
2Many-Body Model Systems

In this section, we introduce some model systems which are frequently treated and with
which we shall later demonstrate and test the elements of the abstract theory. In formulating
the model Hamiltonians, we can practice the transformation from the first to the second
quantisation. The examples chosen are all taken from the field of theoretical solid-state
physics and will be preceded by some introductory remarks.

A solid is certainly a many-body system,

Solid =
N∑

i=1

(particles)i ,

composed of atoms or molecules which interact with one another. Each particle consists
of one or more positively-charged atomic nuclei and a negatively-charged electron cloud.
One distinguishes between core electrons and valence electrons. The core electrons are
strongly bound and are localised in the immediate neighbourhood of the nuclei. They as
a rule occupy closed electronic shells – exceptions are e.g. the 4 f electrons of the rare
earths – and thus have hardly any influence on the characteristic properties of the solid. This
is in contrast to the valence electrons, which occupy non-closed shells and are responsible
for the bonding to form a solid. Of course, this separation into core and valence electrons
is not always clear cut. It already represents a certain approximation. A lattice ion refers in
this sense to the ensemble of the atomic nucleus plus the core electrons. This leads to the
following model:

Solid:
an interacting system of particles consisting of lattice ions and valence electrons.

How is the corresponding Hamiltonian constructed?

H = He + Hi + Hei . (2.1)
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38 2 Many-Body Model Systems

The subsystem of the electrons is described by the operator He:

He =
Ne∑

i=1

p2
i

2m
+ 1

2

1

4πε0

i �= j∑

i, j

e2

|r i − r j | ≡ He,kin, + Hee . (2.2)

Ne is the number of valence electrons. The first term represents their kinetic energy, the
second term is their Coulomb interaction. ri , r j are the position vectors of the electrons.

The subsystem of the ions is defined by the operator Hi:

Hi =
Ni∑

α=1

p2
α

2Mα

+ 1

2

α �=β∑

α, β

Vi(Rα − Rβ ) ≡ Hi,kin + Hii . (2.3)

The ion-ion interaction need not be precisely specified at this point. It is in every case a
pairwise interaction. It is partially responsible for the fact that the equilibrium positions of
the ions, R(0)

α , define a strictly periodic crystal lattice. The ions exhibit oscillations around
these equilibrium positions; the oscillation energy is quantised. The elementary quantum
is called a phonon. It is therefore expedient to separate Hii further into

Hii = H (0)
ii + Hp . (2.4)

H (0)
ii determines for example the bonding in the solid, and Hp the lattice dynamics.
The interaction of the two subsystems is finally given by

Hei =
Ne∑

i=1

Ni∑

α=1

Vei(r i − Rα) , (2.5)

where here also, a further separation is expedient:

Hei = H (0)
ei + He−p . (2.6)

H (0)
ei refers to the interaction of the electrons with the ions in their equilibrium positions.

He−p is the electron-phonon interaction.
An exact solution for the overall system (2.1) would appear to be impossible. An

approximation can be formulated in the following three steps:
1. Electronic motions, e.g. in a rigid ionic lattice: He + H (0)

ei .
2. Ionic motions, e.g. in a homogeneous electron gas Hp.
3. Coupling, e.g. the perturbation-theoretical treatment of He−p.

Following this concept, in the following section, we discuss the electronic subsystem.
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2.1
Crystal Electrons

2.1.1
Non-interacting Bloch Electrons

We first consider electrons in a rigid ionic lattice, which do not interact with each other,
but rather only with the periodic lattice potential, i.e. we are looking for the solutions
corresponding to the eigenstates of the following Hamiltonian:

H0 = He,kin + H (0)
ei . (2.7)

The so-called lattice potential is defined by the ions which are fixed in their equilibrium
positions

V̂ (r i ) =
Ni∑

α=1

Vei
(
r i − R (0)

α

)
. (2.8)

More precisely, we have for the positions of the ions R(0)
α :

R (0)
α ⇒ Rn

s = Rn + Rs,

n = (n1, n2, n3) ; ni ∈ Z .
(2.9)

Here, Rn defines the Bravais lattice:

Rn =
3∑

i=1

niai . (2.10)

a1, a2, a3 are the primitive translations, and Rs are the position vectors of the basis atoms.
The periodicity mentioned above refers to the Bravais lattice:

V̂ (r i + Rn)
!= V̂ (r i ) . (2.11)

V̂ (r i ) = V̂ (r̂ i) is a single-particle operator, and this can be inserted into:

H (0)
ei =

Ne∑

i=1

V̂ (r̂ i) . (2.12)

We thus have to solve the following eigenvalue equation:

h0ψk(r) = ε(k)ψk(r) . (2.13)
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We refer to ψk(r) as a Bloch function and ε(k) as the corresponding Bloch energy. k is a
wave vector within the first Brillouin zone. h0 refers to the operator

h0 = p2

2m
+ V̂ (r̂) . (2.14)

The solution of (2.13) for realistic lattices is a non-trivial problem. Using the periodic-
ity (2.11) of the lattice potential, one can derive the fundamental Bloch’s Theorem:

ψk (r + Rn) = ei k · R n
ψk(r) . (2.15)

Employing the usual ansatz

ψk(r) = uk(r)ei k · r , (2.16)

the amplitude function must have the periodicity of the lattice:

uk (r + Rn) = uk(r) . (2.17)

The Bloch functions ψk(r) form a complete, orthonormalised system:

∫
d3r ψ∗

k (r)ψk′ (r) = δk, k′ , (2.18)

1. BZ∑

k

ψ∗
k (r)ψk

(
r ′) = δ

(
r − r ′) . (2.19)

The sum runs over all the wave vectors k in the first Brillouin zone. Owing to the periodic
boundary conditions, these are discrete. Since h0 contains no spin parts, its eigenfunctions
can be factored into a spin and a configuration-space function:

|kσ 〉 ⇐⇒ Bloch state ,

〈r | kσ 〉 = ψkσ (r) = ψk(r)χ
σ
,

χ↑ =
(

1

0

)
; χ↓ =

(
0

1

)
.

(2.20)

If we consider electrons from different energy bands, the Bloch function is also charac-
terised by a band index n. We limit ourselves here, however, to electrons within a sin-
gle band.

We define:

a+
kσ (akσ ) : creation (annihilation) operator

for a Bloch electron.
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Since H0 is a single-particle operator, it follows from (1.100) that:

H0 =
∑

kσ
k′σ ′

〈
kσ | h0 | k′σ ′〉 a+

kσ ak′σ ′ .

The matrix elements can be computed in a straightforward manner:

〈
kσ | h0 | k′σ ′〉 = ε

(
k′) 〈kσ | k′σ ′〉 = ε(k) δkk′ δσσ ′ , (2.21)

since |kσ 〉 is an eigenstate of h0. It then follows that:

H0 =
∑

kσ

ε(k)a+
kσ akσ =

∑

kσ

ε(k)nkσ . (2.22)

The Bloch operators akσ , a+
kσ of course fulfil the fundamental commutation relations:

[akσ , ak′σ ′ ]+ = [
a+

kσ , a+
k′σ ′

]
+ = 0 , (2.23)

[
akσ , a+

k′σ ′
]
+ = δkk′ δσσ ′ . (2.24)

If we neglect the crystalline structure of the solid and consider the ionic lattice merely as
a positively-charged background for the electronic system, (V̂ (r) = const), then the Bloch
functions become plane waves,

ψk(r) ⇒
[V̂ =const]

1√
V

ei k · r , (2.25)

and the Bloch energies, due to p2/2m = −(h̄2/2m)�, are:

ε(k) ⇒
[V̂ =const]

h̄2k2

2m
. (2.26)

(V is the volume of the solid. It is important to distinguish between V and the lattice
potential V̂ !) We will discuss two other representations of H0 which are important for
applications, e.g. the

field operators

ψ̂+
σ (r), ψ̂σ (r) ,

which are to be understood as in (1.63) through (1.69), with the addition that we now
also take the spin of the electron into account. The generalisation of the formulas given in
Chap. 1 is evident. Thus, for example:
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[
ψ̂σ (r) , ψ̂+

σ ′
(
r ′)]

+ = δ
(
r − r ′) δσσ ′ . (2.27)

From this it follows for H0:

H0 =
∑

σ, σ ′

∫∫
d3r d3r ′ 〈rσ | h0 | r ′σ ′〉 ψ̂+

σ (r)ψ̂σ ′
(
r ′) =

=
∑

σ, σ ′

∫∫
d3r d3r ′ δσσ ′

(
− h̄2

2m
�r ′ + V̂

(
r ′)

)
δ
(
r − r ′) ψ̂+

σ (r)ψ̂σ ′
(
r ′) =

=
∑

σ

∫
d3r ψ̂+

σ (r)

(
− h̄2

2m
�r + V̂ (r)

)
ψ̂σ (r) . (2.28)

An additional, frequently-used particular configuration representation makes use of

Wannier functions

ωσ (r − Ri) = 1√
Ni

1. BZ∑

k

e−i k·Riψkσ (r) . (2.29)

A typical feature of these functions is their relatively strong concentration around each
lattice position Ri (Fig. 2.1). With (2.18) as well as

1

Ni

1. BZ∑

k

ei k·(Ri−R j ) = δi j , (2.30)

one can readily prove the orthogonality relation:

∫
d3r ω∗

σ (r − Ri)ωσ ′
(
r − R j

) = δσσ ′ δi j . (2.31)

rRi

Reωσ

Fig. 2.1 The qualitative
position dependence of the
real part of a Wannier
function
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Using the notations

|iσ 〉 ⇐⇒ Wannier state,

〈r | iσ 〉 = ωσ (r − Ri) ,

a+
iσ (aiσ ) : creation (annihilation) operator for an electron

in a Wannier state at the lattice site Ri,

(2.32)

in second quantisation, H0 is given by

H0 =
∑

i jσ

Ti j a+
iσ a jσ , (2.33)

and describes in an intuitively clear manner the hopping of an electron with spin σ from
the lattice site R j – where it is annihilated – to the lattice site Ri, where it is created. Ti j is
therefore also called the

“hopping” integral.

We start with:

〈
iσ | h0 | jσ ′〉 = δσσ ′ 〈iσ | h0 | jσ 〉 =

= δσσ ′
∑

k, k′
σ1, σ2

〈iσ | kσ1〉
〈
kσ1 | h0 | k′σ2

〉 〈
k′σ2 | jσ

〉 =

= δσσ ′
∑

k, k′
σ1, σ2

ε(k′) 〈iσ | kσ1〉
〈
kσ1 | k′σ2

〉 〈
k′σ2 | jσ

〉 =

= δσσ ′
∑

k, σ1

ε(k) 〈iσ | kσ1〉 〈kσ1 | jσ 〉 .

(2.34)

The remaining matrix elements can then be computed as follows:

〈iσ | kσ1〉 =
∫

d3r 〈iσ | r〉 〈r | kσ1〉 =

=
∫

d3r ω∗
σ (r − Ri)ψkσ1 (r) =

= 1√
Ni

∑

k′
ei k′ ·Ri

∫
d3r ψ∗

k′σ (r)ψkσ1 (r) =

= 1√
Ni

∑

k′
ei k′ ·Ri δkk′ δσσ1 = δσσ1

ei k·Ri

√
Ni
.
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This yields in (2.34):

〈
iσ | h0 | jσ ′〉 = δσσ ′ Ti j (2.35)

with

Ti j = 1

Ni

∑

k

ε(k)ei k·(Ri−R j ) . (2.36)

The inverse relation is given by:

ε(k) = 1

Ni

∑

i, j

Ti j e
−i k·(Ri−R j ) , (2.37)

as can be verified by substituting in (2.36) and employing (2.30).
The relation between the Bloch and the Wannier operators can be found in the same

way as shown in (1.66) for the example of the field operators:

aiσ = 1√
Ni

1. BZ∑

k

ei k·Ri akσ , (2.38)

akσ = 1√
Ni

Ni∑

i=1

e−i k·Ri aiσ . (2.39)

From the commutation relations for the Bloch operators (2.23) and (2.24), the commutation
relations for the Wannier operators then follow immediately:

[
aiσ , a jσ ′

]
+ =

[
a+

iσ , a+
jσ ′

]

+
= 0, (2.40)

[
aiσ , a+

jσ ′

]

+
= δi j δσσ ′ . (2.41)

2.1.2
The JelliumModel

This model is adequate for the description of simple metals and is based on the following
assumptions:
1. Ne electrons within the volume V = L3 interact with each other via the Coulomb inter-

action

Hee = e2

8πε0

i �= j∑

i, j

1

|r i − r j | . (2.42)



2.1 Crystal Electrons 45

2. The ions are singly positively charged:

Ne = Ni = N . (2.43)

3. The ions form a homogeneously distributed background and thus guarantee
(a) charge neutrality, (b) a constant lattice potential.
The Bloch functions then become plane waves:

ψkσ (r) ⇒ 1√
V

ei k · rχ
σ
. (2.44)

4. Periodic boundary conditions for V give rise to discrete wave numbers:

k = 2π

L

(
nx , ny, nz

)
, nx, y, z ∈ Z . (2.45)

How is the Hamiltonian for the model corresponding to these assumptions formulated in
first quantisation? It should contain three terms:

H = He + H+ + He+ . (2.46)

He is to be interpreted as in (2.2) and is the pivotal term. H+ describes the homogeneously
distributed ionic charges, where homogeneously distributed is taken to imply that the ion
density n(r) is position-independent:

n(r) ⇒ N

V
. (2.47)

Then we have for H+:

H+ = e2

8πε0

∫∫
d3r d3r ′ n(r) · n (r ′)

|r − r ′| e−α|r−r ′| . (2.48)

Due to the 4th assumption, we must discuss our results in the thermodynamic limit, i.e. for
N → ∞, V → ∞, N/V → const. Owing to the long range of the Coulomb forces, the
integrals then diverge. For this reason, a convergence factor exp(−α|r − r ′|) with α > 0 is
introduced. After evaluating the integrals, the limit α → 0 is taken.

Because of (2.47), we require the following integral in (2.48):

∫∫
d3r d3r ′ e−α|r−r ′|

|r − r ′| = V
∫

V

d3r
e−αr

r
−−→
V →∞

4πV

α2
.

We then obtain:

H+ = e2

8πε0

N̂ 2

V

4π

α2
. (2.49)
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H+ indeed diverges for α → 0, but it is compensated by other terms which are yet to be
discussed. He+ in (2.46) describes the interactions of the electrons with the homogeneous
background of ions:

He+ = − e2

4πε0

N∑

i=1

∫
d3r

n(r)

|r − r i |e−α|r−r i | . (2.50)

With the same considerations as used for H+, we find:

He+ = − e2

4πε0

N

V

N∑

i=1

∫
d3r

e−α|r−r i |

|r − r i | =

= − e2

4πε0

N

V

N∑

i=1

4π

α2
.

We now replace the classical particle number N by the particle-number operator N̂ ; this
yields:

He+ = − e2

4πε0

N̂ 2

V

4π

α2
. (2.51)

All together, this gives for our model:

H = He − 1

2

e2

4πε0

N̂ 2

V

4π

α2
. (2.52)

This still looks critical for α → 0, but as we shall see, He contains an exactly corresponding
term, which just cancels with the second term in (2.52). He is in fact the decisive operator,
and according to (2.2), it is composed of the kinetic energy H0 (2.7) and the Coulomb
interaction Hee (2.42). H0 was already transformed to second quantisation in the previous
section. Hee is a typical two-particle operator, for which, according to (1.100), we find in
the Bloch representation:

Hee = 1

2

∑

k1··· k4
σ1··· σ4

v (k1σ1, . . . , k4σ4) a+
k1 σ1

a+
k2 σ2

ak4 σ4 ak3 σ3 . (2.53)

The matrix element

v (k1σ1, . . . , k4σ4) =

= e2

4πε0

〈
(k1σ1)(1) (k2σ2)(2)

∣∣∣∣
1

|r̂ (1) − r̂ ′(2)|

∣∣∣∣ (k3σ3)(1) (k4σ4)(2)

〉
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is with certainty nonzero only for

σ1 = σ3 and σ2 = σ4 ,

since the operator itself is spin-independent:

v (k1σ1, . . . , k4σ4) = e2

4πε0

∫∫
d3r1 d3r2

〈
k(1)

1 k(2)
2

∣∣∣
1

|r̂ (1) − r̂
′(2)| ·

·
∣∣∣r (1)

1 r (2)
2

〉 〈
r (1)

1 r (2)
2

∣∣∣k(1)
3 k(2)

4

〉
δσ1σ3 δσ2σ4 =

= e2

4πε0

∫∫
d3r1 d3r2

1

|r1 − r2|
〈
k(1)

1 k(2)
2

∣∣∣r (1)
1 r (2)

2

〉
·

·
〈
r (1)

1 r (2)
2

∣∣∣k(1)
3 k(2)

4

〉
δσ1σ3 δσ2σ4 =

= e2

4πε0

∫∫
d3r1 d3r2

1

|r1 − r2|ψ
∗
k1

(r1)ψ∗
k2

(r2) ·

· ψk3 (r1)ψk4 (r2) δσ1σ3 δσ2σ4 .

Making use of Bloch’s theorem (2.15), we can furthermore show that in addition,

k1 + k2 = k3 + k4

must hold. We then have:

v (k1σ1, . . . , k4σ4) = δσ1σ3 δσ2σ4 δk1+k2, k3+k4 v (k1, . . . k4) ,

v (k1, . . . , k4) = e2

4πε0

∫∫
d3r1 d3r2 ψ

∗
k1

(r1)ψ∗
k2

(r2) ·

· 1

|r1 − r2|ψk3 (r1)ψk4 (r2) .

(2.54)

For the Coulomb interaction Hee, we thus obtain the following expression:

Hee = 1

2

∑

k1, ... , k4
σ, σ ′

v (k1, . . . , k4) δk1+k2, k3+k4 a+
k1σ

a+
k2σ ′ ak4σ ′ ak3σ . (2.55)

In the jellium model, the ψk(r) are plane waves, so that we still must calculate:

vα (k1, . . . , k4) =

= e2

4πε0

1

V 2

∫∫
d3r1 d3r2

e−i (k1−k3) · r1 e−i (k2−k4) · r2

|r1 − r2| e−α|r1−r2| .
(2.56)
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We set

r = r1 − r2; R = 1

2
(r1 + r2)

⇐⇒ r1 = 1

2
r + R; r2 = −1

2
r + R .

(2.57)

and must then solve:

vα (k1, . . . , k4) = e2

4πε0

1

V

∫
d3 R e−i (k1−k3+k2 − k4) · R·

· 1

V

∫
d3r

1

r
e−αr e−(i/2)(k1 − k3 − k2+k4) · r =

= e2

4πε0
δk1+k2, k3+k4

1

V

∫
d3r

e−i (k1−k3) · r e−αr

r
.

Using

∫
d3r

e−iq · r

r
e−αr = 4π

q2 + α2
, (2.58)

we finally obtain:

vα (k1, . . . , k4) = e2

ε0V
[
(k1 − k3)2 + α2

] δk1−k3, k4−k2 . (2.59)

We insert this into (2.55):

H (α)
ee = 1

2

∑

k, p , q
σ, σ ′

vα(q) a+
k+qσ a+

p − qσ ′ a pσ ′ akσ , (2.60)

vα(q) = e2

ε0V
(
q2 + α2

) . (2.61)

We consider now the q = 0 term of the Coulomb interaction:

1

2

e2

ε0Vα2

∑

k, p
σ, σ ′

a+
kσ a+

pσ ′ a pσ ′ akσ =

= 1

2

e2

ε0Vα2

∑

k, p
σ, σ ′

(−δσσ ′ δk p nkσ + n pσ ′ nkσ
) =

= e2

2ε0Vα2

[
−N̂ + (

N̂
)2
]
.

(2.62)
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We can see that the second term in (2.62) just compensates the second term in (2.52),
i.e. the contributions from H+ and He+ just cancel. The first term in (2.62) leads to an
energy per particle which vanishes in the thermodynamic limit,

− e2

2ε0Vα2
−−−−−−→
N→∞; V →∞

0 ,

and therefore can be left off from the beginning. If we now finally take the limit α → 0,
we find for the

Hamiltonian of the jellium model:

H =
∑

kσ

ε0(k) a+
kσ akσ + 1

2

q �=0∑

k, p, q
σ, σ ′

v0(q) a+
k+qσ a+

p − qσ ′ a pσ ′ akσ . (2.63)

From (2.26), we have

ε0(k) = h̄2k2

2m
(2.64)

as the matrix element of the kinetic energy, and

v0(q) = 1

V

e2

ε0q2
(2.65)

as that of the Coulomb interaction.
In addition, we would like to derive a useful alternative representation of H , making

use of the

electron density operator:

ρ̂(r) =
N∑

i=1

δ (r − r̂ i) . (2.66)

This is a single-particle operator. The site of the electron r̂ i is an operator here, whilst the
variable r is naturally not. From (1.100), we find for ρ̂ in the second-quantisation formalism
using the Bloch representation:

ρ̂(r) =
∑

k, k′
σ, σ ′

〈kσ | δ (r − r̂ ′) ∣∣k′σ ′〉 a+
kσ ak′σ ′ . (2.67)
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For the matrix element, we need to calculate the following:

〈kσ | δ (r−r̂ ′) ∣∣k′σ ′〉 =
∑

σ ′′

∫
d3r ′′ 〈kσ | δ (r−r̂ ′) ∣∣r ′′σ ′′〉 〈r ′′σ ′′ | k′σ ′〉 =

=
∑

σ ′′

∫
d3r ′′ δ

(
r−r ′′) 〈kσ | r ′′σ ′′〉 〈r ′′σ ′′ | k′σ ′〉 =

=
∑

σ ′′
δσσ ′′ δσ ′′σ ′ 〈kσ | rσ 〉 〈rσ | k′σ

〉 =

= δσσ ′ψ∗
k (r)ψk′ (r) .

If we confine ourselves to plane waves, as in the jellium model, then we have

〈kσ | δ (r − r̂ ′) ∣∣k′σ ′〉 = δσσ ′
1

V
ei (k′−k) · r . (2.68)

In terms of (2.67), this means:

ρ̂(r) = 1

V

∑

k, q, σ

a+
kσ ak+qσ eiq · r . (2.69)

For the Fourier component of the electron-density operator, we thus find:

ρ̂q =
∑

kσ

a+
kσ ak+qσ . (2.70)

One can read off, among other things:

ρ̂+
q = ρ̂−q ; ρ̂q=0 = N̂ . (2.71)

With this result, we can express the Hamiltonian of the jellium model in terms of density
operators. The kinetic energy remains unchanged:

Hee = 1

2

q �=0∑

k, p, q
σ, σ ′

v0(q) a+
k+qσ a+

p − qσ ′ a pσ ′ akσ =

= 1

2

q �=0∑

k, pq
σ, σ ′

v0(q) a+
k+qσ

{
−δσσ ′ δk, p−q + akσ a+

p−qσ ′

}
a pσ ′ =

= −1

2

q �=0∑

q, p, σ

v0(q) a+
pσ a pσ + 1

2

q �=0∑

q

v0(q)
∑

kσ

a+
k+qσ akσ ·

·
∑

p, σ ′
a+

p − qσ ′ a pσ .



2.1 Crystal Electrons 51

Thus, all together, the Hamiltonian of the jellium model becomes:

H =
∑

kσ

ε0(k) a+
kσ akσ + 1

2

q �=0∑

q

v0(q)
{
ρ̂q ρ̂−q − N̂

}
. (2.72)

In order to obtain a certain insight into the physics of the model, we now investigate the
ground-state energy of the jellium model. To this end, we make use of first-order perturba-
tion theory, which according to the variational principle will in any case give us an upper
limit for the ground-state energy. We consider the Coulomb interaction Hee as a perturba-
tion; the unperturbed system is thus given by

H0 =
∑

kσ

ε0k a+
kσ akσ (2.73)

(Sommerfeld model). It can be solved exactly. In the

“unperturbed” ground state |E0〉,

the N electrons occupy all the states with energies which are not greater than a limiting
energy εF, which is referred to as the Fermi energy:

ε0(k) = h̄2k2

2m
≤ εF = h̄2k2

F

2m
. (2.74)

kF is the Fermi wavevector, which can readily be computed as follows: owing to the
isotropic energy dispersion

ε0(k) = ε0(k) , (2.75)

the electrons occupy all the states in k space within a sphere of radius kF. Since the k-points
are discrete in k space due to the periodic boundary conditions (cf. (2.45)), each k-point
occupies an available

grid volume �k = (2π)3

L3
= (2π)3

V
. (2.76)

If we now take the spin degeneracy into account, we find the following relation between
the electron number N and the Fermi wavevector kF:

N = 2
1

�k

(
4π

3
k3

F

)
= V

3π2
k3

F .

This means that:

kF =
(

3π2 N

V

)1/3

, (2.77)
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εF = h̄2

2m

(
3π2 N

V

)2/3

. (2.78)

We can readily compute the mean energy per particle ε̄, finding:

ε̄ = 2

N

⎛

⎝
∫

k ≤ kF

d3k
h̄2k2

2m

⎞

⎠ 1

�k
= 3

5
εF . (2.79)

We thus have obtained the ground-state energy:

E0 = N ε̄ = 3

5
NεF . (2.80)

We introduce some standard abbreviations:

ne = N

V
: mean electron density, (2.81)

ve = 1

ne
: mean volume per electron. (2.82)

ve determines via

ve = 4π

3
(aBrs)3 (2.83)

the dimensionless density parameter rs , where

aB = 4πε0h̄2

me2
= 0.529 Å (2.84)

is the Bohr radius. If we introduce an energy parameter in a similar fashion,

1 ryd = 1

4πε0

e2

2aB
= 13.605 eV , (2.85)

then for the Fermi energy εF, we find:

εF = α2

r2
s

[ryd]; α =
(

9π

4

)1/3

. (2.86)

Then the unperturbed ground-state energy is given by:

E0 = N
2.21

r2
s

[ryd] . (2.87)
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We now switch on the perturbation Hee and compute the energy correction to first order:

ε(1) = 1

2N

q �= 0∑

k, p, q
σ, σ ′

v0(q)
〈
E0

∣∣∣a+
k+qσ a+

p − qσ ′ a pσ ′ akσ

∣∣∣E0

〉
. (2.88)

Only those terms contribute for which the annihilation operator acts on states within the
Fermi sphere, and the creation operator subsequently fills the resulting holes within the
Fermi sphere:

1) Direct Term:

k = k + q; p = p − q ⇐⇒ q = 0 . (2.89)

According to our preliminary considerations, terms of this type however do not occur in
the sum!

2) Exchange Term:

σ = σ ′; k + q = p; p − q = k . (2.90)

This is a typically quantum-mechanical term, which is not classically understandable. It
results from the antisymmetrisation principle for the N -particle states:

ε(1) = 1

2N

q �=0∑

k, q, σ

v0(q)
〈
E0

∣∣∣a+
k+qσ a+

kσ ak+qσ akσ

∣∣∣E0

〉
=

= − 1

2N

q �=0∑

k, q, σ

v0(q)
〈
E0

∣∣∣n̂k+qσ n̂kσ

∣∣∣E0

〉
.

(2.91)

Since in the unperturbed ground state |E0〉, all the states within the Fermi sphere are occu-
pied and all those outside it are unoccupied, it follows that:

ε(1) = − 1

2N

q �=0∑

k, q, σ

v0(q)Θ (kF − |k + q|)Θ (kF − k) . (2.92)

In the thermodynamic limit, we can replace the sums by integrals:

∑

k

⇒ 1

�k

∫
d3k = V

(2π)3

∫
d3k .
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After carrying out the summation over spins, we still need to compute:

ε(1) = − V

N

e2

ε0(2π)6

∫
d3k

∫
d3q

1

q2
Θ (kF − |k + q|)Θ (kF − k) .

The substitution

k ⇒ x = k + 1

2
q

leads to

ε(1) = − V

N

e2

ε0(2π)6

∫
d3q

1

q2
2S(q), (2.93)

S(q) = 1

2

∫
d3x Θ

(
kF −

∣∣∣∣x + 1

2
q

∣∣∣∣

)
Θ

(
kF −

∣∣∣∣x − 1

2
q

∣∣∣∣

)
. (2.94)

For the spherical segment sketched in Fig. 2.2, we clearly need to calculate:

S(q) = Θ
(

kF − q

2

) 1∫

q/2
kF

d cosϑ
∫

dϕ

kF∫

y(ϑ)

dx x2 ,

y(ϑ) = q/2

cosϑ
.

The integration can be readily carried out:

S(q) = 2π

3
Θ

(
kF − q

2

){
k3

F − 3

4
qk2

F + 1

16
q3

}
. (2.95)

The remaining evaluation of (2.93) is then simple:

ε(1) = −0.916

rs
[ryd] .

Region of integration for x

x
q

kF

x+1 2q x−1  2q

S = volume of
this spherical
segment

ϑ

kF

y(ϑ)2q

×

Fig. 2.2 A schematic representation of the integration region for computing the ground-state energy
in the jellium model to first order in perturbation theory as in (2.93)
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Fig. 2.3 Ground-state energy
per particle in the jellium
model as a function of the
density parameter rS

This yields finally for the ground-state energy per particle:

1

N
Emin[ryd] = 2.21

r2
S

− 0.916

rS
+ εcorr = ε . (2.96)

The first term is the kinetic energy (2.87), the second represents the so-called exchange
energy. The latter is typical of systems of identical particles and is a direct result of the
principle of indistinguishability and thus for Fermions of the Pauli principle. It guarantees
that electrons with parallel spins do not approach each other too closely. Every effect which
keeps particles of the same charge at a distance leads to a reduction of their ground-state
energy. This is the reason for the minus sign in (2.96). The last term is called the corre-
lation energy. It gives the deviation of the perturbation-theoretical energy from the exact
result and is thus naturally unknown. Modern methods of many-body theory lead to the
following series (see (5.177)):

εcorr = 2

π2
(1 − ln 2) ln rS − 0.094 + O (rS ln rS) [ryd] . (2.97)

The simple jellium model already gives useful results, e.g. ε − εcorr passes through a
minimum at

r0 = (rS)min = 4.83,

(ε − εcorr)min = −0.095 [ryd] = −1.29 [eV] .

This indicates an optimal value of the electron density, which corresponds finally to the
energetically most favourable ionic spacing, and thus explains, at least qualitatively, the
phenomenon of metallic bonding.

2.1.3
The Hubbard Model

The decisive simplification achieved by the jellium model consists of the fact that it treats
the ions in a solid merely as a positively-charged, homogeneously distributed background,
i.e. the crystalline structure is completely ignored. The Bloch functions then become plane
waves (2.44), so that within the framework of this model, the electrons have a constant
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occupation probability throughout the entire crystal. The jellium model is thus limited from
the start to electrons in broad energy bands, i.e. for example to the conduction electrons of
the alkali metals, for which these assumptions are valid to a good approximation.

The electrons in narrow energy bands have a relatively low mobility and distinct max-
ima in their occupation probabilities at the locations of the individual lattice ions. Plane
waves are naturally not appropriate for the description of such band electrons. A consider-
ably better starting point is the so-called tight-binding approximation.

If we assume a strong lattice potential V̂ (r) and a low mobility of the band electrons,
then in the neighbourhood of the lattice ions, the atomic Hamiltonian

Hat =
Ni∑

i=1

h(i)
at , (2.98)

which is the sum of the Hamiltonians for the individual atoms, should yield a fairly rea-
sonable description, that is, it should be quite similar to H0 as in (2.7):

h(i)
at ϕn (r − Ri) = εnϕn (r − Ri) . (2.99)

ϕn is an atomic wavefunction, which we can take to be known. The index n symbolises
a set of quantum numbers. We are interested in the case that the functions ϕn have only
a limited overlap when they are centered at different locations Ri, R j . This results in a
low tunneling probability for the electrons from atom to atom and therefore only a weak
splitting of the atomic levels in the solid – i.e. a narrow energy band.

For the Hamiltonian of the non-interacting electrons (2.7),

H0 =
Ne∑

i=1

h(i)
0 , (2.100)

we use the following approach:

h0 = hat + V1(r) . (2.101)

The correction V1(r) should thus be small in the neighbourhood of the lattice ions, but in
contrast relatively large in the intermediate regions, where however the ϕn have dropped to
nearly zero. From (2.13), we in fact must solve the following problem:

h0ψnk(r) = εn(k)ψnk(r) . (2.102)

The complete solution of this eigenvalue problem appears to be extremely complicated.
We therefore use the following trial functions for the Bloch functions ψnk(r):

ψnk(r) = 1√
Ni

Ni∑

j=1

eik · R jϕn
(
r − R j

)
. (2.103)
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This ansatz obeys the Bloch theorem (2.15), and it is practically exact near the ionic
cores (V1(r) ≈ 0), whilst the errors in the interatomic regions are not too great, due to
the small overlap of the wavefunctions there. A comparison with (2.29) shows that we have
replaced the exact Wannier functions by the atomic wavefunctions. Using (2.102), we now
compute approximately the Bloch energies εn(k). To start, the following expressions are
strictly valid:

∫
ϕ∗

n (r)h0ψnk(r)d3r = εn(k)
∫
ϕ∗

n (r)ψnk(r)d3r ,

∫
ϕ∗

n (r)V1(r)ψnk(r)d3r = (εn(k) − εn)
∫
ϕ∗

n (r)ψnk(r)d3r .

Here, we now apply the ansatz (2.103). With the abbreviations

vn =
∫

d3r V1(r) |ϕn(r)|2 , (2.104)

T (n)
0 = εn + vn , (2.105)

α( j)
n =

∫
d3r ϕ∗

n (r)ϕn
(
r − R j

)
, (2.106)

γ ( j)
n =

∫
d3r ϕ∗

n (r)V1(r)ϕn
(
r − R j

)
(2.107)

we obtain:

(εn(k) − εn) = vn + 1√
Ni

R j �=0∑

j

[
γ ( j)

n − (εn(k) − εn)α( j)
n

]
eik · R j ,

where we have presumed that the atomic wavefunctions are normalised. We then find for
the Bloch energies:

εn(k) = εn +
vn + 1√

Ni

∑�= 0
j γ

( j)
n eik · R j

1 + 1√
Ni

∑�= 0
j α

( j)
n eik · R j

. (2.108)

The overlap integrals γ ( j)
n and α( j)

n are by assumption for R j �= 0 only very small quanti-
ties, so that we can with confidence simplify further:

εn(k) = T (n)
0 + γ (1)

n

∑

�

eik · R� . (2.109)

� indicates the nearest neighbours to the atom at the origin of the coordinate system. The
sum can as a rule be readily computed. Thus, for a simple cubic lattice:

RΔ = a(±1, 0, 0); a(0,±1, 0); a(0, 0,±1) ,

εs. c.
n (k) = T (n)

0 + 2γ (1)
n

(
cos(kx a) + cos(kya) + cos(kza)

)
.

(2.110)



58 2 Many-Body Model Systems

a is the lattice constant, and T (n)
0 and γ (1)

n are parameters which must be determined exper-

imentally. γ (1)
n is determined by the width W of the band:

W s. c.
n = 12

∣∣γ (1)
n

∣∣ . (2.111)

The tight-binding approximation, which led to (2.109), is strictly speaking allowed only for
so-called s bands. For p-, d-, f - . . . bands, a certain degree of degeneracy must be taken
into account, but we shall not discuss this point further here. In the following, we limit our
treatment to s bands and thus leave off the index n from here on.

The Bloch energies, (2.109) or (2.110), now clearly exhibit the influence of the crys-
tal structure. Only for very small |k| values near the bottom of the band does the
parabolic dispersion, which applies within the jellium model, hold approximately, ε(k) ⇒
ε0(k)/h̄2k2/2m.

In second quantisation, H0 takes the same form as in (2.33):

H0 =
∑

i jσ

Ti j a
+
iσ a jσ . (2.112)

The tight-binding approximation permits electronic transitions via the hopping integral

Ti j = 1

Ni

∑

k

ε(k)eik·(Ri−R j ) (2.113)

only between nearest-neighbour lattice positions. For the Coulomb interaction of the band
electrons, (2.55) of course still applies. The transformation to real space then yields:

Hee = 1

2

∑

i jkl
σ, σ ′

v(i j ; kl) a+
iσ a+

jσ ′ alσ ′ akσ , (2.114)

where the matrix element is to be computed with atomic wavefunctions:

v(i j ; kl) =

= e2

4πε0

∫∫
d3r1 d3r2

ϕ∗ (r1 − Ri) ϕ∗ (r2 − R j
)
ϕ (r2 − Rl ) ϕ (r1 − Rk)

|r1 − r2| .

(2.115)

Owing to the small overlap of the atomic wavefunctions which are centered on different
lattice positions, the intra-atomic matrix element

U = v (i i ; i i) (2.116)

predominates. Hubbard made the suggestion that the electron-electron interaction therefore
be limited to this term:
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Hubbard model

H =
∑

i jσ

Ti j a+
iσ a jσ + 1

2
U

∑

i, σ

n̂iσ n̂i−σ (2.117)

(Notation: σ =↑ (↓) ⇐⇒ −σ =↓ (↑)). The Hubbard model must thus be the simplest
model with which one can study the interplay of the kinetic energy, the Coulomb interac-
tions, the Pauli principle and the lattice structure.

The drastic simplifications which led to (2.117) of course entail a correspondingly lim-
ited applicability of the model.
The model is used in the discussion of
1. the electronic properties of solids with narrow energy bands (e.g. transition metals),
2. band magnetism (Fe, Co, Ni, . . .),
3. metal-insulator transitions (“Mott transitions”),
4. general principles of statistical mechanics,
5. high-temperature superconductivity.

In spite of its simple structure, the exact solution of the Hubbard model has thus far not
been achieved. One must still resort to approximate solutions. Examples will be discussed
in the following sections.

2.1.4
Exercises

Exercise 2.1.1 A solid contains N = N ′3 (N ′ even) unit cells in the volume V =
L3 (L = aN ′). For the allowed wave vectors, using periodic boundary conditions,
the following holds:

k = 2π

L

(
nx , ny, nz

)
; nx, y, z = 0,±1,+2, . . . ,±

(
N ′

2
− 1

)
, N ′/2 .

Prove the orthogonality relation

δi j = 1

N

1. BZ∑

k

exp
[
ik · (Ri − R j

)]
.

The sum runs over all the wavenumbers within the first Brillouin zone.
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Exercise 2.1.2 Based on the fundamental commutation relations for Bloch operators,
a+

kσ , akσ , derive the corresponding relations for Wannier operators a+
iσ , a jσ .

Exercise 2.1.3 In theoretical solid-state physics, one often has to deal with integrals
of the type

I (T ) =
+∞∫

−∞
dx g(x) f−(x), f−(x) = {exp [β (x − μ)] + 1}−1 .

These deviate from their values at T = 0

I (T = 0) =
εF∫

−∞
dx g(x)

by an expression which is determined almost exclusively by the behaviour of the
function g(x) within the Fermi layer (μ− 2kB T ;μ+ 2kB T ), whereμ represents the
chemical potential. Power series are therefore very promising! Assume that g(x) →
0 for x → −∞, and that g(x) for x → +∞ diverges at most as a power of x and is
regular within the Fermi layer.
1. Show that

I (T ) = −
+∞∫

−∞
dx p(x)

∂

∂x
f−(x)

holds, with

p(x) =
x∫

−∞
dy g(y) .

2. Use a Taylor series for p(x) around μ (chemical potential) for the following
representation of the integral:

I (T ) = p(μ) + 2
∞∑

n=1

(
1 − 21−2n

)
β−2nζ (2n)g(2n−1)(μ) .

Here, g(2n−1)(μ) is the (2n − 1)-th derivative of the function g(x) at the posi-
tion x = μ, and ζ (n) is Riemann’s ζ function:
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ζ (n) =
∞∑

p=1

p−n = 1

(1 − 21−n)Γ (n)

∞∫

0

du
un−1

eu + 1
.

3. Calculate explicitly the first three terms of the series for I (T ).

Exercise 2.1.4 The Sommerfeld model can explain many electronic properties of the
so-called simple metals such as Na, K, Mg, Cu, . . . to a good approximation. It is
defined by the following model assumptions:
a) An ideal Fermi gas within the volume V = L3.
b) Periodic boundary conditions on V .
c) A constant lattice potential V (r) = const.

1. Give the eigenstate energies and the eigenfunctions.
2. Calculate the Fermi energy and the Fermi wavevector as functions of the elec-

tron density n = N/V .
3. How does the average energy per electron depend on the Fermi energy?
4. Determine the electronic density of states ρ0(E).
5. Make use of the dimensionless density parameter rs from Eq. (2.83) to compute

the ground-state energy E0:

E0 = N
2, 21

r2
s

[ryd] .

Exercise 2.1.5 Discuss some of the thermodynamic properties of the Sommerfeld
model which was introduced in Ex. 2.1.4.
1. Calculate the temperature dependence of the mean occupation number of a

single-particle level.
2. How are the total particle number N and the internal energy U (T ) related to

the density of states ρ0(E)?
3. Verify, using the Sommerfeld series from Ex. 2.1.2, that the following rela-

tion holds for the chemical potential μ:

μ = εF

[

1 − π2

12

(
kBT

εF

)2
]

.

4. Compute to a precision of (kB T/εF)4 the internal energy U (T ) and the specific
heat cV of the itinerant metal electrons.
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5. Calculate and discuss the entropy

S = ∂

∂T
(kBT lnΞ ) .

Test the Third Law! � is the grand canonical partition function.

Exercise 2.1.6
1. Transform the operator for the electron density

ρ̂ =
N∑

i=1

δ (r − r̂ i)

to the second quantisation with Wannier states as the single-particle basis.
2. Derive, using the result of 1, the relation between the electron number and the

electron density operator.
3. What form does the electron density operator from part 1 take in the special

case of the jellium model?

Exercise 2.1.7 Represent the operator for the electron density

ρ̂ =
N∑

i=1

δ (r − r̂ i)

in the formalism of second quantisation using field operators.

Exercise 2.1.8 Transform the Hamiltonian of the jellium model into second quanti-
sation using Wannier states as a single-particle basis.

Exercise 2.1.9 Making use of the electron density operator

ρ̂ =
N∑

i=1

δ (r − r̂ i) ,

one can calculate the so-called density correlation

G(r, t) = 1

N

∫
d3r ′ 〈ρ

(
r ′ − r, 0

)
ρ
(
r ′, t

)〉
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as well as the dynamic structure factor

S(q, ω) =
∫

d3r

+∞∫

−∞
dt G(r, t)ei (q · r−ωt) .

The expression

S(q) =
+∞∫

−∞
dω S(q, ω)

is termed the static structure factor,
whilst the static pair distribution function g(r) is defined by

G(r, 0) = δ(r) + ng(r) (n = N/V ) .
1. Show that for the density correlation,

G(r, t) = 1

N V

∑

q

〈
ρqρ−q(t)

〉
e−iq · r

holds. What is the meaning of G(r, t)?
2. Verify the expression

ng(r) = 1

N

i �= j∑

i, j

〈
δ
(
r + r i (0) − r j (0)

)〉
.

Consider an appropriate physical interpretation here, also.
3. Prove the following relations for the structure factor:

S(q, ω) = 1

N

+∞∫

−∞
dt e−iωt

〈
ρqρ−q(t)

〉
,

S(q) = 2π

N

〈
ρqρ−q

〉
.

4. Show that at T = 0, the following holds:

S(q, ω) = 2π

N

∑

n

∣∣|En| ρ+
q 〈E0|

∣∣2 δ
[
ω − 1

h̄
(En − E0)

]
.

|En〉 are the eigenstates of the Hamiltonian, and |E0〉 is its ground state.
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Exercise 2.1.10
1. Use the general results from Ex. 2.1.9 to determine the static structure factor

S(q) with the exact eigenstates of the Sommerfeld model. Sketch its q depen-
dence.

2. Compute also the static pair distribution function g(r). Sketch and discuss its
r dependence.

Exercise 2.1.11 Compute in the tight-binding approximation the Bloch energies ε(k)
for the body-centered cubic and for the face-centered cubic lattice structures.

Exercise 2.1.12 Show that the tight-binding approach for the electronic wavefunc-
tions ϕnk(r) obeys the Bloch theorem.

2.2
Lattice Vibrations

In Sect. 2.1, the lattice ions were assumed to be motionless and only the excitations of the
electronic system were investigated. Following a programme as in (2.6) we now want to
discuss the subsystem of the ions in more detail; i.e. the Hamiltonian of (2.3) will now be
at the centre of attention.

If energy is transferred to a single lattice ion, e.g. by a particle collision, it will be
rapidly distributed over the whole lattice as a result of the strong ion-ion interactions.
The local excitation will become a collective excitation, in which finally all the lattice
sites participate. It is therefore expedient to use collective coordinates, which are still to
be defined, in the mathematical description instead of ion coordinates. In this represen-
tation, the lattice vibrations can then be quantised. The corresponding quanta are called
phonons.

2.2.1
The Harmonic Approximation

The restoring forces required for lattice vibrations are the bonding forces, which can have
rather diverse physical origins. Qualitatively, the pair potential Vi(|Rα − Rβ |) however
always has the same form. The potential minimum defines the equilibrium distance R(0)

αβ .
The so-called harmonic approximation consists in the end in treating the potential curve
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approximately as a parabola, which seems reasonable for small excursions from the equi-
librium distance. We shall next discuss this point more quantitatively.

Our starting point will be a Bravais lattice with a basis containing p atoms, which we
describe as in (2.9) by

Rm
s = Rm + Rs (2.118)

with s = 1, 2, . . . , p and m ≡ (m1,m2,m3); m i ∈ Z,

Rm =
3∑

i=1

m iai . (2.119)

Let
xm

s (t) be the momentary position of the (m, s)-th atom, and
um

s (t) be the displacement of the (m, s)-th atom from equilibrium.

As a result, we find:

x m
s (t) = Rm

s + um
s (t) . (2.120)

The kinetic energy of the lattice ions is then given by:

Hi,kin = 1

2

∑

m
s, i

Ms

(
du m

s, i

dt

)2

, i = x, y, z . (2.121)

For the potential energy, we write:

Hii = V
({

x m
s

}) = V
({

Rm
s + um

s

})
. (2.122)

Here, the quantity

V0 = V
({

Rm
s

})
(2.123)

×

harmonic
approximation

Vi

(0)
Rαβ

RβRα −
Fig. 2.4 Illustration of the
harmonic approximation for
the pair potential in a solid
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represents the so-called binding energy. We expand V around the equilibrium position:

V
({

x m
s

}) = V0 +
∑

m
s, i

ϕm, s, i u m
s, i+

+ 1

2

∑

m
s, i

∑

n
t, j

ϕ
n, t, j
m, s, i u m

s, i u n
t, j + O

(
u3

)
.

(2.124)

The harmonic approximation now consists of neglecting the remainder O (u3). The dis-
placements u are as a rule less than 5% of the lattice spacing, so that the harmonic approx-
imation is quite appropriate. Higher-order, so-called anharmonic terms, are therefore ini-
tially not of interest.

For the partial derivatives ϕ in (2.124), we find:

ϕm, s, i ≡ ∂V

∂x m
s, i

∣∣∣∣∣
0

= 0 . (2.125)

This is the definition of the equilibrium position. The second derivatives form a

matrix of the atomic force constants

ϕ
n, t, j
m, s, i ≡ ∂2V

∂x n
t, j∂x m

s, i

∣∣∣∣∣
0

. (2.126)

For a better understanding of this important matrix, the following statement is useful:

−ϕn,t, j
m, s,i u

n
t, j is the force in the i direction, which acts on the (m,s)-th

atom, when the (n, t)-th atom is displaced in the j direction
by un

t, j , and all the other atoms remain fixed.

The harmonic approximation thus corresponds to a linear force law, as in a harmonic oscil-
lator:

Msü m
s, i = − ∂V

∂u m
s, i

= −
∑

n
t, j

ϕ
n, t, j
m, s, i u n

t, j . (2.127)

The force-constant matrix has a few obvious symmetries. It follows directly from its defi-
nition that:

ϕ
n, t, j
m, s, i ≡ ϕ

m, s, i
n, t, j . (2.128)
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On translating the whole solid body by�x = (�x1,�x2,�x3), the forces naturally remain
unchanged. It therefore follows from

−
∑

j

�x j

∑

n, t

ϕ
n, t, j
m, s, i = 0

that the relation

∑

n, t

ϕ
n, t, j
m, s, i = 0 (2.129)

holds. Finally, the translational symmetry yields:

ϕ
n, t, j
m, s, i = ϕ

t, j
s, i (n − m) . (2.130)

To solve (2.127), we first take a trial solution of the form:

u m
s, i = û m

s, i√
Ms

e−iωt . (2.131)

This gives the eigenvalue equation

ω2û m
s, i =

∑

n
t, j

D n, t, j
m, s, i û n

t, j (2.132)

for the real and symmetric matrix

D = ϕ√
Ms Mt

. (2.133)

It has 3pN real eigenvalues (ωm
s,i )

2. The eigenvalues ωm
s,i are thus likewise real or purely

imaginary. Only the real eigenvalues represent physical solutions. Making use of the trans-
lational symmetry (2.130), the dimensionality of the eigenvalue problem is reduced from
3pN to 3p:

ω2cs, i =
∑

t, j

K s, t
i, j ct, j . (2.134)

Here, we have used the following definitions:

u m
s, i = cs, i√

Ms
exp [i (q · Rm − ωt)] , (2.135)

K s, t
i, j (q) =

∑

p

ϕ
p, t, j

0, s, i√
Ms Mt

exp (iq · R p) . (2.136)
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Equation (2.134) is an eigenvalue equation for the matrix K with 3p eigenvalues:

ω = ωr (q), r = 1, 2, . . . , 3p . (2.137)

Crystals are anisotropic. The dispersion branches ωr (q) therefore have to be determined
for each direction q/|q| as functions of q = |q|. Details can be found for the standard
example of a diatomic, linear chain in the textbook literature of solid-state physics. One
finds there (Ex. 2.2.1):

3 acoustic branches ⇐⇒ ω(q = 0) = 0,

3(p − 1) optical branches ⇐⇒ ω(q = 0) �= 0 .

Owing to the periodic boundary conditions, the wavenumbers q are discrete. If G is an
arbitrary vector in the reciprocal lattice, then because of exp(iG · Rm) = 1, we have:

ωr (q + G) = ωr (q) . (2.138)

This means that one needs only consider wavenumbers q within the first Brillouin zone.
Time-reversal invariance of the equations of motion finally leads to:

ωr (q) = ωr (−q) . (2.139)

For each of the 3p ωr values, Eq. (2.134) has a solution

cs, i = ε
(r )
s, i (q) , (2.140)

which can be chosen so that the orthonormality relation

∑

s, i

ε
(r )∗
s, i (q) ε(r ′)

s, i (q) = δr, r ′ (2.141)

is fulfilled. The general solution of the equation of motion (2.127) is thus finally found
to be:

u m
s, i (t) = 1√

N Ms

3p∑

r=1

1. BZ∑

q

Qr (q, t) ε(r )
s, i (q) eiq · R m

. (2.142)

Here, we have included the time factor exp(−iωr (q)t) within the coefficients Qr (q, t). With

1

N

∑

m

exp
(
i
(
q − q ′) · Rm) = δq, q ′ ,
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we find the normal coordinates Qr (q, t)

Qr (q, t) = 1√
N

∑

m
s, i

√
Ms u m

s, i (t) ε(r )∗
s, i (q) e−iq · R m

, (2.143)

which obey the equation of motion of the harmonic oscillator

Q̈r (q, t) + ω2
r (q)Qr (q, t) = 0 . (2.144)

2.2.2
The Phonon Gas

The harmonic approximation of the previous sections gives the following expression for
the Lagrange function L = T − V of the ion system:

L = 1

2

∑

m
s, i

Ms
(
u̇ m

s, i

)2 − 1

2

∑

m, s, i
n, t, j

ϕ
n, t, j
m, s, i u

m
s, i u

n
t, j . (2.145)

We wish to represent L in normal coordinates. We rearrange, making use of:

1

N

∑

m

exp
[
i
(
q − q ′) · Rm] =

{
1, if q − q ′ = 0 or G,

0 otherwise,
(2.146)

[
Qr (q, t) ε(r )

s, i (q)
]∗

= Qr (−q, t)ε(r )
s, i (−q) . (2.147)

Equation (2.147) must hold, so that the displacements um
s,i are real. We have already used

Eq. (2.146) in various contexts.

1

2

∑

m
s, i

Ms
(
u̇ m

s, i

)2 = 1

2

∑

m
s, i

Ms
1

N Ms

∑

q, q ′

∑

r, r ′
Q̇r (q, t) Q̇r ′

(
q ′, t

)
ε

(r )
s, i (q)·

· ε(r ′)
s, i

(
q ′) ei (q+q ′) · R m =

= 1

2

∑

q

∑

r, r ′
Q̇r (q, t) Q̇r ′ (−q, t)

∑

s, i

ε
(r )
s, i (q) ε(r ′)

s, i (−q) =

= 1

2

∑

q, r

Q̇∗
r (q, t) Q̇r (q, t) .

(2.148)
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In an analogous manner, we find the potential energy:

1

2

∑

m, s, i
n, t, j

ϕ
n, t, j
m, s, i u

m
s, i u

n
t, j =

= 1

2N

∑

m, s, i
n, t, j

ϕ
n, t, j
m, s, i

1√
Ms Mt

∑

q, q ′

∑

r, r ′
Qr (q, t) Qr ′

(
q ′, t

) ·

· ε(r )
s, i (q) ε(r ′)

t, j

(
q ′) eiq · R m

eiq ′ · R n =

= 1

2N

∑

s, i
n, t, j

∑

qq ′

∑

r, r ′
Qr (q, t) Qr ′

(
q ′, t

)
ε

(r )
s, i (q) ε(r ′)

t, j

(
q ′) ·

·
∑

m

ϕ
t, j
s, i (n − m)√

Ms Mt
eiq · (R m−R n)ei (q+q ′) · R n =

= 1

2

∑

s, i
t, j

∑

q, q ′

∑

r, r ′
Qr (q, t) Qr ′

(
q ′, t

)
ε

(r )
s, i (q) ε(r ′)

t, j

(
q ′) ·

· K s,t
i, j (q)

1

N

∑

n

ei (q+q ′) · R n =

= 1

2

∑

s, i

∑

q

∑

r, r ′
Qr (q, t) Qr ′ (−q, t) ε(r )

s, i (q)
∑

t, j

K s, t
i j (q) ε(r ′)

t, j (−q) =

= 1

2

∑

q

∑

r, r ′
ω2

r ′ (−q) Qr (q, t) Qr ′ (−q, t)
∑

s, i

ε
(r )
s, i (q) ε(r ′)

s, i (−q) =

= 1

2

∑

q, r

ω2
r (q) Qr (q, t) Q∗

r (q, t) .

(2.149)

All together, we then have for the Lagrange function:

L = 1

2

∑

r, q

{
Q̇∗

r (q, t) Q̇r (q, t) − ω2
r (q) Q∗

r (q, t) Qr (q, t)
}
. (2.150)

The momenta which are canonically conjugate to the normal coordinates,

Πr (q, t) = ∂L

∂ Q̇r
= Q̇∗

r (q, t) , (2.151)

are required to formulate the classical Hamilton function:

H = 1

2

∑

r, q

{
Π∗

r (q, t)Πr (q, t) + ω2
r (q) Q∗

r (q, t) Qr (q, t)
}
. (2.152)
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This is a notable result, since by transforming to the normal coordinates, we have shown
that the Hamilton function decomposes into a sum of 3pN non-coupled, linear harmonic
oscillators.

The next step is the quantisation of the classical variables. The displacements um
s,i and

the momenta Msu̇m
s,i now become operators with the fundamental commutation relations:

[
u m

s, i , u
n
t, j

]
− = [

Msu̇ m
s, i ,Mt u̇

n
t, j

]
− = 0, (2.153)

[
Msu̇ m

s, i , u
n
t, j

]
− = h̄

i
δm, n δs, t δi, j . (2.154)

By substitution, we find from them the commutation relations for the normal coordinates
and their canonically conjugated momenta. With (2.143) and (2.153), we immediately
obtain:

[
Qr (q), Qr ′

(
q ′)]

− = [
�r (q),�r ′

(
q ′)]

− = 0 . (2.155)

For the third relation, we make use of (2.154):

[
Πr (q), Qr ′

(
q ′)]

− = 1

N

∑

m
s, i

∑

n
t, j

√
Ms Mt ε

(r )
s, i (q) eiq · R m ·

· ε(r ′)∗
t, j

(
q ′) e−iq ′ · R n 1

Ms

[
Msu̇ m

s, i , u
m
t, j

] =

= h̄

i

1

N

∑

m
s, i

ei (q − q ′) · R m
ε

(r )
s, i (q) ε(r ′)∗

s, i

(
q ′) =

= h̄

i

∑

s, i

ε
(r )
s, i (q) ε(r ′)∗

s, i (q) δq,q ′ .

With (2.141), it finally follows that:

[
Πr (q), Qr ′

(
q ′)]

− = h̄

i
δq, q ′ δr, r ′ . (2.156)

We now introduce new operators bqr and b+
qr :

Qr (q) =
√

h̄

2ωr (q)

{
bqr + b+

−qr

}
, (2.157)

Πr (q) = i

√
1

2
h̄ωr (q)

{
b+

qr − b−qr
}
. (2.158)

We can read off directly:

Q+
r (−q) = Qr (q); Π+

r (−q) = Πr (q) . (2.159)
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The inverses of (2.157) and (2.158) are given by:

bqr = (2h̄ωr (q))−1/2
{
ωr (q)Qr (q) + iΠ +

r (q)
}
, (2.160)

b+
qr = (2h̄ωr (q))−1/2

{
ωr (q)Q+

r (q) − iΠr (q)
}
. (2.161)

We compute the commutation relations:

[
bqr , bq ′r ′

]
− =

= (
4h̄2ωr (q)ωr ′

(
q ′))−1/2 ·

·
{

iωr (q)
[

Qr (q),Π+
r ′
(
q ′)

]

−
+ iωr ′

(
q ′)

[
Π+

r (q), Qr ′
(
q ′)

]

−

}
=

= (
4h̄2ωr (q)ωr ′

(
q ′))−1/2 ·

·
{

iωr (q)

(
−h̄

i
δrr ′ δq,−q ′

)
+ iωr ′

(
q ′)

(
h̄

i
δrr ′ δ−q,q ′

)}

=

= 0,
[
bqr , b

+
q ′r ′

]

−
=

= (
4h̄2ωr (q)ωr ′

(
q ′))−1/2 ·

·
{
−iωr (q)

[
Qr (q),Πr ′

(
q ′)

]

−
+ iωr ′

(
q ′)

[
Π+

r (q), Q+
r ′
(
q ′)

]

−

}
=

= (
4h̄2ωr (q)ωr ′

(
q ′))−1/2 ·

·
{
−iωr (q)

(
− h̄

i
δr, r ′ δqq ′

)
+ iωr ′

(
q ′)

(
h̄

i
δr, r ′ δ−q,−q ′

)}
=

= δrr ′ δqq ′ .

bqr and b+
qr are thus Bosonic operators:

[
bqr , bq ′r ′

]
− = [

b+
qr , bq ′r ′

]
− = 0 , (2.162)

[
bqr , b

+
q ′r ′

]

−
= δqq ′ δrr ′ . (2.163)

We are now in a position to quantise the Hamilton function:

H =
∑

q, r

1

2

{
Π+

r (q)Πr (q) + ω2
r (q) Q+

r (q) Qr (q)

}
=
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= 1

4

∑

qr

h̄ωr (q)

{(
bqr − b+

−qr

) (
b+

qr − b−qr
) + (

b+
qr + b−qr

) (
bqr + b+

−qr

)} =

= 1

4

∑

qr

h̄ωr (q)

{
bqr b+

qr + b+
−qr b−qr + b+

qr bqr + b−qr b+
−qr

}
=

= 1

4

∑

qr

h̄ωr (q)

{
2b+

qr bqr+2b+
−qr b−qr+2

}
.

We can also make use of (2.139) and then obtain within the harmonic approximation the
Hamiltonian for the quantised vibrations of the ion lattice:

H =
∑

qr

h̄ωr (q)

{
b+

qr bqr + 1

2

}
. (2.164)

We are dealing here with a system of 3pN non-coupled harmonic oscillators.
In Eqs. (2.157) and (2.158), we suppressed the time dependence of the normal coordi-

nates Qr and their canonical momenta. As set out in (2.142), it is given simply by:

Qr (qt) = Qr (q) e−iωr (q)t . (2.165)

This implies according to (2.157) that:

bqr (t) = bqr e−iωr (q)t . (2.166)

We wish to show that this result agrees with

bqr (t) = exp

(
i

h̄
Ht

)
bqr exp

(
− i

h̄
Ht

)
. (2.167)

To this end, we first prove the assertion

bqr H n = {h̄ωr (q) + H}n bqr , (2.168)

using the method of complete induction:
n = 1:

[
bqr , H

]
− =

∑

q ′, r ′
h̄ωr ′

(
q ′)

[
bqr , b

+
q ′r ′ bq ′r ′

]

−
= h̄ωr (q) bqr

⇒ bqr H = (h̄ωr (q) + H ) bqr .

n ⇒ n + 1:

bqr H n+1 = (
bqr H n

)
H = (h̄ωr (q) + H )n bqr H =

= (h̄ωr (q) + H )n+1 bqr .
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This proves the assertion in (2.168). It then follows that:

bqr exp

(−i

h̄
Ht

)
=

∞∑

n=0

(−i/h̄)n

n!
tn bqr H n =

= exp

[
− i

h̄
(h̄ωr (q) + H ) t

]
bqr .

After insertion into (2.167), we find the result (2.166). The two relations are therefore
equivalent.

The essential result of this section is (2.164). This makes it clear that the energy of
the lattice vibrations is quantised. The elementary quantum h̄ωr (q) is interpreted as the
energy of the quasi-particle phonon. In detail, one makes the following associations:

b+
qr : Creation operator for a (q, r ) phonon,

bqr : Annihilation operator for a (q, r ) phonon,

h̄ωr (q): Energy of the (q, r ) phonon.

Phonons are Bosons! Each vibrational state can therefore be occupied by arbitrarily many
phonons.

The harmonic approximation which underlies this section models the ion lattice as a
non-interacting phonon gas. The terms neglected in the series expansion (2.124) for the
potential V , which are of third or higher order in the displacements um

s,i (anharmonicity
of the lattice), can be interpreted as a coupling, i.e. an interaction between the phonons.
They are important for the description of effects such as thermal expansion, the approach
to thermal equilibrium, heat conductivity, the high-temperature behaviour of cp, cV , etc.

2.2.3
Exercises

Exercise 2.2.1 Consider a linear chain composed of two different types of atoms
(masses m1, m2) alternating along the chain:

n

a

z

f

m1 m2

n + 1n – 1n – 2

r0

Fig. 2.5 Model of the linear diatomic chain

The interaction between the atoms can be taken to a good approximation to be lim-
ited to nearest neighbours. Within the harmonic approximation (linear force law),
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the coupling between neighbouring atoms can be expressed in terms of a force con-
stant f .
1. Describe the chain as a linear Bravais lattice with a diatomic basis. Determine

the primitive translations and the vectors of the (reciprocal) lattice as well as
the first Brillouin zone.

2. Formulate the equation of motion for longitudinal lattice vibrations.
3. Justify and make use of the trial solution

un
α = cα√

mα

exp [i (q Rn − ωt)]

for the displacement of the (n, α)-th atom from its equilibrium position.
4. Sketch the dispersion branches for a qualitative discussion. Investigate in par-

ticular the special cases q = 0, +π/a,−π/a, 0 < q � π/a.

Exercise 2.2.2 Compute the density of states D(ω) of the linear chain:

D(ω)dω = The number of eigenfrequencies in the interval (ω;ω + dω).

Use appropriate periodic boundary conditions. How does D(ω) depend on the group
velocity vg = dω/dqz? Give a qualitative sketch of D(ω)!

Exercise 2.2.3 Compute the density of states D(ω) for the lattice vibrations of a
three-dimensional crystal. The crystal has the primitive translations ai , i = 1, 2, 3,
which are not necessarily orthogonal.
1. Introduce periodic boundary conditions on a parallelepiped with the edges

Ni ai , i = 1, 2, 3. Express the allowed wavenumbers in terms of the primitive
translations of the reciprocal lattice.

2. Calculate the grid volume in q space, which contains one and only one
wavevector.

3. Express the density of states for one dispersion branch ωr (q) in terms of a
volume integral in q space.

4. Make use of the group velocity to find an alternative representation of the
density of states:

v(r )
g = ∣∣�qωr (q)

∣∣ .

5. What is the expression for the overall density of states?
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Exercise 2.2.4 The so-called Debye model for the lattice vibrations of a pure Bravais
lattice (p = 1, monatomic basis) makes use of the following two assumptions:
1. A linear, isotropic approximation for the acoustic branches:

ωr = v̄r q.

2. Replacement of the Brillouin zone by a sphere of the same volume.

Due to 2., there must be a limiting frequency ωD
r (the Debye frequency). Calculate

it! Derive the density of states DD(ω) corresponding to this model.

Exercise 2.2.5
1. Calculate in the harmonic approximation the internal energy U (T ) =

〈H〉 (〈· · · 〉: thermal average) of the lattice vibrations of a three-dimensional
crystal. Discuss the limiting cases of high and low temperatures (Hint:
〈b+

qr bqr 〉 ⇒ Bose-Einstein distribution).
2. Use the Debye model (Ex. 2.2.4) to compute the specific heat at low tempera-

tures.

2.3
The Electron-Phonon Interaction

Having discussed in Sect. 2.1 the crystal electrons and in Sect. 2.2 the lattice ions, essen-
tially with no mutual coupling, or at most coupled in a very simple manner via He+ (2.50),
we now examine the interaction between these two subsystems in more detail. Within our
general model of the solid state (2.1), we will now consider the operator Hei.

2.3.1
The Hamiltonian

Our starting point is the operator (2.5):

Hei =
Ne∑

j=1

Ni∑

α=1

Vei
(
r j − xα

) = H (0)
ei + He−p . (2.169)
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The interaction H (0)
ei of the electrons with the rigid ion lattice was already included in

our model H0 for the crystal electrons (see (2.7)). He−p is the electron-phonon interaction
per se.

Following the considerations of the previous section, we know that every lattice vibra-
tion is characterised by the states defined by the wavenumber q and the branch r of the
dispersion spectrum ωr (q). The electron-phonon interaction thus implies the

absorption and emission of (q, r) phonons.

The conceivable elementary processes can be shown graphically in a simple way (see
Fig. 2.6).

All the interactions can be composed out of these four elementary processes. They
should therefore be reflected in a corresponding model Hamiltonian.

We assume that in these interactions, the ion is displaced as a rigid body and is not
deformed, which is of course by no means to be taken for granted. Deformations of the ions
however represent higher-order effects. In the framework of the harmonic approximation
for the lattice vibrations, we expand the interaction energy Vei up to the first non-vanishing
term. It is in this case the linear term:

(a)

(b)

(c)

(d)

k

q

k

q

k

q

q

k

k + q

k + q

k – q

k – q

Fig. 2.6 Elementary
processes of the
electron-phonon interaction;
straight arrows stand for
electrons, wavy arrows for
phonons: (a) Phonon
emission by an electron; (b)
Phonon absorption by an
electron; (c) Phonon
emission from electron-hole
recombination; (d) Creation
of an electron-hole pair by
phonon annihilation
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Vei
(
r j − x m

s

) ≡ Vei
(
r j − Rm

s − um
s

) =

= Vei
(
r j − Rm

s

) − um
s · ∇Vei + O

(
u2

)
.

(2.170)

The first term leads to H (0)
ei and was already taken into account in the treatment of the

crystal electrons (see Sect. 2.1) e.g. in the Bloch energies ε(k). The second term contains
the actual electron-phonon interaction. We assume singly-charged ions, (Ne = Ni = N ),
and use expression (2.142) for the displacements um

s :

He−p = −
N∑

j=1

∑

m, s

3p∑

r=1

1. BZ∑

q

1√
N Ms

Qr (q) eiq · Rm ·

· ε(r )
s (q) · ∇Vei

(
r j − Rm

s

)
.

(2.171)

Qr (q) is already familiar from (2.157) in second quantisation. We still have to transform
the electronic part. In ∇Vei, the electronic variable r j appears. We choose the Fourier
representation for Vei:

Vei
(
r j − Rm

s

) =
∑

p

V (s)
ei ( p) ei p · (r j − R m) . (2.172)

Note that in this representation, p – as a wavenumber – is a variable and not an operator.
Operator properties apply only to r j .

∇Vei
(
r j − Rm

s

) = i
∑

p

V (s)
ei ( p) pei p ·(r j −R m) . (2.173)

For the second quantisation of this single-electron operator, we choose the Bloch
representation:

N∑

j=1

∇Vei
(
r j − Rm

s

) =
∑

k, k′
σ, σ ′

〈
kσ | ∇Vei | k′σ ′〉 a+

kσ ak′σ ′ . (2.174)

We compute the matrix element:

〈
kσ | ei p · r̂ | k′σ ′

〉
= δσσ ′

∫
d3r

〈
k | ei p · r̂ | r

〉 〈
r | k′〉 =

= δσσ ′

∫
d3r ei p · r 〈k | r〉 〈r | k′〉 =

= δσσ ′

∫
d3r ei p · rψ∗

k (r)ψk′ (r) .
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For the Bloch functions, we use (2.16):

〈
kσ | ei p · r̂ | k′σ ′

〉
= δσσ ′

∫
d3r ei ( p − k+k′) · r u∗

k(r) · uk′ (r) . (2.175)

The amplitude function uk(r) which reflects the periodicity of the lattice is not to be con-
fused with the displacements um

s . Inserting (2.175) into (2.174), we now find the following
intermediate result:

N∑

j=1

∇Vei
(
r j − Rm

s

) = i
∑

k, k′
p, σ

V (s)
ei ( p) pe−i p · R m

a+
kσ ak′σ ·

·
∫

d3r ei ( p−k+k′) · r u∗
k (r)uk′ (r) .

(2.176)

The product of the displacements has the periodicity of the lattice, owing to (2.17). The
integral can therefore be nonzero only for k = k′ + p. Inserting into (2.171) then yields
the following result (making use of

1

N

∑

m

ei (q − p) · R m =
∑

K

δ p, q+K , (2.177)

where K is a vector in the reciprocal lattice):

He−p = −
∑

s, r

∑

q, k′, K , σ

i

√
N

Ms
Qr (q)V (s)

ei (q + K )·

· (ε(r )
s (q) · (q + K )

)
a+

k′+q+Kσ a′
kσ ·

·
∫

d3r u∗
k′+q+K (r) uk′ (r) .

We now use (2.157) for the normal coordinates Qr (q, t), and define as an abbreviation the

Matrix element of the electron-phonon coupling

T (s, r )
k, q, K = −i

√
h̄N

2Ms ωr (q)
V (s)

ei (q + K )
[
ε(r )

s (q) · (q + K )
] ·

·
∫

d3r u∗
k+q+K (r) uk(r) .

(2.178)
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Then the Hamiltonian for the electron-phonon interaction is given by:

He−p =
∑

kσ

∑

q, K

∑

s, r

T (s, r )
k, q, K

(
bqr + b+

−qr

)
a+

k+q+Kσ akσ . (2.179)

Upon emission (creation) of a (−q, r ) phonon, or upon absorption (annihilation) of a (q, r )
phonon, the wavenumber k of the electron becomes k + q + K . One therefore defines the

h̄(q + K ) : quasi-(crystal-)momentum of the phonons,

where q originates in the first Brillouin zone, whilst K can be an arbitrary reciprocal-lattice
vector. In (2.179), K is fixed by the requirement

k + q + K ∈ the first Brillouin zone.

We distinguish between:

K = 0 : normal processes, and

K �= 0 : umklapp processes.

The complicated matrix element (2.178) can be greatly simplified if the following assump-
tions can be made:
1. A simple Bravais lattice: p = 1 ⇒ ∑

s is omitted,
2. Only normal processes: K = 0 ⇒ ∑

K is omitted,
3. The phonons are uniquely longitudinally or transversally polarised:

Under these assumptions, only the longitudinal acoustic phonons interact with the elec-
trons. With the matrix element

Tk,q = −i

√
h̄N

2Mω(q)
Vei(q) [ε(q) · q]

∫
d3r u∗

k+q(r)uk(r) , (2.180)

the electron-phonon interaction can be simplified to:

He−p =
∑

kqσ

Tkq
(
bq + b+

−q

)
a+

k+qσ akσ . (2.181)
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2.3.2
The Effective Electron-Electron Interaction

The elementary processes sketched in Fig. 2.6 may be combined into additional, more
complex types of coupling. In particular, phonon-induced electron-electron interactions
can be described. Figure 2.7 symbolises a process in which a (k, σ ) electron emits a
q phonon, which is then absorbed by a (k′, σ ′) electron. The spin of the electron is of
course not involved in this process. The first electron deforms the lattice in its immediate
neighbourhood, i.e. as a negatively-charged particle, it displaces the positively-charged ions
slightly. Deformation means abstractly always absorption or emission of phonons. A sec-
ond electron “sees” this lattice deformation and reacts to it. The result is thus an effective
electron-electron interaction, which naturally has nothing to do with the usual Coulomb
interaction and can therefore be either attractive or repulsive. In the case of an attractive
interaction, it can lead to the formation of electron pairs (Cooper pairs) with an accom-
panying decrease in the ground-state energy. This process forms the basis for conven-
tional superconductivity. We consider the electron-phonon interaction in the form (2.181)
and neglect electron-electron as well as phonon-phonon interactions. The matrix element
Tkq (2.180) can be computed for simplicity with plane waves, which also eliminates the

k-dependence
(

uk(r) ⇒ 1/
√

V
)

:

Tq = −i

√
h̄N

2Mω(q)
Vei(q) [ε(q) · q] . (2.182)

One can see from (2.172) that

V ∗
ei (q) = Vei(−q)

must hold. Due to (2.147), we also can assume

[ε(q) · q]∗ = ε(−q) · q ,

q

k

k ′ + q

k – q

k ′

Fig. 2.7 Elementary process
of the phonon-induced
effective electron-electron
interaction
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so that

T ∗
q = T−q (2.183)

follows. We now investigate whether the following model Hamiltonian contains terms rep-
resenting an effective electron-electron interaction, as presumed:

H =
∑

kσ

ε(k) a+
kσ akσ +

∑

q

h̄ω(q) b+
q bq +

∑

kqσ

Tq
(
bq + b+

−q

)
a+

k+qσ akσ . (2.184)

We carry out an appropriate canonical transformation and try to eliminate linear terms
in He−p.

H̃ = e−S HeS =
(

1 − S + 1

2
S2 + · · ·

)
H

(
1 + S + 1

2
S2 + · · ·

)
=

= H + [H, S]− + 1

2
[[H, S]−, S]− + · · · ,

H̃ = e−S HeS = H0 + He−p + [H0, S]− + [
He−p, S

]
− + 1

2

[
[H0, S]− , S

]
− + · · ·

(2.185)
We take He−p to be a small perturbation. S should be of the same order of magnitude. We
therefore neglect all the terms in the expansion (2.185) which are of higher than quadratic
order in S or He−p. H0 combines the first two terms in (2.184).

For S, we take the ansatz

S =
∑

kqσ

Tq
(
xbq + yb+

−q

)
a+

k+qσ akσ (2.186)

and fix the parameters x and y in such a way that

He−p + [H0, S]−
!= 0 (2.187)

holds. If we can do this correctly, then the effective operator H̃ is given by:

H̃ ≈ H0 + 1

2

[
He−p, S

]
− . (2.188)

We first compute the commutator:

[H0, S]− = [He, S]− + [
Hp, S

]
− .
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Here,

[He, S]− =
=

∑

p, σ ′

∑

kqσ

ε( p)Tq

[
a+

pσ ′ a pσ ′ ,
(
xbq + yb+

−q

)
a+

k+qσ akσ

]

−
=

=
∑

p, k, q
σ, σ ′

ε( p)Tq
(
xbq + yb+

−q

) [
a+

pσ ′ a pσ ′ , a+
k+qσ akσ

]

−
=

=
∑

ε( p)Tq
(
xbq + yb+

−q

)
δσσ ′

(
δ p, k+q a+

pσ ′ akσ − δk p a+
k+qσ a pσ ′

)
=

=
∑

kqσ

Tq (ε(k + q) − ε(k)) a+
k+qσ akσ

(
xbq + yb+

−q

)
.

We have repeatedly made use of the fact that the creation and annihilation operators for
electrons and phonons are of course mutually commuting.

[
Hp, S

]
− =

∑

p

∑

kqσ

h̄ω( p)Tq

[
b+

p b p,
(
xbq + yb+

−q

)]

−
a+

k+qσ akσ =

=
∑

p

∑

kqσ

h̄ω( p)Tq
(−xδq p b p + yδ−q p b+

p

)
a+

k+qσ akσ =

=
∑

kqσ

Tq h̄ω(q)
(−xbq + yb+

−q

)
a+

k+qσ akσ .

All together, we obtain:

[H0, S]− =
∑

kqσ

Tq

{
x (ε(k + q) − ε(k) − h̄ω(q)) bq+

+ y (ε(k + q) − ε(k) + h̄ω(q)) b+
−q

}
a+

k+qσ akσ .

(2.189)

Equation (2.187) can thus be obtained using the following parameters x and y:

x = {ε(k) − ε(k + q) + h̄ω(q)}−1 , (2.190)

y = {ε(k) − ε(k + q) − h̄ω(q)}−1 . (2.191)

In the last step, we have inserted the expression for S thus obtained into (2.188). The
essential task is the computation of the following commutator:

[(
bq ′ + b+

−q ′

)
a+

k′+q ′σ ′ ak′σ ′,
(
xbq + yb+

−q

)
a+

k+qσ akσ

]

−
=

=
(

bq ′ + b+
−q ′

) (
xbq + yb+

−q

) [
a+

k′+q ′σ ′ ak′σ ′ , a+
k+qσ akσ

]

−
+

+
[(

bq ′ + b+
−q ′

)
,
(
xbq + yb+

−q

)]

−
a+

k′+q ′σ ′ ak′σ ′ a+
k+qσ akσ .



84 2 Many-Body Model Systems

Only the last term leads to an effective electron-electron interaction. We thus concentrate
exclusively on this term:

[(
bq ′ + b+

−q ′

)
,
(
xbq + yb+

−q

)]

−
= x

[
b+

−q ′ , bq

]

−
+ y

[
bq ′ , b+

−q

]
− =

= −xδq ′,−q + yδq ′,−q .

(2.192)

This yields the following contribution to H̃ :

H̃eff = 1

2

∑

kqσ
k′q ′σ ′

Tq ′ Tq (y − x) δq ′,−q a+
k′+q ′σ ′ ak′σ ′ a+

k+qσ akσ =

= 1

2

∑

kqσ
k′σ ′

T−q Tq (y − x)
(

a+
k+qσ a+

k′−qσ ′ ak′σ ′ akσ + δk′, k+q n̂kσ

)
.

The final term is uninteresting in this context. However, we can see that the electron-phonon
interaction brings about a term of the following form:

H̃ee =
∑

k pqσ,σ ′

∣∣Tq

∣∣2 h̄ω(q)

(ε(k + q) − ε(k))2 − (h̄ω(q))2
a+

k+qσ a+
p − qσ ′ a pσ ′ akσ . (2.193)

This interaction is

repulsive, when (ε(k + q) − ε(k))2 > (h̄ω(q))2 ,

attractive, when (ε(k + q) − ε(k))2 < (h̄ω(q))2 .

The latter effect explains the stability of Cooper pairs, and thus forms the basis for our
understanding of superconductivity.

2.3.3
Exercises

Exercise 2.3.1 The initial idea of the BCS theory of superconductivity is the cor-
relation of conduction electrons through virtual phonon exchange into so-called
Cooper pairs, each consisting of two electrons with oppositely-directed wavevec-
tors and spins,

(k ↑,−k ↓) ,

which form a bound state. Define suitable creation and annihilation operators for
the Cooper pairs! Compute the associated fundamental commutation relations! Are
Cooper pairs Bosons?
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Exercise 2.3.2 The normal electron-phonon interaction generates an effective
electron-electron interaction induced by phonon exchange, which under certain cir-
cumstances can also be attractive (Sect. 2.3.2). Consider the following model:
a) N interaction-free electrons in states k ≤ kF , all states with k > kF unpopu-

lated ⇐⇒ a filled Fermi sphere |FS〉.
b) Two additional electrons with oppositely-directed wavevectors and spins

(Cooper pair, see Ex. 2.3.1) interact according to

Vk(q) =
{

−V , if |ε(k + q) − ε(k)| ≤ h̄ωD ,

0 , otherwise

(ωD: Debye frequency).

1. Formulate the model Hamiltonian.
2. Justify the ansatz

|ψ〉 =
∑

k, σ

ασ (k) a+
kσ a+

−k−σ |FS〉

for the Cooper-pair state and show that

ασ (k) = −α−σ (−k)

must hold.
3. Verify that due to the normalisation of |ψ〉 and |FS〉 the following relation

must hold:

k> kF∑

k, σ

|ασ (k)|2 = 1 .

Exercise 2.3.3 Consider again the Cooper model defined in Ex. 2.3.2 with the ansatz
|ψ〉 for the Cooper-pair state:
1. Show that for the expectation value of the kinetic energy in the state |ψ〉, the

following holds:

〈ψ | T | ψ〉 = 2
k> kF∑

k, σ

ε(k) |ασ (k)|2 + 2
k< kF∑

k

ε(k) .

2. Show that for the expectation value of the potential energy in the state |ψ〉, the
following holds:

〈ψ | V | ψ〉 = 2
k, |k+q|> kF∑

k, q, σ

Vk(q)α∗
σ (k + q)ασ (k) .
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Exercise 2.3.4 Consider still further the Cooper model defined in Ex. 2.3.2 with the
ansatz |ψ〉 for the Cooper-pair state:
1. Determine the optimum expansion coefficients ασ (k) by minimising the energy

calculated in Ex. 2.3.3, E = 〈ψ |H |ψ〉. Note the side condition from Ex. 2.3.2,
3, which follows from the normalisation of |ψ〉.

2. Show that the energy of the Cooper pair is less than the energy of two
non-interacting electrons at the Fermi edge. What conclusions can you draw
from this?
Hint: summations over k can often be advantageously converted into simpler
integrals over energy by making use of the free Bloch density of states:

ρ0(ε) = 1

N

∑

k

δ (ε − ε(k))!

Exercise 2.3.5 On the BCS theory of superconductivity (Phys. Rev. 108, 1175
(1957)): The BCS model suppresses from the beginning all those interactions which
give the same contributions in the normal and the superconducting phase. It consid-
ers only the attractive part of the phonon-induced electron-electron interaction. As
test states for a variational calculation of the BCS ground-state energy (⇐⇒ dif-
ference between the ground-state energies in the normal and the superconducting
phases), products of Cooper-pair states are used, since according to Ex. 2.3.4, the
latter lead to an energy decrease:

|BCS〉 =
[∏

k

(
uk + vk b+

k

)] |0〉 , |0〉 : particle vacuum,

b+
k = a+

k↑ a+
−k↓: Cooper-pair creation operator (see Ex. 2.3.1). The coefficients uk

and vk can be taken to be real.
1. Show that due to the normalisation of the state |BCS〉,

u2
k + v2

k = 1

must hold.
2. Calculate the following expectation values:

〈
BCS | b+

k bk | BCS
〉
;

〈
BCS | b+

k bkb+
p b p | BCS

〉
;

〈
BCS | b+

k bk
(
1 − b+

p b p
) | BCS

〉
;

〈
BCS | b+

p bk | BCS
〉
.
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Exercise 2.3.6 On the BCS theory of superconductivity (Phys. Rev. 108, 1175
(1957)): The BCS model of superconductivity limits itself, as explained in Ex. 2.3.5,
to treating the attractive contribution to the phonon-induced electron-electron inter-
action (see Ex. 2.3.2). Using the variational expression |BCS〉 from Ex. 2.3.5, an
upper limit to the ground-state energy can be calculated.
1. Justify the model Hamiltonian:

HBCS =
∑

k, σ

t(k) a+
kσ akσ − V

k �=p∑

k, p

b+
p bk;

t(k) = ε(k) − μ .

2. Calculate:

E = 〈BCS | HBCS | BCS〉 .

3. Show that for the gap parameter

Δk = V
�= k∑

p

u pv p ,

the minimum condition for E = E({vk}) leads to the result:

Δk = V

2

�= k∑

p

Δ p
(
t2( p) +Δ2

p

)−1/2
.

4. Express v2
k, u2

k, E0 = (E({vk}))min in terms of �k and t(k).

Exercise 2.3.7 In order to derive the effective electron-electron interaction H̃ from
the actual electron-phonon interaction H , a canonical transformation (2.185)

H̃ = e−S HeS ,

is carried out. Why must S+ = −S be required? Is this requirement fulfilled by the
solutions (2.186), (2.190), (2.191)?



88 2 Many-Body Model Systems

2.4
SpinWaves

The concepts of many-body theory have a particularly rich field of application in the area
of magnetism. For this in fact rather old phenomenon, there is thus far no complete the-
ory. Model concepts are necessary, and they are adapted to particular manifestations of
magnetism. We develop the most important of these in this section.

2.4.1
Classification of Magnetic Solids

Using the magnetic susceptibility

χ =
(
∂M

∂H

)

T

(M : magnetisation) , (2.194)

the various magnetic phenomena can be divided roughly into three classes:

diamagnetism, paramagnetism, and “collective” magnetism.

In the case of

1) Diamagnetism
In diamagnetism, we are dealing basically with a purely inductive effect. The applied mag-
netic field H induces magnetic dipoles which are, according to Lenz’s rule, opposed to the
field which induces them. A negative susceptibility is thus typical of diamagnets:

χdia < 0; χdia(T, H ) ≈ const . (2.195)

Diamagnetism is naturally a property of all materials. One therefore refers to a diamagnet
only when there is no additional paramagnetism or collective magnetism present which
would overcompensate the relatively weak diamagnetism.

The decisive precondition for

2) Paramagnetism
In paramagnetism is the existence of permanent magnetic moments, which can be oriented
by the applied field H in competition with the thermal motion of the elementary magnets.
It is thus typified by:

χpara > 0; χpara(T, H )
i.g.= χpara(T ) . (2.196)

The permanent moments can be

2a) localised moments
which result from electron shells which are only partly filled. If these are sufficiently well
shielded from environmental influences by outer, filled shells, then the electrons of the
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unfilled shell will not contribute to an electric current in the solid, but rather will remain
localised in the region of their mother ion. Prominent examples are the 4 f electrons of
the rare earths. An incompletely filled electronic shell has as a rule a resultant magnetic
moment. Without an applied magnetic field, the moments are statistically distributed over
all directions, so that the solid as a whole has no net moment. In an applied field, the
moments become oriented, and their magnetic susceptibility follows the so-called Curie
law at temperatures which are not too low:

χpara(T ) ≈ C

T
(C = const) . (2.197)

Such a system is called a Langevin paramagnet.
The permanent magnetic moments of a paramagnet can however also be the

2b) itinerant moments
of quasi-free conduction electrons, of which each carries a moment of one Bohr magneton
(1μB). In this case, one refers to Pauli paramagnetism, whose susceptibility is to first
order temperature independent as a result of the Pauli principle.

Dia- and paramagnetism can be regarded as essentially understood. They are more or
less properties of individual atoms, and thus not typical many-body phenomena. Here, we
are interested only in

3) “Collective” Magnetism
“Collective” magnetism results from a characteristic interaction which is understandable
only in terms of quantum mechanics, the exchange interaction between permanent mag-
netic dipole moments. These permanent moments can again be

localised (Gd, EuO, Rb2 MnCl4)

or else they can be

itinerant (Fe, Co, Ni) .

The exchange interaction leads to a

critical temperature T∗ ,

below which the moments order spontaneously, i.e. without an applied magnetic field.
Above T ∗, they behave as in a normal paramagnet. The susceptibility for T < T ∗ is in
general a complicated function of the applied field and the temperature, which in addition
depends on the previous treatment (history) of the sample:

χ K M = χ K M (T, H, history) (T ≤ T ∗) . (2.198)

Collective magnetism can be divided into three major subclasses:
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3a) Ferromagnetism
In this case, the critical temperature is referred to as

T ∗ = TC : Curie temperature.

At T = 0, all the moments are oriented parallel to one another (ferromagnetic saturation).
This ordering decreases with increasing temperature. In the range 0 < T < TC, however,
a preferred axis persists, i.e. a spontaneous magnetisation of the sample is still present;
it then vanishes at TC. Above TC, the system is paramagnetic with a characteristic high-
temperature behaviour of its susceptibility, which is called the Curie-Weiss law:

χ(T ) = C

T − TC
(T � TC) . (2.199)

3b) Ferrimagnetism
The lattice in this case is composed of two ferromagnetic sublattices A and B with differing
spontaneous magnetisations:

M A �= MB : M A + MB = M �= 0 for T < TC. (2.200)

3c) Antiferromagnetism
This is a special case of ferrimagnetism. Below a critical temperature, which in this case is
termed

T ∗ = TN : the Néel temperature ,

the two sublattices order ferromagnetically with opposite but equal spontaneous magneti-
sations:

T < TN : |M A| = |MB| �= 0; M = M A + MB ≡ 0 . (2.201)

Above TN, the system is normally paramagnetic, with a linear high-temperature behaviour
of the inverse susceptibility, as in a ferromagnet:

χ(T ) = C

T −� (T � TN) . (2.202)

� is called the paramagnetic Curie temperature. As a rule, it is negative.

2.4.2
Model Concepts

Models are indispensable owing to the lack of a complete theory of magnetism; they
relate specifically to particular magnetic phenomena. Here, we refer exclusively to col-
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lective magnetism. The collective magnetism of insulators and of metals must be treated
separately.

1) Insulators
Magnetism is produced by localised magnetic moments which are due to incompletely
filled electronic shells (3d-, 4d-, 4 f - or 5 f -) in the atoms.

Examples:

Ferromagnets: CrBr3, K2CuF4, EuO, EuS, CdCr2Se4, Rb2CrCl4, . . .
Antiferromagnets: MnO, EuTe, NiO, RbMnF3, Rb2MnCl4, . . .
Ferrimagnets: MO · Fe2O3 (M = divalent metal ion such as Fe, Ni, Cd,

Mg, Mn, . . .)

These substances are described quite realistically by the so-called

Heisenberg model

H = −
∑

i, j

Ji j Si · S j . (2.203)

Each localised magnetic moment is associated with an angular momentum J i (magneto-
mechanical parallelism):

mi = μB (Li + 2Si) ≡ μBgJ · J i . (2.204)

Li is here the orbital contribution, Si the spin contribution, and gJ is the Landé g-factor.
Due to

Si = (gJ − 1) J i , (2.205)

the exchange interaction between the moments can be formulated as an interaction between
their associated spins. The index i refers to the lattice site. The coupling constants Ji j are
called exchange integrals.

The Heisenberg Hamiltonian (2.203) is to be understood as an effective operator. The
spin-spin interaction (Si · S j ), applied to corresponding spin states, simulates the contri-
bution of the exchange matrix elements of the Coulomb interaction (cf. (2.90)), which is
presumed to be at the origin of the spontaneous magnetisation.

Si Sj

Jij

Fig. 2.8 Model of a
ferromagnet with localised
magnetic moments. Ji j are
the exchange integrals
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Although the Heisenberg model works well for the magnetic insulators, it is practically
useless for the description of magnetic metals.

2) Metals
It is expedient to subdivide this topic into those magnetic metals in which the magnetism
and the electrical conductivity are due to the same group of electrons, and those in which
these properties can be ascribed to different groups of electrons. In the former case, one
refers to

2a) Band magnetism
Prominent representatives of this class are Fe, Co and Ni. A quantum-mechanical exchange
interaction causes a spin-dependent band shift below T < TC. Since the two spin subbands
are each filled with electrons up to the common Fermi energy EF, it follows that

N↑ > N↓ (T < TC) ,

and thus a spontaneous magnetic moment is observed. It is found that band magnetism
is possible especially with narrow energy bands, and it is therefore thought that the phe-
nomenon can be explained by the Hubbard model which was discussed in Sect. 2.1.

2b) “Localised” magnetism
The prototype of this class is the 4 f metal Gd. Its magnetism is carried by localised 4 f
moments, which can be described realistically by the Heisenberg model (2.203). The elec-
tric current in Gd is carried by quasi-free, mobile conduction electrons, which can be under-
stood with the aid of e.g. the jellium model (Sect. 2.1.2), or also with the Hubbard model
(Sect. 2.1.3). Interesting phenomena result from an interaction between the localised 4 f
moments and the itinerant conduction electrons. It can for example lead to an effective
coupling of the 4 f moments and thus can amplify the collective magnetism. It can how-
ever also contribute to the electrical resistance via scattering of the conduction electrons
from the local moments. An appropriate model is the so-called

E

↑

↓

EF

density of states:
)( ↓↑

electrons)(for −↓↑

Fig. 2.9 Exchange splitting
of the density of states of a
ferromagnet below its Curie
temperature. The states up to
the Fermi energy EF are all
occupied by electrons
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s-f (s-d) model

H = H (Hubbard, jellium) + H (Heisenberg) − g
∑

i

σ i · Si . (2.206)

σ is the spin operator for the conduction electrons at the site Ri, and g is a corresponding
coupling constant.

2.4.3
Magnons

There are interesting analogies between the lattice vibrations treated in Sect. 2.2 and the
elementary excitations in a ferromagnet. The oscillations of the lattice ions about their
equilibrium positions can be decomposed into normal modes with quantised amplitudes.
The unit of quantisation is called the phonon. The oscillations in a ferromagnet corre-
sponding to the normal modes are called

spin waves,

following Bloch, and their unit of quantisation is the

magnon.

We want to analyse these excitations within the framework of the Heisenberg model
(2.203) in more detail. With the usual conventions

Ji j = Jji ; Jii = 0; J0 =
∑

i

Ji j =
∑

j

Ji j (2.207)

and the well-known spin operators

S j =
(

S x
j , S y

j , S z
j

)
, (2.208)

S ±
j = S x

j ± i S y
j , (2.209)

S x
j = 1

2

(
S +

j + S −
j

)
; S y

j = 1

2i

(
S +

j − S −
j

)
, (2.210)

we can decompose the scalar product in the Heisenberg Hamiltonian into its components:

Si · S j = 1

2

(
S +

i S −
j + S −

i S +
j

)
+ S z

i S z
j

⇒ H = −
∑

i, j

Ji j

(
S +

i S −
j + S z

i S z
j

)
− 1

h̄
gJμB B0

∑

i

S z
i .

(2.211)
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Compared to (2.203), we have added to the Hamiltonian a Zeeman term, in order to take
account of the interaction of the local moments with the applied magnetic field B0 = μ0 H .

It is often expedient to make use of the spin operators in k space:

S α(k) =
∑

i

e−i k · Ri S αi , (2.212)

S αi = 1

N

∑

k

ei k · Ri S α(k) , (2.213)

with (α = x, y, z,+,−).
From the commutation relations in real space,

[
S x

i , S y
j

]

−
= ih̄ δi j S z

i and cyclic permutations , (2.214)

[
S z

i , S ±
j

]

−
= ±h̄ δi j S ±

i , (2.215)

[
S +

i , S −
j

]

−
= 2h̄ δi j S z

i , (2.216)

the commutation relations in k space follow immediately:

[
S +(k1), S −(k2)

]
− = 2h̄S z (k1 + k2) , (2.217)

[
S z(k1), S±(k2)

]
− = ±h̄S ± (k1 + k2) , (2.218)

(
S +(k)

)+ = S −(−k) . (2.219)

With the wavenumber-dependent exchange integrals,

J (k) = 1

N

∑

i, j

Ji j ei k · (Ri−R j ) , (2.220)

we can then rewrite the Hamiltonian (2.211) in terms of wavenumbers:

H = − 1

N

∑

k

J (k)
{

S +(k)S −(−k) + S z(k)S z(−k)
}
−

− 1

h̄
gJμB B0S z(0) .

(2.221)

The ground state |S〉 of a Heisenberg ferromagnet corresponds to an overall parallel ori-
entation of all the spins. We first compute its energy eigenvalue. The effect of the spin
operators on |S〉 is immediately clear:

S z
i |S〉 = h̄S |S〉 ⇒ S z(k) |S〉 = h̄N S |S〉 δk, 0 , (2.222)

S +
i |S〉 = 0 ⇒ S +(k) |S〉 = 0 . (2.223)
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It thus follows that:

− 1

N

∑

k

J (k)S +(k)S −(−k) |S〉 =

= − 1

N

∑

k

J (k)
[

S −(−k)S +(k) + 2h̄S z(0)
]
|S〉 =

= −2Nh̄2S Jii |S〉 = 0 ,

− 1

N

∑

k

J (k)S z(k)S z(−k) |S〉 =

= −h̄N S
1

N
J (0)S z(0) |S〉 = −N J0h̄2S 2 |S〉 .

This yields the ground state energy E0 of the Heisenberg ferromagnet:

H |S〉 = E0 |S〉 ,
E0 = −N J0h̄2S 2 − NgJμB B0S .

(2.224)

We now show that the state

S −(k) |S〉

is likewise an eigenstate of H . To do so, we calculate the following commutator:

[
H, S −(k)

]
−

= − 1

N

∑

p

J ( p)
{[

S +( p), S −(k)
]
− S −(− p) +

+ Sz( p)
[
S z(− p), S −(k)

]
− + [

S z( p), S −(k)
]
− S z(− p)

}
−

− 1

h̄
gJμB B0

[
S z(0), S −(k)

] =

= − 1

N

∑

p

J ( p)
{

2h̄S z(k + p)S −(− p) − h̄S z( p)S −(k − p) −

− h̄S −(k + p)S z(− p)
}

+ gJμB B0S −(k) =

= gJμB B0S −(k) − 1

N

∑

p

J ( p)
{
−2h̄2S −(k) +

+ 2h̄S −(− p)S z(k + p) + h̄2S −(k) − h̄S −(k − p)S z( p) −

− h̄S −(k + p)S z(− p)
}
.
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Due to

Jii = 1

N

∑

p

J ( p) = 0 (2.225)

we finally find:

[
H, S −(k)

]
− = gJμB B0S −(k) − h̄

N

∑

p

J ( p)
{

2S −(− p)S z(k + p) −

− S −(k − p)S z( p) − S −(k + p)S z(− p)
}
.

(2.226)

The application of this commutator to the ground state |S〉 yields:

[
H, S −(k)

]
− |S〉 = h̄ω(k)

(
S −(k) |S〉) , (2.227)

h̄ω(k) = gJμB B0 + 2Sh̄2 (J0 − J (k)) . (2.228)

Here, we have also made use of J (k) = J (−k). Our assertion that S−(k)|S〉 is an eigenstate
of H can now be readily demonstrated:

H
(
S −(k) |S〉) = S −(k)H |S〉 + [

H, S −(k)
]
− |S〉 =

= E(k)
(
S −(k) |S〉) , (2.229)

E(k) = E0 + h̄ω(k) . (2.230)

If we presume the ground state |S〉 to be normalised, then it follows that:

〈S| S +(−k)S −(k) |S〉 = 〈S| (2h̄S z(0) + S −(k)S +(−k)
) |S〉 = 2h̄2 N S.

We thus have the following important final result: The

normalised single-magnon state

|k〉 = 1

h̄
√

2SN
S −(k) |S〉 (2.231)

is an eigenstate belonging to the the energy

E(k) = E0 + h̄ω(k) .

This corresponds to the excitation energy

h̄ω(k) = gJμB B0 + 2Sh̄2 (J0 − J (k)) (2.232)
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which is ascribed to the quasi-particle magnon. The magnetic field term gJμB B0 contains
more information. One can see from it that the magnetic moment of the sample in the state
|k〉 has been modified relative to the ground state |S〉 only by a term gJμB. The magnon
thus has a spin of S = 1:

magnons are Bosons!

Another interesting result can be found from the expectation value of the local spin operator
Sz

i in the single-magnon state |k〉:
〈
k | S z

i | k
〉 =

= 1

2SNh̄2

〈
S | S +(−k)S z

i S −(k) | S
〉 =

= 1

2SN 2h̄2

∑

q

ei q · Ri
〈
S | S +(−k)S z(q)S −(k) | S

〉 =

= 1

2SN 2h̄2

∑

q

ei q · Ri 〈S| S +(−k)
(−h̄S −(k + q) + S −(k)S z(q)

) |S〉 =

= 1

2SN 2h̄2

∑

q

ei q · Ri
{−2h̄2

〈
S | S z(q) | S

〉 + h̄N Sδq, 0 2h̄
〈
S | S z(0) | S

〉}=

= 1

2SN 2h̄2

{−2h̄2 Nh̄S + 2h̄2 N SNh̄S
} =

= h̄S − h̄

N
.

We thus have the notable result

〈
k | S z

i | k
〉 = h̄

(
S − 1

N

)
∀i, k . (2.233)

The right-hand side is not dependent on i and k. That means that the spin deviation 1h̄
in the single-magnon state |k〉 is uniformly distributed over all the lattice sites Ri. As
compared to the completely ordered ground state |S〉, with

〈
S | S z

i | S
〉 = h̄S ∀i , (2.234)

we find a deviation of the local spin per lattice site of h̄/N . This leads immediately to the
concept of a spin wave, which implies just this collective excitation |k〉. Every existing
spin wave thus implies for the entire lattice a spin deviation of exactly one unit of angular
momentum. The spin wave is characterised by its wavevector k, which can be visualised in
a semiclassical vector model as follows: The local spin Si precesses about the z-axis with
an axial angle which has just the right value so that the projection of the spins of length
h̄S onto the z-axis has the value h̄(S − 1/N ). The precessing spins have a fixed, constant
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phase shift from lattice site to lattice site corresponding to k = 2π / λ. They thus clearly
define a wave.

2.4.4
The Spin-Wave Approximation

The Heisenberg model (2.211) is not exactly solvable for the general case. In order to arrive
at an approximate solution, it is often expedient to transform the somewhat unwieldy spin
operators to creation and annihilation operators in the second quantisation:

Holstein-Primakoff transformation:

S +
i = h̄

√
2S ϕ(ni) ai , (2.235)

S −
i = h̄

√
2S a+

i ϕ(ni) , (2.236)

S z
i = h̄ (S − ni) . (2.237)

Here, the following abbreviations were used:

ni = a+
i ai; ϕ (ni) =

√
1 − ni

2S
. (2.238)

By insertion, one can verify that the commutation relations for the spin operators (2.214),
(2.215), and (2.216) are fulfilled if and only if the creation and annihilation operators a+

i , ai

are Bosonic operators:

[
ai, a j

]
− =

[
a+

i , a+
j

]

−
= 0,

[
ai, a+

j

]

−
= δi j .

(2.239)

The corresponding Fourier transforms

aq = 1√
N

∑

i

e−i q · Ri ai; a+
q = 1√

N

∑

i

ei q · Ri a+
i (2.240)

can be interpreted as magnon annihilation or creation operators. The model Hamilto-
nian (2.211) then takes on the following form as a result of the transformation:

H = E0 + 2Sh̄2 J0

∑

i

ni − 2Sh̄2
∑

i, j

Ji jϕ (ni) ai a+
j ϕ(n j ) − h̄2

∑

i, j

Ji j ni n j . (2.241)

Here, E0 is the ground-state energy (2.224). A disadvantage of the Holstein-Primakoff
transformation is obvious: working explicitly with H required us to carry out an expansion
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of the square root in ϕ(ni):

ϕ(ni) = 1 − ni

4S
− n2

i

32S 2
− · · · . (2.242)

This means that H in principle consists of infinitely many terms. The transformation is thus
only reasonable when there is a physical justification for terminating the infinite series.
Since ni can be interpreted as the operator for the magnon number at the site Ri, but at
low temperatures only a few magnons are excited, in such a case one can limit ni to only
its lowest powers. The simplest approximation in this sense is the so-called spin-wave
approximation:

H SW = E0 + 2Sh̄2
∑

i, j

(
J0 δi j − Ji j

)
a+

i a j . (2.243)

After the transformation to wavenumbers, H SW is diagonal

H SW = E0 +
∑

k

h̄ω(k) a+
k ak (2.244)

with h̄ω(k) as in (2.232). In this low-temperature approximation, the ferromagnet is
thus described as a gas of non-interacting magnons. According to the rules of statistical
mechanics, the mean magnon number 〈nk〉 at T > 0 is then given by the Bose-Einstein
distribution function:

〈nk〉 = 1

exp (βh̄ω(k)) − 1
. (2.245)

Then we find for the magnetisation of the ferromagnet:

M(T, H ) = gJμB
N

V

(
S − 1

N

∑

k

〈nk〉
)
. (2.246)

At low temperatures, this result is experimentally confirmed to high precision.

2.4.5
Exercises

Exercise 2.4.1 Derive the corresponding relations, using the commutation relations
of the spin operators in real space, for the wavenumber-dependent spin operators
(i.e. in reciprocal space):

S α(k) =
∑

i

e−i k · Ri S αi .
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Exercise 2.4.2 Reformulate the Heisenberg-model Hamiltonian,

H = −
∑

i, j

Ji j

(
S +

i S −
j + S z

i S z
j

)
− gJ

μB

h̄
B0

∑

i

S z
i ,

making use of the k-space spin operators from Ex. 2.4.1.

Exercise 2.4.3 Carry out the Holstein-Primakoff transformation on the Heisenberg
model Hamiltonian from (Ex. 2.4.2).

Exercise 2.4.4 In the spin-wave approximation, the spontaneous magnetisation of a
Heisenberg ferromagnet at low temperatures is given by:

M0 − MS(T )

M0
= 1

N S

∑

q

1

exp[βh̄ω(q)] − 1
. (s. (2.246))

M0 = gJμBS N
V is the saturation magnetisation and

h̄ω(q) = 2Sh̄2 (J0 − J (q))

is the magnon energy. Prove Bloch’s T 3/2 law:

M0 − MS(T )

M0
∼ T 3/2 .

Hints:
a) Transform the summation over q into an integral.
b) Keep in mind that at low temperatures, it suffices to use the magnon energies

in the form which is valid for small q-values:

h̄ω(q) = D

2Sh̄2
q2,

and that it is allowed to extend the integration over q to the entire q-space
rather than limiting it to the first Brillouin zone.
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Exercise 2.4.5 Let the following be given:

H : Hamiltonian with H |n〉 = En |n〉; Wn = exp(−βEn)

Tr[exp(−βH )]
,

A, B,C : arbitrary operators.
1. Show that

(A, B) =
En �=Em∑

n,m

〈
n | A+ | m

〉 〈m | B | n〉 Wm − Wn

En − Em

represents a (semidefinite) scalar product.
2. Show that with B = [C+, H ]−, the following relations hold:

(A, B) =
〈[

C+, A+]
−
〉

; (B, B) =
〈[

C+, [H,C]−
]
−
〉
≥ 0 ,

(A, A) ≤ 1

2
β
〈[

A, A+]
+
〉
.

3. Prove the Bogoliubov inequality using 2.:

β

2

〈[
A, A+]

+
〉 〈[

[C, H ]−,C+]
−
〉
≥ |〈[C, A]−〉|2 .

Exercise 2.4.6
1. Show that for the scalar product defined in Ex. 2.4.5, (H, H ) = 0 holds when

H is the Hamiltonian of the system.
2. Let C be an operator which commutes with the Hamiltonian H . Show that for

C , the Bogoliubov relation from Ex. 2.4.5 can be taken as an equation.

Exercise 2.4.7 Discuss the isotropic Heisenberg model:

H = −
∑

i, j

Ji j Si · S j − bB0

∑

i

S z
i exp(−i K · Ri); b = gJμB

h̄
.

The wavevector K is a help in distinguishing different magnetic configurations.
Thus, K = 0 leads to ferromagnetism. We assume that

Q = 1

N

∑

i, j

∣∣Ri − R j

∣∣2 ∣∣Ji j

∣∣ < ∞ ,
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which is not a major limitation of generality. For the magnetisation, we then have:

M (T, B0) = b
1

N

∑

i

exp (i K · Ri)
〈
S z

i

〉
.

In the case of an antiferromagnet, (K = (1/2) Q, Q: the smallest reciprocal lattice
vector), M represents the sublattice magnetisation.
1. Choose

A = S −(−k − K ); C = S +(k)

and then prove that
a) 〈[C, A]−〉 = 2h̄N

b M(T, B0),
b)

∑

k
〈[A, A+]+〉 ≤ 2h̄2 N S(S + 1),

c) 〈[[C, H ]−,C+]−〉 ≤ 4Nh̄2(|B0 M | + h̄2k2 QS(S + 1)).

2. Prove the Mermin-Wagner theorem (Phys. Rev. Lett. 17, 1133 (1966)), using
the Bogoliubov inequality, (Ex. 2.4.5): In the d = 1- and d = 2-dimensional,
isotropic Heisenberg model, there can be no spontaneous magnetisation
for (T �= 0).

a) Show that the following holds in this connection:

S (S + 1) ≥ M2vdΩd

βh̄2b2(2π)d

k0∫

0

dk
kd−1

|B M| + h̄2k2 QS (S + 1)
.

Here, k0 is the radius of a sphere which lies completely within the Brillouin
zone, �d is the surface area of the d-dimensional unit sphere (�1 = 1, �2 =
2π, �3 = 4π), and vd = Vd / Nd is the specific volume of the d-dimensional
system in the thermodynamic limit.

b) Verify for the spontaneous magnetisation that:

MS(T ) = lim
B0 → 0

M (T, B0) = 0 for T �= 0 and d = 1 and 2 .
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2.5
Self-Examination Questions

For Section 2.1

1. Which eigenvalue equation leads to the Bloch functions and the Bloch energies?
2. What is stated by Bloch’s Theorem?
3. What are the orthogonality and completeness relations for Bloch functions?
4. Give the Hamiltonian H0 for non-interacting crystal electrons in second quantistion

for the Bloch representation, for the real-space representation with field operators, and
for the Wannier representation.

5. What are the commutation relations for Bloch operators a+
kσ , akσ and for Wannier

operators a+
iσ , aiσ ?

6. When does a Bloch function become a plane wave?
7. What is meant by a hopping integral?
8. What relationship exists between Bloch and Wannier operators?
9. Which assumptions define the jellium model?

10. Justify the necessity of a convergence-producing factor in the Coulomb integrals of
the jellium model.

11 What is the Hamiltonian of the jellium model? What is the effect of the homogeneously
distributed positive ion charges?

12 How is the operator for the electron density written in the formalism of second quan-
tisation if plane waves are used as a single-particle basis?

13 What relationship exists between the electron density operator and the particle number
operator?

14 Formulate the Hamiltonian of the jellium model using the electron density operator.
15 Define the concepts of Fermi energy and Fermi wavevector.
16 What is meant by the direct term and the exchange term in the Coulomb interaction of

the jellium model?
17 Give the two leading terms in the expansion of the ground-state energy of the jellium

model in terms of the dimensionless density parameter rs , and interpret them.
18 What is meant by correlation energy?
19 Why is the jellium model not useful for the description of electrons in narrow

energy bands?
20 Describe the so-called tight-binding approximation.
21 What are the decisive simplifications which finally lead to the Hubbard model?
22 What is the Hamiltonian of the Hubbard model?
23 Which physical parameters mainly influence the statements of the Hubbard model?
24 Name some of the important areas of application of the Hubbard model.



104 2 Many-Body Model Systems

For Section 2.2

1. Why is it reasonable in the description of lattice vibrations to use collective coordinates
instead of the ion coordinates?

2. How can the harmonic approximation be justified?
3. How is the matrix of the atomic force constants defined? What is the meaning of its

elements?
4. Name some of the obvious symmetries of the force-constant matrix.
5. Justify the terms acoustic and optical dispersion branch.
6. What equation of motion is obeyed by the so-called normal coordinates? How are they

related to the real displacements of the ions?
7. How is the Lagrangian function of the ion system written in terms of the normal coor-

dinates?
8. What are the momenta which are canonically conjugate to the normal coordinates?
9. Give the classical Hamilton function of the ion system. Interpret it.

10. State the commutation relations for the normal coordinates and for the momenta which
are canonically conjugate to them.

11. How are the creation and annihilation operators b+
qr , bqr related to the normal coordi-

nates and their canonically conjugated momenta?
12. Why are bqr and b+

qr Bosonic operators?
13. Give the Hamiltonian for the ion system in the harmonic approximation in terms of

the creation and annihilation operators bqr and b+
qr .

14. What is a phonon?

For Section 2.3

1. Describe the elementary processes which lead to an electron-phonon interaction.
2. Which approximation for the electron-phonon interaction corresponds to the harmonic

approximation for the lattice vibrations?
3. Which operator combination defines the electron-phonon interaction within the formal-

ism of second quantisation?
4. What is meant by normal and umklapp processes?
5. Describe how the elementary processes of the electron-phonon interaction can be com-

bined.
6. Which method of theoretical physics allows us to recognise that the electron-phonon

interaction contains terms describing an effective phonon-induced electron-electron
interaction?

7. Can this effective electron-electron interaction also be attractive?
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For Section 2.4

1. Which physical quantity would appear to be particularly suited for the classification of
magnetic solids?

2. Why is diamagnetism a property of all materials?
3. What is the decisive precondition for the occurrence of paramagnetism and collective

magnetism?
4. What distinguishes Langevin paramagnetism from Pauli paramagnetism?
5. Comment on the Curie law.
6. Into which three major subclasses can collective magnetism be subdivided?
7. What is the Hamiltonian of the Heisenberg model? For which class of magnetic sub-

stances is the model suited?
8. When does one speak of band magnetism?
9. Which magnetic materials are described by the s-f (or s-d) model?

10. Sketch the derivation of the so-called single-magnon state

|k〉 = (
h̄22SN

)−1/2
S −(k) |S〉 (|S〉 ⇐⇒ ferromagnetic saturation)

as an eigenstate of the Heisenberg Hamiltonian.
11 What is the spin of magnons?
12 What is the expectation value of the local spin operator Sz

i in the single-magnon state
|k〉? Interpret the result.

13 Explain the concept of a spin wave.
14 Formulate the Holstein-Primakoff transformation of the spin operators.
15 What is meant by the spin-wave approximation? Under which conditions is it justified?
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