these VCMs may be approximated by < t > /D � 1/60.
He-Ne interferometric tests were carried out by use of Fizeau lenses of various cur-
vatures and an accurate pressure gauge of resolution 10−4 (Fig. 2.13).

Table 2.1 Thickness t∗(r) of a Type 1 VCM before plane surfacing. ESO VLTI and Jussieu LPMA:
Zoom range [ f/∞–f/2.5 ]. At VCM edge, the radial thickness of the cylinder-collaret is 25μm.
t∗ is with a 18μm extra-thickness at center which includes a 14μm positive lens-like shape for
plasticity correction (see Sect. 2.7) (LOOM)

r 0 1 2 3 4 5 6 7 7.9 8+ 12
t∗ 318 316 311 301 286 265 235 188 150 5,000 5,000

[ r: mm, t∗: μm ]
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Fig. 2.13 Optical tests of a Type 1 VCM with respect to concave calibers. Fizeau interferograms
for a clear aperture 2a = 5 mm (LOOM)

2.6.5 Design and Results with a VTD Type 2 – Tulip-Like Form

Type 2 VCMs have been built for particular applications where discrete curvatures
are preferred to a continuous variation of the curvature (Lemaitre [37]). The cen-
tral force is generated by a motorized lead screw. These actuators are less complex
to use than air pressure units with controller but may provide some vibrations dur-
ing the zooming. Tulip-like VCMs are useful for pre-positioning the first pupil of
telescope arrays such as with the Auxiliary telescopes of VLTI. Figure 2.6 shows
that, for a given zoom range, the compared VTDs from large and small deforma-
tion theories present less deviations than for Type 2. In the following example with
a VCM in quenched stainless steel Fe87 Cr13. A positive central force generated
convex shapes. The thickness t was derived by solving T20 in system (2.32) for the
design value f/� = f/6 and a zoom-range [ f/∞–f/4.5 ]. Before optical surfacing, the
theoretical thickness t (r) was increased by a constant extra-thickness and the rear
side of the mirror executed by a numeric command lathe (Table 2.2).

Table 2.2 Thickness t∗(r) of a Type 2 VCM before plane surfacing. Zoom range [ f/∞ – f/4.5 ]. At
the VCM edge, the radial thickness of the cylinder-collaret is 25μm. t∗ includes an extra-thickness
of 5μm (LOOM)

r 0.1 1 2 3 4 5 6 7 7.9 8+ 12
t∗ 515 410 359 320 286 253 217 171 135 5,000 5,000

[ r: mm, t∗: μm ]

Fig. 2.14 Optical tests of a Type 2 VCM with respect to concave calibers. Zoom range f/∞−f/4.5.
He-Ne patterns for full aperture 2a = 16 mm. The central force is varied from 0 to 5.85 daN (LOOM)
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For this zoom-range, the plastic deformation remains negligible and does not re-
quires a compensation of the thickness distribution. After prestressing and plane
surfacing, interferometric tests were carried out by use of Fizeau lenses of dis-
crete curvatures and a ball-screw actuator driven by an encoded motorized system
(Fig. 2.14).

2.7 Plasticity and Hysteresis

Because of the very large zoom range developed with “cycloid” type VCMs for
8 m aperture recombined telescopes (VLTI), it was found necessary to take under
consideration the plastic deformation as well as the hysteresis deformation loop of
the metal substrate. While plasticity goes back to the dawn of time, the discovery of
hysteresis is due to J.A. Ewing in the 1880s.

A compensation of the plastic deformation and a hysteresis loop model can be
determined in order to increase (i) the geometrical accuracy of the optical curva-
tures and (ii) the resolution of the curvature control. The plastic deformation error
is corrected in the mirror figuring process, while hysteresis errors are compensated
by the closed-loop control system.

2.7.1 Stress-Strain Linearization and Plasticity Compensation

• Extended linear range: For metallic alloys, the Ewing-Muir process [16] al-
lows one to extend the linear range of the stress-strain relation. This plastic tight-
ening, in French raidissement plastique, applies to the VCM substrates in quenched
Fe87 Cr13 alloy. The process consists of prestressing the substrate at σp.s slightly
higher than the working tensile maximum stress σt max. Figure 2.15 displays the
process in the case of an elongated rod. After applying a pre-stressing at σp.s, the
new length at rest becomes permanently increased, but for next loadings laying un-
der σp.s the stress-strain law has been extended while remaining linear.

The prestressing applied to Type 1 VCMs (design in Table 2.1) was typically
σp.s = 70 daN.mm−2 corresponding to a loading q = 8.25 daN.cm−2. After final
polishing, the VCMs operate up to a tensile maximum stress σt max = 68.4 daN.mm−2

corresponding to a loading qmax = 8.05 daN.cm−2 for the maximum permissible
curvature Cmax.

Let C0 be the initial curvature of a never stressed VCM and C∗
0 its final curvature

at rest after prestressing. The curvature difference due to plasticity is

�CPlas = C∗
0 − C0 . (2.50)

He-Ne interferograms in Fig. 2.16 display the VCM shapes during the prestress-
ing cycle of a previously unstressed VCM. The optical figures are recorded with
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Fig. 2.15 Plasticity and hysteresis of quenched Fe87 Cr13 alloys. Left: Stress-strain diagram,
Ewing-Muir linearization by prestressing. Right: Hysteresis loop in extended elastic domain af-
ter prestressing (the width of the loop is exagerated for clarity of the figure)

respect to reference lens calibers that are concave spheres of discrete curvature.
These are mounted onto a wheel facing the VCM in a Fizeau mounting.

In a first approximation, the difference between the initial and final interfero-
grams shows that the plastic deformation is of quadratic form

zPlas ∝ r2 . (2.51)

From Type 1 VCMs built with the design parameters in Fig. 2.4, the maximum
tested elastic sag was zElas = − 381μm for the last caliber R = 84 mm; the
mean value of the measured plastic sags was zPlas = −14μm. Thus, the typical
plasto-elastic deformation ratio is

zPlas/zElas ≡ (C∗
0 − C0)/(Cmax − C0) = 3.67 ± 0.15 % . (2.52)

These results can be used for analysis with a plasticity theory (Lubliner [40])
for model investigations. Given the stress distribution of σr (Fig. 2.4), that is also
of cycloid-like form, the plastic deformation appears near the substrate faces from
mirror axis to a radius about half the aperture, r ≈ a/2.

In order to compensate for the effect induced by the plastic deformation, the fol-
lowing conditions apply (Lemaitre et al. [38]):

• Plasticity Compensation: Assuming a VCM figured quasi-flat with curvature C0
at rest, which becomes C�0 at rest after prestressing, and denoting�Plas = C�0 −C0,

1 → if the optical figurings are always executed at same curvature before and after
pre-stressing,

2 → and if the rear side of the substrate ZRS(r) is defined by the co-addition of
the thickness distribution (elasticity term) and of a lens shape (plasticity term)
following the sign of loading q as
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Fig. 2.16 He-Ne fringes with respect to calibers (R) and loads (q) of a VCM – Type 1 VTD-form –
during prestressing loop. Plastic deformation is derived from the two patterns on left. The mirror
is then resurfaced to a plane figure at q = 0. These VCMs of zoom range ( f/∞ − f/2.5) are the
core of cat’s eye carriages of the VLTI eight delay lines (LOOM)

ZRS = t (r) − �CPlas (a
2 − r2)/2 for q > 0 i.e. ∀ C < 0 , or (2.53a)

ZRS = t (r) + �CPlas r2/2 for q < 0 i.e. ∀ C > 0 , (2.53b)

then the optimal properties of the VCM design with the large deformation theory
are recovered.

These conditions can be realized by the construction and prestressing tests of
preliminary prototypes allowing the determination of the lens shaped correction.
Hence, the plasticity correction was set up in the final design of Type 1 VCMs,
following (2.53a), which generates a zoom range with all negative curvature (∀ C <
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0). This correction is included into the thicknesses t∗(r) of Table 2.1 with C0 = 0,
C∗

0 = − 0.44 10−3 mm−1 and �CPlas = C�0 − C0 = C�0.

2.7.2 Hysteresis Compensation and Curvature Control

In Sect. 2.2, we have shown from the large deformation theory that the representa-
tion of the loading as a function of the flexure ratio is not linear (2.36) but expressed
by an odd series in z/t0. For Type 1 VCMs of zooming range [ f/∞–f/2.5 ] deformed
by air pressure, this representation provides a convenient accuracy by limiting the
power series development up to i = 5. Considering the curvature C instead of the
flexure ratio, the load-curvature relationship derived from (2.36) can be represented
by (Ferrari et al. [22])

q = β1 (C − C0)+ β3 (C − C0)
3 + β5 (C − C0)

5 , (2.54)

where βi are coefficients, C0 the mirror curvature at rest and ∀ C < 0.
For large deformations, metal substrates show a flexural hysteresis:

1 → During the de-loading, the same curvatures as during loading are obtained
by lower applied loads.

2 → After the loading and subsequent de-loading sequence, the initial and final
curvatures are identical.

The largest of the hysteresis loops is the path AIWJA (Fig. 2.14 Right), where the
extremal working point W of maximum load qmax and curvature Cmax is reached.
Considering a loading sequence up to qseq, and provided qseq ≤ qmax < qp.s such
as defined from prestressing, the above load-curvature relationship is only valid for
increasing pressures; when decreasing the load from a qseq loading, the βi coeffi-
cients become slightly different. Let β i

∣∣
seq be those coefficients. Given a curvature

C , the load difference �q between the increasing and decreasing pressures is a
function of the maximum pressure qseq or of the associated curvature Cseq reached
in the going up sequence. The hysteresis amplitudes �q , increasing with higher
deformation sequences, are also represented by fifth-order odd polynomials

�q
∣∣
seq = β∗

1 (C − C0)+ β∗
3 (C − C0)

3 + β∗
5 (C − C0)

5 , (2.55)

with
β∗

i = βi − βi

∣∣
seq .

Remaining under the maximum working stress defined by the prestressing
(Sect. 2.6.1), measurements have been carried out on 12 cycloid-type VCMs having
a zoom-range [ f/∞–f/2.5 ]. Hysteresis amplitudes were determined by
Shack-Hartmann optical tests for loading sequences qseq < qmax. Considering a
representation of the hysteresis �q in function of the load q instead of the curva-
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ture, we obtain the form

�q
∣∣
seq = δ1 q + δ3 q3 + δ5 q5 , q ≤ qseq ≤ qmax , (2.56)

where δi coefficients are deduced from series (2.54) and (2.55).
From the (2.56) form, we can model all the hysteresis loops from simple proper-

ties. By definition, given a sequence, the hysteresis is null at the maximum load of
the sequence, i.e. at q = qseq. In addition, the results from Shack-Hartmann tests
show that the slopes of the hysteresis loops at q = 0 and q = qseq are opposite
(Ferrari [22]). Then, we have the two conditions

[
�q
∣∣
seq

]
q = qseq

= 0 ,
[ d

dq
�q
∣∣
seq

]
q = qseq

= −
[ d

dq
�q
∣∣
seq

]
q = 0

,

which entails

δ3 = − 3

2q2
seq
δ1 and δ5 = 1

2q4
seq
δ1 . (2.57)

The third condition to determine δ1 is provided by the coordinates of the maximum
amplitude. The results from Shack-Hartmann tests show that the slope at the origin
is of the form

δ1 = a1 qseq + a3 q3
seq , (2.58)

where a1 and a3 are coefficients. This allows one to construct a hysteresis grid model
from the locus of the maximums, i.e. the coordinates of antinode A points. There-
fore, the hysteresis amplitude grid for any sequence up to qseq is defined by

Fig. 2.17 Hysteresis �q(q) vs loading sequences qseq. Cycloid-like VCM – VTD Type 1 – actu-
ated by air pressure. At qmax = 8 daN.cm−2, the radial stress is σ = 68 daN.mm−2 and the hysteresis
amplitude �q/qsec reach 2.3% [38]
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�q
∣∣
seq = 1

2

(
a1 qseq + a3 q3

seq

) (
2 − 3

q2

q2
seq

+ q4

q4
seq

)
q , (2.59a)

with Antinodes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q A

∣∣
seq = κ1 qseq ,

�q A

∣∣
seq = κ1 κ2

(
a1 q2

seq + a3 q4
seq

)
,

κ1 =
[
(9 − √

41)/10
]1/2 = 0.5095,

κ2 = (13 + 3
√

41)/50 = 0.6441.

(2.60a)

The hysteresis curves are represented by the first positive part of five real-
root curves (Fig. 2.17). The locus of the antinodal A-points is a biquadratic curve
(Fig. 2.17 Dotted line). All these curves are determined from (2.59a) and set (2.59b)
with coefficient values

a1 = 7.65 10−3 cm2 · daN−1 and a3 = 2.05 10−5 cm6 · daN−3.

In order to achieve the best resolution of curvature control, this hysteresis com-
pensation model is included in the VCM curvature closed-loop control system at the
same level as the positioning control of the cat’s eye translation.
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