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The Hamiltonian

Any theoretical description has to start with the definition of the system un-
der consideration and a determination of the fundamental interactions present
in the system. This information is all contained in the Hamiltonian which is
the central quantity for any theoretical treatment. All physical and chemical
properties of any system can be derived from its Hamiltonian. Since we are
concerned with microscopic particles like electrons and atoms in surface sci-
ence, the proper description is given by the laws of quantum mechanics. This
requires the solution of the Schrödinger equation.

In this chapter we will first describe the Hamiltonian entering the Schrö-
dinger equation appropriate for surface science problems. One general approx-
imation that makes the solution of the full Schrödinger equation tractable is
the decoupling of the electronic and nuclear motion which is called the Born–
Oppenheimer or adiabatic approximation. We will then have a closer look at
the specific form of the Hamiltonian describing surfaces. We will discuss the
symmetries present at surfaces. Taking advantage of symmetries can greatly
reduce the computational cost in theoretical treatments. Finally, we will in-
troduce and illustrate the nomenclature to describe the structure of surfaces.

2.1 The Schrödinger Equation

In solid state physics as well as in chemistry, the only fundamental interaction
we are concerned with is the electrostatic interaction. Furthermore, relativistic
effects are usually negligible if only the valence electrons are considered. To
start with, we treat core and valence electrons on the same footing and neglect
any magnetic effects. Then a system of nuclei and electrons is described by
the nonrelativistic Schrödinger equation with a Hamiltonian of a well-defined
form,

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.1)

Tnucl and Tel are the kinetic energy of the nuclei and the electrons, respectively.
The other terms describe the electrostatic interaction between the positively
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6 2 The Hamiltonian

charged nuclei and the electrons. As long as it is not necessary, we will not take
the spin into account for the sake of clarity of the equations. Consequently, ne-
glecting spin the single terms entering the Hamiltonian are explicitly given by

Tnucl =
L∑

I=1

P 2
I

2MI
, (2.2)

Tel =
N∑

i=1

p2
i

2m
, (2.3)

Vnucl−nucl =
1
2

∑

I �=J

ZIZJe
2

|RI −RJ | , (2.4)

Vnucl−el = −
∑

i,I

ZIe
2

|ri −RI | , (2.5)

and

Vel−el =
1
2

∑

i�=j

e2

|ri − rj | . (2.6)

Throughout this book we will use CGS-Gaussian units as it is common prac-
tice in theoretical physics textbooks. Atoms will usually be numbered by cap-
ital letter indices. Thus, ZI stands for the charge of the I-th nuclei. The factor
1
2 in the expressions for Vnucl−nucl and Vel−el ensures that the interaction be-
tween the same pair of particles is not counted twice.

In principle we could stop here because all what is left to do is to solve
the many-body Schrödinger equation using the Hamiltonian (2.1)

HΦ(R, r) = EΦ(R, r) . (2.7)

The whole physical information except for the symmetry of the wave functions
is contained in the Hamiltonian. In solving the Schrödinger equation (2.7), we
just have to take into account the appropriate quantum statistics such as the
Pauli principle for the electrons which are fermions. The nuclei are either
bosons or fermions, but usually their symmetry does not play an important
role in surface science. Often relativistic effects can also be neglected. Only if
heavier elements with very localized wave functions for the core electron are
considered, relativistic effects might be important since the localization leads
to high kinetic energies of these electrons.

Note that only the kinetic and electrostatic energies are directly present
in the Hamiltonian. We will later see that the proper consideration of the
quantum statistics leads to contributions of the so-called exchange-correlation
energy in the effective Hamiltonians. However, it is important to realize that
the energy gain or cost according to additional effective terms has to be derived
from the energy gain or cost in kinetic and electrostatic energy that is caused
by the quantum statistics.
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Unfortunately, the solution of the Schrödinger equation in closed form is
not possible. Even approximative solutions are far from being trivial. In the
rest of the book we will therefore be concerned with a hierarchy of approxima-
tions that will make possible the solution of (2.7) at least within reasonable ac-
curacy. The first step in this hierarchy will be the so-called Born–Oppenheimer
approximation.

2.2 Born–Oppenheimer Approximation

The central idea underlying the Born–Oppenheimer [1] or adiabatic approxi-
mation is the separation in the time scale of processes involving electrons and
atoms. Except for hydrogen and helium, atoms have a mass that is 104 to 105

times larger than the mass of an electron. Consequently, at the same kinetic
energy electrons are 102 to 103 times faster than the nuclei. Hence one sup-
poses that the electrons follow the motion of the nuclei almost instantaneously.
Most often one simply assumes that the electrons stay in their ground state
for any configuration of the nuclei. The electron distribution then determines
the potential in which the nuclei move.

In practice, one splits up the full Hamiltonian and defines the electronic
Hamiltonian Hel for fixed nuclear coordinates {R} as follows

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.8)

In (2.8) the nuclear coordinates {R} do not act as variables but as param-
eters defining the electronic Hamiltonian. The Schrödinger equation for the
electrons for a given fixed configuration of the nuclei is then

Hel({R})Ψ(r, {R}) = Eel({R})Ψ(r, {R}) . (2.9)

Again, in (2.9) the nuclear coordinates {R} are not meant to be variables
but parameters. In the Born–Oppenheimer or adiabatic approximation the
eigenenergy Eel({R}) of the electronic Schrödinger equation is taken to be
the potential for the nuclear motion. Eel({R}) is therefore called the Born–
Oppenheimer energy surface. The nuclei are assumed to move according to
the atomic Schrödinger equation

{Tnucl + Eel(R)} Λ(R) = EnuclΛ(R) . (2.10)

Often the quantum effects in the atomic motion are neglected and the classical
equation of motion are solved for the atomic motion:

MI
∂2

∂t2
RI = − ∂

∂RI
Eel({R}) . (2.11)

The force acting on the atoms can be conveniently evaluated using the
Hellmann–Feynman theorem [2, 3]
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FI = − ∂

∂RI
Eel({R}) = 〈Ψ(r, {R})| ∂

∂RI
Hel({R})|Ψ(r, {R})〉 . (2.12)

In principle, in the Born–Oppenheimer approximation electronic transitions
due to the motion of the nuclei are neglected. One can work out the Born–
Oppenheimer approximation in much more detail (see, e.g., [4]), however,
what it comes down to is that the small parameter m/M is central for the
validity of the adiabatic approximation (see Exercise 2.1). In fact, the Born–
Oppenheimer approximation is very successful in the theoretical description
of processes at surfaces. Still its true validity is hard to prove because it is
very difficult to correctly describe processes that involve electronic transition
(see Chap. 9).

If it takes a finite amount of energy to excite electronic states, i.e., if
the adiabatic electronic states are well-separated, then it can be shown that
electronically nonadiabatic transitions are rather improbable (see, e.g., [5]).
In surface science this applies to insulator and semiconductor surfaces with
a large band gap. At metal surfaces no fundamental band gap exists so that
electronic transitions with arbitrarily small excitation energies can occur. Still,
the strong coupling of the electronic states in the broad conduction band leads
to short lifetimes of excited states and thus to a fast quenching of these states
[6] so that their influence on surface processes is often limited.

On the other hand, there are very interesting processes in which electronic
nonadiabatic processes are induced, as we will see in Chap. 9. The theoret-
ical treatment of these systems requires special techniques that will also be
discussed later in this book.

2.3 Structure of the Hamiltonian

Employing the Born–Oppenheimer approximation means first to solve the
electronic structure problem for fixed atomic coordinates. The atomic po-
sitions determine the external electrostatic potential in which the electrons
move. Furthermore, they determine the symmetry properties of the Hamilto-
nian.

Surface science studies are concerned with the structure and dynamics of
surfaces and the interaction of atoms and molecules with surfaces. If not just
ordered surface structures are considered, then the theoretical surface scien-
tists has to deal with a system with only few degrees of freedom, the atom
or molecule, interacting with a system, the surface or semi-infinite substrate,
that has in principle an infinite number of degrees of freedom. Thus the sub-
strate exhibits a quasi-continuum of states. One faces now the problem that
usually different methods are used to treat the single subsystems: molecules
are treated by quantum chemistry methods while surfaces are handled by
solid-state methods.

To deal with both subsystems on an equal footing represents a real chal-
lenge for any theoretical treatment, but it also makes up the special attraction
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of theoretical surface science. We will focus on this issue in more detail in the
next chapter. But before considering a strategy to solve the Schrödinger equa-
tion it is always important to investigate the symmetries of the Hamiltonian.
Not only rigorous results can be derived from symmetry considerations, but
these considerations can also reduce the computational effort dramatically.
This can be demonstrated very easily [7]. Let T be the operator of a symme-
try transformation that leaves the Hamiltonian H invariant. Then H and T
commute, i.e. [H,T ] = 0. This means that according to a general theorem of
quantum mechanics [8] the matrix elements 〈ψi|H |ψj〉 vanish, if |ψi〉 and |ψj〉
are eigenfunctions of T belonging to different eigenvalues Ti �= Tj.

This property of the eigenfunctions can help us enormously in solving
the Schrödinger equation. Imagine we want to determine the eigenvalues of a
Hamiltonian by expanding the wave function in an appropriate basis set. Then
we only need to expand the wave function within a certain class of functions
having all the same eigenvalue with respect to a commuting symmetry opera-
tor. Functions having another symmetry will belong to a different eigenvalue.
Since the numerical effort to solve the Schrödinger equation can scale very
unfavorably with the number n of basis functions (up to n7 for very accurate
quantum chemical methods), any reduction in this number can mean a huge
reduction in computer memory and time.

The mathematical tool to deal with symmetries is group theory. It is be-
yond the scope of this book to provide an introduction into group theory.
There are many text books that can be used as a reference, for example
[7, 9, 10]. I will rather describe the symmetries present at surfaces, which
has also the important aspect of defining the terminology commonly used
to specify surface structures. To set the stage, we will first start with ideal
three-dimensional crystal structures.

A three-dimensional periodic crystal is given by an infinite array of iden-
tical cells. These cells are arranged according to the so-called Bravais lattice.
It is given by all the position vectors of the form

R = n1a1 + n2a2 + n3a3 . (2.13)

The ai are the three non-collinear unit vectors of the lattice, the ni are inte-
ger numbers. The lattice vectors R are not necessarily identical with atomic
positions of the crystal, but in most cases they are indeed identified with
atomic positions. In addition to the translational symmetry, there are also so-
called point operations that transform the crystal into itself. Operations such
as rotation, reflection and inversion belong to this point group. Furthermore,
translations through a vector not belonging to the Bravais lattice and point
operations can be combined to give additional distinct symmetry operations,
such as screw axes or glide planes.

There are 14 different types of Bravais lattices in three dimensions. Now
there can be more than one atom per unit cell of the Bravais lattice. Then the
crystal structure is given as a Bravais lattice with a basis which corresponds to
the positions of the additional atoms in the unit cell. If the lattice has a basis,
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Fig. 2.1. Wigner–Seitz cell for a two-
dimensional Bravais lattice. The six
sides of the cell bisect the lines join-
ing the central point to its six nearest
neighbors. (After [11])

the symmetry of the corresponding crystal will usually be reduced compared
to a crystal with just spherical symmetric atoms at the Bravais lattice sites.
This enhances the number of symmetrically distinct lattices to in total 230.
Details of these structure can be found in any text book of solid-state physics
such as in [11, 12].

There is no way to uniquely choose the primitive unit cell of a Bravais
lattice. Any cell that, when translated through all the Bravais lattice vectors,
fills all space can serve as a unit cell. However, it is convenient to select a unit
cell that has the full symmetry of the Bravais lattice. The so-called Wigner–
Seitz cell has this property. It is defined as the region of space around a
lattice point that is closer to that point than any other lattice point [11]. The
construction of the Wigner–Seitz cell is demonstrated in Fig. 2.1 for a two-
dimensional Bravais lattice. Select a lattice point and draw lines to the nearest-
neighbors. Then bisect each connection with a line and take the smallest
polyeder that contains the points bounded by these lines. Note that in two
dimensions the Wigner–Seitz cell is always a hexagon unless the lattice is
rectangular (see Exercise 4.3).

The periodicity of a crystal lattice leads to the existence of a dual space
that mathematically reflects the translational symmetry of a lattice. The dual
space to the real space for periodic structures is called reciprocal space. The
basis vectors are obtained from the basis vectors of the real space ai via

b1 = 2π
a2 × a3

|a1 · (a2 × a3)| . (2.14)

The other two basis vectors of the reciprocal lattice b2 and b3 are obtained
by a cyclic permutation of the indices in (2.14). By construction, the lattice
vectors of the real space and the reciprocal space obey the relation

ai · bj = 2πδij , (2.15)

where δij is the Kronecker symbol.
The reciprocal space is often called k-space since plane wave character-

ized by their wave vector k are represented by single points in the reciprocal
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Fig. 2.2. Illustration of the defini-
tion of the Brillouin zones for a two-
dimensional square reciprocal lattice.
Note that only the first three Brillouin
zones are entirely within the shaded
areas. (After [11])

space. The eigenenergies of the electronic wave functions in periodic lattices
are usually plotted as a function of their k-vector in the first Brillouin zone
which is defined as the Wigner–Seitz cell of the reciprocal lattice. As the name
first Brillouin zone suggests, there are also higher-order Brillouin zones. Their
construction is illustrated in Fig. 2.2 in two dimensions for a square reciprocal
lattice. The n-th Brillouin zone is defined as the set of points that can be
reached from the origin by crossing the n − 1 nearest bisecting planes. Note
that each Brillouin zone is also a primitive unit cell of the reciprocal lattice. In
fact, by translating the different sections of the higher-order Brillouin zones
by appropriate reciprocal lattice vectors they can be rearranged to cover the
first Brillouin zone. This can be easily checked for the second and third Bril-
louin zone in Fig. 2.2. In the periodic electronic structure theory this is called
backfolding.

Reciprocal lattice vectors are used to denote lattice planes of the real-
space lattice. Lattice planes of a Bravais lattice are described by the shortest
reciprocal lattice vector hb1+kb2+hb3 that is perpendicular to this plane. The
integer coefficients hkl are called Miller indices. Lattice planes are specified
by the Miller indices in parentheses: (hkl). Family of lattice planes, i.e. lattice
planes that are equivalent by symmetry, are denoted by {hkl}. Finally, indices
in square brackets [hkl] indicate directions. For face-centered cubic (fcc) and
body-centered cubic (bcc) crystals the Miller indices are usually related to
the underlying simple cubic lattice, i.e., fcc and bcc crystals are described as
simple cubic lattices with a basis.

For hcp crystals such as Ru, Co, Zn or Ti, the Miller index notation used
to describe the orientation of lattice planes is slightly more complex since no
standard Cartesian set of axes can be used. Instead the notation is based upon
three axes at 120 degrees in the close-packed plane, and one axis (the c-axis)
perpendicular to these planes. This leads to a four-digit index structure. How-
ever, since the first three axes are coplanar, the first three indices are not
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independent but have to add up to zero. Hence the third index is redundant;
in fact, it is sometimes omitted. For example, both Ru(001) and Ru(0001)
describe the close-packed hexagonal plane of the hcp metal Ru.

The power of group theory to derive rigorous results can be nicely illus-
trated for periodic structures. The solution Ψ of the electronic Schrödinger
equation (2.9) is a many-body wave function that incorporates the electron-
electron interaction. However, as we will see below, there are many schemes to
solve the electronic Schrödinger equation that involve the solution of effective
one-particle Schrödinger equations of the form

{
− h̄2

2m
∇2 + veff(r)

}
ψi(r) = εiψi(r) , (2.16)

where the effective one-particle potential veff(r) satisfies translational sym-
metry:

veff(r) = veff(r +R) , (2.17)

with R being any Bravais lattice vector.
The translational operations TR form an Abelian group since the order of

translations does not matter for the result of applying two successive transla-
tions. As mentioned above, the solutions of the Hamiltonian can be classified
according to their symmetry properties. In group theory one says that solu-
tions of different symmetries belong to so-called different representations of
the symmetry group. Now there is an important theorem that the represen-
tations of an Abelian group are one-dimensional [7], which means that the
eigenfunctions of the translational group can be written as

TRψi(r) = ψi(r +R) = ci(R)ψi(r) . (2.18)

The eigenvalues ci(R) are complex numbers of modulus unity that have to
satisfy

ci(R)ci(R′) = ci(R+R′) , (2.19)

which can be derived by applying two successive translation. From this relation
it follows that the eigenvalues ci(R) are complex numbers of modulus one that
can be expressed in an exponential form

ci(R) = eik·R . (2.20)

The eigenfunction ψi(r) is thus characterized by the crystal-momentum k that
acts as a quantum number. Equation (2.18) can now be reformulated to state
that the eigenstates of a periodic Hamiltonian can be written in the form

ψk(r) = eik·ruk(r) (2.21)

with the periodic function

uk(r) = uk(r +R) (2.22)
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Fig. 2.3. Left panel: fcc crystal with 100 faces and one 111 face, right panel: fcc
crystal with 100 faces and one 110 face

for all Bravais lattice vectors R. This is the famous Bloch theorem which is an
exact result since it is purely based on symmetry properties. Functions that
obey the relation (2.21) are usually called Bloch functions.

A surface can be thought to be created by just cleaving an infinite crys-
tal along one surface plane. A bulk-terminated surface, i.e. a surface whose
configuration has not changed after cleavage, is called an ideal surface. Such
ideal surfaces are shown in Fig. 2.3 where two fcc crystals are plotted that
are terminated by the square {100} faces. In addition, the cubes are further
cleaved to indicate the other low-index faces of a face-centered cubic crystal.
In the left panel of Fig. 2.3, the (111) face is shown which is perpendicular to
the diagonal of the cubic unit cell. This (111) face with its hexagonal struc-
ture is the closest-packed fcc surface. In the right panel a (110) face is shown
that is perpendicular to the diagonal of one of the square faces. The (110)
surface has already a rather open structure with troughs running along the
[11̄0] direction.

A semi-infinite solid with an ideal surface has no longer the three-
dimensional periodicity of the crystal. Still there is a two-dimensional pe-
riodicity present parallel to the surface. In two dimensions, Bravais lattices
can also be defined, equivalently to the three-dimensional case. Furthermore,
there is also a two-dimensional Bloch theorem for a crystal having a periodic
structure parallel to the surface which says that the electronic single-particle
wave functions can be written as

ψk‖(r) = eik‖·ruk‖(r) , (2.23)

where uk‖(r) has the two-dimensional periodicity of the surface.
There are five two-dimensional Bravais lattices which are sketched in Ta-

ble 2.1. In fact, the centered rectangular lattice is just a special case of an
oblique lattice, but it is usually listed separately. Examples of low-index planes
of fcc and bcc crystals with the corresponding symmetry are also plotted. The
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Table 2.1. The five two-dimensional Bravais lattices. In addition, examples of low-
index planes of fcc and bcc crystal with the corresponding symmetry are plotted
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square (100) surface has a fourfold symmetry axis. The hexagonal (111) sur-
face with its sixfold symmetry axis corresponding to the closest-packed surface
is usually the most stable surface. Rectangular surfaces such as the (110) sur-
face have already a more open structure. In fact, the low-index (100), (111)
and (110) faces are the most often studied surfaces in surface science. Oblique
surfaces are usually rather complex. Often they correspond to stepped surfaces
like the example of the (210) surface that is shown in Table 2.1.

The planes plotted in Table 2.1 correspond to ideal surfaces where the
interatomic distances are the same as in the bulk. However, at a real surface
the fact that the bonding situation is entirely different compared to the bulk
situation will cause a rearrangement of the atoms at and close to the surface.
If this rearrangement preserves the symmetry of the bulk plane of termina-
tion, it is called relaxation. The corresponding surface structure is refered to
as a (1 × 1) structure. However, if a significant restructuring of the surface
occurs that changes the periodicity and symmetry of the surface, it is termed
reconstruction.

Such a structure is labeled with respect to the ideal termination of the
corresponding surface plane. If the new surface unit cell is spanned by new
vectors as

1 = ma1 and as
2 = na2, the surface is labeled by (hkl)(m × n).

Sometimes (hkl)p(m×n) is written, where p stands for primitive. Frequently,
surface structures are observed with two atoms in the unit cell where the
second atom occupies the centre of the unit cell. Such a situation is then
labeled by (hkl)c(m× n), where c stands for centered [13].

The difference between relaxation and reconstruction is illustrated in Ta-
ble 2.2 using the fcc(110) surface as an example. In the relaxed geometry just
the distance between the top and the second layer is decreased with respect
to the ideal surface. The top view of the relaxed structure indicates that the
lateral symmetry of the surface remains unchanged. The last column of Ta-
ble 2.2 presents a very prominent example for surface reconstructions, namely
the so-called missing-row reconstruction which occurs for a number of mate-
rials such as Au(110) [14] or Pd(110). Every second row of the (110) surface
running in [11̄0] direction is missing. The surface unit cell becomes twice as
large resulting in a 2×1 structure. Note that the microfacets forming the two
ledges of the troughs correspond to close-packed triangular structures.

Semiconductor surfaces often show much more complex reconstruction pat-
terns than metals. This is caused by the covalent nature of bonding in semi-
conductors where creating a surface strongly perturbs the bonding situation.
The most famous example is the 7 × 7 reconstruction of the Si(111) surface.
But also compound semiconductor such as GaAs exhibit extremely complex
reconstruction patterns, as will be demonstrated in Sect. 4.3.

The periodicity of a surface can also be perturbed by the presence of adsor-
bates. For sufficiently strong adsorbate-substrate interactions commensurate
adlayers will be created that result in larger surface unit cells as, e.g., for the
O(2× 2)/Pt(111) structure, where one fourth of the surface three-fold hollow
sites are occupied by oxygen atoms. If the adsorbate-substrate interaction is
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Table 2.2. Illustration of relaxation and reconstruction of the fcc(110) surface.
In the relaxed structure just the distance between the top and the second layer is
changed leaving the surface symmetry unchanged while in the (2 × 1) missing-row
reconstruction every second row on the surface is missing

Structure Ideal Relaxed Reconstructed

1×1 1×1 2×1

Top view

Side view

weaker than the adsorbate-adsorbate coupling strength, as is often the case
for organic adlayers, the adsorbate adlayer is not necessarily in registry with
the surface resulting in an incommensurate adlayer for which no longer any
surface periodicity can be expressed. This makes any theoretical treatment
rather cumbersome.

A surface that is only slightly misaligned from a low index plane is called
a vicinal surface. A vicinal surface is structured as a periodic array of terraces
of a low-index orientation separated by monoatomic steps. In Fig. 2.4, a (911)
surface is shown illustrating the structure of a vicinal surface. The high-index
(911) surface consists of 5 atomic rows of (100) orientation separated by a
step with a (111) ledge, i.e., the ledge represents (111) microfacets. In fact,
in order to make the structure of vicinal surfaces immediately obvious, they
are often denoted by n(hkl) × (h′k′l′) where (hkl) and (h′k′l′) are the Miller
indices of the terraces and of the ledges, and n gives the width of the terraces in
numbers of atomic rows parallel to the ledges. By studying vicinal surfaces, the
influence of steps on, e.g., adsorption properties or reactions on surfaces can
be studied in a well-defined way. Further defects that can exist on surfaces are
kinks, adatoms, vacancies and adatom islands. These defects are illustrated in
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[111]stepterrace [100]

Fig. 2.4. A stepped (911) = 5(100) × (111) vicinal surface. Steps with ledges of
(111) orientations separate (100) terraces that are 5 atom rows wide

vacancy

adatom

adatom island kink
step with (100)−oriented ledge

Fig. 2.5. Illustration of defects on surfaces such as steps, kinks, adatoms, adatom
islands, and vacancies

Fig. 2.5. In fact, the plotted surface corresponds to a defected (755) = 5(111)×
(100) surface where the steps are made of (100)-oriented microfacets. The
creation of defects is usually associated with a cost of energy. Yet, at non-zero
surface temperature there will always be a certain amount of defects present
because of entropic reasons. This is a particular problem for experimentalists
who have to check whether their observed results on nominally flat surfaces
might be dominated by minority defect sites.

On the other hand, the study of defects is important because often the de-
fects are considered to be the active sites for surface reactions. This is relevant
for the understanding of, for example, real catalysts which usually exhibit a
very defect-rich structure. Furthermore, the defects depicted in Fig. 2.5 all
appear during growth processes on surfaces. Thus the properties are relevant
for a true understanding of growth, as will be shown in Sect. 8.5.
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Exercises

2.1 Born–Oppenheimer Approximation

Expand the eigenfunctions of the total Hamiltonian

H = Tnucl + Tel + Vnucl−nucl + Vnucl−el + Vel−el (2.24)

according to
Φ(R, r) =

∑

μ

Λμ(R) Ψμ(r,R) , (2.25)

where the Ψμ(r,R) are the eigenfunctions of the electronic Hamiltonian

Hel({R}) = Tel + Vnucl−nucl + Vnucl−el + Vel−el . (2.26)

By multiplying the many-body Schrödinger equation (2.7) by
〈
Ψν |, a set

of coupled differential equations for the nuclear wave functions Λμ(R)
can be obtained.
a) Write down the coupled equations for the nuclear wave functions
Λμ(R). Which terms are neglected in the Born–Oppenheimer approxi-
mation (compare with (2.10))?
b) Discuss the meaning of the neglected terms. Give an estimate for the
terms that are diagonal in the electronic wave functions.

2.2 Surface Structures

a) Determine the structure and the reciprocal lattice of the (100), (110)
and (111) unreconstructed surfaces of bcc and fcc crystals. Give the basis
vectors of the corresponding unit cells in units of the bulk cubic lattice
constant a.
b) Find the surface first Brillouin zone for each surface.

2.3 Wigner–Seitz Cell in Two Dimensions

Consider a Bravais lattice in two dimensions.
a) Prove that the Wigner–Seitz cell is a primitive unit cell.
b) Show that the Wigner–Seitz cell for any two-dimensional Bravais lat-
tice is either a hexagon or a rectangle.

2.4 Reciprocal Lattice

a) Show that the reciprocal lattice belongs to the same symmetry group
as the underlying Bravais lattice in real space.
b) Determine the reciprocal lattices and the first Brillouin zones of all
the two-dimensional Bravais lattices shown in Table 2.1.
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2.5 Lattice Spacing and Vicinal Surfaces

Consider a lattice plane in a three-dimensional crystal described by the
Miller indices (hkl).
a) Show that the reciprocal lattice vector G = hb1 + kb2 + lb3 is perpen-
dicular to this plane.
b) Show that the distance between two adjacent (hkl) planes is given by

dhkl =
2π
|G|

c) Consider the unreconstructed (11n) surface of a fcc crystal with cubic
lattice constant a and n an odd number. This surface consists of (001)
terraces terminated by steps of [1̄10] orientation. Show that the terraces
have a width of a × n/

√
8 and that the interlayer distance is given by

a/
√
n2 + 2. Prove that the miscut angle between (11n) and (001) surfaces

is arctan(
√

2/n).
d) The unreconstructed (10n) surface of a fcc crystal with cubic lattice
constant a also consists of (001) terraces terminated by monoatomic steps.
Determine the terrace width, the lattice distance between adjacent (10n)
planes and the miscut angle to the (001) plane.
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