Stationarity, Mixing, Distributional
Properties and Moments of
GARCH(p, q)—Processes

Alexander M. Lindner

Abstract This paper collects some of the well known probabilistic properties
of GARCH(p, q) processes. In particular, we address the question of strictly
and of weakly stationary solutions. We further investigate moment conditions
as well as the strong mixing property of GARCH processes. Some distribu-
tional properties such as the tail behaviour and continuity properties of the
stationary distribution are also included.

1 Introduction

Since their introduction by Engle (1982), autoregressive conditional het-
eroskedastic (ARCH) models and their extension by Bollerslev (1986) to gen-
eralised ARCH (GARCH) processes, GARCH models have been used widely
by practitioners. At a first glance, their structure may seem simple, but their
mathematical treatment has turned out to be quite complex. The aim of this
article is to collect some probabilistic properties of GARCH processes.

Let (g¢)tez be a sequence of independent and identically distributed (i.i.d.)
random variables, and let p € N={1,2,...} and ¢ € Ny = NU {0}. Further,
let g > 0, ov1,...,ap—1 >0, 0, >0, B1,...,8,—1 > 0 and 3; > 0 be non-
negative parameters. A GARCH(p, q) process (Xt)iez with volatility process
(0t)tez is then a solution to the equations

Xy = oy, teEZ, (1)
p q

0’3 :()40+ZO£7;XE,Z-+ZBJ‘O}27]'7 teZ, (2)
i=1 =1
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where the process (o¢)iez is non-negative. The sequence ()¢ is referred to
as the driving noise sequence. GARCH(p,0) processes are called ARCH(p)
processes. The case of a GARCH(0, ¢) process is excluded since in that case,
the volatility equation (2) decouples from the observed process X; and the
driving noise sequence. Note that in some articles (including the original
paper by Bollerslev (1986)) the definition of p and ¢ for GARCH processes
is interchanged and the process defined in (1) with volatility given by (2) is
referred to as GARCH(g, p) rather than GARCH(p, q).

It is a desirable property that o; should depend only on the past innova-
tions (£t—p)nen, i.e. be measurable with respect to the o-algebra generated
by (et—n)nen- If this condition holds, we shall call the GARCH(p, ¢) process
causal. Then X; is measurable with respect to the o-algebra o(e;—p : h € Np)
generated by (e:—p)nen,- Also, oy is independent of (€445 )nen,, and X is in-
dependent of o(g¢4p : h € N), for fixed ¢. Often the requirement of causality
is added to the definition of GARCH processes. However, since we shall be
mainly interested in strictly stationary solutions which turn out to be auto-
matically causal for GARCH processes, we have dropped the requirement at
this point.

The requirement that all the coeflicients o, ..., ap and 5, ..., B, are non-
negative ensures that o? is non-negative, so that o; can indeed be defined
as the square root of o7. The parameter constraints can be slightly relaxed
to allow for some negative parameters, but such that o? will still be non-
negative, see Nelson and Cao (1992). In the present paper, we shall however
always assume non-negative coeflicients.

The paper is organized as follows: in Section 2 we collect the criteria un-
der which strictly stationary and weakly stationary solutions to the GARCH
equations exist. The ARCH(oo) representation for GARCH processes is given
in Section 3. In Section 4, we focus on conditions ensuring finiteness of mo-
ments, and give the autocorrelation function of the squared observations.
Section 5 is concerned with the strong mixing property and an application to
the limit behaviour of the sample autocorrelation function when sufficiently
high moments exist. In Section 6 we shortly mention the tail behaviour of
stationary solutions and their continuity properties. GARCH processes in-
dexed by the integers are addressed in Section 7. Finally, some concluding
remarks are made in Section 8.

For many of the results presented in this paper, it was tried to give at
least a short sketch of the proof, following often the original articles, or the
exposition given by Straumann (2005).

2 Stationary Solutions

Recall that a sequence (Y;);ez of random vectors in RY is called strictly
stationary, if for every ti,...,t, € Z, the distribution of (Y, 4p,..., Ys, +n)
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does not depend on h for h € Ny. When speaking of a strictly stationary
GARCH(p, q) process, we shall mean that the bivariate process (X;, 0¢)ten,
is strictly stationary.

2.1 Strict stationarity of ARCH(1) and GARCH(1,1)

Now suppose that (p,q) = (1,1) or that (p,q) = (1,0), that (e¢)iez is i.i.d.,
and that (X, 01 ):ez satisty (1), (2). Hence we have a GARCH(1, 1) /ARCH(1)
process, whose volatility process satisfies

of = a0+ Poj_y + 107 jgf = a0+ (B + angf_y)o (3)
where 31 := 0 if ¢ = 0. Denoting
Ay =Pi+ae}, Bi=ap, and Y, =07, (4)

it follows that (Y;)iez = (07,1)iez is the solution of the random recurrence
equation Y; = A;Y;_1 + By, where (Ay, Bt)iez is i.1.d. As we shall see, every
strictly stationary solution (02);cz of (3) can be expressed as an appropriate
function of the driving noise sequence (g;)cz, so that stationarity of (62);ez
implies stationarity of (02,¢;)¢rcz and hence of (X, o). Thus, the question
of existence of strictly stationary solutions of the GARCH(1, 1) process can
be reduced to the study of strictly stationary solutions of (3). Since we will
need multivariate random reccurence equations for the treatment of higher
order GARCH processes, we give their definition already in R%. So let d € N,
and suppose (A, By)iez is an i.i.d. sequence, where A; is a (d x d)-random
matrix and B; is a d-dimensional random vector. The difference equation

Y, =AY, 1+ B, teZ, (5)

is then called a random recurrence equation (with i.i.d. coefficients), where
the solution (Y;):ez is a sequence of d-dimensional random vectors. Every
such solution then satisfies

Yi =AYy 1+ By
= A A Y o+ AB 1 +B=---

k k i—1
= <H Ati> Y po1+ Z H Ai—j | Bi—s (6)
i=0

i=0 \j=0

for all £ € Ny, with the usual convention that Hj_:lo Ai—; =1 for the prod-
uct over an empty index set. Letting & — oo, it is reasonable to hope

that for a stationary solution, limg_, (Hf:o At_i) Yi—r—1 = 0 a.s. and
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that ZZ 0 (H] oAt j) B;_; converges almost surely as k¥ — oo. In the

GARCH(1,1) and ARCH(1) case, this is indeed the case: let A;, By and
Y; as in (4). By (6), we have

k i—1
Ty = (HAt 1) o7 k+aoZHAt 3

1=0 57=0

Since this is a sum of non-negative components, it follows that > H;;B A
converges almost surely for each ¢, and hence that Hf:o Ai_; converges al-
most surely to 0 as k — oco. Hence if (07);ez is strictly stationary, then
(Hf:o At_i) o?_, converges in distribution and hence in probability to 0 as
k — o0o. So in the ARCH(1) and GARCH(1,1) case, there is at most one
strictly stationary solution (02)iez = (Yi—1)tez, given by

[e%s} 1—1
Y, = 2; H}AH Bi_i, tel. (7)
1= J=

On the other hand, it is clear that if (7) converges a.s. for some and hence
all t € Z, where (A, By)iez are the i.i.d. coefficients of the random recur-
rence equation (5) in R?, then Y;, defined by (7), defines a strictly stationary
solution of (5).

We have seen that existence of a strictly stationary GARCH(1,1)/ARCH(1)
process implies almost sure convergence of Hf:o A_; to 0 as k — oo. For the
converse, we cite the following result:

Proposition 1 (Goldie and Maller (2000), Theorem 2.1)

Let d = 1 and (A¢, Bt)tez be i.i.d. in R x R. Suppose that P(By = 0) < 1,
P(Ag = 0) = 0, that [[;_, A—; converges almost surely to zero as n — oo,
and that

log g
P, dq) < 00, 8
ums Tt P ®
where Pyp,| denotes the distribution of |Bo| and Ta(y) := [J P(|4o| <

“¥)dx fory > 0. Then Y .2, (HJ oAt ]) B:_; converges almost surely
absolutely for every t € Z.

In the GARCH(1,1) / ARCH( ) case, we have By = ap > 0 and (8) clearly
holds. Observe that Zz 0 ITZ =0 At ]) B,_; converges trivially almost surely
if P(Agp = 0) > 0, in which case also [];-, 4;—; = 0 a.s. Hence we see that
a strictly stationary solution of GARCH(1,1) / ARCH(1) exists if and only
if Hf:o A_; converges almost surely to 0 as k — oo. If P(A49 = 0) > 0
this is clearly the case, so suppose that $; > 0 or that P(e3 > 0) =
Denoting W; := log Ay, H?io A_; = 0 a.s. is then equivalent to the almost
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sure divergence to —oo of the random walk S,, :== > W_,. If EW; < oo,
then it is well known that S, — —oo if and only if EW;" < EW,; < oo, i.e.
either EW, = oo or E|Wy| < oo with EWy < 0. Furthermore, S,, cannot
diverge almost surely to —oc as n — oo if EW; < EW, = co. Observe that
in the GARCH(1,1) case we have 3; > 0, so that Wy > log 31 > —o0, hence
EWy < oo, and it follows that there exists a strictly stationary solution of
the GARCH(1, 1) process if and only if E'log(3;+a12) < 0. In the ARCH(1)
case, however, EW;” = oo can happen. If EW” = o0, it is known from Kesten
and Maller (1996) and Erickson (1973), that S,, — —oo a.s. if and only if

T
dP(W < z) < 0.
/(O,oo) E(WO_ AN LIJ) ( 0 )

With Wy = logay + loge?, the latter condition can be easily seen to be
independent of a7 > 0. Summing up, we have the following characterisation
of stationary solutions of the GARCH(1, 1) and ARCH(1) equations. For the
GARCH(1, 1) case, and for the ARCH(1) case with Elog*(¢2) < oo this is
due to Nelsen (1990). The ARCH(1) case with Flog™(e2) = oo was added
by Kliippelberg et al. (2004). Here, as usual, for a real number z we set
log™ (x) = log(max(1, x)), so that log™ (¢3) = (loge?)™".

Theorem 1 (Nelsen (1990), Theorem 2, Kliippelberg et al. (2004),
Theorem 2.1)

(a) The GARCH(1,1) process with ag,a1,081 > 0 has a strictly stationary
solution if and only if

—00 < Elog(31 + a1€3) < 0. 9)

This solution is unique, and its squared volatility is given by

oo i—1

of =ao Y [[(B1 + caei i) (10)

i=0 j=0

(b) The ARCH(1) process with $1 = 0 and a1, a9 > 0 has a strictly stationary
solution if and only if one of the following cases occurs:

i) P(ep =0) > 0.
(ii) E|loged| < oo and Eloge} < —logay, i.e. (9) holds.
(iii) E(loged)™ < oo and E(loge?)™ = oo.
(iv) E(loge3)™ = E(loge3)™ = oo and

00 T -1
/ x (/ P(loged < —y) dy) dP(loge? < z) < oo. (11)
0 0

In each case, the strictly stationary solution is unique, and its squared volatil-
ity is given by (10).
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Observe that condition (9) depends on €3, a; and 31, while conditions (i),
(iii) and (iv) in the ARCH case depend on €3 only.

Example 1 (a) Suppose that (g;)sez is i.i.d. with Ee3 € (0, 00), and suppose
that either 8; > 0 (GARCH(1,1)) or that E|loge?| < co. Since

Elog(ﬁl + a1€g) < logE(ﬁl + 05153) = log(ﬁl + E(Eg) al)

by Jensen’s inequality, a sufficient condition for a strictly stationary solution
to exist is that E(e3) a1 + 31 < 0. Now suppose that g is standard normally
distributed. If 81 = 0, then

4 (o9}
Elog(ayel) = logay + Vo / log(x)e_g”z/2 dx =log(a1)— (Crar +1og(2)),
0

where Cgy = limy_oo Zi\’:li — log(N) =~ 0.57721566 is the Euler-
Mascheroni constant. Hence, the ARCH(1) process with standard normal

noise has a strictly stationary solution if and only
ag < 2exp(Cpyp) =~ 3.562.

Since limg, o Elog(B1 + a1e2) = Elog(aied), it follows that for every
ay < 2exp(Cgu) there exists some G(aq) > 0 such that the GARCH(1, 1)
process with parameters ag, a; and ;1 € (0, 5(«1)) and standard normal in-
novations has a strictly stationary solution. In particular, strictly stationary
solutions of the GARCH(1,1) process with oy + 81 > 1 do exist. However,
observe that while a3 may be bigger than 1, 8; < 1 is a necessary condition
for a strictly stationary solution to exist.

For normal noise, E(log(31 + a12)) can be expressed in terms of confluent
and generalised hypergeometric functions, which in turn can be calculated
numerically. See Nelsen (1990), Theorem 6, for details.

(b) Consider the ARCH(1) process with a3 > 0, and let (e¢)iez be ii.d.
such that the distribution of ey has atoms at +./2 — E»(2) with mass
1/4 each, and an absolutely continuous component with density f.(z) =
(4]z|(log |%)?) "' 1(_1/e,1/¢)(z). Here, En(z) = [~ e~ /t"dt denotes the
exponential integral, and it holds F2(2) ~ 0.0375. Since fi{je fe(z)dx =

/ __olo (2y*)~tdy = 1/2, f indeed defines a probability distribution. Moreover,
since €¢ is symmetric, we have EFey = 0 and

1 [Ye oz 1 1 [l 1
Ee2 = d 2—F5(2)) = d 2—E,5(2)) = 1.
By [ oy B =y [ it 2= Ea2)

The absolutely continuous component of log €2 can be easily seen to have den-
sity @ — (22%)7'1(_o,_1)(2), so that E(logeg)~ = oo. Since E(loged)™ <
00, the ARCH(1) process with oy > 0 and the given distribution of the
(et)tez has a unique strictly stationary solution by Case (iii) of the previous
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Theorem.
(¢) Let (&¢)tez be ii.d. with marginal density

(2[2](log [])/%)~1, [a] > e,
fe(x) = @z|(oglz))?)~1, 0 <|z| <1/e,
0, else.

Then the density of loge? is given by

x_3/2, z>1,
froge2(2) = (222)7L x < —1,
0, z € [-1,1].

We conclude that E(loge3)™ = E(loge2)™ = oo, and it is easily checked that
(11) is satisfied. Hence, a unique strictly stationary solution of the ARCH(1)
process with driving noise (g¢):ez exists.

2.2 Strict stationarity of GARCH(p, q)

For higher order GARCH processes, one has to work with multidimensional
random recurrence equations. Consider a GARCH(p, q) process (X¢)tcz with
volatility (ot):tez and driving noise sequence (g¢)icz. Let p := max(p,2),
¢ := max(q,2) and define the random (p 4+ ¢ — 1)—vectors Y; and B; by
}/t = (0152+17'"7Ut275+27Xt27'-'5X15276+2)/ (12)
and B, = (a,0,...,0) € RPTI™1

respectively. Further, let 3,41 = 32 = 0if ¢ <1, and ap =0 if p =1, and
define the random (p+ ¢ — 1) x (p + ¢ — 1)-matrix A; by

B+ aie? Bo -+ Byo1 By oo apo1 o

1 O--- 0 00O O O
0 1.-- 0 000 0 O
Ay = 0 0 1 00--- 0 O (13)
€ 0 --- 00--- 0 0
0 o---0 O1--- 0 O
0 o--- 0 0O0--- 1 0

These matrices where introduced by Bougerol and Picard (1992a). It is then
easy to see that each strictly stationary solution of the GARCH equations
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(1), (2) gives rise to a strictly stationary solution of the random recurrence
equation (5) with Y3, B; and A; as defined in (12) and (13), and vice versa.
Observe that for p = ¢ = 1 and for (p,q) = (1,0), the random recurrence
equation with A; and B; as in (12) and (13) differs from the one with A; and
By as in (4). In fact, the former is a random recurrence equation in R?, while
the latter is one-dimensional.

Strict stationarity of multivariate random recurrence equations is studied
in terms of the top Lyapunov exponent. Let || - | be any vector norm in R,
For a matrix M € R%*? the corresponding matrix norm ||M|| is defined by

Mx
b= sup N,
zekaz0 ||Z]

Definition 1 Let (A,)nez be an i.i.d. sequence of d x d random matrices,
such that Elog® ||4g|| < co. Then the top Lyapunov erponent associated
with (A, )nez is defined by

1
= inf F AgA_1---A_ .
e ()

Furstenberg and Kesten (1960) showed that

1
Y= nh—>n;o n+1 log [|[AgA—1 -+ A_p|| (14)
almost surely, and an inspection of their proof shows that ~ is independent
of the chosen vector norm (hence matrix norm).

The existence of stationary solutions of random recurrence equations can
be described neatly in terms of strict negativity of the associated top Lya-
punov exponent. Namely, Bougerol and Picard (1992b) have shown that
so called irreducible random recurrence equations with ii.d. coeflicients
(At, Bt)iez, such that Elog™ ||Ag|| < co and Elog™ || Bo| < oo, admit a
nonanticipative strictly stationary solution if and only if the top Lyapunov
exponent associated with (A;)iez is strictly negative. Here, nonanticipative
means that Y; is independent of (A1 p, Biyn)nen for each t. For GARCH(p, q)
cases, it is easier to exploit the positivity of the coefficients in the matrix A
rather than to check that the model is irreducible. The result is again due to
Bougerol and Picard:

Theorem 2 (Bougerol and Picard (1992a), Theorem 1.3)

Let (g¢)tez be an i.i.d. sequence of random variables such that E(loged)™ <
o0. Let ag, ..., ap, 01, ..., 8 be GARCH(p, q¢) parameters, and let the (p+q—
1) x (p+q—1) random matrices Ay as well as the (p+q—1)—vectors By be de-
fined as in (13) and (12), respectively. Then the corresponding GARCH(p, q)
process admits a strictly stationary solution if and only if the top Lyapunov
exponent v associated with the sequence (Ay)iez is strictly negative. This so-
lution is unique, and the random vector Y; defined in (12) satisfies (7).
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The fact that every strictly stationary solution must be unique and of
the form (7) follows with a refined argument similar to the GARCH(1,1)
case, using that every element in the vectors Y; and in the matrices A
must be non-negative. In particular this shows that every strictly station-
ary solution must be causal (the argument here does not require the as-
sumption of finite log-moments). Further, existence of a strictly stationary
solution implies limy o0 ||AogA—1 -+ - A_k|| = 0 a.s. Since (A, )nez is 1.i.d. and
FElog™ ||[Ao|| < oo, this in turn implies strict negativity of the top Lyapunov
exponent vy (see Bougerol and Picard (1992b), Lemma 3.4). That v < 0 im-
plies convergence of (7) can be seen from the almost sure convergence in (14),
which implies

k—1
H A | Bioy|| < Cre*/?
j=0

for some random variable C;. Hence, the series (7) converges almost surely
and must be strictly stationary. That strict negativity of the top Lyapunov
exponent implies convergence of (7) and hence the existence of strictly sta-
tionary solutions is true for a much wider class of random recurrence equa-
tions, see e.g. Kesten (1973), Vervaat (1979), Brandt (1986) or Bougerol and
Picard (1992b).

Due to its importance, we state the observation made after Theorem 2
again explicitly:

Remark 1 A strictly stationary solution to the GARCH equations (1) and
(2) is necessarily unique and the corresponding vector Y; defined in (12)
satisfies (7). In particular, every strictly stationary GARCH process is causal.

For matrices, it may be intractable to obtain explicit expressions for the
top Lyapunov exponent and hence to check whether it is strictly negative
or not. Often, one has to use simulations based on (14) to do that. If the
noise sequence has finite variance, however, Bollerslev gave a handy sufficient
condition for the GARCH process to have a strictly stationary solution, which
is easy to check (part (a) of the following theorem). Bougerol and Picard
showed that the boundary values in this condition can still be attained under
certain conditions, and they have also given a necessary condition for strictly
stationary solutions to exist:

Corollary 1 (Bollerslev (1986), Theorem 1, Bougerol and Picard
(1992a), Corollaries 2.2, 2.3)

Let (e¢)tez be the driving noise sequence of a GARCH(p, q) process, and sup-
pose that 0 < Ee? < co. Then the following hold:

(a) If B(3) Y0, ai + Z?Zl B; < 1, then the GARCH(p, q) process admits a
unique strictly stationary solution.

(b) If P(e9 = 0) =0, g0 has unbounded support, p,q > 2 and oq,...,0p >0,
Bi,.- 0By >0, and E(g3) > Y oy + 23:1 B = 1, then the GARCH(p, q)
process admits a unique strictly stationary solution.
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Process exists.

(o) If 231:1 B;j > 1, then no strictly stationary solution of the GARCH(p, q)

For the proof of Corollary 1, one may assume that Fe2 = 1. The general
result then follows by an easy transformation. If Ee3 = 1, Bougerol and
Picard (1992a) prove (b) by showing that the spectral radius p(E(Ap)) of the
matrix F(Ap) is equal to 1. Recall that the spectral radius p(C) of a square
matrix C' is defined by

p(C) =sup{|A| : X eigenvalue of C'}.

Since Aj is almost surely not bounded, neither has zero columns nor zero
rows, and has non-negative entries, it follows from Theorem 2 of Kesten and
Spitzer (1984) that v < logp(E(A4p)) = 0. The proofs of (a) and (c) are
achieved by similar reasoning, using estimates between the top Lyapunov
exponent and the spectral radius. In particular, in case (a) one has v <
log p(E(Ap)) < 0.

For real data one often estimates parameters a; and 3; such that Zle a;+
23:1 B; is close to one, when assuming noise with variance 1. In analogy to
the integrated ARMA (ARIMA) process, Engle and Bollerslev (1986) call
GARCH processes for which >0, a; + 25:1 B; = 1 integrated GARCH(p, q)
processes, or IGARCH(p, q) processes, for short. Observe that Corollary 1(b)
shows that IGARCH processes may have a strictly stationary solution, unlike
ARIMA processes where a unit root problem occurs.

Remark 2 Let €9, p,q and oy, ...,0p, O1,...,053, be as in Corollary 1(b).
Then there exists § > 0 such that for all a; > 0, Bj > 0 with |o; — ay| < &
(i=1,...,p) and |Bj —pBil<d (j=1,...,q), the GARCH(p, ¢) process with
parameters ag, 0, ..., Op, B, .. .,Bq and noise sequence (&¢)iez admits a
unique strictly stationary solution. In particular, there exist strictly station-
ary GARCH(p, q) processes for which E(e2) Y7  a; + 25:1 B; > 1. This
follows immediately from Definition 1 and Theorem 2, since for the parame-
ters of Corollary 1(b), the top Lyapunov exponent = is strictly negative.

2.3 Ergodicity

Let Y = (Y})sez be a strictly stationary time series of random vectors in R*.
Then Y can be seen as a random element in (R¥)%, equipped with its Borel-o-
algebra B((R¥)Z%). Let the backshift operator @5 : (RF)Z — (R¥)Z be given
by @ps((z:i)iez) = (zi—1)icz. Then the time series (Y:)iez is called ergodic
if dpg(A) = A for A € B((R¥)%) implies P(Y € A) € {0,1}. See e.g. Ash
and Gardner (1975) for this and further properties of ergodic time series. In
particular, it is known that if (g,,)nez is a sequence of measurable functions
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gn : (RF)Z — R? such that g, 1 = g, o Pps and Y = (Y})sez is strictly
stationary and ergodic with values in R¥, then (g,,(Y))nez is also strictly
stationary and ergodic (see e.g. Brandt et al. (1990), Lemma A 1.2.7). Since
the sequence (A¢, Bt)tez is i.i.d. and hence strictly stationary and ergodic for
a GARCH process, it follows that every strictly stationary GARCH process is
ergodic, since it can be expressed via (7). This is due to Bougerol and Picard
(1992a), Theorem 1.3.

2.4 Weak stationarity

Recall that a time series (Z;)iez of random vectors in R? is called weakly
stationary or wide-sense stationary, if E||Z;||?> < oo for all t € Z, E(Z;) € R?
is independent of ¢ € Z, and the covariance matrices satisfy

COV(Zthhv Zt2+h) = COV(ZtN th)

for all ¢1,ts, h € Z. Clearly, every strictly stationary sequence which satisfies
E|Zo||* < oo is also weakly stationary. For causal GARCH processes, we
shall see that the converse is true also, i.e. that every causal weakly stationary
GARCH process is also strictly stationary.

Let (Xt,0¢) be a GARCH process such that o is independent of &;, which
is in particular satisfied for causal solutions. Then if P(ey = 0) < 1, it
follows from (1) and the independence of oy and &, that for given r € (0, 00),
E|X;|" < oo if and only if E|e;|” < 0o and Eo} < co. Suppose FEe? € (0, 00),
and that (X, 0¢) is a GARCH(p, q) process such that Eo? = Eo? < oo for
all t,¢' € Z. Then (2) shows that

E(0d) = a0+ Y i E(03) E(e3) + > _ B E(07).
i=1 j=1

Hence we see that a necessary condition for a causal weakly stationary so-
lution to exist is that E(eg)>_7_; a; + Y7, f; < 1. Now suppose that
(0¢)tez is a causal weakly stationary solution, and for simplicity assume that
Ee? = 1. With Y;, B; and A; as in (12) and (13), Y; must satisfy (6). Note

that then Y .2, (H;;B At,j) B;_; converges a.s. to the strictly stationary

solution by Corollary 1. By (6), this implies that (Hf:o At_i) Y;_j_1 con-
verges almost surely to some finite random variable as k — oo. If this limit
can be seen to be 0, then it follows that the weakly stationary solution must
coincide with the strictly stationary. As remarked after Corollary 1, the spec-
tral radius of E(Ap) is less than 1. Hence there is some N € N such that
I(EA))N|| = |[E(Ag---A_n41)| < 1. By causality and weak stationarity,

this implies that F Hf:o Ai_i ) Yi_r_1 ) convergesto 0 as k — oo, and since



54 A.M. Lindner

each of the components of (Hf:o At_i) Y:_r_1 is positive, Fatou’s lemma
shows that its almost sure limit must be 0, so that every causal weakly station-
ary solution is also strictly stationary. Conversely, if (Y;)iez is a strictly sta-

tionary solution and E(e2) Y7, a; + > =1 By < 1 with Ee? =1 for simplic-

ity, it follows from || (EA4¢)N|| < 1 that Y ;2  E ((H;;B At_j) Bt—i) is finite,
and since each of its components is positive, this implies that E||Y;|| < oo for
the strictly stationary solution. Summing up, we have the following character-

isation of causal weakly stationary solutions, which was derived by Bollerslev
(1986).

Theorem 3 (Bollerslev (1986), Theorem 1)

Let (g¢)tez be such that Ee3 < oo. Then the GARCH(p, q) process (X, 0t)iez,

admits a causal weakly stationary solution if and only E(e3)>-0_, a; +
;1.21 B < 1. In that case, the causal weakly stationary solution is unique

and coincides with the unique strictly stationary solution. It holds

Qo

E(o?) = ,
) = B S -, 5,

E(X}) = E(e})E(<p)- (1)

3 The ARCH(oo) Representation and the Conditional
Variance

Often it can be helpful to view a GARCH(p, q) process as an ARCH process of
infinite order. In particular, from the ARCH(c0) representation one can easily
read off the conditional variance of X; given its infinite past (X, : s < t).
Originally, Engle (1982) and Bollerslev (1986) defined ARCH and GARCH
processes in terms of the conditional variance. Equation (18) below then
shows that this property does hold indeed, so that the definition of GARCH
processes given here is consistent with the original one of Engle and Bollerslev.

Theorem 4 (Bollerslev (1986), pp. 309—-310)

Let (X4, 01)tez be a strictly stationary GARCH(p, q) process driven by (¢¢)tez,
such that Ee} < oo and E(d) Y0 _ oy + >i_1B; < 1. Then there is a
sequence (;)jen, of real constants such that vy > 0, ©¥; > 0 for all j,
Z?io Y < 00, and

of = o+ > X[, (16)

i=1

The constants are determined by
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o
wo = )
1= Z?:l B;
» Y P iz
iz = = 0 2eC, |2 <1 (17)
E j q
j=1 1=2.j=1 5%

In particular, o? is measurable with respect to the infinite past (X, : s <

t — 1), and the conditional expectation and variance of X; given (Xs:s <t)
are given by

E(Xi|Xs:s5<t)=E(co)oy and V(X¢|Xs:5<t)=V(eo)oi, (18)
respectively.

For example, if (¢ )¢z is i.i.d. standard normal, then conditionally on (X :
s < t), Xy is N(0,02) distributed, since o7 is a Borel function of (X5 : s < t).
ARCH(oc0) models were introduced in more generality by Robinson (1991).
The explicit expression in (16) can be found in Bollerslev (1986) or Nelson
and Cao (1992). It can be derived defining

Sy =02 — E(6?), Zi:=X}-E(X?), tel. (19)

Then (2) is equivalent to
q p
St — ZﬂjSt,j = Z a,-Zt,Z-. (20)
j=1 i=1

This is an ARMA equation for (S;)ez such that sup,c;, F|Z:| < oo and
E(S:) = E(Z;) = 0. Since 231:1 B; < 1, this ARMA equation is causal,
and it follows that S; = E;’il ¥;Z;—j where (1;)jen are given by (17). An
easy calculation prevails that 1¢; > 0, and resubstituting o? and X? in this
ARMA equation shows (16). Hence o} is measurable with respect to the o-
algebra generated by (X, : s < t), while &; is independent of this o-algebra
by causality. This then implies (18).

In the literature there exist many other examples of ARCH(oco) models

apart from GARCH(p, ¢). For more information and references regarding
ARCH(00) models, see Giraitis et al. (2006) and (2008).

4 Existence of Moments and the Autocovariance
Function of the Squared Process

It is important to know whether the stationary solution has moments of
higher order. For example, in Theorem 3, we have seen that the strictly
stationary solution has finite second moments if and only if E(e3) >-7_, o +
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;1.21 B; < 1, and we have given an explicit expression for Fo? and EX?.
However, one is also interested in conditions ensuring finiteness of moments of
higher order, the most important case being finiteness of Fo} and EX;'. For
the GARCH(1, 1) process with normal innovations, a necessary and sufficient
condition for such moments to exist has been given by Bollerslev (1986),
and extended by He and Terdsvirta (1999b) to general noise sequences. Ling
(1999) and Ling and McAleer (2002) give a necessary and sufficient condition
for moments of higher order to exist. For ARCH(p) processes, a necessary and
sufficient condition for higher order moments to exist was already obtained
earlier by Milhgj (1985).

Observe that if P(eg = 0) < 1, then by independence of X; and o} for
strictly stationary and hence causal solutions, the m’th moment of X; =
orey exists if and only Foj” < oo and Elei|™ < oo. Hence we shall only
be concerned with moment conditions for ¢Z. In most cases, &; will be a
symmetric distribution, so that the odd moments of ¢; and hence X; will be
zero. The main concern is hence on even moments of GARCH processes.

4.1 Moments of ARCH(1) and GARCH(1,1)

The following theorem gives a complete characterisation when the (possible
fractional) moment of a GARCH(1,1) or ARCH(1) process exists:

Theorem 5 (Bollerslev (1986), Theorem 2, and He and Terésvirta
(1999b), Theorem 1)
Let (Xy,01) be a strictly stationary GARCH(1,1) or ARCH(1) process as in
(1), (2). Let m > 0. Then the (fractional) m’th moment E(a?™) of 02 ewists
if and only if

E(B + ared)™ < 1. (21)

If m is a positive integer and this condition is satisfied, and pj; = E(O’?j)
denotes the j’th moment of o2, then i, can be calculated recursively by

m—1

pm = (1= E(Br + aneg)™) ™ > (T) ag BB+ anegl . (22)

§=0
The (2m)’th moment of X; is given by
E(Xth) = /v‘mE(g(%m)~

That condition (21) is necessary and sufficient for finiteness of E(c2™)
(m € (0,00)) can be easily seen from representation (10): for if E(f8; +
a1e3)™ < 1 and m € [1, 00), then Minkowski’s inequality shows that
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0 .
(B(o7™)NY™ < ag ) (B(Br + aneg)™)™ < oo,

and for m < 1 one uses similarly E(U + V)m < EU™ + EV™ for posi-
tive random variables U, V. Conversely, if E(c7™) < oo, then EHJ o(B1 +
alsf_l_j)m must converge to 0 as ¢ — oo, which can only happen if (21)
holds. Finally, if m is an integer and (21) holds, then (22) follows easily by
raising (2) to the m’th power and taking expectations.

Example 2 For an integer m, E(02™) is finite if and only if Z ( ) T J

a{Es?j < 1. If g; is standard normally distributed, this means that

S (7)ot e <1

For example, the fourth moment of oy exists if and only if 82 +231a1 +3a? <
1.

As an immediate consequence of Theorem 5, one sees that GARCH pro-
cesses do not have finite moments of all orders if £g has unbounded support,
which is a first indication that GARCH processes will generally have heavy
tails:

Corollary 2 Let (X¢,0 : t € Z) be a strictly stationary GARCH(1,1) or
ARCH(1) process and assume that P(a1ed + 1 > 1) > 0. Then there is
r > 1, such that Eo2" = E|X|*" = cc.

4.2 Moments of GARCH(p, q)

For GARCH processes of higher order, Ling (1999) and Ling and McAleer
(2002) give necessary and sufficient conditions for even moments of o; to be
finite. In order to state their result, we need the notion of the Kronecker
product of two matrices. For an (m x n)-matrix C = (¢;5)i=1,....m,j=1,...,n and
a (p x r)-matrix D, the Kronecker product C ® D is the (mp X nr)-matrix
given by

cuD -+ cinD

CoDp=| : -
cm1D - epmnD

See e.g. Liitkepohl (1996) for elementary properties of the Kronecker product.
We then have:
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Theorem 6 (Ling and McAleer (2002), Theorem 2.1)

Let (X, 01)iez be a strictly stationary GARCH(p, q) process as in (1), (2),
and assume that oy + (1 > 0. Let A; be the (p+q—1) x (p+ g — 1) matriz
of (13). Let m € N. Then the m’th moment of o7 is finite if and only if the

spectral radius of the matriz E(AP™) is strictly less than 1.

Originally, Ling and McAleer (2002) formulated their result in terms of
the spectral radius of a matrix corresponding to another state space repre-
sentation of GARCH processes than the A¢-matrix defined in (13). The proof,
however, is quite similar. We shortly sketch the argument:

Suppose that p(E(AP™)) = limsup,,_ . [|(E(A?™))™||*/" < 1. Then there is
A € (0,1) such that || (E(A?™))"|| < A" for large enough n, so that the supre-
mum of all elements of (E(AY™))" decreases exponentially as n — oo. The
same is then true for all elements of (E(A?m/))" for every m’ € {1,...,n}.
Now take the m’th Kronecker power of the representation (7) for the vector
Y: defined in (12). For example, for m = 2, one has (since By = B;_; in (12))

oo 0o i1—1 ip—1
=S ST A | Be ) @ | T] Ae-s | Be
i1=0142=0 41=0 §2=0
o) o] i1—1 ig—1
= Z Z H At J1 H (Id®At—j2) B;X)Q
1=0d2=i1 \j1=0 J2=i1
oo 11—1 [ix—1 i1—1
+2 > (I 42, | | I Ay @1a) | BE2,
i1=11i3=0 \ j2=0 J1=t2

where Id denotes the (p + ¢ — 1) x (p + ¢ — 1) identity matrix. Taking
expectations and using the exponential decay of the elements, which are
all non-negative, this then shows that E(Y;®™) is finite, and hence that
E(02™) < oco. The converse is established along similar lines: finiteness of
E(c?™) implies finiteness of E(Y,*™). Using the fact that all appearing ma-
trices and vectors have non-negative entries, this then implies finiteness of
S o (E(AP™)) BS™ as argued by Ling and McAleer (2002), and making
use of the assumption oy + B1 > 0, this can be shown to imply finiteness of
5220 ICE(AP™ )|, showing that p(E(AF™)) < 1.

To check whether the spectral radius of the matrix E(AP™) is less than
1 or not may be tedious or only numerically achievable. A simple sufficient
condition for the existence of moments can however be obtained by devel-
oping the ARCH(o0) representation (16) into a Volterra series expansion, as
described by Giraitis et al. (2006) and (2008). Accordingly, a sufficient con-
dition for the m’th moment of o7 in an ARCH(oco) process to exist is that
3252 i (E(leo[*™))/™ < 1. This was shown by Giraitis et al. (2000) for
m = 2 and observed to extend to hold for general m > 1 by Giraitis et al.
(2006). With (17), this gives for the GARCH(p, ¢) process:
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Proposition 2 (Giraitis et al. (2006), Theorem 2.1)
Let (X, 01)iez be a strictly stationary GARCH(p, q) process as in (1), (2),
let m € [1,00), and suppose that 0 < Elgo|*™ < oo. Then

p _ m
2z ) gl <1
1= j=1 B

is a sufficient condition for E(a3™) < co.

Observe that 0 < E|eg|*™ < oo implies 231:1 B; <1 by Corollary 1(c), so
that the expressions in the condition above are well-defined.

In econometrics, the kurtosis is often seen as an indicator for tail heaviness.
Recall that the kurtosis K g of a random variable R with ER* < oo is defined
by Kr = (B R2)2 If (X¢,04) is a stationary GARCH process which admits
finite fourth moment, then if follows from Jensen’s inequality that

EX} = B(e)E(0}) > B(e})(E(07))* = K<, (B(X7))?,

so that Kx, > K,,. This shows that the kurtosis of the stationary solution is
always greater or equal than the kurtosis of the driving noise sequence, giving
another indication that GARCH processes lead to comparatively heavy tails.

While Theorem 6 gives a necessary and sufficient condition for even mo-
ments to exist, it does not give any information about the form of the moment.
The most important higher order moment is the fourth moment of oy, and
an elegant method to determine Eo} was developed by Karanasos (1999). To
illustrate it, suppose that (X, o¢)ez is a strictly stationary GARCH(p, q)
process as in (1), (2), such that E(o}) < oo, and denote

el

L—wdF o =300 By

where we used (15). Then w, v, and g are known and we want to determine
f. For i € N, denote further

w:= Fel, v:=Ee}, f:=FEoy and g:= FEog =

= FE(6?X?2 ) and ¢ := E(clo?)).
Since E(X?|et—p : h € N) = wo?, it further holds for i € N,
wh; = B(X2X2)), we; = BE(X2o?,), and f= E(X?0?)/w=EX})/v.

Then, taking expectations in each of the equations
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P q
2 2 2 2 2
Xiop =X |+ Z o X, + Zﬁigt—i ,
i=1 i=1
P q
2 2 2 2 2 .
ofol j=o0f ;a0 + > X+ Biot, |, i=1,....4q
i=1 i=1

P q
XL, = X, ( Pt Zﬂ) o1
=1 =1

one obtains

p q
wf = agwg + Y waiki + Y whic, (23)
=1 =1
-1
¢j = aog + (way + Bj) f + Y (way—i + Bj—i)c;

i=1

p—J q—J
+Zaj+i)‘i+26j+ici7 ] = 17"'7q7 (24)
i=1 i=1
j—1
Aj = aowg + (va; +wp;) f + Z(waj—i + Bj—i)Ai

i=1

p—J q—7
+ Y wajeihi+ Yy whiici j=1,....p, (25)

i=1 i=1

where a; = 0 for ¢ > p and §; = 0 for ¢ > ¢. Substituting ¢, from (24) and
Ap from (25) into (23), one obtains a system of (p + ¢ — 1) equations for
the unknown variables (f,c1,...,¢q—1,A1,...,Ap—1). See Karanasos (1999),
Theorem 3.1, for more information. For another approach to obtain necessary
conditions for the fourth moment to exist and to obtain its structure, we refer
to He and Terdsvirta (1999a), Theorem 1.

4.3 The autocorrelation function of the squares

If the driving noise process of a strictly and weakly stationary GARCH pro-
cess has expectation Feg = 0, then EX; = E(eo) E(o¢) =0, and for h € N it
follows from (18) that

E(XtXt,h) = EE(XtXt,h|X5 s < t) = E(Xt,hE(go)O't) = 0,

so that (X;)iez is (weak) White Noise (provided Ee2 # 0), i.e. a weakly
stationary sequence whose elements are uncorrelated. This uncorrelatedness
is however not preserved in the squares of the GARCH process. Rather do
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the squares (X?);cz satisfy an ARMA equation. This was already observed
by Bollerslev (1986), (1988). More precisely, we have:

Theorem 7 (Bollerslev (1986), Section 4)
Let (X4, 0¢)tez be a strictly stationary GARCH(p, q) process such that Eog <
o0, Ee} < 0o and Var(e3) > 0. Define

ug := X7 — (Be?)o? = (e2 — B(e}))o?, tcZ. (26)

Then (uy)iez is a White Noise sequence with mean zero and variance E(og)
Var(e?), and

o
Sy =02 — , tez,
fo1- (Ee3) Zf:l oG — Z?‘:l B;
and )
E
W, = X2 — @05%0 tez,

1—(Eed) 327 ai — 231:1 Bj’

satisfy the causal ARMA(max(p,q),p — 1) and causal ARMA (max(p, q), q)
equations

max(p,q) P
St — Z ((Eg(%)az + Bi)St—i = Zaiut_i, teZ,
i=1 i=1
and
max(p,q) q
We— Y (Bed)oi+ B)Wimi =ur — Y Bjus—j, tELZ,
i=1 j=1

respectively. Here, o; = 0 for ¢ > p and B; = 0 for j > q. In particular, the
autocovariance and autocorrelation functions of (07)iez and that of (X?)iez
are those of the corresponding ARMA processes.

The fact that (ut)iez is White Noise follows in complete analogy to
the White Noise property of (Xi)iez by using (18). The ARMA repre-
sentations then follow by inserting (26) into (2), and they are causal by
Theorem 3. Observe that the ARMA equation for (S:)iez is actually an
ARMA (max(p, q), p’ — 1)-equation driven by (us—p )iez, where p’ := min{j €
{1,...,p} : a;j # 0}. For general expressions for the autocoviarance functions
of ARMA processes, see Brockwell and Davis (1991), Section 3.3.
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5 Strong Mixing

Mixing conditions describe some type of asymptotic independence, which
may be helpful in proving limit theorems, e.g. for the sample autocorrela-
tion function or in extreme value theory. There exist many types of mixing
conditions, see e.g. Doukhan (1994) for an extensive treatment. For GARCH
processes, under weak assumptions one has a very strong notion of mixing,
namely S-mixing, which in particular implies strong mixing: let Y = (Y3)iez
be a strictly stationary time series in R?, defined on a probability space
(2, F, P). Denote by F°__ the o-algebra generated by (Y : s < 0) and by
F7° the o-algebra generated by (Y : s > t), and for k € N let

oM™= sup  |P(CND)-P(C)P(D)
CeF° __,DeFF

I J
1
(SM) .  SUD >N IP(Cin D)) — P(Cy)P(D;)],

i=1 j=1

where in the definition of BIESM) the supremum is taken over all pairs of
finite partitions {C1,...,Cr} and {D1,...,D;} of 2 such that C; € F°__
for each i and D; € F° for each j. The constants a,(fM) and /BIE,S]V[) are the
a-mizing coefficients and [-mizing coefficients, respectively, and (Yi)iez is
called strongly mizing (or a-mizing) if limy_, oo a,(fM) = 0, and S-mizing (or

SM) — 0. Tt is strongly mizing with geometric

absolutely regular) if limy_, oo ﬂ,i
rate if there are constants A € (0,1) and ¢ such that a,(fM) < ¥ for every
k, i.e. if oy decays at an exponential rate, and F-mizing with geometric rate

is defined similarly. Since

(smy _ 1 sm)
Q. < 2ﬂk s

[-mixing implies strong mixing.

Based on results of Mokkadem (1990), Boussama (1998) showed that
GARCH processes are beta mixing with geometric rate under weak assump-
tions, see also Boussama (2006). The proof hereby relies on mixing criteria for
Markov chains as developed by Feigin and Tweedie (1985), see also Meyn and
Tweedie (1996). Observe that the sequence Y = (¥%)ien, of random vectors
defined by (12) defines a discrete time Markov chain with state space Rﬁ+q_1.
Boussama (1998) then shows that under suitable assumptions on the noise
sequence this Markov chain is geometrically ergodic, i.e. there is a constant
A € (0,1) such that

nhjrolo Af”llpn(% ) - 77(')||TV = 0.
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Here, p,(y, E) for y € R’_’?afl and E € B(R’_’?afl) denotes the n-step tran-
sition probability from y to F, i.e.

pn(y, E) = P(Y, € E|Yy =v),

7 denotes the initial distribution of Yy which is chosen to be the stationary
one, and || - ||y denotes the total variation norm of measures. Since geo-
metric ergodicity implies S-mixing of (Y;);cz with geometric rate, using the
causality it can be shown that this in turn implies S-mixing of (oy,éet)tez
and hence of (X;)iez. Originally, the results in Boussama (1998) and (2006)
are stated under the additional assumption that the noise sequence has finite
second moment, but an inspection of the proof shows that it is sufficient to
suppose that E|eg|® < oo for some s > 0. The next Theorem gives the precise
statements. See also Basrak et al. (2002), Corollary 3.5, and Mikosch and
Straumann (2006), Theorem 4.5 and Proposition 4.10.

Theorem 8 (Boussama (1998), Théoréme 3.4.2)

Let (X, 01)iez be a strictly stationary GARCH(p, q) process as in (1), (2),
and suppose the noise sequence is such that eq is absolutely continuous with
Lebesgue density being strictly positive in a neighbourhood of zero, and such
that there exists some s € (0,00) such that Eleg|® < co. Let Y; be defined as
in (12). Then (Yy)iez is B-mizing with geometric rate. In particular, (02)iez,
(X2)iez and (Xy)iez are B-mizing and hence strongly mizing with geometric
rate.

An important application of strong mixing is the asymptotic normality
of the sample autocovariance and autocorrelation function, under suitable
moment conditions. Recall that the sample autocovariance function of a time

series (Zt)tcz based on observations Zi, ..., Z, is defined by

1 n—nh

Vzn(h) = ;@ = Zn)(Ztsn = Zn), h € No,
where 7, = 7112?:1 Z; denotes the sample mean. Similarly, the sample
autocorrelation function is given by
Yz n(h)
zn(h) =7 ,  héeN.
P JL( ) "YZ,n(O) 0

If now (Z;)iez is a strictly stationary strongly mixing time series with ge-
ometric rate such that E|Z;|**° < oo for some § > 0, then for each
h € Ny, also (ZiZiyn)tez is strongly mixing with geometric rate and
E|ZZyn|>T%/? < co. Then a central limit theorem applies, showing that
V3 \(ZiZown — E(ZiZiyr)) converges in distribution to a mean zero
normal random variable as n — oo, see e.g. Ibragimov and Linnik (1971),
Theorem 18.5.3. More generally, using the Cramér-Wold device, one can show
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that the vector (yv/n Z;Lzl(ZtZHh — E(ZtZ41)))h=o....m converges for ev-
ery m € N to a multivariate normal distribution. Standard arguments as
presented in Brockwell and Davis (1991), Section 7.3, then give multivariate
asymptotic normality of the sample autocovariance function and hence of the

autocorrelation function via the delta method. Applying these results to the
GARCH process, we have:

Corollary 3 Suppose that (X, 0¢)tez is a strictly stationary GARCH pro-
cess whose noise sequence (g¢)iez is such that g is absolutely continuous with
Lebesque density being strictly positive in a neighbourhood of zero.

(a) If there is & > 0 such that E|X;|**° < oo, then the sample autoco-
variance and sample autocorrelation function of (Xi)iez are asymptotically
normal with rate n'/?, i.e. for every m € N there exists a multivariate nor-
mal random vector (Vo,..., V) with mean zero such that (v/n(yn x(h) —
vx (h)))h=o0,....m converges in distribution to (Vo,..., V) as n — oo, and
(vV1(pn,x (h)=px (h)))h=1,....m converges to (vx(0))~ (Vo —px (W)Vo)n=1,...m
as n — oo. Here, vx and px denote the true autocovariance and autocorre-
lation function of (Xi)iez, respectively.

(b) If there is § > 0 such that F|X;|8%° < oo, then the sample autocovariance
and sample autocorrelation functions of (X?)iez are asymptotically normal
with rate n'/?.

The above statement can for example be found in Basrak et al. (2002), The-
orems 2.13 and 3.6. In practice one often estimates GARCH processes with
parameters which are close to IGARCH. Hence the assumption on finiteness
of E|Xt|4+‘S is questionable. Indeed, in cases when EX;' = oo, one often gets
convergence of the sample autocovariance and autocovariance functions to
stable distributions, and the rate of convergence is different from /n. For the
ARCH(1) case, this was proved by Davis and Mikosch (1998), extended by
Mikosch and Staricd (2000) to the GARCH(1, 1) case, and by Basrak et al.
(2002) to general GARCH(p, q). See also Davis and Mikosch (2008).

6 Some Distributional Properties

In this section we shortly comment on two other properties of the strictly
stationary solution, namely tail behaviour and continuity properties. We have
already seen that the kurtosis of a GARCH process is always greater than or
equal to the kurtosis of the driving noise sequence. Furthermore, Corollary 2
shows that under any reasonable assumption, a GARCH(1,1) process will
never have moments of all orders. Much more is true. Based on Kesten’s
(Kesten (1973)) powerful results on the tail behaviour of random recurrence
equations (see also Goldie (1991) for a simpler proof in dimension 1), one can
deduce that GARCH processes have Pareto tails under weak assumptions.
For the ARCH(1) process this was proved by de Haan et al. (1989), for
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GARCH(1,1) by Mikosch and Starica (2000), and for general GARCH(p, q)
processes by Basrak et al. (2002). For a precise statement of these results, we
refer to Corollary 1 in the article of Davis and Mikosch (2008) in this volume.
For example, for a GARCH(1, 1) process with standard normal noise, it holds
for the stationary solutions (X¢, o¢)tez,

lim z?*P(og > 2) = ¢o,
r—00

lim 22" P(|Xo| > x) = co E(|eo/**), lim 2**P(Xo > x) = 620 E(leo]?).
r— 00

T—00

Here, « is the unique solution in (0, 00) to the equation
B(ogel + 1)~ =1,

and ¢, is a strictly positive constant.

Regarding continuity properties of stationary solutions of GARCH(p, q)
processes, we shall restrict us to the case of GARCH(1,1) and ARCH(1).
Observe that in that case, the strictly stationary solution satisfies the random
recurrence equation

0? =ao+ (01 + a16§,1)0't271.

Hence if g¢ is absolutely continuous, so is log(f1 + a1€?_;) + logo? ; by in-
dependence of ;1 and o;_1, and we conclude that Uf must be absolutely
continuous. It follows that absolute continuity of ¢y leads to absolute con-
tinuity of the stationary o; and hence of the stationary X;. Excluding the
case when &2 is constant, i.e. when the distribution of ¢ is a Dirac mea-
sure, one might wonder whether the stationary distribution o; will always
be absolutely continuous, regardless whether ¢ is absolutely continuous or
not. For stationary distributions of the related continuous time GARCH pro-
cesses (COGARCH) introduced by Kliippelberg et al. (2004), this is indeed
the case, see Kliippelberg et al. (2006). For the discrete time GARCH(1,1)
process, the author is however unaware of a solution to this question. At
least there is the following positive result which is an easy consequence of
Theorem 1 of Grincevicius (1980):

Theorem 9 (Grincevicius (1980), Theorem 1)

Let (X¢,0¢)tez be a strictly stationary GARCH(1,1) or ARCH(1) process.
Then og is continuous with respect to Lebesque measure, i.e. cannot have
atoms, unless og is degenerate to a constant, i.e. unless e is constant. Con-
sequently, Xo does not have atoms unless €2 is constant or €9 has an atom
at zero.

Actually, Grincevicius’ result applies to more general situations, but in the

. i—1
GARCH case says that if 03 = ap > oo [T=1 (B + 1€ ;) has an atom, then
there must exist a sequence (Sy)nen, such that [[>7, P(ag+ (B1+a1€2)S, =
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Sn—1) > 0. By the i.i.d. assumption on (&,,)nez, this can be seen to happen
only if €3 is constant.

7 Models Defined on the Non-Negative Integers

We defined a GARCH process as a time series indexed by the set Z of integers.
This implies that the process has been started in the infinite past. It may seem
more natural to work with models which are indexed by the non-negative
integers Ny. Let (¢¢):en, be a sequence of i.i.d. random variables, and p € N,
g € Ny. Further, let ag > 0, aq,...,0p-1 >0, ap >0, f1,..., 8,1 > 0 and
B4 > 0 be non-negative parameters. Then by a GARCH(p, q) process indexed
by No, we shall mean a process (X:)ten, with volatility process (ot)ten, which
is a solution to the equations

Xt = Ot&t, t e NO, (27)
P q
o2 =ag+ Zaith_i + Zﬁjatz_j, t > max(p, q). (28)
i=1 j=1

The process is called causal if additionally o? is independent of (€444 )nen, for
t =0,...,max(p,q). By (28), the latter independence property then easily
extends to hold for all ¢ € Ny.

Recall that every strictly stationary GARCH(p, ¢) process indexed by Z
is causal by Remark 1. When restricting such a process to Ny, it is clear
that we obtain a causal strictly stationary GARCH process indexed by Nj.
Conversely, suppose that (Xt, 0¢)ten, is a strictly stationary GARCH process
indexed by Nj. Like any strictly stationary process indexed by Ny, it can be
extended to a strictly stationary process (X¢,ot)iez, see Kallenberg (2002),
Lemma 10.2. With e; = X, /oy for t < 0 (observe that o2 > ag), one sees that
also (X¢, 0¢, €t )tz is strictly stationary. Hence (g¢)tez must be i.i.d., and (27)
and (28) continue to hold for ¢ € Z. Since (X¢, 0¢)tez is strictly stationary, it
is causal, and hence so is (X¢, 0¢)ten, -

We have seen that there is an easy correspondence between strictly sta-
tionary GARCH processes defined on the integers and strictly stationary
GARCH processes defined on Ny. This justifies the restriction to GARCH
processes indexed by Z, which are mathematically more tractable. Further-
more, strictly stationary GARCH processes indexed by Ny are automatically
causal.
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8 Conclusion

In the present paper we have collected some of the mathematical properties
of GARCH(p, q) processes (X¢, 0¢)tcz. The existence of strictly and weakly
stationary solutions was characterised, as well as the existence of moments.
The GARCH process shares many of the so called stylised features observed
in financial time series, like a time varying volatility or uncorrelatedness of
the observations, while the squared observations are not uncorrelated. The
autocorrelation of the squared sequence was in fact seen to be that of an
ARMA process. Stationary solutions of GARCH processes have heavy tails,
since they are Pareto under weak assumptions. On the other hand, there
are some features which are not met by the standard GARCH(p, ¢) process,
such as the leverage effect, to name just one. In order to include these and
similar effects, many different GARCH type models have been introduced,
such as the EGARCH model by Nelson (1991), or many other models. We
refer to the article by Terdsvirta (2008) for further information regarding
various extensions of GARCH processes.

Acknowledgement I would like to thank Richard Davis and Thomas Mikosch for careful
reading of the paper and many valuable suggestions.
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