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Secrets. .. and lies

How can we transmit information in such a way that only authorised persons
can understand it? How can we be sure that the information we transmit
reaches its destination without being altered? Moreover, how can we be sure
of the origin of a message, and so trust its content? In this chapter we shall deal
with these problems. We shall first examine the earliest classic cryptographic
methods, rapidly outlining their development along the centuries, and then
we shall discuss the most recent research about public key cryptography. For
further details about the history and development of cryptography, the reader
can have a look at the good popular scientific book [58].

7.1 The classic ciphers

Humanity has always felt the need for efficient methods to communicate in a
secret and secure way: by this we mean the ability of sending messages that
can be easily read by the addressees and cannot possibly be deciphered by
unauthorised people. This millennium-old problem is extremely important to-
day, when the advances in electronic communication systems make exchanging
information both easier and more vulnerable.

The earliest examples of secret messages appear in the Histories by
Herodotus, the Greek historian who lived in the 5th century BCE and chron-
icled the contemporary Greco-Persian wars.

7.1.1 The earliest secret messages in history

Herodotus was an extraordinary narrator: he had an unbelievable talent for reporting
what he had seen and been told in his travels in Asia Minor, Greece, Africa, Sicily
and so on.

In Book VII of the Histories he tell how Xerxes, having succeeded his father Dar-
ius, after crushing a repellion in Egypt, is about to wage war on Greece: preparations
for the expedition are made by creating a formidable army. The pages narrating this
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preparations are engrossing, with a survey of the army, a detailed portrayal of the
costumes and the armours of each of the peoples composing the Persian army, the
description of the fleet. Finally, the expedition leaves: but somebody has warned the
Greeks of Xerxes’s actions and Book VII ends with following passage:

The Lacedemonians [= Spartans] had been informed before all others that the
king was preparing an expedition against Hellas; and thus it happened that they sent
to the Oracle at Delphi, where that reply was given them which I reported shortly
before this. And they got this information in a strange manner; for Demaratos the
son of Ariston after he had fled for refuge to the Medes was not friendly to the
Lacedemonians, as I am of opinion and as likelihood suggests supporting my opinion;
but it is open to any man to make conjecture whether he did this thing which follows
in a friendly spirit or in malicious triumph over them. When Xerxes had resolved to
make a campaign against Hellas, Demaratos, being in Susa and having been informed
of this, had a desire to report it to the Lacedemonians. Now in no other way was he
able to signify it, for there was danger that he should be discovered, but he contrived
thus, that is to say, he took a folding tablet and scraped off the wax which was
upon it, and then he wrote the design of the king upon the wood of the tablet, and
having done so he melted the wazx and poured it over the writing, so that the tablet
(being carried without writing upon it) might not cause any trouble to be given by
the keepers of the road. Then when it had arrived at Lacedemon, the Lacedemonians
were not able to make conjecture of the matter; until at last, as I am informed,
Gorgo, the daughter of Cleomenes and wife of Leonidas, suggested a plan of which
she had herself thought, bidding them scrape the wax and they would find writing
upon the wood; and doing as she said they found the writing and read it, and after
that they sent notice to the other Hellenes. These things are said to have come to
pass in this manner. (Translation by G.C. Macaulay.)

Moreover, it is well known that in the Battle of Salamis the Greeks, having
been informed of Xerxes’s expedition thanks to this stratagem and so being ready
to confront him, managed in 480 BCE to defeat the Persians. So a secret, cleverly
hidden message, changed the outcome of a war.

Herodotus himself, in Book V of the Histories, tells the story of Histiaios who
desiring to signify to Aristagoras that he should revolt, was not able to do it safely
in any other way, because the roads were guarded, but shaved off the hair of the most
faithful of his slaves, and having marked his head by pricking it, waited till the hair
had grown again; and as soon as it was grown, he sent him away to Miletos, giving
him no other charge but this, namely that when he should have arrived at Miletos he
should bid Aristagoras shave his hair and look at his head: and the marks, as I have
said before, signified revolt. This thing Histiaios was doing, because he was greatly
vexed by being detained at Susa. He had great hopes then that if a revolt occurred
he would be let go to the sea-coast; but if no change was made at Miletos he had no
expectation of ever returning thither again. (Translation by G.C. Macaulay.)

It is clear that as soon as the enemy suspects the existence of a hidden message,
the obvious countermove is to inspect with the greatest care all possible hiding
places. In the episodes told by Herodotus, the suspect would be searched until the
message hidden under the hair is found, or the tablet would be examined meticu-
lously until the place where the message was written is spotted.

We conclude this historical preamble with a last anecdote (see [58]).
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Mary Stuart, Queen of Scots, imprisoned in 1568 by Queen Elizabeth, was a
prisoner for 18 years. In 1586 a plot to free her and simultaneously assassinate
Queen Elizabeth was organised: the conspirators deemed it necessary for their plan
to be approved by the Queen of Scots. To do so, they used hidden and ciphered
secret messages. But both the presence of a double-crosser and the deluded certainty
of being able to write freely in the messages, in the (mistaken) confidence in the
cryptosystem they used being indecipherable, drove Mary to write more than she
should have; this gave Queen Elizabeth the proof of her involvement in the plot and
led to her death sentence.

These examples and many more show how, mainly during wartime, the
need for devices to send messages in such a way that the adversaries could
not discover them has been felt for centuries. The most spontaneous way
is to hide the message as the above episodes relate: this technique is called
steganography.

Another way to send a message in such a way that the enemy cannot
understand it is obtained by hiding not the message, but its meaning. In this
case we are dealing with cryptography. We are enciphering a message so that
it can be read by whomever obtains it, but only the actual addressee is able to
decipher it, while the enemy cannot, even if he gets hold of it. A first, simple
example of ciphering of a message consisted in substituting Greek characters
for Latin ones. But perhaps one of the first recorded examples of a ciphered
message in the history dates back to Julius Caesar. Thanks to Suetonius’s On
the Life of the Caesars (2nd century CE), we know one of the systems used
by Caesar to encipher his messages: he shifted by three positions, with respect
to its position in the alphabet, each letter of the message to be sent.

If we denote by lower case letters the 26 letters of the alphabet, each letter
of the message (plaintext) will be substituted with the letter following it by
three positions, which we shall write in upper case: so we get a new message
(ciphertext). The explicit correspondence between the letters is described in
Table 7.1.

The enciphering or encryption is the rule describing how to pass from one
alphabet to the other one, that is, allowing us to rewrite a message so to make
it unreadable for those who do not know the rule. For instance, if the message
to be sent is

attack tomorrow (plaintext),
the result after enciphering is

DWWDFN WRPRUURZ (ciphertext).

Table 7.1. Cipher used by Caesar

abcdef ghigjkllmnopgqgqrs¢tuvwzxy z
DEFGHTIJEKLMNDNOPAQRSTUVWIXYZAZBSC
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A system like this, in which the cipher alphabet is obtained from the plain
alphabet by moving each letter by a fixed number of positions, is called Caesar
cipher. In English there are altogether 26 possible Caesar ciphers, or rather
25, as clearly if a letter is moved by 26 positions it comes back to its starting
point and the ciphered message is equal to the original one. In other words, we
may define a bijection between the possible cipher alphabets and the residue
classes modulo 26, that is with the integers n such that 0 < n < 25. Given
such an integer n, called key, the corresponding cipher alphabet is the one
moving the letters of the plaintext by n positions, that is to say, the alphabet
obtained by an n-position shift. Clearly the value n = 0 corresponds to the
initial alphabet, that is to the plaintext.

If a message that has possibly been enciphered using a Caesar cipher has
been intercepted, it suffices, in order to decrypt it, to use the 26, or rather
the 25, keys of the possible cipher alphabets. So this enciphering can be
sidestepped very easily, especially so if one has good computing instruments,
as we have today, while Caesar and his enemies had not.

Refining this principle, we may use as enciphering, rather than just the
shifts, all possible permutations of the 26 letters. In practice, each permutation
of the set {0,1,2,...,25}, called key as above, determines a cipher alphabet,
and the other way around: for instance, for the identity permutation it suffices
to have 0 correspond to A, 1 to B, 2 to C and so forth.

But how can we remember the key? We should remember the whole letter
sequence, lacking a specific scheme to memorise it. However, there is a good
system to generate a permutation of the alphabet that can be easily memo-
rised: it consists in using a key that is itself determined by a key word or a key
phrase, or any letter string we can easily remember. Let us see an example to
clarify this method.

Example 7.1.1. Assume we have chosen as key phrase the following;:
to be or not to be that is the question.

First of all, remove the spaces between the words of the key phrase and then the
repetitions, obtaining in our case

tobernhaisqu.

The cipher alphabet will be constructed by putting in the order, under the plain
alphabet, first the letters of the key word modified as above, and then the letters of
the plain alphabet not appearing in the key phrase, in the usual alphabetic order.
So we get:

a b c
T 0 B

o pgqrstuvwzxy 2z

g h i j k1 mn
HAISQUCDTFGJIKLMPVWIXY?Z

e f
R N

In this way we have associated to the key, that is to the phrase to be or not to be
that is the question, the cipher alphabet shown. We may verify that the permutation
determined by the key word and that determines the alphabet is described by the
following table:
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9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 1234 5 01
14 181620 2 3 5 6 9 10 11 12 15 21 22 23 24 25

67
19 14 1713 70

8
8
So, if the message to send were

it is the early bird that gets the worm ,

the result after being enciphered in this way would become
IM IL MAR RTKUY OIKE MATM HRML MAR WFKC .

In general, in this way the number of possible keys, and so of cipher al-
phabets, increases quickly form 26 (Caesar ciphers) to 26!, the number of all
possible permutations of 26 elements (see Exercise A1.11). This number is

51090942171709440000,

that is, about 51 - 10'8, or more than fifty billion billion: if an adversary
intercepts the message and suspects this enciphering method has been used
he cannot possibly try to decrypt it by trial and error. To realise the hugeness
of this number it suffices to recall that the Big Bang occurred approximately
15 billion years ago. So whoever has to send secret messages may rest easy
and relax: nobody can possibly decrypt them! But are things really like this?

Unfortunately, the answer is no: the frequency with which a given letter
appears in a text long enough, and other factors depending on the alphabet
used can reduce substantially the number of attempts necessary to find the
key! We shall return on this in next section.

As regards our ciphers, an enciphering using a single cipher alphabet, as
those seen so far, is called monoalphabetic cipher. However, we may consider
using more than one cipher alphabet. How?

Suppose we want to use s € N\ {0} cipher alphabets. Then, divide the
message into s-letter blocks and successively encipher the letters in each block
with the s alphabets, always using them in the same order. In other words,
denoting by A4;, 1 < i < s, the s alphabets, all the letters that are in the
1th position of a block will be enciphered with the same alphabet A;. Such
a cipher is called periodic polyalphabetic cipher. If s is equal or greater than
the length of the message we shall simply have what is called an (aperiodic)
polyalphabetic cipher.

The first example of this kind is apparently due to Leon Battista Alberti, in the
second half of 15th century: he proposed the use of two cipher alphabets for each
message. His idea was improved later by Vigenére in the second half of 16th century.
Vigenere proposed that each message should be enciphered using 26 cipher alpha-
bets. The 26 cipher alphabets are shown in table 7.2, where the integer appearing
in each line is exactly the shift key giving the cipher alphabet.

To fix ideas, and prepare the mathematical model, we may label the letters
of the message using integers as described by table 7.3.

The integers from 0 to 25 are called numerical equivalents of the alphabet
letters. In this way, as already remarked, we write 0 in the place of a, 12 in
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Table 7.2. Vigenere table

abcdefghijklmnopgqrstuvwzxyz
O ABCDEFGHIJKLMNOPQRSTUVWIXY?Z
1 BCDEFGHIJKLMNOPQRSTUVWIXYZA
2 CDEFGHIJKLMNOPQRSTUVWIXYZAB
B DEFGHIJKLMNOPQRSTUVWXYZABC
4 EFGHIJKLMNOPQRSTUVWXYZABCD
5 FGHIJKLMNOPQRSTUVWXYZABCDE
6 GHIJKLMNOPQRSTUVWIXYZABCDETF
7 HIJKLMNOPQRSTUVWXYZABCDETFG
8 IJKLMNOPQRSTUVWXYZABCDEFGH
9 JKLMNOPQRSTUVWXYZABCDEFGHTI
IOKLMNOPQRSTUVWXYZABCDEFGHTIUJ
I1LMNOPQRSTUVWXYZABCDEFGHTIJK
12MNOPQRSTUVWXYZABCDEFGHIUJKL
I3NOPQRSTUVWXYZABCDEFGHIJKLM
140PQRSTUVWXYZABCDEFGHIJKLMN
IS5PQRSTUVWXYZABCDEFGHIJKLMNDO
I6QRSTUVWXYZABCDEFGHIJKLMNGOP
17TRSTUVWXYZABCDEFGHIJKLMNOPDQ
1I8STUVWXYZABCDEFGHIJKLMNOPRQR
IO9TUVWXYZABCDEFGHIJKLMNOPQRS
20UVWXYZABCDEFGHIJKLMNOPQRST
20l VWXYZABCDEFGHIJKLMNOPQRSTTU
2 WXYZABCDEFGHIJKLMNOPQRSTTUYV
23X YZABCDEFGHIJKLMNOPQRSTUVW
24YZABCDEFGHIJKLMNOPQRSTUVWX
25ZABCDEFGHIJKLMNOPQRSTUVWXY

the place of m, and so forth; if necessary, we shall use the notation a < 0,
m < 12. We might further use other numbers to denote spaces in the text,
commas, diacritics and every other symbol that might be useful to reconstruct
more easily the text. For simplicity, we shall not use these signs.

Table 7.3. Numerical equivalents of the 26 letters

a— 0 h — 7 0o — 14 u— 20
bh—1 i — 8 p— 15 v — 21
c— 2 j — 9 q — 16 w — 22
d — 3 k — 10 r — 17 x — 23
e — 4 1 — 11 s — 18 y — 24
f— 5 m— 12 t — 19 z — 25
g — 6 n — 13
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How may we remember the sequence of the s alphabets to be used in enci-
phering our message? By memorising it using a key word. We may use a word
whose length s represents the period by which the alphabets are repeated.

Example 7.1.2. Assume we have chosen the key word FISH and we want to encipher
the sentence “shoot now”.

The rules to be followed in the encipher are contained in the key word we have
chosen, in the sense that we shall use as cipher alphabets, repeating each in each
4-letter word (shoo | tnow), the lines of Vigenere table corresponding successively
to the letters F', I, S, H. In our example, the lines are the ones numbered 5, 8, 18,
and 7. Then the first letter of the message, the s, shall be enciphered with the letter
that is in the position of s using as cipher alphabet that of line 5, corresponding
to the letter F' of the key word, up to the second letter o that shall be enciphered
with the line corresponding to the letter H; then we start again, using the alphabet
corresponding to the letter F' for the letter ¢, and so on.

We conclude this section with another anecdote (see Scientific American,
August 1977).

In 1839, Edgar Allan Poe, from the pages of a Philadelphia periodical, asked
his readers for cryptograms with monoalphabetic substitutions, and guaranteed he
would solve them. Among many other ones, he received the following handwritten
cryptogram:

GE JEASGDXV,

Z1J GL MW LAAM XZY ZMLWHFZEK EJLVDXW KWKE TX LBR ATGH LBMX AANU BAI
VSMUKKSS PWNVLWK AGH GNUMK WDLNZWEG JNBXVV OAEG ENWBZWMGY MO MLW WNBX MW
AL PNFDCFPKH WZKEX HSSF XKIYAHUL? MK NUM YEXDM WBXY SBC HV WYX PHWKGNAMCUK?

The letters in bold correspond to upper case letters.

Having read the message, Poe replied that it consisted of random symbols, not
corresponding to any monoalphabetic substitution. More than one hundred years
later, in 1975, the mathematician Bryan J. Winkel, and the research chemist Mark
Lyster, who took part in the course in cryptography given by by Winkel, decrypted
the message. In fact, it was not a monoalphabetic substitution, but did not even
consist of random letters. Moreover, there were some errors probably due to the
transcription of the text (see Exercise B7.20). The solution is as follows:

Mr. Alexander,

How is it that the messenger arrives here at the same time with the Saturday
courier and other Saturday papers when according to the date it is published three
days previous? Is the fault with you or the postmasters?

7.2 The analysis of the ciphertext

We have just described some techniques to encipher messages that look to be
unbreakable, at least if our only way is to proceed by trial and error and we
are not incredibly lucky. Is this all, or is there some other information we can
use?
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Let us look at things from the point of view of the adversary, who wants to
decrypt the message at any cost. We know the message has been enciphered
using a monoalphabetic substitution and, as we have remarked, we cannot
proceed by trial and error, if we are to solve the problem in an admissible
time.

So we have to use other methods, independent of the kind of key that has
been used, and so of the cipher alphabet it determines. How may we proceed,
having only a page of ciphertext? We subject it to a text analysis: depending
on the language the text is written in, we take into account its properties. In a
language like Italian, where most words end with a vowel, most of the symbols
at the end of the words of the ciphertext will be vowels. More in general,
much information is given by frequency analysis. In each language some letters
appear with greater frequency, some more rarely. Linguistic and statistical
studies have found the frequency of the 26 letters of English alphabet:

Letter %  Letter % Letter % Letter %

a 7,3 h 3,5 o) 7,4 u 2,7
b 0,9 i 7,4 p 2,7 v 1,3
c 3,0 j 0,2 q 0,3 w 1,6
d 4.4 k 0,3 T 7,7 X 0,5
e 13,0 1 3,5 S 6,3 y 1,9
f 2,8 m 2,5 t 9,3 z 0,1
g 1,6 n 7,8

So if we know that the text to decrypt is written in English, and if it
is long enough, we may determine the frequencies of the letters in the text.
Those appearing with the greatest frequency might possibly be es, or ts. Then
we may look for correspondences by trial and error, examining successively
the letters with smaller frequency, looking for pieces of the puzzle falling
into place. If we get meaningless words, we adjust our tentative assignations.
Further information is given by the frequency of double letters, the greater or
smaller likelihood that certain letters are found close together, and so on.

Example 7.2.1. We get back to the example we saw in the previous section, to
see how to use efficiently the techniques just described to decrypt the enciphered
message

IM IL MAR RTKUY OIKE MATM HRML MAR WFKC .

We write down the frequency of the letters in the message:



7.2 The analysis of the ciphertext 327

Letter Times Letter Times Letter Times

A 3 J 0 S 0
B 0 K 3 T 2
C 1 L 2 U 1
D 0 M 6 \% 0
E 1 N 0 \W% 1
F 1 (0] 1 X 0
G 0 P 0 Y 1
H 1 Q 0 7 0
I 3 R 4

As this is a short message, frequency analysis might be misleading, but in any
case we may try to use it. We might also exploit the fact that certain letters are more
likely to end a word, or the length of the words, but this attempts are easily foiled
by breaking up the message in blocks of the same length, which makes it difficult to
reconstruct the single words. However, at this stage we shall use everything we know.
So let us analyse our text. The most frequent letters, M and R, might correspond
to e and t. Moreover, the repeating subsequence M AR is likely to be the article the.
So we may tentatively try the correspondences

M=t, A=h, R=ce,

and for the next most frequent letters of the ciphertext, I and K, we might try the
next most frequent alphabet letters n and r. In this way we obtain:

nt nl. the eTrUY OIrE thTt HetL the WFrC .

Clearly, the choice I = n is not promising, and anyway, if the other choices are
right, it looks like I must represent a vowel, or the sentence would begin with the
“word” nt. Trying out o, ¢ and a, the best choice appears to be i. So we get:

it il the eTrUY OIrE thTt HetL the WFrC

and after some more attempts and frequency analyses we get the solution.

It is clear that this example is not too typical because we are analysing a very
short text, but the important thing is to emphasise the fact that the far too many
theoretical possibilities to be considered in order to find the key decrease enor-
mously by using data about the language and making some educated guesses and
backtracking.

Analysing a Caesar cipher by studying frequencies is clearly even easier.

Vigenere system too can be attacked with a suitably adapted frequency
analysis, if its period is known. For instance, if we assume that the period,
that is to say the length of the key word is four, then we have to line up the
letters of the ciphertext in four columns, as follows:

* %k ok ok
* %k ok ok
* 3k >k ok
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If in the same column there are equal cipher letters, they represent the
same letter of the plaintext, as all the letters in the same column are enci-
phered with the same cipher alphabet.

Coming back to Example 7.1.2, the pattern is

shoo . XPGV . 23156 21
tnow YVGD 24216 3

and, as is immediately seen, the letter G (or its numerical equivalent 6) ap-
pearing in the third column is repeated and corresponds to the same letter o
of the plaintext.

These remarks allow us, with due caution, to use frequency analysis on
each column separately to reconstruct the key word. Moreover, a German
cryptologist who lived at the end of 19th century, F. W. Kasiski, found a
method to determine the period of the alphabet, and this partly explains the
loss of interest for this kind of ciphers.

Remark 7.2.2. Some of these methods can also be applied to ancient inscriptions:
clearly the people writing them did not, in general, intend to encipher a message, but
for us those texts actually are enciphered messages we have to decrypt. Decrypting
an unknown form of writing is something of a magic, as it allows to enter a past world,
to get to know a dead civilisation, to call to mind a remote age. The main example
are Egyptian hieroglyphics: the most ancient ones date back to fourth millennium
BCE. Interest in them was aroused in 16th century when Pope Sixtus V decreed
that a new road network should be built in Rome, putting at the crossroads some
Egyptian obelisks: confronted with those puzzles, many tried to understand their
meaning. The most famous archaeological find with hieroglyphics is undoubtedly
the Rosetta stone, made of black basalt, discovered in 1799 near Nile’s delta and
engraved in 196 BCE: it is an inscription regarding a decree by an assembly of
priests honouring the Pharaoh and, as is well known, it carries the same text in
three versions: hieroglyphic Egyptian, Demotic Egyptian and Greek. The Greek
text was easily translated and so it became, in a sense, the plaintext against which
the two other texts could be compared: it yielded both a great opportunity and an
irresistible challenge. J.F. Champollion measured himself against it and, in 1822,
solved the mystery. Today the stone is kept in the British Museum in London.

Archaeologists have deciphered several ancient writing systems and languages,
but many of them are still undeciphered, among them Etruscan. The most intrigu-
ing deciphering has perhaps been that of Linear B, a Mediterranean script, dating
back to Bronze Age. The renowned English archaeologist Sir Arthur Evans, during
his excavations in Crete in 1900, unearthed a great number of clay tablets bear-
ing writings, partly in a script which was called Linear B. These tablets made up
the archives of Cretan palaces. They were deciphered in 1953 by M. Ventris and
J. Chadwick. It would be very long to relate the whole story of the deciphering:
suffice it to say that it could form the plot of a thrilling detective novel. Due to the
understanding of Linear B, the political and social situation of Cretan society has
been now reconstructed, at least in its main lines.

‘We have said above that the purpose of the authors of the inscriptions was not,
in general, to encipher them. We kept on the safe side by saying in general: indeed,
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some scholars have recently discovered the presence of cryptographical methods in
Egyptian hieroglyphics. Apparently, some of them were enciphered by order of the
Pharaohs, using several techniques, among which enciphering by substitution.

We are coming to the end of our digression, which teaches us that history is
full of messages to be deciphered. Every discovery unearths a secret whose key was
hidden.

Notice that, in trying to understand a message enciphered using a monoalpha-
betic substitution, we have used quite subtle statistical techniques. Apparently, these
cryptanalytical techniques have been invented by Arabs during Middle Ages. A sub-
ject like this, in fact, can only appear and flourish within a civilisation possessing
an advanced knowledge of mathematics, linguistics, and statistics. Arab civilisation
undoubtedly had these traits. The most ancient document describing explicitly the
frequency method dates back to 9th century, and is due to Abua Yusuf ibn Ishaq
al-Kind1, known as the Arab Philosopher, who in his monograph On Deciphering
Cryptographic Messages described in detail techniques based on statistics and Ara-
bic phonetics and syntax to be used to decrypt documents.

To complete the historical sketch of cryptography we deal in brief with
the machines that, along the centuries, have been devised to put in practice
various ciphers.

7.2.1 Enciphering machines

The first enciphering machine is the so-called cipher disc by Leon Battista Alberti,
which is made up of two concentric copper discs, of different diameters, which can
rotate one with respect to the other around a central axis. Along the circumferences
of the two discs two alphabets are engraved. To encipher a message using Caesar
cipher shifting letters by two positions, it suffices to put the a of the internal disc,
representing the plain alphabet, next to the C of the external disc, representing
the cipher alphabet (with key n = 2). After this simple operation, to encipher the
message it suffices, without any further rotation of the discs, to read successively the
letters on the external disc corresponding to the letters on the internal one. It is a
very simple and effective device, which has been in use for several centuries.

The same device can be also used, in quite a natural way, for a polyalphabetic
enciphering: changing the position of the second disc means exactly choosing a new
alphabet.

As already remarked, this enciphering machine has lived on for several centuries,
up to the moment, towards the end of World War I, it has been superseded by the
famous Enigma machine, invented and constructed by Arthur Scherbius and Richard
Ritter, and used until World War II by the German army. In a first form, it consisted
of the following three elements, connected by electric wires (see figure 7.1):

an alphabetic keyboard, to input the plaintext;

a scrambler unit, which is the part actually performing the enciphering;

a board with as many light bulbs as the letters of the plain alphabet, devised in
such a way that the processed electric signal would light the lamp corresponding
to the enciphered letter.
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The scrambler unit is the system’s main part. It is the device actually enciphering
the message: it consisted of a thick rubber disc through which a complex network
of electric wires passed. For instance, to encipher the letter a with the letter D, a is
input on the keyboard: in this way the electric current enters the scrambler, follows
the route through the electric wires, and lights the lamp corresponding to the letter
D.

Later, Scherbius modified the machine, substituting a scrambling rotor for the
original scrambler: in this way, the scrambling disc automatically rotated by one
twentysixth of a revolution (if the alphabet consisted of 26 letters) after enciphering
each letter. So, to encipher the next letter, a different cipher alphabet is used. The
rotating scrambler defines 26 cipher alphabets. Further improvements substituted
the single scrambler with three scrambling rotors, and introduced a reflector, which
could reflect the signals processed by the rotors, adding complexity to the machine.
In short, it was a very sophisticated enciphering machine, so much so that Scher-
bius believed that FEnigma generated unbreakable coded messages. In 1943, during
World War II, the English used the Colossus computers to decrypt messages gen-
erated by Enigma. It is very interesting to notice that many of the researchers who
collaborated to the breaking of Enigma, among which the mathematician A. Turing,
perhaps inspired by the peculiarities of the problem, went on to give fundamental
contributions to the development of computer science and artificial intelligence.

7.3 Mathematical setting of a cryptosystem

Let us go back to enciphered messages. The science of decrypting messages
for which the key is not known is called cryptanalysis.

® 6O @

Fig. 7.1. Enigma’s keyboard and display
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So on the one hand there are the cryptologists, designing methods to enci-
pher messages in such a way that they cannot be read by unauthorised people,
on the other there are the cryptanalysts, who try to decrypt messages, looking
for weaknesses in the cryptographic system. The interaction of these two sub-
jects, cryptology and cryptanalysis, which taken together form cryptography
and deal, from different viewpoints, with the same object, leads, as can be
expected, to ever more complex and secure enciphering systems.

In this section we shall show how to give a proper mathematical layout to
cryptology-cryptanalysis.

In table 7.4 we give a short glossary of the terms used in cryptography.
We further remark that the root crypt- derives from Greek kryptos, meaning
“hidden, secret”.

Before going on, some remarks are in order.

e The alphabets used for plaintexts and ciphertexts can be different among them
and with respect to the one commonly used in the language. In general, it is con-
venient to write messages using, rather than letters, integer numbers, which are
more suitable to the description of the transformations, that is, the enciphering
methods, to be used.

e The transformation procedure, that is, the function describing the passage from
plaintext to ciphertext, must be bijective if we want to be able to reverse the
procedure to decipher the message and find back the original text rather than
something else. The crucial thing is that the person who shall have to decipher
the message has to be in possession of the key!

Table 7.4. Glossary of cryptography

Lexeme Meaning

Plaintext Original message to be sent in a secret way, or string of
symbols in a given alphabet representing the message or
text to be enciphered

Ciphertext Modified, disguised version of the plaintext

Encipher, (encrypt) Convert a plaintext into a ciphertext

Decypher, decrypt Convert a ciphertext into a plaintext

Cipher Method used to convert a plaintext into a ciphertext
Key Data determining both a particular enciphering and the

correponding deciphering rule, among all the possible
ones: in the first case it is called cipher key, in the second
decipher key

Cryptology Science of enciphering messages

Cryptanalysis Science of interpreting enciphered messages
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e Why do we need a key? Is it not sufficient to deal with the enciphering and
deciphering transformations? The fact is, once we have perfectioned a system
to send enciphered messages, changing often the key offers a greater security
without having to modify the whole enciphering system. In other words, we
could describe the system as a combination lock, and the key as one of several
possible combinations. The lock is the enciphering system we are using, while
the key is the combination.

e We are not especially interested here in detailing precisely the set of possible
keys. The important thing we want to emphasise is that it has to have a size
that is not too small, or else it would be feasible for a cryptanalyst to try out all
possible keys for that kind of cipher. For instance, Caesar cipher has a far too
small number of keys.

All in all,

e the task of the cryptologist is to invent systems to transform a plain mes-
sage into a cipher message; such systems are called cryptosystems;

e the task of the cryptanalyst is to oppose this activity, finding ways to
interpret enciphered messages, in general without the authorisation of the
sender.

In conclusion, a cryptosystem consists of:

e a set P, consisting of the possible plaintexts; a single plaintext shall be
denoted by the letter p;

e aset IC, called key set. We shall denote a key by the letter k. Each element
k € K determines an enciphering transformation Cj and a deciphering
transformation Dy, inverse of each other. In particular, Dy, - Cx(p) = p;

e aset C consisting of the enciphered messages. We shall denote one of these
ciphertexts by the letter c.

So, given a cryptosystem determined by the triple (P,C, K) with
P = {plaintexts}, C = {ciphertexts}, K = {keys},

the communication between two persons, Ariadne and Blanche, is described
by the following diagram:

key k €
Ariadne picks a message enc1ph('3r1ng of deciphering of ¢
p to be sent and a the plaintext p D(e) =
key k to encipher it Ci(p) =c¢ RO TP
: Blanche reads
plaintext . ,
Ariadne’s
peP
message p
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In general the messages, both plain and enciphered ones, are split up into
unitary messages. A unitary message may consist of a single letter, or a pair of
letters (digraph), a triple of letters (¢rigraph), or s-letter blocks. The advantage
of dividing a message into blocks of a fixed length is in preventing the easy
recognition of the beginning and end of the words, making the cryptanalysis
based on frequencies more difficult.

Suppose for the time being to have unitary messages consisting of a single
letter each, in a given alphabet. To describe mathematically a cryptosystem,
the most effective way, as already remarked, is to associate with each symbol
of our alphabet an integer number. Assume for simplicity the alphabet in
which we write our messages to be the English one, and consider its numerical
equivalents (see Table 7.3 on page 324).

As we are using a 26-letter alphabet, it is natural to perform all mathe-
matical operations on the numerical equivalent of letters modulo 26. In this
way 26 is identified with 0, that is with the letter a, and so forth. As already
suggested, we might use other numbers to denote spaces in the text, commas,
diacritics and other symbols which may help in reconstructing more easily the
text, but we are not presently interested in them. In general, if the unitary
message is an s-letter block aias...as, then we would like to label the uni-
tary message aias...as by the string of integers x5 ...z, where x;, with
1 < i < s, is the numerical equivalent of a;. Why are we prevented from doing
so? Unfortunately, there is a notational ambiguity which we want to draw
attention to.

Indeed, assume we want to transmit a message consisting of 2-letter blocks,
using the numerical equivalent of the letters. Then the numerical sequence 114
might correspond to the message bo, but also to the message le, depending
on whether we look at the number 114 as consisting of 1 and 14 or 11 and 4.
This is due to having a correspondence with numbers not all consisting of the
same number of digits.

When the unitary message consists of more than one letter, in order to
avoid ambiguities we may use other correspondences: for instance 2-digit nu-
merical equivalents for the letters or binary numerical equivalents, as described
by Table 7.5.

Table 7.5. 2-digit and binary numerical equivalents

— 00 = 00000 — 09 = 01001 — 18 = 10010
— 01 = 00001 — 10 = 01010 — 19 = 10011
— 02 = 00010 — 11 = 01011 — 20 = 10100
— 03 = 00011 — 12 = 01100 — 21 = 10101
04 = 00100 13 = 01101 22 = 10110
— 05 = 00101 — 14 = 01110 — 23 = 10111
— 06 = 00110 — 15 = 01111 — 24 = 11000
— 07 = 00111 — 16 = 10000 — 25 = 11001
— 08 = 01000 — 17 = 10001

= 508 - O Q0 T
=0T 0B B — 5w
N < ¥ s < 2 +w
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Table 7.6. ASCII code

32 4 , 56 8 68D 8 P 92 \ 104 h 116 ¢
33! 45 - 579 69 E 8 Q 93 ] 105 i 117 u
347 46 . 58 : 70 F 8 R 94 ° 106 j 118 v
35 # 47/ 59 ; 7 G 8 S 95 107 k 119 w
36 $§ 480 60 < T2 H 8 T 9 ¢ 108 1 120 x
3% 491 61 = 73 1 8 U 97 a 109 m 121 y
383& 502 62> 74 J 8 V 98 b 110 n 122 z
397 513 637 7K 8 W 99 ¢ 111 o 123 {
40 ( 524 64 @ 76 L 8 X 100d 112 p 124 |
41 ) 535 65 A 7TM 8 Y 10l e 113 q 125 }
42 * 546 66 B 78 N 90 Z 102 f 114 r 126 ~
43 + 557 67 C 79 O 91 [ 103 g 115 s

By using the binary or 2-digit numerical correspondence, the ambiguity
disappears. For instance, the messages le and bo, which had the same numer-
ical equivalent, now have different ones:

Num. eq. 2-digit Binary
le 114 1104 0101100100
bo 114 0114 0000101110

In next section we shall discuss further how to avoid this ambiguity. How-
ever, notice that for the sake of simplicity we might keep using the standard
numerical correspondence using the simple device of separating with spaces
the numbers corresponding to different letters. This is the method we shall use
in the simplest examples. For instance, the message C'IAO will be transcribed
2 8 0 14 rather than 28014.

Another standard way of associating with each alphabet letter and with
each character a number is described, as in the American Standard Code for
Information Interchange (ASCII), by Table 7.6: it is a usual code used to
translate the symbols, more commonly employed when inputting a text into a
computer. In Table 7.6 numbers start from 32, as the integers smaller than 32
represent special control characters affecting the operation of the computer.

7.4 Some classic ciphers based on modular arithmetic

We shall now describe the mathematical aspects of some of the ciphers seen
up to now. For each of them we shall give some examples according to the
following pattern:

e fix the length of the unitary message, appending at the end of the message,
if necessary, the letter x a number of times sufficient for the whole message
to have a length suitable to divide it in blocks of the same length;
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e transform the blocks into numerical equivalents following a procedure to
be described;

e choose a key k£ and a corresponding cipher: that is, define the function C},
that determines the cipher on the alphabet in its numerical form;
determine Dy, = Ck_l;
reconstruct the message in the usual alphabet.

Remark 7.4.1. Let N be the length of the alphabet. As remarked, usually we
take N = 26. Once the length s of the unitary message consisting of s letters
is fixed, if we call z1,...,zs the numerical equivalents of these letters, we
describe a procedure that uniquely determines what shall be written taking
z1,...,Ts as starting point. We shall associate with the block z7 ...xs the
number a that in base N is (z1...xs)y. We know that a € {0,...,N® — 1},
that is to say, we may identify the set of unitary messages (s-letter blocks)
with Zys. So it is clear that an enciphering is just an invertible function on,
and taking values in, Zys. In the previous example, where N = 26, we shall
have
le — 2611+ 4 = 290, bo — 26 -1+ 14 = 40.

On the other hand, if we begin with the number 40, knowing that N = 26, we

find that the corresponding plaintext is bo and only this. So we have solved

in yet another way the ambiguity issue mentioned in the previous section.
An alternative way of denoting the s-letter block zj ...z, with no ambi-

guity is to represent it as an element of Z3, = Zn X Zn X - -+ X Zy, as each
N~ ~ -
S

x; is in Zy.
This defines an obvious bijection between Z3; and Zys given by

Z?V:\ZNXZNX-'-XZ]\LHZNS,
~

. (7.1)
(x1,22,...,25) =21 + 2N + -+ 2 (N2 42, N = (24---21)N.

So, in general, if we split up the message in s-letter blocks, on an N-letter
alphabet, the enciphering function is a bijection

f:zZy — Zy.

A feature of the cipher we are going to describe in this section, the “classic”
ciphers, is that the deciphering key Dy is easily computed from the encipher-
ing key C. In other words, from a computational viewpoint, the knowledge
of the deciphering key is essentially equivalent to the knowledge of the enci-
phering key. In public key ciphers we shall describe later, which rely on very
different mathematical ideas, it is possible, on the contrary, to divulge the
enciphering key without compromising the secrecy of Dj. Indeed, in these
systems, computing Dy, from Cj is so computationally hard to be unfeasible
in practice. For these reasons, classic ciphers are called two-way or symmetric,
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while public key ciphers are also called one-way or asymmetric. But more on
this later.

Let us now examine systematically some kinds of classic ciphers, all relying
on modular arithmetic, which admit as particular instances those considered
above. For the sake of simplicity, in the examples we shall use the numerical
equivalents, inserting spaces between the numbers to avoid any ambiguity.

7.4.1 Affine ciphers

Assume the unitary message consists of a single letter, that is to say, the numerical
alphabet of the messages is P = Zas. If P is a letter, we shall also denote by P
its numerical equivalent. We shall use the same convention for the letters C' in the
ciphertext.

Affine ciphers are described by an enciphering function that uses an affine trans-
formation, that is a bijection

Cy @ Zog — e, P — (aP +b) mod 26,

where a,b € Z and the pair k = (a, b) represents the key of the system. For Cj, to be
bijective, it is necessary for a to be relatively prime with 26, that is, GCD(a,26) =1
(see Exercise A7.3). In this case the congruence za = 1 (mod 26) has a unique
solution @’ modulo 26. Then the inverse deciphering function Dy, is

Dk:C,jl ZZQe —>ZQ6, C—>a'(C—b) mod 26.

Consider now a key k = (a,b) € K. Notice that Caesar or translation ciphers
are affine ciphers with a = 1.

Clearly, we may assume 0 < b < 25 and 1 < a < 25, taking a and b modulo 26.
Recalling that a is relatively prime with 26 if and only if a is an invertible element
in Zog, that is, if a € U(Zge), it follows that the key set is

K= U(Zza) X de.

How many affine ciphers are there? In other words, how many elements are ther in
K?
Recall (see § 3.3 and § 4.2.1) that
U (Zas)| = 9(26) = [{1 < a < 25| GCD(a,b) = 1}| = 12;
so there are 12 - 26 = 312 affine ciphers, including a trivial one, corresponding to
k=(1,0).

In Table 7.7 on page 337 we give a step-by-step example of one of these ciphers,
with a = 7 and b = 10, that is, k = (7, 10). Notice that a Bézout’s identity for 7 and
26 is

—11-743-26=1,
as can be found by applying the Euclidean algorithm (see § 1.3.3), and so a’ =
—11 =15 (mod 26) and the deciphering function is

D7,10)(C) = 15(C — 10) mod 26,

that iS, D(7’10) = C(l5,6)a as —150 =6 (mod 26)
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Suppose we have intercepted a message which is known to be in English and
to have been enciphered with this system. How do we decrypt it? That is, how do
we find the coefficients a and b of the affine transformation? Once more, with a
frequency analysis.

Assume that in the ciphertext the two letters appearing with the least frequency
are R and S: it stands to reason to guess that these letters correspond, in the
plaintext, to j or z. If we suppose that R < 17 corresponds to the letter ¢ < 16,
and S < 18 corresponds to z < 25, then, according to the relation C' = aP + b, the
following congruence system must hold

17=a-16+b (mod 26),
18=a-25+b (mod 26).

Table 7.7. Affine enciphering with k£ = (7,10) modulo 26

Plaintext M/VVVV\% attack at dawn‘

att
Unitary message | .| ack
in 3-letter blocks atd
awn
01919
Numerical equivalent s 0210
of the plaintext 019 3
02213
Numerical equivalent 10 13 13
of the ciphertext o 10 24 2
Cr0)(P) = 1013 5
= 7P + 10 mod 26 10 8 23
Ciphertext | ~~~~~~>KNN KYC KNF KIX
Numerical equivalent of 01919
the deciphered text SN 0210
D(7,10)(C) — 0 19 3
= 15C' 4 6 mod 26 02213

|

Deciphered text
in 3-letter blocks W/V\% att ack atd awn‘

Deciphered text «/VVV\% attack at dawn‘
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An effective way of describing the system is using matrices. In this way, we may
write down the system as

a\ _ (17 L (161
A- <b> = (18> (mod 26), with A = (25 1) .

To solve the system it is necessary for the matrix A to be invertible modulo 26.
In fact, it is easy to prove the following proposition (see Exercise A7.7).

Proposition 7.4.2. Let

ail ai2 ... Qis

a1 az2 ... az2s
A=

As1 As2 ... Qgs

with a;; € Zn. The following are equivalent:

GCD(det(A),N) =1;
A is invertible, that is, there is a unique matriz A~' defined over Zy such that
A-AY = A1 A is the identity matriz. The matriz A~ is given by

All A21 e Asl

1 1 A12 A22 e A52
A7 =det(A)H| . .

Als AQS e Ass

where det(A)™! is the inverse of det(A) in Zn and A;; denotes the cofactor
corresponding to the element a;; in A;

e themap f: X € ZNy — A-X € Zy is bijective (X € Z5 is thought of as a
column vector of order s);

e for every column vector Y € Z%, the system A-X =Y has a unique solution.

Notice that if N is prime, that is, if we are working in a field, the condition for A
to be invertible is det(A) # 0. In this case, Proposition 7.4.2 is a well-known result
in linear algebra.

Coming back to our example, in which detA = —9 = 17 (mod 26) and
GCD(17,26) = 1, we have

Al = (;g i) (mod 26)

is the inverse modulo 26 of the system matrix. So the solutions a and b are imme-
diately found as follows:

() =2 () =(2) moam

In this particular case the simplest way of solving the original system would have
been to subtract the second equation from the first one, immediately finding a = 3
(mod 26) and then b = 21 (mod 26). But we have given the general solution method
for this kind of problems.
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Remark 7.4.3. A word of caution is necessary about the cryptanalytical method
to find a and b just described. It leads to linear congruence systems of the form

(5)2(5)

where a, 3 and the square 2 X 2 matrix A are known. If the determinant of A is
invertible modulo m, then A has an inverse modulo m and the system admits a
unique solution (a,b), given by

()= ) e

The reader is encouraged to verify this claim and to extend it to systems in several
unknowns (see Proposition 7.4.2 and Exercise A7.8).

If, on the other hand, the determinant of A is not invertible modulo m, the
system might have no solutions (see Exercise A7.4) or more than one solution (see
Exercise A7.5). In the first case this means that our guesses about frequency analysis
are certainly wrong and we shall make different cryptanalytical attempts.

If there is more than one solution, we might try out each one of them and check
whether it works. For instance, if the determinant of A is not invertible modulo m
but is invertible modulo a prime number ¢ divisor of m, we might solve the problem
modulo ¢. This shall give a unique solution modulo ¢, but several solutions modulo
m, each one to be analysed to check whether it works (see Exercise A7.6).

We conclude with an example, in the context of Caesar ciphers, which uses an
enciphering in Z3, leaving as an exercise an example that relies on the identification
of Zy with Zys described by (7.1).

Example 7.4.4. Assume the numerical alphabet of the unitary messages to be rep-
resented by P = Z55 with s a fixed integer, that is, the unitary messages to consist
of an s-letter block. Given the key k € K = {1,2,...,25}, as we have seen, the
enciphering function is

C : Zg — ZLsg, p — p+ k mod 26,

where p is the unitary message having numerical entries p1 ...ps, and k = (k, ..., k)
is the element of Z3¢ having all entries equal to k. By mod 26, it is meant that each
entry of an element of Z3¢ is computed modulo 26. Notice that if we take as our key
a vector (ki,...,ks) € Z3g, where ki,...,ks are not all equal, then we construct a
polyalphabetic cipher; we shall deal with it again later.

Table 7.8 on page 340 shows an example with k = 5.
If, instead, we identify an element (p1,...,ps) of Z3s with the number written
in base 26 as
pP=p1+p2-26+ps-26°+ - +ps- 267",
where, clearly, p1,...,ps are in {0,1,...,25}, we may, as remarked above, identify
Zse with Zogs via the map

(P1o-. s Ps) € L3 —> p=p1+Dp2-26+ -+ +ps- 26" € Zngs.

So we have P = Zags and K = Zags. Exercise B7.25 uses this different enciphering,
with key k£ = 100.



340 7 Secrets. ..and lies

Table 7.8. Translation enciphering with k =5

Message in tta ckto d
4-letter blocks W/v% atta cxto ayx‘

Numerical equivalent 01919 0
of the plaintext ~1210119 14
30 2423

Numerical equivalent 52424 5
of the ciphertext ~~~—>{ 715 24 19
Cs5(P) = P+ 5 mod 26 85 3 2

Ciphertext | ~~~~~~>FYYF HPYT IFDC

Numerical equivalent 019190
of the deciphered text |~~~~> 210 19 14
D5(C) = C — 5 mod 26 30 2423

l

Deciphered text
atta ckto dayx
in 4-letter blocks N/VVV% y ‘

Deciphered text

7.4.2 Matrix or Hill ciphers

These ciphers split up the text into blocks of length s, translate each letter of the
block into its numerical equivalent and then apply an enciphering function, defined
on the blocks, of the form

¢ = Ap+ b mod 26, (7.2)

where A is a square s X s matrix, b is a fixed column vector of length s, and p and
¢ are the column vectors corresponding numerically to plaintext p and ciphertext c.
Moreover, if we want to be able to decipher the message, that is, have a bijective
enciphering function, it is necessary for the matrix A to be invertible modulo 26.
The map

Ciap) : Lzg — Lsg, p— Ap+bmod 26
is also called an affine transformation defined by the key k = (A,b).

Notice that in the case s = 1 we find again the affine ciphers described above.

Example 7.4.5. We conclude giving an example of affine transformation defined
by the key
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. 12 0
k=(A0b), WlthA7(43>, bef(O).

So the enciphering function is

p1 12 P1 p1+ 2p2
Ca,0) (p2> = <4 3) : (m) = (4p1 +3p2) mod 26.
Notice that A is invertible modulo 26, as det(A) = —5 = 21 (mod 26) is relatively
prime with 26. So we may compute the inverse modulo 26 of A (see Proposition
7.4.2). The inverse of 21 modulo 26 is 5, as Bézout’s identity found with the Eu-
clidean algorithm is
5-21—-4-26=1.

So the inverse modulo 26 of A is
o 3 -2\ _ (15 10\ _ (1516
A *5'(—4 1)* (—20 5 )* (6 5) (mod 26)

and the deciphering function is

cry 15 16 cry 15¢1 + 16¢2
D(4,0) <02) = (6 5) (02) = ( 6c1 + 5ea > mod 26.

In Table 7.9 we show the complete procedure to encipher with the key given the
plaintext true.

7.5 The basic idea of public key cryptography

In this section we are going to continue the description of some cryptographic
systems, outlining the genesis of the so-called public key systems. Later we
shall illustrate specific cryptographic systems of this kind, like the system
based on the knapsack problem and the RSA system: the security of the
former relies on the difficulty of some combinatorial problems, while that of
the latter on the difficulty of factoring large numbers.

In the ciphers described so far the deciphering procedure is not difficult,
once the enciphering method, and so the key, are known. In fact, in those
cases the deciphering function is, in a way, symmetric with respect to the
enciphering function: it is, both computationally and logically, a function of
the same kind. In particular, all classic cryptosystems concern the exchange
of messages between two users and rely on exchanging a key which, basically,
enables both enciphering and deciphering.

In an age like the present one, when most information is transmitted by
telephone or electronic mail or radio, every sent message, as well as every sent
key, is susceptible to being easily eavesdropped. Moreover, it is necessary to
make it possible to communicate for users who have never met and so have not
had, in principle, the opportunity of exchanging private enciphering keys. So
it is indispensable to find new, and more secure, ways of enciphering messages.
This is the goal of public key cryptography.
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Table 7.9. Matrix cipher as in Example 7.4.5

Message in M
2-letter blocks

Numerical equivalent 19 17
of the plaintext 20 4

i

Numerical eq. of the ciphertext
Cla0) (p1,p2) = ]
= (p1 + 2p2,4p1 + 3p2) mod 26

Ciphertext BX CO

Numerical eq. of the deciphered text
Da,0)(c1,c2) = s
= (15¢1 + 16¢2, 6¢1 + 5e2) mod 26

Deciphered text in M
2-letter blocks

53127 123
28 92~ 214

383121 _ 1917
254 82 ~ 20 4

Deciphered text

A public key cipher is a cipher that allows both the method employed and
the enciphering key to be made public - hence the name of public key cipher
- without revealing how to decipher the messages. In other words, in these
systems, to be able to compute in a reasonably short time the deciphering
transformation, which is the inverse of the enciphering one, it is necessary to
be in possession of a further piece of information, besides the public ones. So
this information is kept secret and without it the complexity of the decipher-
ing is enough to make it unfeasible: in essence, to decipher without further
information would require a time exceedingly long with respect to the time
required to encipher.

Remark 7.5.1. For an example which illustrates quite well the fact that being able
to do something does not imply being able to perform the inverse operation, consider
the telephone directory of a big city. It is easy to look up the telephone number of
a certain person, but it might be impossible, that is to say, it might take too long
with respect to the available time, to trace a person from his number.
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From a mathematical viewpoint, carrying out this idea relies on the notion
of one-way function.

We shall call a function f : S — T from a set S to a set T" one-way if it can
be computed easily (for instance, because it is computed in polynomial time),
but, having chosen a random y € f(S5), it is computationally much harder,
and impossible in practice (for instance because it takes an exponential time),
to find an x € S such that y = f(x).

This notion may appear quite vague, as it uses terms as “easy”, “chosen a
random y € f(S)”, or “impossible in practice”, which have not the mathemat-
ical rigour of a definition. Nevertheless, we believe that it gives a sufficiently
clear idea of the meaning of a one-way function.

Example 7.5.2. Consider a finite group G of order n and an element b € G.
Set
S=%Z,={0,1,....n—1};

then we may consider the exponential function
f:8—=G, f(z)=>5b".

If y = f(x), we call x a discrete logarithm of y over G in base b and denote
it by the symbol log,y. When G is the multiplicative group F} of a finite
field Fy, if b € F is one of its generators, then f is bijective and its inverse
function is called discrete logarithm over Fy in base b. In this case, computing
f requires a polynomial time (see Proposition 5.1.44). On the other hand, all
known algorithms to compute discrete logarithms are exponential and it is
conjectured that there are no polynomial ones. So the exponential function
over F, can be regarded as a one-way function. However, it must be remarked
that some algorithms to compute discrete logarithms, one example of which
we shall shortly illustrate with the so-called Baby step—giant step algorithm,
are, in particular cases, quite effective.

In general, in cryptography it is interesting to consider those groups G
for which, as for IF;, computing powers is computationally easy (for instance,
requiring polynomial time), while computing discrete logarithms is computa-
tionally far harder (for instance, exponential). This may yield one-way func-
tions.

Example 7.5.3. Let I, be a large enough finite field, that is of order ¢ = pf
with p a large prime number, and let f(z) € Fy[z] be a polynomial such that
the corresponding polynomial function f : F, — IF; is injective. As we are well
aware, the function f can be computed in polynomial time, while the inverse
function f~! may be quite hard to compute in practice. It is conjectured that
such a polynomial function is in many cases a one-way function.

The next example describes another kind of function f which is computed
more easily than f~!, but in which, unlike exponential and logarithmic func-
tions, both are computed in polynomial time.
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Example 7.5.4. We may consider enciphering a message X € Z3; by multi-
plying it on the left by a square matrix A of order s. We have

fiXeTy —» A X €Ty

Computing Y = f(X) = A - X requires about s? operations (see Exercise
A2.19). Computing X = f~1(Y) = A~'Y, on the contrary, has a much greater
computational cost, as it requires inverting a square matrix of order s, which
implies about s operations (see Exercise A2.22).

The existence of one-way functions has not yet been rigorously proved.
However, there are many good candidates, like the exponential functions on
finite fields, mentioned above. In practice, we are interested in a specific kind
of one-way functions that can be defined in a vague but sufficiently eloquent
way, as follows:

Definition 7.5.5. A one-way function f : S — T is said to be a trapdoor
function if with some further information it becomes computationally feasible
to find, for ally € f(S), an element x € S such that f(x) =y.

Public key techniques make use of functions of this kind, in the sense that,
basically, they are used as enciphering functions. We shall shortly show two
examples which shall illustrate this basic idea, which has remained so far quite
indeterminate.

7.5.1 An algorithm to compute discrete logarithms

We devote a short section to describe an algorithm, the so-called Baby step—giant
step algorithm, to compute discrete logarithms over the field Z, with p a prime
number. So we work in Z;, whose elements shall be identified with 1,2,...,p — 1.
Let g be a generator of Z;,. We want to determine the discrete logarithm x of y € Z,

in base g. We proceed as follows:

e Dbaby steps: set n equal to the least integer greater than ,/p and compute the
values g* € {1,...,p — 1}, for all ¢ € {0,...,n — 1}, inserting them in a list to
be kept in the memory;

e giant steps: compute ¢" and then ¢~" and successively yg~",yg 2

n —3n
»Yg yee

ygfng. After each of these computations, compare the result with the numbers
in the list created in the first step. As soon as we obtain an equality of the form
yg '™ = g*, we have found the logarithm = = jn + i.

First of all, notice that the algorithm terminates and gives the desired logarithm.
In fact, the logarithm exists and is a number z in {1,...,p — 1}. Then, dividing =
by n we have & = nj + i, with 0 <4 < n — 1. On the other hand, as z < p < n? we
also have 1 < j < n.

We estimate next the complexity of the algorithm. There are n baby steps, each
having complexity O(logn). So the total complexity of the baby steps is O(nlogn).
Notice that the baby steps can be thought of as a kind of precomputation, in the
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sense that they are performed just once, independently of the number y of which we
are computing the logarithm.

Reasoning in a similar way, we see that the giant steps too, which do depend on
the number whose logarithm we are computing, have complexity O(nlogn); so this
is the complexity of the whole algorithm. It is exponential in n. There are further
issues with this algorithm:

e the algorithm needs a large amount of memory if p is large, as a list consisting
of [\/p] + 1 integers must be kept in memory;

e moreover, comparing the numbers in this list and the numbers computed in
the giant steps has a computational cost, even if we have neglected it so far. A
possible way to perform this comparison consists in dividing a number by the
other one and checking whether the quotient is greater than zero or not. Clearly,
the algorithm leads us to carry out n? comparisons, so all of them taken together
yield an exponential complexity.

Example 7.5.6. Let us illustrate the above by means of a very simple example. Take
p =11 and g = 2, which is a generator of Z;. In this case we have 3 < v/11 < 4, so
n = 4. The baby steps yield the list

20 =1, 2! =2, 22 =4, 2% =38, (7.3)

Compute next 2%, which equals 5 modulo 11, while its inverse is 9.

Suppose we want to compute the logarithm log, 6. So we perform the giant steps.
In the first step we compute 6 - 274, which equals 10 modulo 11. As this number
is not included in the list (7.3), we have not found the required logarithm. Perform
another giant step, computing 6 - 278, which, modulo 11, equals 2. So we find the
relation 6-27% =2, or 6 = 2° (mod 11), that is, log, 6 = 9.

For other algorithms to compute discrete logarithms, see [30], Ch. IV, or [44].

7.6 The knapsack problem and its applications
to cryptography

Suppose we are about to leave for an excursion. We have to pack our knapsack
and we want to make maximum use of the available space. We have a number,
say n, of different objects, having volume vy, vs, ..., v,; we know that the
knapsack contains a volume V', and we want to carry the greatest possible
load. How do we find it? We are looking for a subset J C {1,2,...,n} such

that
V=> v (7.4)
jeJ
This scheme may be applied to several similar problems. Assume we have
to pay 2 Euros and have at our disposal 2-, 5-, and 10-cent coins: how can
we pay with the least number of coins? Or with the largest number, so as to
rid ourselves of as many coins as possible? Moreover, how many possible ways
are there of paying?
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Let us turn back to the knapsack problem and describe a cryptographic
system relying on it, devised by Merkle and Hellman in 1978.

First of all, rephrase the problem as follows. Given n positive integers
ai,as,...,a, and a positive integer m, can we find n integers x1,xs, ..., Ty
with ; € {0,1} so that our integer m can be written as

m=a1x1 + asTo + -+ apTy? (7.5)

In other words, is it possible to write m as a sum of some of the a;s? It
is not always possible and a solution, if it exists, may or may not be unique.
The three following examples demonstrate the different possible cases.

Example 7.6.1. Set n = 5, (a1,a2,...,a5) = (2,7,8,11,12) and m = 21. It
is immediate to see that 21 = 24+ 8 4+ 11 and 21 = 2 + 7 + 12; so we have
two solutions, and they are the only ones. In explicit form, the first solution is
r1 =23 =24 = 1 and 2o = x5 = 0, while the second one is 1 = 29 = x5 =1
and 3 = x4 = 0.

Example 7.6.2. Consider now the same a;s as before, but m = 1. As m is
smaller than each of the a;s, it is not possible to write m as a combination of
the a;s with coefficients 0 or 1.

Example 7.6.3.If a; = 20!, for i = 1,...,n, solving the knapsack problem
means finding the binary representation of m which, as we know, exists and
is unique.

In principle, in order to find the solution, if it exists, it suffices to con-
sider all the sums of the form (7.4) with J ranging among all the subsets of
{1,...,n}. As is well known (see Exercise A1.22), there are 2" such subsets,
including the empty set.

If n is small, this kind of inspection can be carried out, but if n is large, it is
computationally unfeasible, as it is likely to require an exponential algorithm.
In general, in fact, no algorithm to solve the knapsack problem is known, apart
from trying out all the possibilities.

We may ask if there are integer solutions z; € N of Equation (7.5). How-
ever, this general formulation of the knapsack problem is beyond the scope of
this text.

Remark 7.6.4. The knapsack problem is known to belong to a category of very
hard problems, the so-called NP-problems, for which it is conjectured that no al-
gorithm giving the solution in polynomial time exists.

More in detail, let P be the class of problems P for which a deterministic algo-
rithm that solves P in polynomial time exists. We have seen so far several examples
of problems lying in class P: for instance, the problem of finding the greatest com-
mon divisor of two integer numbers, or that of recognising whether a number is
prime.

A problem P is said to belong to class NP if there are algorithms - not necessarily
polynomial ones - solving it and if it is possible to verify whether given data solve
the problem or not, using a polynomial deterministic algorithm.



7.6 The knapsack problem and its applications to cryptography 347

For instance, the problem of factoring an integer number n is of this kind. The
sieve of FEratosthenes is a non-polynomial algorithm solving the problem, while,
given a number m, we can verify in polynomial time, using the Euclidean algorithm,
whether m divides n or not.

It is easy to see that the knapsack problem is too in N'P.

Clearly, P C N'P; the main conjecture in complexity theory states that P # NP.

A problem P in NP is said to be N'P—complete if, for every other problem
Q in NP, there is a polynomial deterministic algorithm that reduces solving Q to
solving P. Clearly, if P is N’P—complete and if there were a polynomial deterministic
algorithm that solves P, then every problem in NP would also be in P. So, if the
main conjecture in complexity theory is true, there are no polynomial deterministic
algorithms that solve AN'P—complete problems. These problems are, basically, the
most computationally difficult problems in N'P.

As we said at the beginning of this remark, the knapsack problem is known to
be N'P—complete (see [23]).

A special case of our problem is the one in which the sequence aq, as, ...,
an 18 superincreasing, in the sense of the following definition.

Definition 7.6.5. A sequence of n positive integers a1, as, ..., ap S super-
increasing if the following inequalities hold

a1 < as,
aj +ag < as,

ay +az + a3z < aq,

ay+ag+ -+ an—1 < an.

Is there a solution to the knapsack problem in this case? The answer is not
always in the affirmative but, if a solution exists, then it is unique and can
be found in polynomial time. Indeed, to find the value z1,...,x, such that
m =", x;a; with 2; € {0,1} the following algorithm may be used

As a first thing, determine x,,, by noticing that necessarily:

1 ifm>ay,
T = .
0 ifm<a,.

To determine x,,_1, do the same, substituting m — z, a,, for m. In other words,
we look for a solution to the knapsack problem by trying to express m — x,ay,
as

m — GpTy = @121 + A2T2 + -+ Qp_1Tp_1.

Notice that, clearly, the sequence a1, aso,...,a,—1 is superincreasing too. So
we have

1 ifm-—z,0, > ap_1,
Tp—-1 = .
0 ifm-—zpa, <ap_1.
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In general, having found z,,...,zj4+1, we shall set

n
1 ifm-— E Ti0i > aj,
_ i=j+1
ij - n
0 ifm— E zia; < aj.
i=j+1

It is clear that if m — Z?:H_l zia; = 0, we have found the solution, which is
clearly unique. If on the other hand m — E?:jﬂ x;a; > 0 but a;,...,a1 are
greater than m — Z?:jﬂ x;a;, then no solution exists.

It is not hard to see that the algorithm just described is of polynomial
type (see Exercise A7.9).

Let us illustrate with an example this algorithm.

Example 7.6.6. Consider the superincreasing sequence (1,4, 6,13,25). How
do we compute the solution when m = 26 according to the algorithm?

As the rightmost term of our sequence is 25 and 25 < 26, then we have to
choose x5 = 1. Now we carry on the procedure with 26 —1-25 =1 < 13, so
weset £4 =0. As26—1-25—0-13=1 < 6, then x3 = 0, hence again x5 = 0.
The last step, applied to 26 —1-25—0-13—-0-6—-0-4=1=a; givesx; =1
and so the solution. In fact, we have

26=1-14+0-44+0-64+0-13+4+1-25.

Notice that if the sequence were (2,3,6,13,25), there would have been no
solution, as in the last step we should have written 1 as xz; - 2, which is
not possible. In other words, the solution does not exist because a; = 2 >
26—-1-25—-0-13—-0-6—-0-3.

Let us see now how to construct a cipher related to the knapsack problem.

7.6.1 Public key cipher based on the knapsack problem,
or Merkle—Hellman cipher

The cipher consists of the following steps.

e Fach user X chooses a superincreasing sequence a1, as,...,ayn of a fixed
length N, an integer m such that m > 2ay, and an integer w relatively
prime with m. These data are kept secret.

e User X computes the transformed sequence

b; = wa; mod m, forj=1,...,N.

The sequence by, bs,...,by is made public by X and is the enciphering
key.
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e A user Y may send a message p to X acting as follows. First of all, he
transforms each letter of the text into its binary equivalent using Table
7.5 on page 333. Next, he splits up the resulting sequence of Os and 1s
into blocks of length N, adding at the end, if necessary, a number of
1s so as to have blocks all of the same length N. For each block, say
p = xT1Z2...TN, the user Y applies the transformation to encipher p —
c=bixr1 +---+ byxn, and sends the enciphered text ¢ to X.

e How has X to proceed to decipher Y’s message? As a first thing, X com-
putes the deciphering key, that is, kg = (m,w) with ww = 1 (mod m).
Next, he computes

v=wcmodm=w-(biz1 + -+ byzry) mod m. (7.6)

By definition of w and of the b;s, we have

N
v=(Wbyz1 + -+ Whyay) = Zmiai (mod m). (7.7)
i=1
As the sequence a1, as,...,ay is superincreasing, we have

a1+ t+an_1+any <any +ay =2any <m

and so v = Efil Ti0;.

e Now, X knows the integer Zfil x;a; and the superincreasing sequence ay,
as, ..., ay; from them he has to reconstruct the integers z1, o, ..., Tn.
This is easily done, in polynomial time, by using the knapsack algorithm
for superincreasing sequences.

Remark 7.6.7. Choosing the data in a sufficiently general way, the sequence b1, .. .,
by is mo more superincreasing, and decrypting illegitimately the message starting
with ¢ = b1x1 + - - - + byxn is a computationally hard problem.

Actually, in 1982 Shamir [52] found a polynomial algorithm that allows one to
decrypt the message. The main remark by Shamir is that the knapsack problem
to be solved for a sequence of the form b1,...,bnx is not completely general. Indeed
b1,...,bn, even if it is not a superincreasing sequence, may be obtained from a
superincreasing sequence ai,...,an by means of a very simple transformation.

For these reasons, the cipher just described cannot be considered secure. There
are several ways to get around this problem, and quite recently some variations of
Merkle-Hellman cipher have been found, that have not yet succumbed to cryptan-
alysts’ attacks. However, the description of these variations goes beyond the scope
of this book.

In Table 7.10 on page 350 we show an example of the use of this cipher.

7.7 The RSA system

In this section we describe a public key cryptosystem devised by W. Diffie
and M. E. Hellman [19], but commonly called RSA system, from the names
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Table 7.10. Knapsack problem cipher

Choice of secret data N (a1,a2,a3,a4) = (1,2,4,27),
(a1y...,an), m,w m =061, w=17
Public key to encipher: (b1,b2,b3,b4) =
b1 = wai mod m, s = (17,34, 68,459) mod 61
.+, b, = wa, mod m = (17,34,7,32)

Private key to
decipher: (m,w) with m =061, w=18
ww=1 (mod m)

| Numerical equiv. of the message | ~~~~={00010 01000 00000 01110 |

‘Into blocks of length n = 4 ‘ «/vvv\% 0001 0010 0000 0000 1110 ‘

Numerical equiv. of the ciphertext

p = (1,22, 73, T4) — 32700 58

4
—c=>;_,xib; modm

l

Compute v = we mod 61 = 576 126 0 0 1044 =
=z1a1 + -+ T4aq =27 4 00 7

i

Binary num. equiv. of the

deciphered text: knapsack M 0001 0010 0000 0000 1110
algorithm for v and the a;s

Deciphered text

of those who first implemented it: L. M. Adleman, R. L. Rivest, A. Shamir at
M.I.T. (Massachusetts Institute of Technology) [1]. This system, as already
remarked, uses a public key that allows enciphering a message but not deci-
phering it. Each user divulges his enciphering key, so anybody may securely
communicate with him. This happens using an enciphering method which is a
trapdoor function. The user who divulges the enciphering key keeps secret an
additional piece of information, by which he alone will be able, by inverting
the trapdoor function, to decipher the messages he will receive.
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Applications of systems of this kind are innumerable: sending enciphered
messages among several users, digital authentication of signatures, access to
secure archives or databases or simply services such as credit cards, pay-per-
view television programmes, and so forth. We shall not enter into the technical
details, leaving the reader with the task of thinking about how the systems
we are going to describe can be applied to these situations.

7.7.1 Accessing the RSA system

Suppose we want to use the RS A system to exchange messages that are to be
read only by the intended addressees and not by eavesdroppers. Then we have
to join the system, divulging the enciphering key, which is a pair of positive
integers (n, e), where n is the product of two large prime numbers p and g we
only know, and e must be relatively prime with ¢(n) = (p — 1)(¢ — 1), that
is, GCD(e, p(n)) = 1, or GCD(e,p — 1) = GCD(e,q — 1) = 1. This pair of
integers (n, e) we divulge is kept in a publicly accessible directory.

Remark 7.7.1. How do we proceed in practice to find two large prime numbers
having, for instance, 100 decimal digits? We generate a random 100-digit odd num-
ber m. Random generation of numbers is an interesting topic in mathematics and
computer science, upon which we cannot dwell here. Here it suffices to know that
there are programs that generate random numbers.

Apply next to m a primality test. If m passes it, then we have found a prime.
Otherwise, we apply the primality test to m + 2. If m + 2 is not prime either, we
test m + 4, and so on, until a prime number is found. Recall that, by the prime
number theorem, the number 7(m) of prime numbers smaller than m is of the same
order as m/logm (see page 155). A probabilistic rephrasing of the same theorem
states that the frequency with which prime numbers appear near m is 1/logm. So
we may expect to have to perform O(logm) primality tests before finding the first
prime number larger than m. So the number of tests to be performed is polynomial,
and so it is feasible. On the other hand, the computational cost of the test itself is
usually high.

Returning to the RS A system, each user U will act in the same way, that
is to say, divulging a pair of integers (ny,ey) verifying the same conditions:
ny has to be the product of two prime numbers py and gy that must be
large and have to be kept secret, only known to user U, while the second
number has to be chosen by U in such a way that GCD(ey,py —1) = 1 and
GCD(@U,(]U - 1) =1.

We emphasise the fact that the pair (ny,ey) is publicly known, that is,
every user who so desires may look it up, while the factorisation of ny is
not public and is only known to U. To see how the RSA system works, let
us consider an example in detail. The general scheme of the procedure is
described in Table 7.12 on page 360.

Example 7.7.2. In the public directory, next to the name of each person,
their enciphering key will be shown, that is, the pair of integers the user has
chosen: for instance,
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Ariadne divulges A = (77, 13),

Beatrix divulges B = (1003, 3), (7.8)

Charles divulges C = (247, 5), '
(

David divulges D = (703, 7).

The numbers have been chosen by the users according the requisites, as

na=77="7-11, GCD(13,6) = GCD(13,10) = 1
np = 1003 = 17- 59, GCD(3,16) = GCD(3,58) = 1,
ne = 247 =13 - 19, GCD(5,12) = GCD(5,18) = 1,
np =703 =19- 37, GCD(7,18) = GCD(7, 36) =

Notice that in this example we have chosen small numbers, for which it
is easy to find the two prime numbers py and gy such that ny = pygy. In
general, user U, to be safe, shall use an integer ny that is the product of two
primes of about 100 decimal digits, so the number ny that is their product
and that will be divulged, will have about 200 digits. Notice that in order to
implement these kinds of ciphers there is a crucial need for many large prime
numbers. By the way, this fact largely justifies the research about primality
tests, as well as the hunt for ever larger prime numbers, which is often covered
even by the media. Returning to our example, let us see the next steps, after
the publication of the key chosen by each of the users.

7.7.2 Sending a message enciphered with the RSA system

User A, Ariadne, has received from user B, Beatrix, a message saying: Which
course do you prefer? She wants to answer:

algebra .

To send her answer to Beatrix, Ariadne will have to proceed as follows.

(1) As a first thing, she transforms each letter of the message into an integer
using the 2-digit numerical equivalence, as in Table 7.5 on page 333. Indeed,
for the enciphering we are about to describe we shall need the letter-
number correspondence assigning two digits to each number associated
with a letter. The number sequence corresponding to our message will be

00 11 06 04 01 17 00 .

(2) Next, Ariadne looks up in the official directory (7.8) the pair of num-
bers (np,ep) corresponding to Beatrix. Presently she just needs the first
number, np = 1003.

(3) Now she has to split up the message to be sent into unitary messages
so that the integer associated with each unitary message is smaller than
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np = 1003 and relatively prime with 1003. She notices that, having split
up the message algebra into 2-letter blocks (or digraphs) as follows

al ge br ax,

the numbers corresponding with the unitary messages are
0011 0604 0117 0023 ,

that is, the numbers 11, 604, 117, and 23, respectively, which are smaller
than 1003 and relatively prime with 1003. Notice that, to find the GCD
between these numbers and 1003, Ariadne uses the Euclidean algorithm,
as she does not know the prime decomposition of ng.

Notice further that Ariadne added the letter x at the end of the last
unitary message, to make it a digraph. If she had split up the message
into 3- rather than 2-letter blocks, she would have found some unitary
messages corresponding to integers greater than npg:

alg — 606 < 1003,
ebr — 40117 > 1003,
axx — 2323 > 1003,

which would not have satisfied our requisites.
So the segments of the plaintext will be represented by the following num-
bers:

P =11, Py=604, P3=117, P,=23.

If the numbers P; were not relatively prime with 1003, we might neverthe-
less proceed in a way not dissimilar from the one we are about to describe;
we are not dwelling on the differences, which the reader may study in
Exercise A7.12.

After these operations, we may assume without loss of generality that each
unitary message P; meets the following two conditions:

P, < ng, GCD(P;,ng) = 1.

(4) Now the actual enciphering of the message to Beatrix begins, in such a
way that the latter may decipher it and be the only person able to do so in
a reasonable time. To encipher the message to be sent to Beatrix, Ariadne
raises each P; to the egth power, eg being the second element of the pair
associated with Beatrix.
So the enciphering function is

Cp:P—2C, P — C = P° modng.

Thus, the enciphered message Ariadne will have to send will consist of the
following numbers:
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Cy = Pf? mod np = 11° mod 1003 = 328,
Cy = P§? mod np = 604 mod 1003 = 797,
C3 = P§® mod np = 117% mod 1003 = 825,
Cy = P§? mod np = 23° mod 1003 = 131.

Then Beatrix receives the following message:
Cy =328, Cy=797, C(53=825 (C,=131,

consisting of the unitary messages C;, i = 1,...,4. Now Ariadne has carried
out her task: she has sent Beatrix the enciphered message. Now Beatrix will
have to decipher it.

7.7.3 Deciphering a message enciphered with the RSA system

Beatrix has received the message
Cy =328, Cy=1797, (C3=825 (4=131,

and has to decipher it, that is, for every C; has to find the original message
P;, knowing that

C; = P? mod np.

So Beatrix has to determine the deciphering function
DB :C— P

such that Dp(Eg(P;)) = P; for all i. How can she find it? A priori it would
seem that, to solve this problem, Beatrix would have to find a discrete loga-
rithm which, as we have remarked, is computationally quite hard. However,
we have already remarked at the beginning that Beatrix actually has an ad-
ditional piece of information enabling her to decipher the message she has
recetved without difficulty. Let us see which piece of information she has and
how she uses it. First of all, Beatrix determines dg, with

1 <dp <¢(np) = (pp —1)(gs — 1),

such that dp is a solution of the following congruence
egdp =1 (mod p(ng)) . (7.9)

Such a solution exists and is unique, as GCD(ep, ¢(np)) = 1.

In our case, ng = 1003, and Beatrix knows ¢(1003) because she knows
that 1003 = 17 - 59. So »(1003) = 16 - 58 = 928. Then the solution dp of the
congruence (7.9), that is of 3z =1 (mod 928), is
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dp =619 .

This number is truly to be framed, because, as we shall shortly see, Beatrix
is the only person who can decipher the message because she is the only one
who, knowing the factorisation of 1003, is able to compute its Euler function
and so dp, which is Beatrix’s private key to decipher the messages sent to
her. Let us what she does to decipher the messages C;.

Beatrix raises each C; to the power dg = 619, that is, computes

328019, 797019, 825019, 131917,

The exponent 619 is large, but we know how to proceed in situations like this
(see § 3.3.1). The number 619 is written in base 2, that is

619 = (1001101011)y = 512 + 64 + 32+ 8 + 2 4 1.

So we have
C819 — b1z 64 82 . 08 . 2. Ol

and the powers are easily computed according to the following table, for C; =
328:

k C¥ mod 1003
1 328
2 3282 mod 1003 = 263

22—4 2632 mod 1003 = 965
25 =8 9652 mod 1003 = 441
24 =16 4412 mod 1003 = 902
25 =32 9022 mod 1003 = 171
26 =64 1712 mod 1003 = 154
27 =128 1542 mod 1003 = 647
28 =256 6472 mod 1003 = 358
29 =512 3582 mod 1003 = 783

where we have framed the factors to be multiplied. From the table we may
easily see that

328619 — 328512 . 32864 . 32832 . 328% . 3282 . 328! =
=783.154-171-441-263-328 = 11 (mod 1003).

Notice that, by raising C7 = 328 to the exponent dp = 619, we have obtained
the number 11 = P;, which is the number corresponding to the first part of
the original message.

We do the same for the three other message segments Cy, C3 and Cy4. So
we get Table 7.11 on page 356 where, as above, we have framed the factors to
be multiplied. In conclusion,
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Table 7.11. Powers of the numbers C;

E  C¥mod 1003 C¥ mod 1003 C¥ mod 1003
1 797 825 131

2 7977 = 310 825%= 591 1312= 110
4 310°=815 5912=237 110> =64

8 815°= 239 237°=1 642 = 84
16 2392=953 1 842 = 35

32 9532 = 494 1 352 = 222
64 4942 = 307 1 2227 = 137
128 307 =970 1 1372 = 715
256 9702 = 86 1 7152 = 698
512 862 = 375 1 6982 = 749

328519 mod 1003 = 11,
79719 mod 1003 = 604,
825%19 mod 1003 = 117,
131%19 mod 1003 = 23.

These are to be seen as 4-digit numbers:
0011, 0604, 0117, 0023,

and correspond to the four original message segments, which were digraphs.
So we have to split each of them into two parts, each of which represents a
letter. So Beatrix, using Table 7.5 on page 333, finds

00 11 06 04 01 17 00 23
al gebdbracx

and gets to know the course Ariadne likes best.
With did this work? That is, why raising C; to the exponent dp we get
back P; such that C; = P{#? In other words, why is

DBZC—>’P, Ci—>CgB

the deciphering function? Here follows the reason.

7.7.4 Why did it work?

First of all, notice that the congruence (7.9) has exactly one solution modulo
w(ng), because the coefficient ep is such that

GCD(em,pp—1) =1, GCD(ep,qp —1) =1,

so also GCD(ep, (pp — 1)(¢gg — 1)) = 1.
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Remark 7.7.3. Beatrix is the only person able to solve congruence (7.9),
because she is the only one to know the Euler function p(ng) = (pp—1)(¢p —
1), as she knows the prime factors pg and ¢p of ng. In fact, notice that, as
pp and gp are large prime numbers, factoring np normally takes a very long
time. So, in fact, Beatrix is the only one to know this factorisation.

Actually, one might doubt that knowing p(ng) is equivalent to knowing
the prime factors pp and gg. Of course, whoever knows these factors knows
¢(ng) too. But, is it possible to know ¢(ng) without knowing pg and ¢g?
The answer is no: if p(npg) is known, then pg and ¢p can be reconstructed
immediately, in polynomial time. The easy proof is left as an exercise (see
Exercise A7.10).

Notice now that dp is actually the private key allowing Beatrix to decipher
the message. Indeed, setting P = P; and C' = C;, we have

P=C% (mod np),

as
s = (per)ir = pesds (mod np).

On the other hand, egdp = 1 (mod ¢(np)) implies that egdp —1 is a multiple
of ¢(ng), that is egdg = 1 + p(np)k for some k. So,

PeBdB — P1+Lp(n3)'k — P . (P‘F(nB))k

As GCD(P,ng) = 1, by Euler’s theorem we have P#("5) = 1 (mod np);
hence
pesds = P (mod np).

So,
P=C% (mod np).

As Ariadne has chosen P < np, there is no ambiguity in determining the
number congruent to C% modulo np: it is the only such number between 0
and np — 1. Once this P is found, Beatrix can read Ariadne’s message.

Remark 7.7.4. We have said that the unitary message has to be smaller than ng.
We have just explained the reason of this request. An example will illustrate the
need for it. Consider the message

no

to be sent to Ariadne, whose pair is (na = 77,e4 = 13). We opt to consider the
whole word no as unitary message (digraph). We proceed as above:

(1) transform the message into a number by associating to each letter its numerical
equivalent. The associated number is found to be

1314;

notice that 1314 is greater than n4 = 77,
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(2) raise 1314 to the power es = 13; we have
Cy =1314" =26 (mod 77);

(3) Ariadne receives the message
26.

To decipher this message Ariadne uses her private key, which is da = 37, the
solution of the congruence

13dsa =1 (mod o(77)), thatis 13da =1 (mod 60).
Raising 26 to the power 37, Ariadne gets 5 (mod 77), which she interprets as
f

so she cannot reconstruct the message she was sent. Also notice that 1314
(mod 77) = 5.

So, if we do not request for the unitary message to be smaller than na, that
is, than the first element of the pair of numbers published by the addressee, it
becomes impossible to define the deciphering transformation.

Remark 7.7.5. We have seen that, in order to send the message algebra to Beatrix,
Ariadne split it up into digraphs. She had to do so by trial and error, verifying all the
numbers corresponding to the single digraphs to be smaller than np and relatively
prime with it.

However, there is a better way of choosing how to split up the message: rather
that splitting the original message algebra, it is more convenient to split the numer-
ical message obtained by associating a 2-digit number with each letter. In this way
there is a natural way of splitting it, as follows.

After transforming the message into a sequence of 2-digit numbers, consider the
number consisting of the sequence of all the digits, which will be called numerical
message. Split it up into k-digit blocks, where

k = (number of digits of ng) — 1 .

In this way, without even having to eramine the message, each unitary numerical
message is smaller than ng. What’s more, everybody concerned knows ng and knows
that the sender will split up the message into blocks like this.

Let us illustrate this new method with an example.

Example 7.7.6. Suppose Ariadne, user A, sends Beatrix, user B, the message

come here

Then:

(1) first of all Ariadne transforms the message, ignoring spaces, into the sequence of
2-digits numbers
02 14 12 04 07 04 17 04

which will be written as
0214120407041704.

There is no ambiguity, as we know that the number associated with each letter
of the original message consists of two digits. This is the numerical message;
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(2) as the number np = 1003 has 4 digits, A splits the numerical message into blocks
of length 4 — 1 = 3, that is, into trigraphs, as follows:

021 412 040 704 170 423 .

Notice that A has added 23, corresponding to the letter z, at the end of the
message, so all unitary numerical messages consist of three digits. In this way,
she has split the numerical message into unitary numerical messages that are
trigraphs, and each unitary message is certainly smaller than ng = 1003. Notice
that this partitioning is not a partition of the original message come here, as the
3-digit unitary numerical blocks do not correspond to any letter group. As we
shall see, this will not create any difficulty.

We still have to check that each P; is relatively prime with 1003. It is easily
verified that the only exception is 170. However, we have no reason to worry:
keeping in mind Exercise A7.12, we may go on.

So, the unitary numerical messages are

P =21, Py=412, Py=40, P, =704, Ps=170, DPs=423.

Notice that the operations carried out so far do not amount to any enciphering,
as transforming a message into a numerical sequence is a standard operation,
and so is partitioning it into 3-digit blocks according to the value np, which is
known to everybody;

(3) the enciphered message will be represented by the following numbers:

Cy = P{® mod np = 21° mod 1003 = 234,
C2 = Py” mod np = 412° mod 1003 = 353,
Cs = P§” mod np = 40° mod 1003 = 811,
Cy = P mod np = 704* mod 1003 = 54,
Cs = PS” mod ng = 170° mod 1003 = 306,
Cs = PS” mod np = 423° mod 1003 = 587.
So Beatrix receives the following sequence of unitary messages:
C1 =234, Cy =353, C3 =811, Cy =54, C5 = 306, Cs = 5H37.
To decipher it, she raises each C; to her private key dg = 619, that is, she computes
234%19 ) 353%19 811019 5419 306°1, 58717,

In this way, Beatrix finds

234" mod 1003 = 21, 353°'Y mod 1003 = 412,
811°% mod 1003 = 40, 54°"% mod 1003 = 704,
306°"° mod 1003 = 170, 587" mod 1003 = 423.

This 3-digit blocks (completed with a leading zero where necessary), regrouped in
twos, give

02, 14, 12, 04, 07, 04, 17, 04, 23
and now Beatrix can read the message comeherex, which she understand as come
here. This example is shown in Table 7.12 on page 360.
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Table 7.12. Example of use of RSA system

Each user U publishes
the pair (nu,ev), where
ny = puqu is the product
of two secret primes
and GCD(ey, p(nv)) =1

A publishes
(TLA7 GA) = (777 13)7
B publishes
(7’LB7 63) = (1003, 3)

i

of the message

i

Plaintext
A wants to send B

2-digit numerical equiv. M 02 14 12 04 07 04 17 04‘

k-letter blocks P;
where k is the number of
digits of np, minus 1

i

P =021, P, = 412,
P35 = 040, P, = 704,
Ps = 170, Ps = 423

Sending B the enciphered
unitary messages
C; = P{® mod np

C1 = 234, Cy = 353,
C3 =811, C4 = 54,
Cs = 306, C¢ = 587

i

B deciphers the enciphered messages:
P, = C" mod np
where dp is such that
epdp =1 (mod p(ng))

Deciphered text

7.7.5 Authentication of signatures with the RSA system

P =021, P> =412,
~~~—s1 P35 =040, P, = 704,
Ps =170, Ps = 423

comeherex

The RS A system allows one to solve of an important problem which is more and
more relevant in this era of telecommunications: the problem of digitally authenti-
cating a signature.
If Beatrix receives a message from a person signing herself Ariadne, how can she
be sure the sender was actually Ariadne? The certainty may be achieved as follows.
Ariadne writes her message Pi, putting at the end her signature F'; to authen-
ticate the signature, Ariadne adds after the message P; the message

Py = F% mod nAa,

where d4 is her private key, that is, the key known only to her, because only she
knows the factorisation of her public key na. Then she sends Beatrix the message
P consisting of the two messages P1 and P» as usual, that is, raising P; and P> to
the power eg and reducing them modulo ng.
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On receiving the message, Beatrix reads it using her private key dp. Deciphering
message Pp, she learns that the message was sent by Ariadne, because the message
is signed with Ariadne’s signature F. But was really Ariadne, and not someone else,
who used that signature? Here the section P> of the message gives an answer. Indeed,
it consists of some undecipherable characters, which nevertheless contain the proof
of the authenticity of the signature.

Now Beatrix, to verify the authenticity, has to proceed as follows. To decipher P
she cannot use her private key dp, which would be useless, as the original message
F was enciphered raising it not to the power eg but to da. Instead, Beatrix uses
Ariadne’s public key e. In this way she obtains Ariadne’s signature F, because

P4 = (FP4)™ = P44 = F (mod na).

This signature has to be authentic, as only Ariadne knows her private key. If what
appeared were not Ariadne’s signature F', the message would have been a fake.
Basically, to authenticate a signature, the sender uses her private key, rather than
the addressee.

Example 7.7.7. Recall that Ariadne published the pair (na = 77,ea = 13). As
77 =11-7, Ariadne’s private key is da = 37, because 37 -13 = 1 (mod 60), where
60 = ¢(77). In sending a message to Beatrix, Ariadne authenticates her signature,
which we assume to be F' = 5, raising 5 to the power d4 modulo na:

57 mod 77 = 47.

Beatrix verifies the authenticity of the signature by raising 47 to the power e4 = 13
modulo na:
47" mod 77 = 5,

that is, she gets again Ariadne’s signature. So Beatrix is sure that the message’s
author is Ariadne.

The previous example is summarised in Table 7.13.

Table 7.13. Authentication of a signature with the RSA system

A sends B her

signature F' and |~~~~~>
G = F% mod nya

F=5
G =5 mod 77 = 47

B computes G4 mod na ‘W’\% 478 mod 77 =5 ‘

If G4 mod na = F
’ - !
the signature is authentic
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7.7.6 A remark about the security of RSA system

The security of RS A system lies in the fact that, as already emphasised several times
in earlier chapters, so far there is no efficient algorithm to factor large numbers. If A
sends B a message C, an unauthorised eavesdropper who tried to decrypt it should
be able to find the factorisation of ng. To find it, when np is the product of two
60-digit primes, even using the most advanced algorithms and the fastest computers,
would require several months, if not years. The situation is even more unfeasible if
we choose primes with 100 or more digits: in this case factoring n is, in practice,
impossible. However, if this is true in general, it is not always so, as the following
episode shows.

In August 1977 the three inventors of the public key RS A cryptosystem, Rivest,
Shamir and Adleman, at MIT, challenged from Martin Gardner’s column Mathemat-
ical Games the readers of Scientific American to decrypt a message corresponding
to a 129-digit number, an operation they believed to require billions years. They
offered a reward of $100 to whomever found the solution.

We are not going to give all the details of Rivest, Shamir and Adleman’s problem.
Suffice it to say that, in order to decrypt their original message it was necessary to
factor the number

N =11438162575788886766923577997614661201021829672124236256256184293
5706935245733897830597123563958705058989075147599290026879543541,

which had been published together with the number e = 9007. Basically, (N, e) was
the public key of Rivest, Shamir and Adleman.

To ensure that the message came from the MIT team, the following digital
signature was added, using the private key of the algorithm, that is the number d
such that ed =1 (mod N):

1671786115038084424601527138916839824543690103235831121783503844
6929062655448792237114490509578608655662496577974840004057020373.

Raising this number to the power 9007, then reducing it modulo N, one obtained
the number

0609181920001915122205180023091419001
5140500082114041805040004151212011819

corresponding, in Rivest, Shamir and Adleman’s cipher, to the sentence:
First solver wins one hundred dollars,

which guaranteed that the message really came from MIT.

Seventeen years later, the Dutch mathematician Arjen K. Lenstra, together with
a team of hundreds, in just 8 months managed to find the solution. The technique
used in tackling the problem is the so-called multiple polynomial quadratic sieve,
a technique that allows to split up the task into several smaller subtasks. Using
this sieve, the possible factors are found among millions of candidates. To organise
the work, Lenstra needed hundreds of collaborators all over the world and involved
thousands of computers, the whole enterprise being coordinated via the Internet.
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The results of this collective effort were sent Lenstra: two days’ computations with
a supercomputer produced a 64-digit and a 65-digit factor. This allowed Lenstra to
decrypt the message by Rivest, Shamir and Adleman.

Are you curious to know what the message said? It said:

the magic words are squeamish ossifrage.

The three scientists themselves said that it was a meaningless sentence: they
would never have supposed, when they wrote it, that it would someday emerge. What
had seemed an impossible challenge, seventeen years later turned out to be within
the grasp of the most advanced researchers. The conclusion is that cryptography is
still, in several regards, an experimental science. It still relies on several conjectures,
such as Diffie-Hellman hypothesis, we shall deal with shortly, which might be, if
not completely contradicted, at least quite diminished when new algorithms are
invented that, at least in many cases, do a good work to elude them. So, when there
are no theorems telling us whether a given cryptographic procedure is secure, it is
convenient to be careful rather than doing as if it were certainly so. A system that
today is believed to be secure might not be so tomorrow, as we shall see in Chapter 9.

7.8 Variants of RSA system and beyond

We are now going to describe some cryptosystems, the first of which is a variant of
RS A system. Its security relies on the problem of computing discrete logarithms.

7.8.1 Exchanging private keys

The RS A system, or rather a slight modification of it, allows two users to exchange
a private key with which, independently of the public key system, they can exchange
enciphered messages using one of the classic methods discussed at the beginning of
this chapter.

Let us modify the RS A system as follows. Choose a very large prime number p,
which is divulged, and work in the field Z,. Actually, we might work in any finite field
Fg4, but we shall limit ourselves to p-element fields. Choose next a non-zero element
g € Zp, which is divulged too. The most convenient choice, to use in the best way
the system’s resources, would be to choose as g a generator of the multiplicative
group of the field Z,. However, this is not strictly necessary.

Moreover, each user U chooses his private key ey, which is a positive number
smaller than p — 1, and divulges g°V € Z,, that is, the positive number Xy =
g°Y mod p. Notice that, from Xy, it is not possible to reconstruct in a reasonable
time U’s private key ey. Indeed, this would imply finding a discrete logarithm which,
as we know, requires in general an exponential time.

Let us see now how two users A and B may proceed to exchange a private
key. There is a very simple method: A and B may agree to use as a private key
g°A°B € Z,, that is, the number

Xap = ¢°*°? mod p.

Indeed, both A and B can compute X 4p in polynomial time. For instance, A knows
Xp, which is public. Moreover, she knows her private key es. So she computes
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X5t = (¢°7)*4 mod p = Xap. Similarly, B knows X4 and ep, so can compute
X5 =(g°4)°® mod p = Xas.

On the other hand, an eavesdropper C will find it hard to compute Xap. In
fact, he knows X4 and Xp, but how can he reconstruct X4p from them? In order
to do so, he probably should find first e4 and ep, and compute next g¢4°B, which
would finally allow him to figure out X 4p. But in order to find e4 and ep, C should
compute some discrete logarithms, which is computationally unfeasible.

But, are we certain that to compute Xap knowing X4 and Xp it is necessary
to compute some discrete logarithms? In other words, are we sure that in order to
compute g°4“B knowing g°4 and ¢g°Z it is necessary to know e4 and ep? So far,
nobody has proved nor disproved this fact. Nevertheless, it is conjectured that the
complexity of computing g*4°B knowing ¢4 and g°B is equal to that of finding dis-
crete logarithms: this is the so-called Diffie-Hellman hypothesis. On this hypothesis
the security of this method of exchange of private keys is based.

Example 7.8.1. Assume p = 19 and g = 2 have been divulged. Let e4 = 16 and
ep = 11 be the private keys of A and B, respectively. Then A and B publish the
values

Xa=2"mod19=5  Xp=2"mod 19 = 15,

respectively. The common key A and B will use to exchange messages is Xap =
g°4°B mod 19. A will compute it as follows:

Xap = Xj* mod 19 = 15" mod 19 = 6.
Clearly B gets the same result by computing
X5? mod 19 = 5" mod 19 = 6.

Notice that A and B can now use the key 6 to exchange messages enciphered, for
instance, using a Caesar cipher operating on 26 letters: 6 might be the enciphering
key, that is, the number of positions the letters are shifted in Caesar cipher.

7.8.2 ElGamal cryptosystem

Fix a large finite field F, (we may well take Zp, for a large p) and an element
g € I (preferably, but not necessarily, a generator of Fy). We shall assume that the
numerical equivalents of the messages are in F,.
Each user A has a public key and a private key: the private key is an integer
a = aa, randomly chosen by A (0 < a < ¢ — 1), while the public key is g* € Fy.
Assume B wants to send A a message P. Then B proceeds as follows:

B randomly chooses an integer k < ¢;

he computes ¢g* in Fg;

he computes g®* in Fy;

he multiplies the message P by ¢®* in F;
he sends A the pair (y1 = g%, y2 = P - g°%).

Notice that in order to compute g°F it is not necessary to know A’s private key;
it suffices to know g%, as g°F = (¢*)*.
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On receiving the pair (y1,y2), A, who knows a, which is her own private key,
can discover the message P by raising y; to the exponent a and dividing y2 by the
result found. Indeed,

v ()" =P g™ () =P

Somebody who could solve the discrete logarithm problem could violate the
cryptosystem by determining the private key a from the knowledge of g“. In theory,
it could be possible to obtain ¢%* knowing ¢g® and ¢* (and so to arrive at the message
P), but here too, as already said in § 7.8.1, it is conjectured that solving this kind of
problem without solving the problem of computing discrete logarithms is impossible.

7.8.3 Zero-knowledge proof: or, persuading that a result is known
without revealing its content nor its proof

Suppose Paul has found a very important formula: he wants to persuade a colleague
he has found it, but without giving him any indication about the formula itself nor
about the way he has proved it. Is it possible? This kind of communication is said
to be a zero-knowledge protocol, that is to say, it is a communication that does not
transmit any information that could give away the formula or its proof, but lets the
addressee know we actually have it. It looks like an impossible feat. However, we
shall see that it is possible. Let us see an example to illustrate how to proceed.

Let G be a finite group with N elements, and let b and y be two elements of
G. Suppose Paul has found a discrete logarithm for y in base b, that is, he has
determined a positive integer x such that

b =y.

His friend Sylvia is sceptical: Paul wants to convince her he knows x without telling
her x. Assume Sylvia knows the order N of the group G (the case in which Sylvia
does not know N can also be dealt with, but we shall not do so). They may proceed
as follows:

(1) Paul generates a random positive integer e < N and sends Sylvia
b = be;

(2) Sylvia tosses a coin: if it shows heads, Paul must disclose e to Sylvia and she
checks whether actually b = b®;

(3) if the coin shows tails, then Paul must disclose the positive integer «+e mod N.
As b® =y and b° = ', we have b®T¢ = yb'. Sylvia will check that the number
has the required property (notice that Sylvia knows both y and b').

The three steps are repeated (and so there will be a new choice of a random
integer e, a new coin toss, and so on), until Sylvia is convinced that Paul has actually
found the discrete logarithm of y.

How can she be convinced? If Paul did not really know the discrete logarithm
of y and were cheating, he would be able to answer just one of the two possible
questions. If the coin comes up as heads he certainly may disclose e, but if it comes
up as tails, how can he disclose x + e mod N without knowing z? He might try to
elude the problem by sending, in step (1), b’ = b°/y rather than b°: so, if tails shows
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up, he may reveal e = (e — x) + = (which he can easily do). But in this case he would
be exposed if the coin shows heads: indeed, in this case he should reveal e — x, and
how could he without knowing x?

By iterating the procedure a sufficient number of times, sooner or later Sylvia
will be persuaded that Paul actually knows what he claims to know.

So Paul manages to prove Sylvia that he knows the discrete logarithm z of y
without explicitly exhibiting x, and so his secret remains his own.

7.8.4 Historical note

This challenge scheme calls to mind the challenges that took place centuries ago.
In the 16th century a mathematician’s ability was demonstrated through “public
challenges”: these scientific duels were actual tournaments with witnesses, judges,
referees and so on. In these challenges fame and money were at stake. For this reason,
the most important discoveries were kept jealously secret. So, when a mathematician
came in possession of a new discovery, he sent a cartello di matematica disfida (public
mathematical challenge), in which he claimed to be able to solve a class of problems
and proposed in turn some of them, and the “contenders” engaged in proposing and
solving such problems.

Among the most famous challenges, there were those between Dal Fior and
Tartaglia (Nicold Fontana): the problems presented by Dal Fior can be reduced to
solving equations of the form x® + pz = ¢, which Dal Fior could solve because
their solution was transmitted him by his teacher Scipione Dal Ferro before dying.
Tartaglia proposed a series of problems reducible to the solution of equations of the
form x® + ma? = ¢, which he could solve. It happened that, even without knowing
the general formula for the equations in possession of Dal Fior, Tartaglia managed
to find it in time to solve all the problems, while Dal Fior could not solve any.

Another renowned challenge was the one between Ferrari and Tartaglia in 1548:
Tartaglia in 1539 had given Cardano the solution of a class of third degree equations
(the casus non irriducibilis), making him promise he would not divulge it. In 1545
Cardano published his work “Ars Magna” in which, violating his promises, he gave
the formula to solve cubic equations. Tartaglia took offence and Cardano’s pupil
Ferrari challenged him in another famous confrontation.

7.9 Cryptography and elliptic curves

So far we have only described the development of several classic and mod-
ern cryptographic methods, all based on algebraic, and mostly arithmetic,
ideas. In other words, these methods rely on properties of numbers or their
congruence classes.

In this section we are going to discuss some new frontiers recently opened
to cryptography, especially for what regards the security and the prevention of
cryptanalysis. This is due to the interaction of classic algebra and arithmetic
with ideas and notions from geometry, and in particular from the study of
certain plane curves called elliptic curves.
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7.9.1 Cryptography in a group

Before going on, we give explicitly a remark that, in an implicit form, we
have already mentioned elsewhere in this chapter. To fix ideas, consider the
exchange of private keys through the RS A system, described in the previous
section. It relies on exponentiation in Z,, with p a prime number. Its easy
execution is due to the fact that exponentiating in Z, is computationally
easy, that is, requires a polynomial time. Its security, on the other hand,
depends on the fact that finding discrete logarithms in Z,, is apparently much
harder computationally. More precisely, as we have seen, the Diffie-Hellman
hypothesis is relevant here (see page 364).

On the other hand, the theoretical basis of this cryptographic system works
with no changes if, rather than in the multiplicative group Z;, we work in any
other finite group G. Leaving the description of the details of the scheme as an
exercise, we just remark that actually, to put in practice the theory, and so to
implement a cryptosystem to exchange private keys based on exponentiation
in an arbitrary finite group G, we must ask that:

e it is possible to perform computations in G, that is, it is necessary that G
is given not only in a theoretical way, but operatively, in such a way that
we can actually work with its elements;

e exponentiating in G is easy, that is, requires, for instance, a polynomial
computational cost;

e determining discrete logarithms in G is computationally much harder, for
instance exponential, and that in G the Diffie-Hellman hypothesis holds,
that is, for a randomly chosen element g € G and for a,b € Z, computing
¢® knowing ¢ and ¢® has the same computational difficulty as determining
discrete logarithms in G.

For instance, if F,, ¢ = p/, with p a prime number, is a finite field and
G = F} is its multiplicative group, then G has these properties, as:

e G can be described concretely as an extension of Z,. Some of the examples
in Chapter 5 show how to describe its elements;

e exponentiating is easy in group G, that is, it requires a polynomial com-
putational cost (see § 5.1.14);

e just like in Z,, it is conjectured that determining discrete logarithms in
G has at least an exponential cost, and that in G the Diffie-Hellman
hypothesis holds: indeed, it is clear that if it holds in Z, then it holds in
7 too.

So we may use in cryptography, and it is actually used, the multiplicative
group of a finite field F, rather than that of Z, with p a large prime. This
yields remarkable advantages. For instance, we may use fields of the form
Fan of characteristic 2, which are very suitable for a computational approach
because their elements can be described as n-tuples of Os and 1s. Moreover,
by choosing a large n, Fa» becomes in turn large very quickly, removing the
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need for a large prime p to construct Z,. Unfortunately, choosing Fo» makes
life easier for cryptanalysis. Indeed, recently, in 1984, D. Coppersmith found
efficient algorithms to compute discrete logarithms in these fields (see [14],
j44]).

So, which groups may we use to do cryptography? We would like groups
quite similar to Fy, which would make them familiar-looking and, most im-
portant, computationally easy to use. At the same time, we would have many
of them, to be able to choose among them, perhaps change them frequently,
to avoid too easy a cryptanalysis.

Here geometry lends us a helping hand. Let us explore the ideas that lead
to considering elliptic curves.

7.9.2 Algebraic curves in a numerical affine plane

Rather than considering specifically F,, consider an arbitrary field K. So we
may define the numerical affine plane A% with coordinates on this field (see
[51]). Basically, this is just K x K. This terminology is not surprising, and has
already been used before. In fact, just consider the case K = R, leading to the
usual plane A2 with cartesian coordinates (z,y).

In the affine plane AZ we may do geometry exactly as in the real cartesian
plane. For instance, we may consider algebraic curves. These are subsets of
AZ defined by an equation of the form

flz,y) =0, (7.10)

where f(x,y) is a polynomial with coefficients in K, which we assume to be
non-constant and without repeated factors. The curve defined by (7.10) is
the set of points (u,v) € AZ such that f(u,v) = 0. Clearly, substituting the
polynomial kf(x,y) for f(x,y), where k € K*, we obtain the same curve.

The curve defined by Equation (7.10) is said to be irreducible if the poly-
nomial f(z,y) is irreducible over K. Notice that this notion depends on the
field K, because, as we know, a polynomial may be irreducible over K but not
over an extension of K.

Example 7.9.1. Consider the curve in A2 having equation 2?2 + y2 = 0. It is
irreducible because such is the polynomial 2% 4+ 32 over R. On the contrary,
the curve in A2 with the same equation is reducible because we have 2 +y? =
(x + iy)(x — iy) over C.

Notice that the curve in A% having equation z? + y? = 0 consists of
the single point having coordinates (0,0). So the definition must be studied
carefully: the notion of a curve includes sets which do not always correspond
to the intuitive idea of a curve as the reader may picture it!

If f(x,y) has degree d, we say that d is the degree of the curve of equation
(7.10). The curves of degree 1, which are clearly irreducible (see Exercise
A7.13), are called lines, those of degree 2 conic curves, those of degree 3
cubic, those of degree 4 quartic and so forth.
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7.9.3 Lines and rational curves

The x-azis, which has equation y = 0, may be identified in a natural way
with the field K, as it consists of all points (z,0), with  ranging in K. An
analogous remark can be made about the y-azis, which has equation z = 0.

More in general, every straight line may be easily identified with the field
K. Indeed, a line R has equation of the form

ar+by+e=0 (7.11)

where a and b are not both equal to zero. Assume b # 0. Then we may project
the line R on the z-axis, associating with each point (u,v) of R the point
(u,0) of the z-axis, which will be identified with u € K (see Figure 7.2). This

yA

cax+by+c=0

Fig. 7.2. Projection of a line R on the z-axis

mapping is bijective. Indeed, given u, we must have v = —(au + ¢)/b if the
point (u,v) is to lie on R. In other words, the projection is given by

m:(u,v) € R—uekK
and the inverse mapping is given by
7t iu € K — (u,—(au+c)/b) € R.

Analogously, if a # 0, the line R of equation (7.11) can be projected on the
y-axis and the projection is bijective (see Exercise A7.14).

In conclusion, lines are not interesting from our viewpoint: in fact, recall
that our goal, in cryptography, is to find groups different from K*.

The idea of projecting a curve on the z-axis to study it looks fine. So let us
keep it. From this viewpoint, which are the simplest curves after the straight
lines? We might answer, for instance, those for which the projection, even if
not bijective, is almost always so, that is, is bijective but for a finite number
of points. For instance, this property is enjoyed by the curves C of equation
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g(x)y = f(z), (7.12)

where f(x), g(z) are polynomials in x, with f(z), g(z) different from zero and
without common factors. Every curve with these properties is irreducible (see
Exercise A7.16). The projection is defined again as

m:(u,v) €C —-uek

and the inverse mapping is given by

puer (/@) en

Notice that p is not defined where g(x) = 0, so, strictly speaking, it is not the
inverse of 7; however it is its inverse out of finitely many points, the points
u € K such that g(u) = 0. Curves of this kind belong to the class of rational
curves. These are irreducible curves C' defined by an equation of the form
(7.10), and such that there are rational functions ¢(u), ¥ (u), defined over K
or an algebraic extension of K, such that the rational function f(¢(u), ¥ (u))
is the zero function. In other words,

z=¢(u), y=1(u)

is a so-called parametric representation by rational functions of the curve C.
For instance, the irreducible conic curves are curves of this kind (see Exercise
AT.17).

Clearly, rational curves are again too similar to K to be of interest to us,
so we reject them too.

7.9.4 Hyperelliptic curves

The next case is given by curves for which the projection on the x-axis has
no inverse, even after removing a finite number of points. Among these, the
simplest case is that of curves for which the preimage of a point under the
projection mapping consists in general not of a single point, but of two points.
Curves of this kind are called hyperelliptic: examples of hyperelliptic curves
are given by the irreducible curves C' of degree greater than 2 having equation
of the form

y? + yg(@) = f(a), (7.13)

where f(z), g(z) € K[z]. Assume further that g(z) is not the zero polynomial
if the characteristic of K is two: we shall shortly see why this hypothesis is
necessary.
If (u,v) is a point on the curve C, this means that v is a solution of the
equation
y* +yg(u) = f(u), (7.14)

which has in general two distinct solutions.
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Remark 7.9.2. Let us clarify the meaning of the previous claim.
If K has characteristic different from 2, Equation (7.14) has a single solu-
tion if and only if its discriminant is zero, that is, if and only if

g(u)? +4f(u) = 0. (7.15)

It might happen that Equation (7.15) holds for all (u,v) € C. However, if we
suppose that the size of the set C’ of points u € K such that there is a point
(u,v) € Cis large enough, for instance that its size is greater than the degree
of the polynomial g(z)? 4+ 4f(x), the factor theorem (see Theorem 1.3.19 and
its Corollary 1.3.20) implies that g(x)? + 4f(x) is the zero polynomial, and
this yields a contradiction, because in this case we would find

2
y* +yg(a) — flz) = (y + g(;)> ,
against the hypothesis that the curve C' is irreducible.

If the characteristic of K is 2, the derivative of the polynomial 32 +yg(u) —
f(w) is g(u). Assume that for all u € C' we have g(u) = 0, so Equation (7.14)
has a unique solution. Again, assuming that C’ has size greater than the degree
of g(x), this would imply that g(x) is the zero polynomial, contradicting the
hypothesis.

Example 7.9.3. Consider the simple case in which g(z) is the zero polyno-
mial, which by hypothesis can happen only if the characteristic of K is not 2.
In this case, if (u,v) is a point on the curve C, this means that v = f(u),
that is, f(u) is a square in K. So, not only (u,v) lies on C' but (u,—v) as
well, and these are the only two points of C' that project on the point u € K.
They are symmetric with respect to the z-axis, in the sense that their second
coordinates are one the opposite of the other. Of course, if f(u) = 0 these
points coincide, otherwise they are distinct.

In conclusion, hyperelliptic curves can be thought of as double coverings
of K. This concept is particularly clear when K is algebraically closed. In this
case, by Remark 7.9.2, if K has characteristic different from 2, for all u € K
that are not roots of the polynomial g(x)% +4f(z), we have exactly two points
of C over the point (u,0) of the z-axis. If u € K is a root of g(x)? + 4f(z),
the unique point (u, —g(u)/2) of C corresponds to it.

If, on the other hand, K has characteristic 2, for all v € K that are not
roots of the polynomial g(x), we have exactly two points of C' over the point
(u,0) of the z-axis. If u € K is a root of g(z), the unique point (u,/f(u)) of
C corresponds to it.

Clearly, we may consider curves for which the behaviour of the projection
on the z-axis is even more complex: for instance, the preimage of a general
point of K may have size greater than two. But we shall not go into these
cases because, as already remarked, we want to consider interesting curves
which are nevertheless constructible in the easiest possible way.
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7.9.5 Elliptic curves

So we are left with the problem of finding hyperelliptic curves which also
are groups. This may be done, as we shall shortly see, if f(z) and g(x) have
the simplest possible form compatible with the hypothesis that the curve has
degree greater than 2. Indeed, assume that g(z) = mx + n is of first degree
and that f(z) = 23 + pz? 4 gz + r. In this case the curve C of equation (7.13)
is cubic.

It is important to observe that, with suitable changes of variable, the
equation of curve C' may be simplified.

Proposition 7.9.4. Let C' be the curve of equation
y2 +y(ma +n) = 2® + pa® 4+ qv + . (7.16)

It is possible to change coordinates in A% in such a way that in the new
coordinate system

o if K has characteristic different from 2 or 3, C' has equation of the form
y? =% + ax + b; (7.17)

o if K has characteristic 3, C has equation of the form
y* =2% 4+ ax® +br + ¢ (7.18)

o if K has characteristic 2, C' has equation of the form
y? +cy = 2° + ax + b; (7.19)

or of the form
y? +xy =23 + ax® +b. (7.20)

ProOOF. To begin, assume K not to have characteristic 2. Change variables

as follows:
y—mxr—n

2

The equation of C' becomes of the form (7.16) where m = n = 0. This con-
cludes the proof in the case of characteristic 3. If the characteristic is not 3,
change again variables as follows:

r — I, Yy —

T — T — Yy —y. (7.21)

p
3 )
The equation of C' becomes now of the form (7.17), concluding the proof if
the characteristic is neither 2 nor 3.

Assume now the characteristic of K to be 2. By performing the change of
variable (7.21) the equation of C becomes of the form
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y2 +y(mz+n) =2®+azx +b.

If m = 0 the equation is of the form (7.19). Assume then m # 0. In this
case, perform the change of variable

2 2
m m
obtaining an equation of the form (7.20). O

The equations of the form (7.17), (7.18), (7.19), (7.20) are called canonical
equations in Weierstrass form of a cubic curve.

Now we shall put ourselves in a regularity hypothesis. We shall assume
that, if K has characteristic different from 2, the right-hand side of Equation
(7.17) or (7.18) has no multiple roots in the algebraic closure of K. If K has
neither characteristic 2 nor 3, that is, when the equation in Weierstrass form is
Equation (7.17), this is equivalent to saying that 27b% 4 4a3 # 0 (see Exercise
A7.18). If, on the other hand, K has characteristic 2 and if the equation in
Weierstrass form is Equation (7.20), then we shall assume b # 0. We shall
shortly see the meaning of this hypothesis.

Finally, we shall add to C' a point O called point at infinity, whose meaning
is well known to the reader acquainted with projective geometry (see [51]).
Next, we shall denote by E the set C'U{O}, call E an elliptic curve, and say
that (7.17), (7.18), (7.19) or (7.20) is its equation.

Remark 7.9.5. As is well known, the affine plane A% can be naturally embedded in
the projective plane P%, whose points are non-zero ordered triples [xo, 21, x2] of ele-
ments of K, up to a multiplication by a constant, that is, [zo, z1, z2] = [kzo, kx1, kz2]
for all k € K*. Given the point [z, x1,22] of P%, o, 1, 22 are said to form a triple
of homogeneous coordinates of the point. The embedding of A% in P happens as
follows:

(x,y) € Ag — [1,z,y] € P§.

The complement of AZ in PZ is the set of points satisfying the equation xzo = 0, that
is, the set of points of the form [0, a, b], called points at infinity. This set is called
line at infinity of the projective plane. If [xo,z1, z2] is not on the line at infinity, its
cartesian coordinates in AZ are

X1 X2

=", xz= ".

o o
These are the formulas to pass from homogeneous coordinates to cartesian coordi-
nates.

If we consider a line R in the plane A%, with equation bx — ay + k = 0, passing
to homogeneous coordinates and multiplying both sides by x¢, we find the equation
kxo+bx1—ax2 = 0. Clearly all the solutions to this equation having z¢ # 0, and they
alone, correspond to the points of A% lying on R. On the other hand, by intersecting
it with the line at infinity, we obtain the system

To = bx1 — axe =0,
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which uniquely determines the point 0 = [0,a,b]. This leads to the well-known
interpretation of the points at infinity: the point [0, a,b] is to be considered as the
common point of all parallel lines of the plane AZ having equation of the form
bx — ay + k = 0 with k£ ranging in K.

Similarly, considering the curve C' of equation (7.17), passing to homogeneous
coordinates and multiplying both sides by 3, we find the equation

xoxg = xi’ + a:rgwl + bxg. (7.22)

All the solutions to this equation having zo # 0, and they alone, correspond to the
points of AZ lying on C. On the other hand, intersecting it with the line at infinity,
we obtain the system
Xo =1 = 07

which uniquely determines the point 0 = [0, 0, 1]. So it is natural to consider Equa-
tion (7.22) as defining the projective closure E of C. It differs from C only by the
point at infinity O. We may reason analogously if the curve has equation (7.18),
(7.19) or (7.20).

Remark 7.9.6. We might wonder whether a curve having equation (7.17), (7.18),
(7.19) or (7.20) could itself be rational, and so devoid of interest for our uses. It
is not so in the regularity hypothesis we have stipulated: for instance when K has
characteristic different from 2 and 3, the equation is of the form (7.17) and 27b* +
4a® # 0, while it can be shown that the curve is rational if 276* + 4a® = 0 (see
Exercise A7.23). The simplest case is that of the curve of equation y? = 2%, which
has parametric representation

To study the matter more in depth, see [56].

7.9.6 Group law on elliptic curves

Let us discuss now the group law on an elliptic curve E. We shall consider
here in detail the case in which K has characteristic different from 2 or 3
and the equation is of the form (7.17), leaving to the reader as an exercise
the analogous discussion of the remaining cases (see Exercises A7.27 and [56],
Chapter III, § 2).

The key observation is that given two points p = (z1,y1) and ¢ = (x2,y2)
of the curve, the line through them intersects the curve in a third point r =
(x3,ys)- This observation is to be taken with a grain of salt, in the sense we
are going to explain.

First of all, we verify it in the case in which p and ¢ are distinct and the
line R through them is not vertical, that is, has not an equation of the form
x = u. This means, as already remarked, that z7 # x,.

The equation of R is

Yy =mzx +n, (7.23)

with
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Y2
EECEEC
(see Exercise A7.19). To find the points of intersection of R with C, substitute
(7.23) in (7.17), and solve with respect to x. So one gets the third degree
equation

m n =1y —ma; (7.24)

23— (mx4+n)? +ax+b=0;
clearly x; and x5 are two of its roots. Let x3 be the third root. As

2
T +xT2+x3=mM

(see Exercise A7.20), we have
2
r3 =m — T — T2,

which gives the first coordinate of the third point r of intersection of R with
C. The second coordinate of r is given by

Yz = mxs + n.

Let us see what happens if the line through two distinct points p and ¢ is
the vertical line x = u. As we have seen in Example 7.9.3, this means that the
two points have coordinates (u,v) and (u, —v), where v are the square roots
of u® + au + b. The intersection of the line of equation z = u with the curve
of equation (7.17) in AZ consists only of the points p and ¢. But passing to
homogeneous coordinates, the equation of the line becomes z1 = uxy and we
see that it passes through the point O lying in E. So it is natural to regard
O as the third intersection point of the line through p and ¢ with the curve.

Example 7.9.7. We demonstrate the preceding remarks by examining the real
curve of equation

3

5 .
Yy =z —=.

The curve corresponds to the union of the graph of the function

y=+az3 -z

and of its symmetric with respect to the z-axis. Fix a point on the curve, say
p = (2,v/6). Write the equation of a non-vertical line through p. It is of the form

y—6= ;@—2), (7.25)

with m # 0. Intersect this line with the curve, obtaining, besides p, two more points,
q and r. We leave to the reader the task of finding their coordinates as functions
of m and of verifying that, as m approaches 0, that is, when the line tends to
becoming the vertical line z = 2, one of the two points ¢ and r tends to the point
p = (2, —\/6), symmetric of p with respect to the z-axis, which lies indeed on the
vertical line x = 2, while the other’s second coordinate tends to infinity (see Figure
7.3). Basically, this second point tends to infinity and its limit position, which may
be thought of as infinitely far along the y-axis, to which the line of equation (7.25)
becomes parallel as m approaches 0, is exactly that of the point O we have added
to C in order to get E. These heuristic remarks are quite natural and should not
sound strange to readers acquainted with projective geometry.
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Fig. 7.3. Elliptic curve of equation 3% = 2®> — x

Finally, what happens if p = q?7 Here we cannot consider the line through
p and g. Nevertheless, among the infinitely many lines through p = ¢ one is
special, with respect to the elliptic curve: the tangent line to the curve in p,
which may be thought of as the line joining p with a point ¢ on the curve that
is so close to p to be undistinguishable from p. This notion is well known in
the real case: it is the limit line of the line through p and another point ¢ of
the curve, when g approaches p.

If a real curve C has equation

f(xvy) =0

and if p = (§,n) is a point of C, the condition for the tangent, seen as the
above limit, to exist is that in (£, 1) not both partial derivatives of f(z,y) are
zero (see [51]), that is, it is not the case that

of of

ax(f,n)=0, By

(&mn) =0. (7.26)

So the tangent line to C' in p has equation

of

o €=+ o €= =0, (7.27)
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More in general, these notions extend without any difference to the case
of a curve on an arbitrary field (see [56], Ch. I, § 1). A point p = (&, n) of the
curve C of equation f(x,y) = 0 for which (7.26) hold is said to be singular.
In it the tangent line does not exist. A non-singular point is said to be simple
or smooth, and in it the tangent line exists and is given by Equation (7.27).
A curve having a singular point in p is said to be singular in p.

Remark 7.9.8. A curve of equation f(z,y) = 0 is singular, that is, has some
singular point, if and only if the system

of
Ox

af

f(x7y) =0, Ay

(z,y) =0, (z,y) =0 (7.28)
admits solutions. Notice that this definition depends on the field K, as it is
possible that the system (7.28) has no solutions in K but has solutions in some
extension of K (see Exercise B7.58).

When a curve is said to be non-singular, without specifying the field on
which it is considered, the curve is meant to be considered on the algebraic
closure of the field K containing the coefficients of the equation defining the
curve.

The reader may easily verify that the regularity hypothesis on page 373
makes sure that the curves C defined by equations in Weierstrass form of the
kind (7.17), (7.18), (7.19) or (7.20) are non-singular (see Exercise A7.22). Let
us fix our attention, as usual, on the case in which the equation is of the form
(7.17). Then, given a point p = (£, n) of the curve, the tangent line R, in that
point has equation

(=38 —a)(x — &) +2n(y —n) = 0.

It is vertical if and only if n = 0, that is on the points in which C' intersects
the z-axis. We leave to the reader the task of verifying that if n # 0, then
R, intersects C' in a further point r the coordinates of which may be easily
computed (see Exercise A7.25). The point r is to be interpreted as the third
intersection with the elliptic curve of the line through p and ¢ when p = ¢ =
(&,m). Of course, if p = ¢ = (£,0), the tangent line is the vertical line of
equation x = £ and, as we have already seen, it is the point at infinity O that
has to be regarded as the third intersection of this line with the curve.

What can be said about the lines through O? By our interpretation of
points at infinity, they are all the lines that are parallel to the y-axis, that is,
the vertical lines of equation x = u.

So, if p = (&, 7n) lies on the curve, the line through p and O is the line of
equation x = ¢, which, as we know, intersects the curve in the further point
q= (67 777)

Finally, for reasons we shall not discuss at length (see Exercise A7.26), it
can be seen that the line at infinity must be considered as the tangent line to
the curve E in O and, as already seen, it intersects the curve only in O. So we
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may say that this line, which must be considered as the line through p and ¢
when p = ¢ = O, intersects further the curve in O itself.

In conclusion, we may say that, in the sense made clear above, given two
points p and g of F, distinct or equal, there is a third point r of E such that
p, q and r are collinear.

So we are very close to defining the group law on E, which will be described
using an additive notation. One is tempted to define define the sum p + g of
two points p and q of E as the third point of F that is collinear with p and gq.
But this is not a completely correct idea. We have to take O as the identity
element, that is the zero, of the group, and define the sum p + ¢ as follows:

e consider first the third point r of E collinear with p and ¢;
e define p + ¢ as the third point s of E collinear with r and O.

In other words, if we consider an elliptic curve defined by an equation of the
form (7.17), p + ¢ is the symmetric point with respect to the z-axis of the
third point r of E collinear with p and ¢ (see Figure 7.4). In this way, the
opposite of each point p is exactly its symmetric with respect to the z-axis.

Ya

&v

Fig. 7.4. Group law on an elliptic curve

Keeping in mind what has been said in this section, as well as in Exercise
A7.25, we may compute the coordinates of the point s = p+ ¢ = (x3,y3)
as a function of the points p = (z1,y1) and ¢ = (x2,y2) of an elliptic curve
(see Exercise A7.27). Here we give the details only for the case in which the
equation in Weierstrass form is of the kind (7.17).
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Proposition 7.9.9. Let E be an elliptic curve on a field K of characteristic
different from 2 and 3, of equation y?> = x> + ax + b with 27b% + 4a® # 0.
Consider the binary operation + in FE

ExE—E, (p,q) — s

defined as follows:

ifp=0, then s =q;
if p # q are both different from O, p = (x1,y1) and q¢ = (x2,y2), and if
1 =X and y1 = —Yya, then s = O;

e if p #£ q are both different from O, p = (x1,y1) and q¢ = (x2,y2) with
x1 # X9, then s £ O and s = (x3,ys) with

2

(y2—n ~ (y2—w) ,

x3 = — T — X2, Y3 = (T — x3) — Y13
T2 —T1 (332 —331)

if p=q is different from O and p = (£,0), then s = O;
if p = q is different from O and p = (£,7), with n # 0, then s # O and
s=(¢,n') with

3% +a)’ (3¢% + a)

I _9 I AN
rE(?n)E,n 2n(§§)n

With this operation, (E,+) is an abelian group, whose identity element is

the point at infinity O and the opposite of the point (£,1) of E is the point

(fa _77)

PROOF. The commutativity of the operation just defined is a simple algebraic
computation we leave to the reader as an exercise (see Exercise A7.28). The
most delicate check is that the operation is associative: for it see [56], Propo-
sition 2.2. ad

Remark 7.9.10. Notice that without the hypothesis 27b? + 4a> # 0, we may
have anomalous situations, as the following one. Let E be the real curve of
equation

yr=a% -3z —2.
We have 27 -4 + 4 - (=3)3 = 0. Now it is easy to verify that, if we keep the
definition of the sum as given above, for every (z,y) € E we have

(_170) + (a:,y) = (_1’0)'
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7.9.7 Elliptic curves over R, C and Q

We have finally come in possession of a group for each elliptic curve, and we
may use these groups in cryptography, as we intended. But which ones of
these curves should we use? and over which fields?

Real elliptic curves possess infinitely many points. Indeed, a real elliptic
curve E is defined by the equation (7.16). The curve E consists of the graph
of the function y = \/ f(z) and of its symmetric with respect to the z-axis.
As x approaches +oo, f(x) tends to +o0o. Thus \/f(z) is defined at least on a
half-line, so E has infinitely many points. It is easily verified that E consists
of either one or two arcs, depending on the number (one or three) of real roots
of f(x) (see Exercise A7.29). In cryptography we need finite groups, so real
elliptic curves are useful to draw inspiration from, but cannot be used for our
goals.

Elliptic curves over C are even less useful. C being algebraically closed,
those curves are, as mentioned, double covers of C. They can be parametrised
using suitable functions, called elliptic functions, which are not rational func-
tions, but have properties quite similar to those of trigonometric functions
and cannot be expressed in terms of elementary functions. The theory of
these functions is very interesting but too complex to allow us more than the
briefest mention (see [55]). It is interesting to remark that elliptic curves take
their name from these functions.

We may next consider elliptic curves over Q. In this regard, the following
fundamental theorem is well known (see [56], pag. 188):

Theorem 7.9.11 (Mordell-Weil). If E is an elliptic curve over Q, then
FE is a finitely generated abelian group, that is,

E ~Tors(E) @ Z",

where Tors(E) is the torsion subgroup of E, that is to say, the subgroup of E
consisting of the points of finite order, while r is called rank of E.

The dependence of the rank of an elliptic curve over Q from its equation
is not yet well understood.
Example 7.9.12. The point p = (2, 3) of the elliptic curve over Q of equation
y? = 22 4+ 1 is a torsion point. Indeed, by using the group law on the curve

we find that 2p=p+p=(0,1), 4p = (0, —1) and so 6p = O.

Excluding the case in which the rank of a rational elliptic curve E is 0,
is an infinite group too, and so unsuitable for use in cryptography.

So we are only left with elliptic curves on finite fields F,. This is a classical
and intriguing subject which has played a central role in last century’s math-
ematics, culminating in the momentous proof by A. Wiles of the well-known
so-called Fermat’s Last Theorem, which states that the equation 2" +y" = 2"
has no solutions (z,y, 2) € Z x Z x Z with x,y, z different from zero, if n > 2
(see the popular science book [57] or Wiles’s paper [63]; see also Exercises
A7.30-A7.35 for the case n = 2).
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7.9.8 Elliptic curves over finite fields

On the road to describe elliptic curves over a finite field F,, we begin by
remarking that such a curve E, of equation (7.16), has finitely many points,
their number being denoted by |E/F,|. We also have an estimate

|E/F,| <2¢+1 (7.29)

because, apart from O, for all x € F,, the equation (7.16) has at most two
solutions in F,.

The estimate (7.29) is very rough: indeed, only one half of the elements of
F, are squares, so only one half of the elements of F, has a square root. To
be more precise, we can give the following definition, which is the analogous,
for finite fields, of the Legendre symbol:

Definition 7.9.13. The quadratic character in Iy is the function
x:u€F, — x(u)e{0,1,-1}
defined as follows:

0 ifu=0,
x(u) =<1 if u is a square,

—1 if u is not a square.

In particular, x(u) = (7)) if ¢ is a prime number.
Notice that the number of solutions of the equation z? = u in F, equals
1+ x(u) (see Exercise A7.36). Moreover, x(uv) = x(u)x(v) for every pair
(u,v) of elements of F, (see Exercise A7.37).

Then, if the characteristic of Fy is different from 2 and 3 (hence the equa-

tion becomes (7.17)), we have

|E/F,| =1+ Z(l+x(w3+ax+b)):q+1+ Zx(w3+ax+b).

z€F, z€F,

Now, let us reason heuristically: we expect that, for general a and b, for a
given x € F,, (23 + az + b) has the same probability of being equal to 1 or
—1. That is, for all # € F,, computing x (2> + ax + b) is like tossing a coin to
see whether it shows heads or tails.

In probability theory a situation of this kind is called random walk. Assume
we are on a line, in the coordinate origin. We have a coin and we toss it. If it
shows heads, we take a step towards the positive semiaxis, while if it shows
tails we take a step towards the negative semiaxis. After n steps, how far may
we expect to be from the origin? The answer given by probability theory is
that we expect a distance of about /n steps, in one of the two directions (see
29)).
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In our case n = g, that is, the number of points of ;. So we expect, by
this heuristic argument, that the number |E/F| of points in the elliptic curve
E is on the average bounded by ¢ + 1 + ,/q. The following result by Hasse
(see [56], p. 131) gives us an actual, not just a heuristic, estimate for |E/F,]|.
Notice that this estimate is not very far from the previous one.

Theorem 7.9.14 (Hasse’s Theorem). If N = |E/F,|, then
IN = (¢+ D] <2g.

Hasse’s theorem says that an elliptic curve over I has, after all, not many
more points than Iy itself. So elliptic curves over finite fields are actually not
too complicated objects. Good news for cryptographers!

Example 7.9.15. Let us compute now the number of points of the elliptic
curve of equation y? = 23+ z over F,, with p a prime number such that p = 3
(mod 4). We have

N=p+1+Zx(x3+x):p+1+2x(x3+x).

z€elF, z€lFy
But
X((=2°) + (=2)) = x((-1)(@° + 2)) = x(~-1)x(2* + ) =

-1

- ( p ) X(@? + 1) = —x(a® + @);
hence it follows that N = p+ 1, as the summands in the sum giving N cancel
out in pairs.

A result more precise than Hasse’s Theorem is Weil’s theorem. It is one
of the most important theorems of 20th century mathematics; it led Weil to
conjecture more general results which were later proved by Deligne, giving a
great boost both to algebraic geometry and number theory.

To state Weil’s theorem (see [56], Ch. V, §2), associate with an elliptic
curve E defined over F, a function called zeta function of E, denoted by
ZpF,(t). If N, = |E/Fg|, define

Zos,(t) = EA NI
Theorem 7.9.16 (A. Weil). The function Zg,(t) is rational, of the form

1 —at + qt?
(1—1)(1 —qt)

and only depends on E. More precisely,

(7.30)

a=q+1—Niy.
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Notice that the discriminant A = a? — 4q of the numerator of (7.30) is
negative by Hasse’s theorem, so the latter has two complex conjugate roots
o, B, Tt is easy to verify, and we leave it as an exercise to the reader (see
Exercise A7.38), that, by setting

o = . ﬂ:

we have |a| = |0 = \/q.
Corollary 7.9.17. For all r we have
N, =14+q¢ —a" —f".
PrOOF. From Weil’s theorem it follows that:
o el
=log(1 — at) + log(1 — Bt) —log(1 — t) — log(1 — qt).

Taking derivatives on both sides we find

- _ a g 1 q
Nt =~ - =
; 1—at 1—ﬁt+1—t+1—qt

=—a) (at) =BY (B + Y t"+a) (at) =
r=0 r=0 r=0 r=0

— Z(_ar+1 _ ﬁr+1 +14+ qr+1)tr’
r=0

hence the corollary immediately follows. O

Let us see how to apply these results to computing the number of points
on an elliptic curve on a finite field.

Example 7.9.18. Let us compute the number N; of points over Fy, and the
number NV, of points over any finite extension of degree r, of the elliptic curve
E of equation y? +y = 2 4+ 1. Computing the number of points of any curve
over [y is trivial. We may easily proceed by trial and error, keeping in mind
that in the affine plane there are exactly 4 points. Then Weil’s theorem gives
the number of points of the curve over any extension of Fa.

In this case we have N7 = 3, because F, apart from the point at infinity
O, has over Z only the points (1,0) and (1, 1) (see Exercise B7.66). Then the

zeta function is
1+ 22

(1—t)(1—2¢t)°

The roots of the numerator are +i/v/2, so

Z(t) =

1427 if r is odd,

N, =142 — (ivV2)" — (—iv2)" =
(ivV2)" = (=iv2) {1 +27 —2(=2)"/2 if r is even.
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7.9.9 Elliptic curves and cryptography

Let us come back to cryptography. Now we have at our disposal not only the
multiplicative groups of the fields F,, but also the elliptic curves defined on
them, and there are many more of them. So, as already mentioned, we have
more diversity, and this gives more security to our cryptosystems.

But are elliptic curves on finite fields actually appropriate for cryptogra-
phy? The answer is essentially in the affirmative. Let us see why, discussing
separately the issues already hinted at at the beginning of this section.

e Elliptic curves are given in a concrete way: it suffices to give their equation.
This does not always mean that determining their points is easy. Indeed,
there is no known polynomial algorithm to generate points on an ellip-
tic curve over IF,. However, there are probabilistic polynomial algorithms,
which are able to determine points on an elliptic curve with a very high
probability (see Exercise A7.39 and A7.40). Let us further mention that
there is in fact a polynomial algorithm, due to R. Schoof, that determines
the number of points of an elliptic curve over F,, but without determining
the points themselves (see [50]).

e Exponentiating on an elliptic curve E, which amounts now actually to
multiplying a point of F by an integer, has a polynomial computational
cost: keeping in mind Proposition 7.9.9, this can be shown in a similar way
as in Z, or in F,.

e A. Menezes, T. Okamoto and S. A. Vanstone ([42]) have shown that the
problem of discrete logarithms on an elliptic curve is not less hard than
on a finite field. It is conjectured that, a fortiori, for an elliptic curve on
F, the Diffie-Hellman hypothesis holds.

In conclusion, let us sum up how it is possible to exchange a private key
using an RS A system relying on the use of an elliptic curve. We choose: a
field F,, an elliptic curve £ and a point p € E, which are made public. As
we shall see shortly, it is convenient for the system to work best, that E has
many points over F,. To determine such an F, the results described above are
helpful.

Each user U chooses a key ey, a positive integer, he will keep private.
However he publishes py = eyp, which is again a point of E, computed by U
in polynomial time. It is convenient that if U # V then py # py. To this end,
it helps if p has a very large order, far larger than the number of users of the
system. So, when the numbers ey are chosen randomly the points py will be
different.

If two users A and B want to exchange a private key, they may do so
by agreeing about using as their private key the point pap = (eaep)p. They
both may determine it in polynomial time, while, due to the difficulty of
computing discrete logarithms on E and Diffie-Hellman hypothesis, pap will
be unreachable by anybody else.
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Clearly, A and B may use as their private key a number deduced from
pap: for instance, one of the coordinates of this point, or their sum, and so
on.

We leave to the reader the task of devising a way of applying the general
RS A method using elliptic curves (see Exercise A7.41).

7.9.10 Pollard’s p — 1 factorisation method

Surprisingly, elliptic curves are not only greatly useful in cryptography, but are
also suitable to solving several other problems we have previously discussed, such
as primality tests (S. Goldwasser, J. Kilian; A.O.L. Atkin, see [30], Ch. VI) and
factorisation (H.W. Lenstra, see [30], l.c.). The ideas are not very different from
those described in this book, but elliptic curves make it possible to implement them
with an accuracy and a flexibility that make them very effective. We conclude this
part by examining a factorisation method (Pollard’s p — 1 method) which does not
rely on elliptic curves. Without going into too many details, we mention the fact
that the restrictions of this method can be overcome by using elliptic curves, and
this yields Lenstra’s factorisation mentioned.

Assume we have to factor an integer N. The method we are going to describe
works when N has a prime factor p, to be determined, such that p — 1 has not too
large prime divisors. So we give an a priori estimate of the greatest prime 7T dividing
p—1.

We have to find a number k divided by p — 1. To this end, we may proceed as
follows. Let

p—1=235"...1%
be the prime factorisation of p — 1. As p is not known, the exponents «, 3, v etc.
are not known either. However, as 2% < p —1 < N, we have a < (log N)/(log 2),
and so 3 < (log N)/(log 3), etc. Thus, setting

J :— ollog N)/(log2)] gl (log N)/(log3)| _ pl(log N)/(log T)]

we have that p — 1 divides k.

Let now a be an integer between 2 and N — 2, such that GCD(a, N) = 1, so a
is relatively prime with all prime factors of N. By Fermat’s little theorem we have
a?~' =1 (mod p) and so, as p — 1|k,

a®=1 (mod p).

Compute now a® (mod N) in polynomial time (see § 3.3.1) and simultaneously,
using the Euclidean algorithm, compute d = GCD(ak —1, N). Clearly, the first p we
are looking for is such that p|d, so d # 1. If d # N, we have found a (not necessarily
prime) factor of N and we are done. Otherwise, if d = N, that is, if N|(a® — 1),
modify the choice of the integer a or of the integer k and start over. In practice,
take as k a multiple of all integers smaller than or equal to a fixed integer M, which
is supposed to be greater than all the powers of the prime numbers dividing p — 1.
For instance, we may take k = M.

Example 7.9.19. Factor with this method the number 156203. Choose M = 6,
k = 6!, and a = 2. Compute 2 (mod 156203) = 32219. Find next
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GCD(2" — 1,156203) = 181.

We have found that 181 (which is a prime) is a factor of 156203 and the factorisation
of 156203 is
156203 = 181 - 863.

Remark 7.9.20. While the single steps just described have polynomial cost, the
algorithm itself is exponential because, when d = N, we have to modify, for instance,
our choice of the integer a, which may be done in N ways. Moreover, it may happen
that for each choice of a we have N|(a* — 1), and so the algorithm might never give
a positive result.

Nevertheless, there are probabilistic reasons for this algorithm to work in some
cases. For instance, suppose exactly one of the prime factors of N, say p, has the
property that the prime factors of p— 1 are bounded by T, while for all other factors
q, q is large with respect to k.

In this situation, if g|(a” — 1) then a is a kth root of unity modulo ¢, and the
probability of this happening for a random choice of a is k/g, because the kth roots
of unity are at most k in Z;. So this probability is very small, if ¢ > k. Hence the
probability that N|(a* — 1) is even smaller, and this is exactly the case in which the
algorithm has to be repeated.

Which are the limitations of this algorithm? In it, we exploit the structure of
the groups Z,, with p ranging among the prime factors of N. For a fixed N, these
groups are fixed and cannot be exchanged for others; and, as we have remarked, the
algorithm might not give positive result for any of them. This happens, in particular,
if the order p — 1 of each of these groups has at least a prime factor not bounded by
the number T" we have chosen at the beginning and which, as seen, determines the
number k. How may we obtain a larger choice? By using elliptic curves, on which
H. W. Lenstra’s factorisation method relies (see [35], [30], Ch. VI, § 4). Here is a
sketch of the idea: substitute the group E/Z, of the points of an elliptic curve E
over Zj for Z;. The new group, by Hasse’s theorem 7.9.14, has order

|E/Zp,| =p+1-—s, with |s| < 2,/p.

Different elliptic curves FE yield different values of s and we have at our disposal
several groups: so it is realistic to expect one of them to have order with small prime
factors.

Appendix to Chapter 7

A7 Theoretical exercises

A7.1. We have seen the frequencies of the different letters in English. Assume we
have messages written in two languages, for instance containing an English text
and its translation in another language, or the other way around. Explain how to
get a frequency table for these messages, assuming we have the tables for the two
languages, knowing that each message is written half in one of the languages and
half in the other one.
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A7.2. We have seen how to carry out the cryptanalysis of an enciphered message
by using frequency analysis. Exercise C7.2 requests the reader to write a program
that computes the frequencies with which the letters appear in a given text. Assume
we have a program saying whether a word exists in English language or not: more
precisely, on receiving as its input a word, its output is either true or false, depend-
ing on the word being present or not in English lexicon. Describe an algorithm to
decrypt a message, enciphered using a monoalphabetic substitution, using these two
programs.

A7.3. Prove that an affine transformation f : Zgs — Zag¢ defined by f(n) = an +
b mod 26, where a,b € Z, is bijective if and only if GCD(a, 26) = 1.

A'7.4.* Show by an example that there are systems of two linear congruences modulo
26 in two unknowns having no solutions. (Hint: try a diagonal matrix. Indeed, in
this case the system reduces to two independent linear congruences; the system does
not admit solutions if and only if one of the two congruences does not.)

A'7.5.* Show by an example that there are systems of two linear congruences modulo
26 in two unknowns having more than one solution modulo 26. (Hint: try a diagonal
matrix.)

A7.6. Explain how to carry out the cryptanalysis of an affine cipher, with 2-letter
unitary messages, when the system of linear congruences modulo 26 obtained as
explained in Remark 7.4.3 on page 339 has more than one solution.

A7.7.% Prove Proposition 7.4.2 on page 338.

A7.8.% Consider a system of two linear congruences of the form

ai g
az (6]

A- = (mod m),
an o7

where A is a square n X n matrix with integer coefficients. Prove that if the determi-
nant of A is invertible modulo m, then A has an inverse modulo m and the system

admits a unique solution in a1, a2, ..., an, given by
ai aq
az 1 Q2
=A" . (mod m).
Qn (677

A7.9. Prove that the computational complexity of the knapsack problem, when
ai,...,an is a superincreasing sequence of integers, is polynomial.

A7.10.* Assume we know that an integer n is the product of two prime numbers p
and ¢. Explain how to find p and ¢ in polynomial time if one knows ¢(n).

AT.11.* Let n be a product of distinct primes. If d and e are positive integers such
that de — 1 is divisible by p — 1 for every prime p | n, then we have a?® = a (mod n)
for every integer a, even if a is not relatively prime with n.
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A'7.12. Explain why Exercise A7.11 proves that we have not to worry if in the RSA
cryptosystem it happens that a unitary message P; we want to send to the user B
is not relatively prime with ng.

A7.13. Prove that lines are irreducible curves. (Hint: first degree polynomials are
always irreducible.)

A7.14. Counsider the line R of equation (7.11). Prove that if a # 0 the projection
(u,v) € R — v € K on the y-axis is bijective, and write its inverse.

AT7.15. Prove that the reducible conics are unions of two lines.
A7.16.* Prove that a curve of equation (7.12) is irreducible.

AT7.17.* Prove that an irreducible conic, that is an irreducible curve defined by a
degree two equation, is a rational curve, that is admits a parametric representation
by rational functions.

A7.18.% Prove that the polynomial f(x) = x® + ax + b has no multiple roots if and
only if 276 4 4a® # 0. (Hint: a root of a polynomial f(z) is a multiple root if and
only if it is a root of the derivative of f(z) too.)

A7.19. Prove that the line through the points (z1,y1) and (z2,y2) has equation
(7.23) with m, n determined by (7.24). (Hint: the (non vertical) lines through (z1,y1)
have equation y — y1 = m(z — x1) and m can be found by imposing that the point
(z2,y2) lies on the line.)

A7.20. Prove that if x1,x2,x3 are the three roots of a degree three monic polyno-
mial, then the degree two coefficient of the polynomial is —x1 — x2 — x3 and the
constant term is —x1z2x3. (Hint: the polynomial may be written as (z — x1)(z —
z2)(z — x3).)

A7.21. Let K be a field and consider the curve in AZ defined by an equation of the
form y?+y(ma+n) = La*+pr?+qu+r with £ # 0. Prove that, if K contains the cubic
roots of each of its elements, then it is possible to reduce it in Weierstrass canonical
form as in Proposition 7.9.4. (Hint: begin by changing variables by = — x/V/Z,
y — vy, and go on as in the proof of Proposition 7.9.4.)

A7.22.* Prove that a curve defined by an equation in Weierstrass form of the kind
(7.17), (7.18), (7.19) or (7.20) is singular in the algebraic closure of K if and only if
it does not verify the regularity hypothesis on page 373.

A7.23.* Prove that if a curve defined by an equation in Weierstrass form of the
kind (7.17), (7.18), (7.19) or (7.20) is singular, then it is rational. (Hint: work in the
algebraic closure of K and prove that almost all the lines through a singular point
intersect the curve in a unique point out of the singular point.)

A7.24. Prove that, if 270> + 4a® = 0, then the curve of equation (7.17) is rational.

A7.25.% Let p = (£,71) be a point of the elliptic curve (7.17), with n # 0. Determine
the intersection point different from p of the tangent line to the curve in p. (Hint:
obtain y from the equation of the tangent line and substitute it in the equation of
the curve; so one finds an equation of degree three in x having a double solution in
x = &; the further solution of the equation is the abscissa of the required point.)
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A'7.26.* Explain why the line at infinity is to be considered as the tangent line to an
elliptic curve in Weierstrass form in the point at infinity. (Hint: write everything in
cartesian coordinates u = xo/x3,v = x1/x3 and consider the point O as the origin
of a new plane AZ.)

A7.27.*% Compute the coordinates of the point p + ¢ = (x3,ys3) in function of the
points p = (x1,y1) and ¢ = (x2,y2) of an elliptic curve in each of the cases (7.17),
(7.18), (7.19) and (7.20) (see page 379).

AT7.28. Prove that the operation of sum of points on an elliptic curve is commutative,
that is, p + ¢ = ¢ + p. (Hint: carry out the calculations, or consider the geometric
definition of the group law.)

A7.29. Prove that an elliptic curve y* = f(z) defined on the real field consists of a
single arc if f(z) has a single real root, while it consists of a closed arc and an open
one if f(z) has three real roots. In Figure 7.4 this second case is represented. Give
an example of a curve for which the first case is verified. (Hint: study the sign of
f(z), since the curve has no point (z,y) if f(z) is negative.)

In the following Exercises A7.30-A7.35 all the solutions (z,y,z) € Nx N x N
with non-zero z, v, z of the equation z? + y?> = 22 are determined. These solutions
are called Pythagorean triples as, by Pythagoras’s theorem, they are the lengths of
the legs and of the hypotenuse of a right triangle. A Pythagorean triple (z,y, 2) is
said to be primitive if GCD(z,y, z) = 1.

A7.30. Let (z,y, 2) be a Pythagorean triple such that GCD(z,y, z) = d. Prove that
(z/d,y/d,z/d) is a primitive Pythagorean triple.

A7.31. Let (z,y,z) be a primitive Pythagorean triple. Prove that GCD(z,y) =
GCD(z, z) = GCD(y, z) = 1.

A7.32. Let (z,y, 2) be a primitive Pythagorean triple. Prove that one out of z and
y is even, and the other is odd.

A7.33. Let 7, s be positive integers such that GCD(r,s) = 1. Prove that if s is a
square, so are r and s.

A7.34.% Let (z,y, z) be a primitive Pythagorean triple with even y. Prove that there
exist positive integers n, m, with GCD(m,n) =1 and m > n, such that

z=m?—n? y = 2mn, z=m?~+n. (7.31)

A7.35. Verify that if (z,y,2) is a triple given by (7.31) with n,m positive integers
such that GCD(m,n) = 1 and m > n, then (z,y,z) is a primitive Pythagorean
triple.

A7.36. Prove that the number of solutions of the equation z? = u in F, is 1+ x(u),
where x(u) is the quadratic character of u in Fq.

A7.37. Prove that the quadratic character x in Fy satisfies x(uv) = x(u)x(v) for
all u,v € Fg.

A7.38. Let o, 8’ be the roots of the numerator of (7.30). Prove that |a| = |8] = /g
where a = 1/a’, B =1/4".
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In the following two exercises we describe a simple polynomial probabilistic
algorithm to determine points over an elliptic curve defined over Z,.

A7.39.% Let p be a prime number. Prove that there is a polynomial probabilistic
algorithm that determines an integer n that is not a quadratic residue modulo p.
(Hint: keep in mind the fact that half the elements of Z, are not quadratic residues
and that computing Jacobi symbols takes a polynomial time.)

A'7.40.* Let p > 2 be a prime number and let C be a hyperelliptic curve of equation
y? = f(x) defined over Z,. Prove that there is a polynomial probabilistic algorithm
that determines a point of C. (Hint: for all z € K the probability that f(z) is a square
is 1/2; keep in mind the previous exercise and apply the algorithm of § 5.2.6.)

A'7.41.* Explain how to use the groups defined over elliptic curves to implement the
RS A public-key cryptosystem. (Hint: follow exactly the same steps already seen for
the RS A system, substituting the points of an elliptic curve for the integer numbers
and the operation of addition of points on the curve for the multiplication among
integers.)

A'7.42.* Explain how to use the groups defined over elliptic curves to implement
the method to exchange private keys as described in § 7.8.1.

A'7.43.* Explain how to use the groups defined over elliptic curves to implement
the cryptosystem described in § 7.8.2.

B7 Computational exercises

B7.1. Which is the 2-digit numerical equivalent of exercise?

(a) 0423041602081804.
(b) 0423041702091804.
(c) 0423041602091804.
(d) None of the above

B7.2. Which string corresponds to the number sequence
021418040002001814,

if we have used the 2-digit numerical equivalent?

(a) coseacoso.

(b) coseacasa.
(¢) coseacosa.
(d) None of the above

B7.3. Which is the binary numerical equivalent of codes?

(a) 0001001100001010010010010.
(b) 0001001110001010010010010.
(c) 0001001100000110010010010.
(d) 0001001110000110010010010.
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B7.4. To which word does the number sequence
01100010000110100100

correspond if we have used the binary numerical equivalent?

(a) mine.
) mien.
(c) main.
) nine.

B7.6. Write the vowels a, e, i, 0, u in decreasing order of their frequency in a long
English language text.

(a) A, e i, o0,u

(b) E,ioro,oori a, u.
(¢) A,eoro,o0ore, i, u
(d) None of the above.

B7.7. Determine the most frequent consonant in the following text: analysing fre-
quencies often is the key to a successful cryptanalysis of messages enciphered using
a monoalphabetic substitution.

(a) N.

(b) T.

(c) C.

(d) s

B7.8. Analyse the letter frequencies in the following text: the frequencies with which

the letters appear in a short text might be very different from what we would expect
Order the vowels a, e, i, 0, u in the order of frequency in this text.

(a) A, e i,0,u
(b) E, a, i, 0, u
(¢) E, 0,1, u, a
(d) E, i, a,0,u

B7.9. Encipher using Caesar method, shifting each letter forward by three positions,
the following message: i am ready to attack gaul.

(a) L DP UHDGB WR DWWDFN JDWO.
(b) L DP UIDGB WR DWWDFN JDWO.
(¢) L DP UHDGB WR DWWDFN JDXO.
(d) L DP UIDGB WR DWWDFN JDXO.
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B7.10. Suppose a Roman centurion received the following message sent him directly

by Caesar:
DOHD NDFZAP HVZ.

After deciphering it, the centurion is very puzzled, as in the plaintext there is a
patent Latin grammar error. Which is the plaintext of the message the centurion
received?

(a) alea iacta est.
(b) alea iactae est.
(c) alea iactum est.
(d) alea iactus est.

B7.11. Consider the plaintext stiff upper lip. Which is the ciphertext in a Caesar
cipher with a 13-letter shift?

(a) FGVSS HCCRE YVC.
(b) FGUSS HCCRE YUC.
(c) FGVTT HCCRE YVC.
(d) None of the above.

B7.12. Suppose we have received the message XYXCOXCO, known to have been enci-
phered by a 10 letter shift in a Caesar cipher. Which is the plaintext?

(a) popcorns.
(b) nonsense.
(c) ascience.
(d) None of the above.

B7.13. Verify that the cipher with to be or not to be that is the question as its key
phrase determines the permutation:

0 1234 56789 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
1914141713 708181620 2 3 5 6 9 10 11 12 15 21 22 23 24 25

B7.14. We want to encipher a message using a monoalphabetic substitution. Sup-
pose we have chosen as our key phrase there are more things in heaven and earth.
Which is the enciphering alphabet we get?

abcde f ghijklmnopgqrstuvwzxyz
(a)THERAMOINGSVDBCFJKLPQUWXYZ
(b)abcdefghijklmnopqrstuvwxyz
THERAMOTINGSVDBCFIJKPQUWXYZ
(C)abcdefghijklmnopqrstuvwxyz
THERAMOTINGSDBCFIJKLPQUWXYZ
(d)abcdefghijklmnopqrstuvwxyz
THEAMORINGSDBCFIJKLPQUVWXYZ

B7.15. Consider the monoalphabetic substitution of the previous exercise. Which ci-
phertext is obtained from the plaintext than are dreamt of in your philosophy?

(a) PITB TKM AKMTDP CO NB YCQK FINVCLCFIY.
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(b) PITB TLA RLATDP CM NB YCQL FINVCLCFIY.
(c) PITB TKA RKATDP CM NB YCQK FINVCLCFIY.
(d) PITB TKE AKETDP CO NB YCQK FINVCLCFIY.

B7.16. Suppose we are reading a text enciphered using the monoalphabetic sub-
stitution given in the two previous exercises. If this text is LWCKR, which is the
plaintext?

(a) swear.
) sword.

(c) swore.
) None of the above.

B7.17. We want to encipher a message using a monoalphabetic substitution. Sup-
pose we have chosen as our key phrase

Tyger Tyger, burning bright,
in the forests of the night.

Which is the enciphering alphabet we get from this key phrase?

abcdefghijklmnopgqrstuvwzxyz
(a)TYGERBUNIHFORSACDJKLMQVWXZ
(b)abcdefghijklmnopqrstuvwxyz
TYGERBUNFIHOSACDIJKLMPQVWXZ
abcdefghijklmnopgqrstuvwzxyz
(C)TYGERBUNIHFOSACDJKLMPQVWXZ
(d)abcdefghijklmnopqrstuvwxyz
TYGERBUNFIHORSACDIJKLMQVWXZ

B7.18. Consider the monoalphabetic substitution determined by the key phrase
Tyger Tyger, burning bright, in the forests of the night, for which we
have determined the enciphering alphabet in Exercise B7.17. Which is the enci-
phered text we obtain from the plaintext poem by blake?

(a) DCRS YX YOTFR.
(b) DCSR XY XOTHR.
(c) DCSR YX YOTHR.
(d) DCRS XY XOTFR.

B7.19. Suppose we are reading a text enciphered using the monoalphabetic substi-
tution of the previous exercise, that is, using the key phrase Tyger Tyger, burning
bright, in the forests of the night. If this text is LIAUTOCAU, which is the
plaintext?

(a) singasong.
) longsongs.
) alongsong.
) None of the above.
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B7.20. Use the program of exercise C7.3 to encipher the message sent to Edgar
Allan Poe, using the key phrase UNITED STATES. Check the mistakes that were
made in the message as given in the text.

B7.21. Let ALGEBRA be the key word chosen to encipher a message using Vigenere
method (see pp. 323-325). If the plaintext is very hard to decrypt, which is the
enciphered text?

(a) VPXC IRRD EU HFTRYAZ.
(b) VPXC IRRD EU HFTRYAZ.
(c) VPXC IRRD EU HFTRYAZ
(d) VPXC IRRD EU HFTRYAZ.

B7.22. Let again ALGEBRA be the key word chosen to encipher a message using
Vigenere method. If the ciphertext is I SGZF JOLGKH OZNE PDISTISPY, which is the
plaintext?

(a) i have solved five exercises.
(b) i have solved four exercises.
(¢) i have solved nine exercises.
(d) None of the above.

B7.23. Let HARDWORK be the key word chosen to encipher a message using Vigenére
method. If the plaintext is all work and no play makes jack a dull boy, which
is the ciphertext?

(a) HLC ZFKB KUD ES LZRI TABHO XRMR A WXHZ SYF
(b) HLC ZKFB KUD ES LZRI YABHO XRMR A UXHZ SYF
(c) HLC ZFKB KUD ER LZRI YABHO XRMR A UXHZ SYF
(d) HLC ZKFB KUD ER LZRI TABHO XRMR A UXHZ SYF

B7.24. Let again HARDWORK be the key word chosen to encipher using Vigenere
method. If the ciphertext is AABAWRRIVUK, which is the plaintext?

(a) have a day out.
(b) just one more.
(¢) too much work.
(d) None of the above.

B7.25. Encipher the message attack today in 4-letter blocks using the translation
method in P = Z4 described in section 7.4.1 using the key k = 100 (see Table 7.8
on page 340).

B7.26. Consider the plaintext happy birthday. Which is the text enciphered using
the affine transformation with key k& = (7, 3)?

(a) ADEEP KHSGAYDP.
(b) ADEEM JHSGAYDM.
(c) ADEEP JHSGAYDP.
(d) ADEEM KHSGAYDM.

B7.27. Suppose we receive the message ZDB AHJ FDSCP, knowing that it has been
enciphered using the affine transformation with key k = (7,3). Which is the plain-
text?



B7 Computational exercises 395

(a) see him later.
(b) saw you early.
(c) see you later.
(d) saw him early.

B7.28. Compute, if it exists, the inverse modulo 26 of the matrix

(5 5o)

(a) The inverse does not exist because the determinant of the matrix is not relatively
prime with 26.

. . 12 -1
(b) The inverse is ( - _11>.

. . 1 1
(¢) The inverse is ( - _11).
(d) None of the above.

B7.29. Compute, if it exists, the inverse modulo 26 of the matrix

19 13
2 11 )°
(a) The inverse does not exist because the determinant of the matrix is not relatively
prime with 26.

(b) The inverse is ( 11 )

-2 —19
. . —11 13
(¢) The inverse is ( 9 19).

(d) None of the above.

B7.30. We want to encipher the plaintext computer using an affine transformation
of Z3¢ defined by the key k = (A,b), with

(5 ) )

Which is the ciphertext?

(a) FIAAQYCU.
(b) FIABQZCU.
(c) FIABQYCU.
(d) FIABQZCU.

B7.31. Consider a text enciphered using the affine transformation given in the
previous exercise. If the ciphertext is VOITJOCHGN, which is the plaintext?

(a) twosecrets.
) tensecrets.
) anysecrets.
) sixsecrets.
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B7.32. Trying to perform the cryptanalysis of a message we have intercepted, we are
confronted with the problem of solving the following system of linear congruences:

19=6a+0b (mod 26),
13=3a+0b (mod 26).

How many solutions does this system admit modulo 267

(a) One.

(b) No one.

(¢) Infinitely many.
(d) None of the above.

B7.33. Trying to perform the cryptanalysis of a message we have intercepted, we are
confronted with the problem of solving the following system of linear congruences:

11=2la+b (mod 26),
—7=-5a+b (mod 26).

How many solutions does this system admit modulo 267

(a) One.

(b) No one.

(¢) Infinitely many.
(d) None of the above.

B7.34. Let S = {1,...,15}. Consider the function f : S — S, f(z) = 5% mod 16.
What can be said about f?

(a) It is bijective.

(b) It is injective but not surjective.

(c¢) It is surjective but not injective.
(d) It is neither surjective nor injective.

B7.35. Counsider the function f : Zs — F3, f(z) = 4° mod 5. What can be said
about f7

(a) It is bijective.

(b) It is injective but not surjective.

(¢) It is surjective but not injective.
(d) It is neither surjective nor injective.

B7.36. Consider the function f : Zs — F§, f(x) = 4", where 4 is an element of Fg
such that 2 = —1. What can be said about f?

(a) It is bijective.

(b) It is injective but not surjective.

(¢) It is surjective but not injective.
(d) Tt is neither surjective nor injective.

B7.37. Consider the function f : Z,—1 — Fj, f(x) = b”, where b is an element of
F;. What can be said about f7
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(a) The function f is bijective for all b.

(b) There exists at least a value of b such that f is bijective.
(¢) There exists exactly one b such that f is bijective.

(d) In general there is no b such that f is bijective.

B7.38. Verify that 2 is a generator of U(Zi1). Compute the discrete logarithm

log, 3.

B7.39. Using the Baby step—giant step algorithm determine log, 7 in base 13. The
answer is:

(a) 4.
b

e I

c
d

~ a—~
NapANGN

B7.40. Using the Baby step—giant step algorithm determine log, 7 in base 17. The
answer is:

B7.41. Consider the sequence 1, 3, 4, 8, 13, 20. How many solutions has the knapsack
problem for this sequence and m = 347

B7.42. Consider the sequence 2, 3,7, 8, 15, 27. How many solutions has the knapsack
problem for this sequence and m = 357

(a) None.
(b) One.
(¢) Two.
(d) Three.

B7.43. Is the sequence 1,5, 8,15, 30, 60 superincreasing?

(a) Yes.

(b) No, because 2-5 > 8 and 2-8 > 15.
(¢) No, because 60 <1+ 5+ 8 + 15+ 30.
(d) None of the above.

B7.44. Is the sequence 1,2,5,9,17, 45 superincreasing?

(a) Yes.

(b) No, because 2-5 > 9.

(¢) No, because 17 <1+2+4+549.
(d) None of the above.
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B7.45. Consider the superincreasing sequence 1, 2, 5, 11, 22, 44, 88. How many
solutions has the corresponding knapsack problem for m = 1477

(a) None.

(b) The only solution is 1 = 22 = x4 = ¢ = 27 = 1 and z3 = x5 = 0.
(¢) The only solution is 3 = x4 = 26 = 7 = 1 and z1 = x2 = x4 = 0.
(d) None of the above.

B7.46. Consider the superincreasing sequence 1, 4, 7, 13, 28, 54. How many solutions
has the corresponding knapsack problem for m = 767

(a) None.

(b) The only solution is z1 = 23 = z4 = 26 = 1 and z2 = 25 = 0.
(¢) The only solution is 1 = x2 = 23 = x6¢ = 1 and z4 = x5 = 0.
(d) None of the above.

B7.47. Consider the knapsack problem cipher. We have chosen the superincreasing
sequence 1, 3,6,12, m = 29 and w = 10. Which is the public key we have to publish
to have people send us enciphered messages?

(a) It is the sequence 10,1, 2, 4.
(b) It is the sequence 10,2, 4, 8.
(¢) It is the sequence 10,2, 3, 6.
(d) None of the above.

B7.48. Let 1,2,5,20 be our superincreasing sequence, m = 43 and w = 25. Which
is the public key we have to publish to have people send us enciphered messages?

(a) It is the sequence 25,7, 39, 29.
(b) It is the sequence 25,7, 37,27.
(c¢) It is the sequence 25,7, 39, 27.
(d) None of the above.

B7.49. Consider the example of knapsack problem cipher illustrated in Table 7.10
on page 350. If the plaintext to be sent is otto, which is the numerical equivalent
of the ciphertext?

(a) 73 17 58 41 58.
(b) 73 17 50 41 58.
(c) 73 34 50 41 58.
(d) 73 34 58 41 58.

B7.50. Consider again the example in Table 7.10 on page 350. If the plaintext to
be sent is casa, which is the numerical equivalent of the ciphertext?

(a) 3207 340.
(b) 32017 34 0.
(c) 32070 17.
(d) 3207 170.

B7.51. To access the RSA system, Blanche wants to publish the enciphering key
(7927, 37), but the system does not accept this key. Why?
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(a) Because 7927 is too large.

(b) Because 37 is too small.

(c) Because 7927 is not the product of two prime numbers.
(d) Because 37 is not relatively prime with ¢(7927).

B7.52. To access the RSA system, Ariadne wants to publish the enciphering key
9991, 119), but the system does not accept this key. Why?

(

(a) Because 9991 is too large.

(b) Because 119 is too small.

(c) Because 9991 is not the product of two prime numbers.
(d) Because 119 is not relatively prime with ¢(9991).

B7.53. Consider the user directory (7.8) on page 352. A user of the RSA system
wants to send the message baba to the user B, Beatrix. Which enciphered message
does Beatrix receive?

(a) Cl = 9, CQ =9.

(b) Cr = 999, Cy=9.
(c) C1 =999, C> = 999.
(d) None of the above.

B7.54. Another user of the RSA system wants to send Beatrice a message. If the
plaintext is coda, which enciphered message does Beatrix receive?

(a) Cl = 31, CQ = 243.

(b) C1 =546, Cy = 243.

(¢) C1 =546, C2 = 576.

(d) Cy =31, C2 = 576.

B7.55. Consider again the user directory (7.8) on page 352. Beatrix has received
the following message:

Ci =31, Cy=722, C(C53=2T72.

Which is the numerical equivalent of the plaintext?

(a) 0214 0308 0204.
(b) 0214 0300 0208.
(c) 0214 0308 0208.
(d) None of the above.

B7.56. Beatrix has received the following message:
C1 =243, Cp="722.

Which is the numerical equivalent of the plaintext?

(a) 0308 0200.
(b) 0300 0308.
(¢) 0200 0308.
(d) None of the above.
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B7.57. Beatrix has received the following message:
Ci1 =546, Cy =722, (C5=999.

Which is the numerical equivalent of the plaintext?

(a) 0314 0308 0208.
(b) 0308 0208 0314.
(c) 0308 0314 0208.
(d) 0314 0208 0308.

B7.58. Verify that the real curve of equation z° + 3> —x — 322 — 3y +3 =0 is
not singular, but it is so as a curve over C.

B7.59. Give an example of a curve that is not singular over QQ but is singular over
R.

B7.60. Consider the elliptic curve over R of equation y? = 2® — z. Let p = (—1,0)
and g = (2, —v/6). Which are the coordinates of p + ¢?

(a) p+ q is the point at infinity O.
(b) p+q=(-1/3,2/6/9).

(c) p+q=(-1/3,-2V6/9).

(d) None of the above.

B7.61. Consider the elliptic curve over R of equation y*> = z® — z. Let p = (1,0)
and q = (2,v/6). Which are the coordinates of p + ¢?

(a) p+ q is the point at infinity O.
(b) p+q=(3,2v3).

(c) p+q=(3,-2V3).
(d)

None of the above.

B7.62. Consider the elliptic curve over R of equation y* = z*> — z. Let p = (—1,0).
Which are the coordinates of 2p = p + p (in the group law on the curve)?

(a) 2p is the point at infinity O.

(b) 2p = (-1,0).
(©) 2p = (0,0).
(d) None of the above.

B7.63. Consider the elliptic curve over R of equation y? = 2 —z. Let p = (2, —/6)
e ¢ = (0,0). Which are the coordinates of p + ¢7

(a) p+ g is the point at infinity O.
(b) p+aq=(-1/2,V6/4).

((c; p+aqg=(-1/2,—6/4).
d

None of the above.

B7.64. Let C be the elliptic curve of equation y?> = z® — z over the field F;. Are
p=(1,0) and ¢ = (-2, —1) points of C7

(a) Both p and ¢ are points of C.
(b) The point p is on C, but ¢ is not.
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(¢) The point ¢ is on C, but p is not.
(d) Neither p nor g belong to C.

B7.65. Let C be the elliptic curve of equation y?> = z® — z over the field F5. Are
p=(2,1) and ¢ = (—2,2) points of C7

(a) Both p and g are points of C.

(b) The point p is on C, but ¢ is not.
(¢) The point ¢ is on C, but p is not.
(d) Neither p nor g belong to C.

B7.66. Prove that the elliptic curve of equation y? + y = x® + 1 has three points
over Zs, including the point at infinity.

3

B7.67. How many points has the curve y? = 2® — & over F?

C7 Programming exercises

C7.1. Write a program that implements any Caesar cipher, that is, given in input
a number n, with 1 < n < 25, and a text, it outputs the text enciphered by shift-
ing each letter by n positions. Then write a program that deciphers a message so
enciphered.

C7.2. Write a program that, given a text as its input, outputs a frequency table of
the letters appearing in the text.

C7.3. Write a program that, given as input a key word and a text, outputs the text
enciphered using Vigenére method (see pp. 323-325) with the given key word.

C7.4. Write a program that, given in input a text enciphered with Vigenere method
and the key word, outputs the plaintext.

C7.5. Write a program that computes the inverse of a square matrix modulo a
positive integer, if it exists.

C7.6. Write a program that, given in input a text and two integers a, b, outputs the
text enciphered with the affine transformation Cop : Zos — Zae, Cap(P) = aP + b
(mod 26).
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C7.7. Write a program that, given in input a text, an s X s square matrix A and
a vector b of length s, outputs the text enciphered with the affine transformation
Cayp: Zsg — Zsg, Cap(p) = Ap+b (mod 26), where p is a vector of length s.

C7.8. Write a program that computes discrete logarithms using the Baby step—giant
step algorithm.

C7.9. Write a program that verifies whether an n-integer sequence is superincreasing
or not.

C7.10. Write a program that generates a superincreasing n-integer sequence.

C7.11. Write a program that, given in input a superincreasing sequence a1, ..., an
and an integer m, outputs the solution to the corresponding knapsack problem, if
it exists. (Hint: use the algorithm described in the text.)

C7.12. Write a program that, given in input an integer N, outputs: (1) a superin-
creasing sequence ai,...,anN, an integer m > 2an and an integer w relatively prime
with n (the private data of a user X); (2) the sequence b; = wa; mod m (the public
key of user X).

C7.13. Write a program that, given in input a sequence (b;), constituting the public
key in a Merkle-Hellman system, and a plaintext, outputs the text enciphered with
the b;s to be sent to the user X.

C7.14. Write a program that, given in input a ciphertext and the deciphering private
key, outputs the plaintext. (Hint: use the program solving the knapsack problem for
a superincreasing sequence.)

C7.15. Write a program that randomly generates a prime number with a given
number of digits. (Hint: use the algorithm described in Remark 7.7.1.)

C7.16. Write a program that, given in input a positive integer IV, outputs a pair of
integers (n, e) such that n is the product of two prime numbers p, ¢ each having N
digits, and e is relatively prime with both p — 1 and ¢ — 1 (so we may use the pair
(n, e) as public key to use an RS A system).

C7.17. Write a program that, given in input a plaintext and the public key (n,e)
of a user A, outputs the ciphertext to be sent to A using the RSA system.

C7.18. Write a program that, given in input the ciphertext and the private infor-
mation n = pq in an RSA system, outputs the deciphered text.

C7.19. Write a program that finds points on an elliptic curve on a finite field of
characteristic different from 2.

C7.20. Write a program that, given in input a prime number p (sufficiently small)
and the equation of an elliptic curve over Z,, computes how many points of the
plane lie on the curve. (Hint: proceed by trial and error for all the values in Z, of x
in the equation in Weierstrass form.)

C7.21. Write a program that, given in input the coordinates of two points p and p’
of an elliptic curve over a finite field F,, outputs the coordinates of the point p + p’.
(Hint: use the equations given in the text.)
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C7.22. Write a program that, given in input the coordinates of a point p of an
elliptic curve defined over a finite field F,, determines the order of p.

C7.23. Write a program that factors a number using Pollard’s p — 1 algorithm.

C7.24. Write a program that computes [\/n] for an integer n.
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