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Pore Pressure, Compaction and Tectonics

2.1 Introduction

Most physical transport and related processes depend on both, temperature
and pressure. Pressure is one of the fundamental physical values. It is a scalar,
which is represented with a single value in each location. The term pressure
has only a real meaning for fluids and not solids. In porous media, pressure
is often introduced as the pressure within the fluids in the pores, the pore
pressure. The equivalent physical entity in solids is the stress tensor, which is
a symmetrical 3x3 tensor with six independent values (Sec. 8.2). It can be
illustrated with an ellipsoid, whose axes represent the principal stresses in size
and direction. Usually, only single components or invariants of the stress tensor
are important. Both, rock stress and pore pressure describe the response of
the material to an external load. The “average” stress of the porous volume
element is called bulk stress. It is therefore a superposition or mixture of pore
pressure and rock stress and it has to be in equilibrium with all external loads.

The primary pressure and stress causing process is sedimentation with
subsidence, which produces overburden load on the subsurface rocks. Stresses
and pore pressures generally increase with depth. Rock stresses and fluid pres-
sures interact with compaction and porosity reduction. The main mechanisms
for compaction are rearrangement of the grains to denser packages and cemen-
tation, which are called mechanical and chemical compaction, respectively. In
summary, three main ingredients needed to formulate a model for the me-
chanics of the porous sediments, are the concepts of bulk stress, pore pressure
and compaction. Additional effects, like mineral transformation, aquathermal
pressuring, and kerogen cracking or fracturing, should also taken into account.

2.1.1 Bulk Stresses

A homogeneous body under a constant load from above deforms horizontally
and vertically as shown in Fig. 2.1.a. The vertical stress in each location is
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then equal to the top load and the horizontal stress is equal to zero. This
stress state is called uniaxial. If the side boundaries of the bodies are fixed
(Fig. 2.1.b), the horizontal stress components are compressive as well and
equal to a fixed ratio of the top load, namely oy, /0, = /(1 — v). The Poisson
ratio v is a material constant and sediments have numbers of 0.1...0.4, which
yield stress ratios of 0.11...0.67. Exceptions are salt and unconsolidated sands
with Poisson ratios close to 0.5.
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Fig. 2.1. Vertical and horizontal stresses in a homogeneous solid with overburden
(a) load on top with free moving sides; (b) load on top with fixed side boundaries
(c) gravity loads with fixed side boundaries; (d) together with additional constant
compressions on the side boundaries; (e) together with additional constant tensions
on the side boundaries

The situation in non—tectonically influenced basins is similar to the fixed
solid case (Fig. 2.1.c) with vertical loads increasing approximately linearly
with depth. Heterogeneities of geomechanical properties cause different stress
ratios and rotation of the main stress axes. Fault planes and salt domes disturb
homogeneous trends in stress. Tectonic processes generally add a compressive
or tensile stress to the horizontal component (Fig. 2.1.d,e). Extensions of
the model to lower horizontal stresses can revert the compressive (positive)
stresses into tensile (negative) stresses, while compressive boundaries can in-
crease the horizontal stresses so that they exceed the vertical stresses and
become the maximum principal stress.

The stress state in solid grains is mainly controlled by the overburden
load of the considered volume element in the case of negligible tectonic forces
and homogeneously layered rocks (Fig. 2.1.c). Then, the "lithostatic pressure”
approach can be used, which describes the three dimensional stress field by one
single value, the lithostatic pressure, assuming the following simplifications:
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e The three main stress axes are straight vertically and horizontally directed.
This assumption is not valid in heterogeneous layers and salt domes, where
the coordinate system of the principal stress components rotates.

e The boundaries of the basins are fixed in terms of displacements, the hor-
izontal stresses are equal in both directions and the stress ratio (o}, /o) is
constant. The elastic properties are isotropic and layerwise homogeneous.
It also means that the model has no tectonic stresses due to compressional
or extensional forces or displacements.

e The vertical stress component is equal to the overburden load. This means
that all stresses are conducted straight vertically and will not influence
each other.

The vertical component is then equal to the overburden weight, the litho-
static pressure. It represents the 'pressure’ state of the porous bulk element.

2.1.2 Pore Pressure Formation and Fluid Flow

The measurable pressure value in the pore fluid is the pore pressure. It is
mainly caused by the overburden weight, but fluid flow together with com-
paction can decrease the overburden induced pressure and the resulting pore
pressure is usually smaller than the lithostatic pressure. In a non—compactable
porous rock, the lithostatic pressure and the pore pressure are both equal to
the overburden load. Fluid outflow allows grain rotation to more compact
packages, which decreases pore pressure and porosity. Thus, the difference
between lithostatic and pore pressure is a measure of compaction.

Ideal compaction does not reduce pore pressure to zero. Instead a hydro-
static pressure remains, which is equal to the weight of the overlaying water
column. Generally, the hydrostatic pressure is defined as the part of the pore
pressure which does not contribute to water flow. The hydrostatic zero level
can be arbitrarily defined, since only gradients and not absolute values of
pressures control pore water flow. The groundwater table is not suitable as a
constant reference level, since it varies over basin scale. Instead, the seawater
level is used as the hydrostatic zero level. The hydrostatic pressure is then
equivalent to the water column weight measured from the seawater level and
therefore depends on sea and pore water density. Note that the hydrostatic
pressure is not a measurable pressure. It is a theoretical pressure for ideal
compactable layers or slow sedimentation.

The difference between the pore pressure and the hydrostatic pressure
is the overpressure which directly controls water flow (Fig. 2.2). The pore
pressure lies usually between hydrostatic and lithostatic pressure, but there
are exceptions. It can be lower than the hydrostatic pressure when high uplift
and erosion rates act on deep sand layers which are connected to near surface
pressure areas along permeable facies. It can also exceed lithostatic pressures
when large overpressures are built up by gas generation or highly permeable
facies are connected at large depth levels.
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Fig. 2.2. Definitions of pressures and stresses. The groundwater level is often as-
sumed to match the surface in basin modeling. Then, pore and lithostatic pressure
have the same zero level, as shown here

One can distinguish between three processes of overpressure build up: over-
burden load together with mechanical under—compaction, cementation and
overpressuring caused by fluid expansion processes (Osborne and Swarbrick,
1997; Swarbrick et al., 2002).

Overburden load induced pore pressure formation due to incomplete sed-
iment compaction, as explained above, is the main process for overpressure
formation. Here, compaction is the rearrangement of grains to denser pack-
ages with a reduction in pore space related to a decrease in pore throats and
connectivity of the pore network. This process of grain rotation, crushing and
deformation is called mechanical compaction. Compaction is caused by over-
burden load. The load acts on the pore fluid and the rock grains according
to their compressibilities. Incremental fluid outflow generates a difference be-
tween rock stresses and pore pressure, which allows compaction. Compaction
in turn changes the ratio between the rock stresses and the fluid pressure,
since it decreases the rock and bulk compressibility, enforces further fluid
outflow, and decreases the thickness of the solid matrix. The result of this
coupled process is always a reduction of overpressure since the outflow from
the compacting element is greater then the local increase of overpressure due
to the thinning of the solid matrix. This is ensured as the compaction law
is formulated in a manner, that relates porosity loss with effective stress in-
crease. Finally, mechanical compaction is considered to be an overpressure
reducing process (Fig. 2.3.a). The remaining overpressure could be simply in-
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terpreted as a result of incomplete compaction and that is why this process
of overpressure formation is called under—compaction.

p4
v |
1. Water outflow v,, 1.Chemical compaction: quartz dissolution Q,,
2. Decrease of pore pressure p diffusion transport Q, and precipitation O,
3. Mechanical compaction (grain rotation) 2. Increase of pore pressure p

3. Water outflow v,, 4. Decrease of pore pressure
Fig. 2.3. Overpressure and Compaction: (a) mechanical compaction is a result of
water outflow, it is always related to decrease in overpressure. (b) Quartz cementa-
tion and related compaction transfers lithostatic to pore pressure. It increases pore
pressure. Water outflow can partially decrease the overpressure afterwards

Another source for overpressure is chemical compaction due to cementa-
tion. Cementation occurs in all sandstones and carbonates. It significantly
decreases the porosity, and is mainly responsible for porosity reduction at
large depths, where mechanical compaction is almost negligible. Cementation
is the result of dissolution of quartz from the horizontal contact areas, diffusive
transport within the pore water, and precipitation of a silican cement on free
quartz surfaces. Quartz dissolution is mainly stress controlled. Temperature
affects the diffusion constant and precipitation rate. Chemical compaction in-
creases overpressure, since rock stress is transfered from the rock matrix to
pore pressure. Cementation also drives fluid outflow and compaction with the
generated overpressure as the main driving force (Fig. 2.3.b).

The third group of overpressure generating processes encompasses fluid
expansion mechanisms: oil and gas generation, oil to gas cracking, aquather-
mal expansion and mineral changes such as smectite to illite conversion. In
all these processes, mass or the density of the fluids changes and yields fluid
pressure increase controlled by fluid compressibility. The overpressure increase
due to fluid expansion mechanisms is usually small compared to those related
to mechanical and chemical compaction.

2.1.3 Compaction and Porosity Reduction

Compaction is the reduction of the sediment bulk volume and is equivalent
to volumetric strain e, = V/Vp, the ratio of a load bearing volume V' to the
unloaded initial volume V}y. The average of the volumetric charge of a specimen
is called the mean stress &. Stresses and strains are further explained in the
Sec. 2.6. A compaction law relates volumetric strain to mean stress changes
with an elastic parameter.
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Rock Compaction Pore Space Compaction
Elastic|Elasticity of the Grains|Elasticity of the Skeleton
Elasticity of the Pore Fluid
Plastic|Plasticity of the Grains|Rearrangement of the Grains
Pressure Dissolution

Table 2.1. Compaction related Mechanisms

L0V _du (2.1)
Vos O

Compaction mainly decreases porosity, but also reduces the grain volume.
Generally, the rock and pore volumes are reduced with reversible (elastic) and
irreversible (plastic) contributions. Some of the special mechanisms acting on
microscopic and mesoscopic scales are listed in Table 2.1 after Schneider et al.
(1996).

The compressibility in equation (2.1) is mainly a property of the grain
framework and is called bulk compressibility. In the absence of a pore fluid,
it relates the bulk volume decrease with the mean total stress. The presence
of a pore water retards compaction, which as a first approximation can be
described as the introduction of a mean effective stress ¢’ = & — p instead of
the mean total stress in (2.1) with a reduction of the pore pressure p. Terzaghi
(1923) confirmed this thesis experimentally, by proving that increasing the
mean total stress or decreasing the pore pressure yields the same amount of
compaction. Generally, Terzaghi’s effective stress can also be introduced as a
stress tensor o’.

o'=0-pI (2.2)

where I is the unit tensor (Chap. 8).

In practice, compaction laws on the basis of Terzaghi’s effective stress
definition are written in terms of porosity loss versus the vertical component of
the effective stress o”.. The usage of porosity change instead of the volumetric
bulk strain neglects volume changes of the solid matrix which are small. The
restriction to the vertical effective stress means that a fixed ratio between
horizontal and vertical stresses is assumed. The corresponding vertical total
stress can then be simply approximated by the overburden sediment load
pressure pj.

o9 o oo, d(p —p)
ha— TP
ot ot ot
For most rock types, the Terzaghi compressibility Cr decreases rapidly during
compaction. This type of compaction law is widely used in basin modeling.
However, the formulation with only the vertical components of the stress ten-
sor fails, when active extensional or compressional tectonics occur. Therefore,
an extension of the law is proposed in Sec. 2.8.
Biot (1941) worked out a more detailed poro—elastic model for the exten-
sion of equation (2.1) for water filled porous rocks, taking into account the

——Cr (2.3)
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effect of the rock compressibility C,, which yields the following compaction
law with the Biot compressibility Cp.
861, (9(_7 ! Cr

5 :CBE with o' =0 —apl and a:IfC—B. (2.4)

This formulation means, that the retardation of the compaction due to pore
pressure drops with lower bulk compressibilities, since the rock compress-
ibilities remain almost constant during compaction. Exceptions are mineral
transformations or plastic flow of the grains. In unconfined sediments, C, < C'
(soil mechanical approach) and « = 1, while at large depth C, ~ Cp ¢ and
a =~ 1 — ¢ (rock mechanical approach). The case a = 1 also means, that the
effective stress is equal to the Terzaghi’s assumption of negligible rock grain
deformations. Note, that these effective stresses are only formal entities and
not measurable physical values.

2.2 Terzaghi Type Models

Terzaghi type models are based on the simplifications of the lithostatic stress
concept. In these models, overpressure formation related to incomplete me-
chanical compaction is considered and a fixed relation between porosity re-
duction and sediment compaction is assumed. The models have been widely
used in 1D-Basin modeling programs since the early 90’s. The assumptions
are as follows:

e The ”lithostatic pressure” concept is considered taking into account only
the vertical component of the stress tensor as the maximum principal
stress. The lithostatic pressure is equal to the overburden weight. The
horizontal stresses are fixed ratios of the lithostatic pressure. Additional
tectonic stresses, due to compressional or extensional forces, are neglected.

e Pore pressure formation is caused by overburden load. Fluid flow and
compaction determine how the pressure is formed and distributed in the
basin. Compaction is related to pore fluid outflow and decreases overpres-
sure. One phase fluid flow in a fully saturated rock is considered, which
is controlled by permeabilities. Pressure communication within the porous
network is assumed.

e Mechanical compaction of the pore space takes into account the rearrange-
ment of the grains to more compact blocks. All compaction is related to
porosity reduction caused by pore fluid outflow. This porosity reduction
process is controlled by the Terzaghi’s effective stress value which is equal
to the difference of the lithostatic and the pore pressure: ¢/ = o, — p. A
relationship between maximum effective stress and porosity is assumed.

e Water is treated as incompressible.
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2.2.1 Basic Formulation
Hydrostatic and Lithostatic Pressure

The hydrostatic pressure p,, at depth h is equal to the weight of a pure water
column from sea level with the water density p.,.

h
pu(h) = /0 9pwdz (2.5)

with z = 0 at sea level. This yields positive values below and negative values
above sea level. The negative hydrostatic pressure at groundwater level is
the groundwater potential. In basin modeling, the groundwater level is often
assumed to be identical to the sediment surface.

The water density varies with changing salinity values, while the depen-
dency on temperature and pressure is relatively small and often neglectable. A
further simplification is the assumption of two constant densities for seawater
psea = 1100kg/m? and pore water p,, = 1040kg/m3. This yields piecewise
linear curves for hydrostatic pressure versus depth in sediments below sea
water (Fig. 2.4).

Pressure in MPa Pressure in MPa
(]) 0 20 40 60 80 100 120 b) -20 0 20 40 60 80 100 120
0 + + - 1 . L he L I
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Fig. 2.4. Hydrostatic and lithostatic pressure curves for normal compacted rocks
with the following properties: sea water density psea = 1100kg/m®, pore water
density p, = 1040kg/m?, shale density ps = 2700kg/m®, sandstone density ps =
2720kg/m®. (a) Offshore with a water depth h,, = 1km. (b) Onshore with a height
of hs = 1km. The lithostatic curves cross each other, since shale starts with a higher
initial porosity but compacts faster

The lithostatic pressure p; is equivalent to the total load of the overlaying
sediments of bulk density p, and sea water. Lithostatic zero level is the surface
onshore and the seawater level offshore.
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h
pi(h) = 9/ pydz onshore
" (2.6)

Py h
pi(h) = g/ Psea dz + g/ Py dz offshore
0 h

w

where hg is the sediment surface. The integral over the weight of overburden
sediments can be replaced by a sum of the weights of the single layers with
thicknesses d; (i is the layer number), rock densities p,;, and and porosities

bi-

Pi(2) = pscaghw +9 > di [pwdi + pri (1= 6:)] . (2.7)
i=1
For a homogeneous sediment column with a constant rock density p, equa-
tion (2.7) can further be simplified as follows:

h
pl(h) = gpseahw + gpr(h - hw) - Q(Pr - pw) / ¢d2 ) onshore
ha (2.8)

h
p) = gpnlh = o) = or = pu) [0z offshore.
hs

The remaining integral in the above equation is the weight percentage of
water in the overlaying sediment column.

At larger depths, the term (1 — ¢) does not significantly change, which
means the curve tends toward a straight line for a unique sediment type. Litho-
static pressure curves for shale and sandstone, for hydrostatic compaction with
compaction parameters of Fig. 2.8, are shown in Fig. 2.4. The term lithostatic
potential u; is used for the lithostatic pressure minus hydrostatic pressure

Uy = Ppr — Ph-

Pore Pressure Equation

The pore pressure equation is a one phase fluid flow equation based on the
mass balance of pore water. A flow equation relates driving forces with flow
rates. The driving force for pore water flow is the overpressure gradient. Darcys
law establishes a linear relationship between the discharge velocity v of the
pore fluid and the overpressure gradient Vu assuming relatively slow flow
for a Newtonian fluid. The proportionality factor is the mobility p = k/v,
which is a function of the rock type dependent permeability k and the fluid
dependent viscosity v.

k
=——Vu. 2.9
v S Vu (2.9)
This flow equation is an analogy to Fourier’s equation of heat flow, which

similarly relates temperature gradient and heat flux with the thermal con-
ductivity tensor. The permeability tensor is often simplified using only two
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values parallel and perpendicular to the facies layering, named as vertical and
horizontal permeabilities.

Mass balance requires, that any fluid discharge from a volume element is
compensated by change in the contained fluid mass. The internal fluid mass
changes when the fluid density or the fluid volume is modified (App. B).

1 0¢ 10p

Vove—— "4

e ot (2.10)

Local changes of the fluid densities occur for fluid expansion processes like
aquathermal pressuring, mineral transformations or petroleum generation and
cracking. Changes in the fluid volume or porosity are related to mechanical
and chemical compaction, which are considered as two independent processes.
The porosity reduction due to mechanical compaction is formulated with
Terzaghi’s compaction law, while chemical compaction induced porosity loss
is a temperature and effective stress dependent function f.(T,c’), as specified
later in Sec. 2.3. 96 56’
o

E =-C 6; - fc(T7 U/z) . (211)

The basic model deals with mechanical compaction only and supposes Terza-
ghi’s effective stress definitions, which yield the following pressure equation.

k B 1 99 C 0o, C 0w —u)
VooV s T e T i-e ot - 1Y
Thus,
C Ou k O oy

The equation shows that the overburden load causes overpressure increase and
compaction. In the absence of all overpressure generating sources, fluid flow
is still admissible, but then the total inflow is equal to the total outflow of
each element. Pore water loss is always related to the corresponding overpres-
sure discharge and the grain structure reacts instantaneously with mechanical
compaction.

The two lithological parameters, compressibility and permeability con-
trol fluid flow and pressure formation. The bulk compressibility describes the
ability of the rock framework to compact and it also controls how overburden
influences pore pressure. The bulk compressibility in the pressure equation
should not be mixed up with pure grain or fluid compressibility, which is
orders of magnitude smaller. The higher the compressibility of the element
the higher the pore pressure decrease and the smaller the overpressure for-
mation. The permeability controls flow rates, flow paths, and the resulting
pore pressure fields. The overpressure in an element cannot decrease if the
elements surroundings are impermeable even when the element itself is highly
permeable and compressible.
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The permeability can vary by several orders of magnitude, ranging from
highly permeable facies (sandstone) to low permeability facies (shale) to al-
most impermeable facies (salt). The two end members of almost impermeable
and highly permeable facies are handled with special methods, which will be
further discussed later in the 2D— and 3D-pressure examples.

Boundary values of equation (2.13) are overpressures and water flow veloc-
ities as illustrated in Fig. 2.5. The upper boundary condition is zero overpres-
sure at the sediment—water—interface offshore and an overpressure equal to
the groundwater potential at the sediment surface onshore. The groundwater
potential yields topographic driven flow, which is explained in Sec. 2.2.5.

Upper Boundary: Surface Groundwater Potential u = u,
or Sediment Water Interface u =0

Water

Sediment 3

Side
Boundary:
n-Vu=0

Sediment 2

k, C,

Salt Boundary:
n-Vu=0

Sediment 1

No Flow Condition at Base (n-Vu = 0)

Fig. 2.5. Boundary value problem for overpressure calculation

The lower and side boundaries are no—flow areas, which means the over-
pressure gradient along the surface normal n is set to zero n-Vu = 0. They are
called closed boundaries. In small (prospect) scale models, special overpres-
sures are usually set as side boundary values for some layers. For example, zero
overpressure should be set at a permeable layer boundary, if it has a highly
permeable connection to a hydrostatic area. To fix an overpressure value as a
boundary condition at a certain point, is like injecting or releasing water until
the given pressure is achieved. One can also apply a complete pressure array
as side boundary values on prospect scale models from precalculated and cal-
ibrated basin scale models (Sec. 8.9). Special inner boundary conditions have
to be set to impermeable rocks, namely no flow across the boundaries to these
areas n- Vu = 0 and lithostatic pressure within impermeable regions u = w;.
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Compaction and Porosity Reduction

In the basic model, a simple relationship between mechanical compaction
and porosity decrease is considered. Hence, the related porosity change is
equivalent to the bulk strain and a function of the Terzaghi’s effective stress.
Several relationships between porosity and effective stress have been developed
and they are described in the following section. Although the formulations look
different, they are similar to exponential relationships of the following type:

¢ ke k2o (2.14)

The compaction in each volume element is usually realized with contrac-
tion of its vertical edges when only vertical compaction occurs. The relative
decrease in any vertical length is equal to a relative decrease in volume. Then,
the actual thickness d is calculated using any previous or initial thickness d
from the present and previous porosities ¢, ¢g as follows:

d 1-—¢

€y —_

T dy 1-0

(2.15)

2.2.2 Mechanical Compaction

Mechanical compaction is almost irreversible. Hence, porosity is maintained
when effective stress is decreased due to uplift, erosion, or an overpressure
increase. The general porosity-effective stress relationship (2.14) could then
still be used, but with the maximum effective stress value instead of the ac-
tual effective stress. This is taken into account when the following compaction
laws are formulated in terms of effective stresses. Most mechanical compaction
functions are porosity—effective stress relationships with decreasing porosity
for increasing effective stress. The lithotype dependent functions can be mea-
sured through a triaxial compression test. Soil mechanical models use loga-
rithmic functions between the void ratio e = ¢/(1 — ¢) and the effective stress,
which yields a similar curve as equation (2.14).

e~ ky — kalog(al) . (2.16)

The equivalence of the relationships (2.14) and (2.16) is illustrated in
Fig. 2.6. The exponential porosity—effective stress has a wide range of linear
porosity versus the logarithm effective stress relationship for most lithologies,
and it also behaves almost linearly in the high porosity range when trans-
formed into the corresponding void ratio diagram. Hence, the pure soil me-
chanical formulation should only be applied to an effective stress of 15MPa
or approximately 1km.

Compaction curves generally depend on the stress path, but usually only
normal compaction curves, with an uniform increase in overburden, are taken
into account. Stress release caused by uplift and erosion shows an elastic
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rebound, usually described with a low incline in the compaction diagram as
illustrated in Fig. 2.6.
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Fig. 2.6. Normal compaction curves (A and D) of a typical shale with an exponen-
tial porosity—effective stress relationship. The parameters are given in Fig. 2.8. The
paths (B) and (C) represent load removal (erosion and uplift) and reload, respec-
tively. (a) The porosity—stress relationship plotted versus the logarithmic stress axis
has a wide range of linear behavior. (b) The void ratio-logarithm effective stress
plot also behaves linearly for high porosities. The dashed curves represent linear

approximations between porositiy and void ratio and the logarithm of the effective
stress

Relationship between Effective Stress, Equivalent Hydrostatic
Depth and Compressibility

The following compaction laws relate porosity to either effective stress ¢(o.),
frame compressibility ¢(C'), or equivalent hydrostatic depth ¢(z.), which is
the depth of the sample with the same porosity and rock type under hydro-
static pressure conditions. A formulation in terms of one of these independent
variables can always be converted analytically or numerically into either of
the others. A compaction law has to encompass all three relations during
simulation:

e ¢(ol) determines new porosities after the pore pressure equation yields
the effective stresses with the calculated new pore pressures.

e (C(¢) or C(o)) determines the actual frame compressibilities which are
required in the pressure equation. The compressibility is the derivation of
the ¢(o?,) function after o’. It defines the slope of the porosity versus the
effective stress curve.
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e  ¢(z.) is the theoretical porosity versus depth curve assuming hydrostatic
pressures and the deposition of the entire column with the same lithotype.
Many log and well data are available in terms of porosity versus equivalent
hydrostatic depth rather than for porosity versus effective stress data.
They are often used to determine the lithotype dependent parameters in
the compaction laws.

Effective stress and compressibility based functions can simply be converted
to each other by derivation or integration.

R R (2.17)

The hydrostatic porosity—depth function can be derived from the com-
pressibility and porosity—effective stress equations as follows. For hydrostatic
conditions, the effective stress change is equal to the change of the lithostatic
minus the hydrostatic pressure

do’,

T Apg (1 —9) (2.18)

where Ap = p, — py, is the difference of the rock and water density. Thus,

d¢  do do’,
dz. do!, dz.

= —Apg(1—-9)C(¢9) - (2.19)

The porosity—depth function can be analytically expressed if (1 — ¢)C(¢)
can be integrated. Analytical porosity—depth functions are very advantageous
for the calibration of well data, but some relationships require numerical iter-
ation schemes.

Athy’s Law formulated with Effective Stress

Athy (1930) proposed a simple exponential decrease of porosity with depth for
a given rock type described only with an initial porosity ¢y and a compaction
parameter k. As already explained above, effective stress rather than total
depth should be used in the compaction law. A corresponding simple expo-
nential porosity—effective stress function was first proposed by Smith (1971).

/

¢ = doe H0= (2.20)

The compressibility function C'(¢) and the hydrostatic porosity—depth func-
tion ¢(z.) are according to (2.17) and (2.19) as follows.

C(9) = ko, (2.21)

bo

P(ze) = b0+ (1 — o) exp(kApgze)

(2.22)
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The exponential function (2.20) is a straight line in the logarithmic poros-
ity versus effective stress diagram with k as the decline angle. Typical com-
paction curves for clastic rocks are shown in Fig. 2.7. The previous model can
be easily extended with consideration of a non—zero minimum porosity ¢.,.

¢ = ¢m + (¢0 - (ybm) eXp(ka;)a (223)
C(¢) = k(do — dm) exp(—ko?,) = k(o — ¢m), (2.24)
~ (po — bm) + dm(1 — ¢o) exp(k(1 — dm)Ap gze)
o) = = om) T (1 — o) oxp(k(l — ) Apgze) 22D

This model is frequently used in basin modeling (Giles et al., 1998), although

the use of only one compaction parameter does not give a good match with
observed data for many rock types.
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Fig. 2.7. Porosity versus effective stress curves on (a) logarithmic and (b) linear
scale for various lithologies using Athy’s Effective Stress law with the following pa-
rameters: shale ¢o = 0.70; k = 0.096 MPa ™', siltstone ¢¢ = 0.55; k = 0.049 MPa ",
sandstone ¢o = 0.41; k = 0.0266 MPa~'. The minimum porosity is zero

Athy’s Law formulated with Hydrostatic Depth

A depth related porosity law (Athy, 1930) is used with the introduction of an
equivalent hydrostatic depth z. instead of the total depth.

¢ = ¢oexp(—kze) . (2.26)

The advantage of this formulation is, that the compaction parameter k can
be easily determined when measured porosity versus equivalent depth data
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is available. The compressibility function C(¢) and the hydrostatic porosity—
depth function ¢(z.) are according to (2.17) and (2.19) as follows.

__k ¢
- Apg(1—9) (2.27)
A

ol(¢) = %(qﬁ — o — ln%) : (2.28)

The inverse function ¢(c’) can be calculated with the Newton iteration
method. The resulting porosity—effective stress curves are generally steeper in
the high porosity and shallower in low porosity ranges than the Athy versus
effective stress functions. Hence, they are more applicable for most rock types
even though they are based on only one compaction parameter. The authors
prefer this law as a default for most lithologies. Example compaction curves
for clastic rocks and carbonates are illustrated in Fig. 2.8.

Schneider Model

An extension of Athy’s effective stress law to two exponential terms was pro-
posed by Schneider et al. (1996).

¢ = ¢1 + ¢a exp(—kao?) + dp exp(—kpol) . (2.29)

Different compaction parameters k,, k; for lower and higher porosity ranges
are realized with the superposition of two exponential terms. The initial poros-
ity is equal to the sum of the three porosity parameters ¢; + ¢, + ¢p. Both
porosities ¢, and ¢, are usually assumed to be half of the initial porosity
value ¢g.

The corresponding compressibility function is as follows:

C(U,/z) = ka¢a eXp(—ka(T;) + kb(bb eXp(_kbO-;) : (230)

The hydrostatic porosity versus depth function can be obtained, when
equation (2.18) is integrated numerically to get ol (z.), and then ¢(z.) is
calculated with equation (2.29) afterwards. Numerical integration can also be
applied to any other model with a given analytical expression for ¢(c”). The
proposed default parameters in App. A yield curves almost identical to those
of Athy’s depth model (Fig. 2.8).

Compressibility Model

Compressibilities are the derivatives of the porosity versus effective stress and
are proportional to the slope of the porosity versus effective stress curves.
This model assumes an exponential decrease in the compressibilities from the
depositional value Cy to a value C), corresponding to the minimum porosity

bm (Fig. 2.9).
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Fig. 2.8. Porosity versus hydrostatic depth and effective stress curves for vari-
ous lithologies using Athy’s depth law with the following parameters: shale ¢g =
0.70,k = 0.83km™*, siltstone ¢o = 0.55,k = 0.34km ™!, sandstone ¢o = 0.41,k =
0.31km™*, coal ¢pg = 0.76, k = 0.43km ™', chalk ¢o = 0.70, k = 0.90 km ™', limestone
¢o = 0.51,k = 0.52km ™", dolomite ¢o = 0.70,k = 0.39km !

Po — ¢ ¢ — om
logC(¢) = ——log C),, + ————log Cy . 2.31
8O0 = Gy o Bt 5T, 08 0 (2:31)
This is equivalent to the following expression:
C(¢) = aexp(Bp)  with
(2.32)
_ ¢olnCy, — ¢y, InC _ InCy — InC,

In(a)

b0 — Om » P= b0 — Pm

Integration of the above exponential function yields the corresponding
effective stress correlations.
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6(0") = —%ln(aﬁoé + exp(—B0)
(2.33)

N (0%
Cloz) = affo’, + exp(—f¢o) |

Numerical integration of (2.19) can be used to determine the hydrostatic
porosity versus depth function ¢(z.) from C(o7). Compressibility models gen-

erally decrease too fast for low porosities. Default parameters are shown in
Appendix A and the curves for clastic rocks are illustrated in Fig. 2.9.
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Fig. 2.9. Compaction curves for various lithologies using the compressibility model
with the following parameters: Shale Cy = 403 GPa™', C,, = 4.03GPa™"', Siltstone
Co =103GPa';C,, = 2.11 GPa™!, Sandstone Cy = 27.5GPa~',C,, = 1.15GPa™!

Mudstone Model

The following law from soil mechanics is especially applicable for clastic rocks.

O_/

—z 2.34
0.1 MPa ( )

The reference void ratio ejgg at 0.1 MPa can be considered as an initial
void ratio e190 = ¢o/(1 — ¢p) although this compaction law yields a singularity
e — oo for the void ratio at zero stress. The two functions ¢(o”,) and C(o7)
are as follows.

62% = ej00 — Blog

b(0) = o, — Blog(o’, /0.1 MPa)
1+ e — Blog(c/0.1 MPa)’

(2.35)
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Ol — 8
(Uz) ] .
O’Z(l + e100 — ﬁlOg(O’/Ol MP&)2

The above model does not provide an analytical expression for the porosity-
depth function. However, with the compressibility model equation (2.19), it
can be integrated numerically.

The material dependent constants are the initial void ratio ejgo and the
compressibility (. They can be related to the (volumetric) clay content r
for mudstones with the following relationships proposed by Yang and Aplin
(2004) Fig. 2.10.

(2.36)

e100(r) = 0.3024 + 1.6867 r + 1.9505 12

(2.37)
B(r) = 0.0937 + 0.5708 7 + 0.8483 r2 .

a) 3 To=1] b) &
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o 2 404
o [73
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Fig. 2.10. Compaction curves for various lithologies using the mudstone model with
the clay dependent functions of Yang and Aplin

Lauvrak (2007) proposed the EasySoil model with the following correla-
tions to sample data for ey, 8 and an upscaling to ejgo, # for natural rocks
(Fig. 2.11).

eloo(r) = 0.725 — 0.252 7 + 2.53 12,
B(r) = 0.218 — 0.1197 + 1.193 72,
€100 = €jgp + 0.76 5%,
8 =1078".

(2.38)
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Fig. 2.11. Compaction curves for various lithologies using the mudstone model with
the clay dependent functions of Lauvraks EasySoil model

Compressibilities

Bulk compressibilities can be directly derived from the compaction law as pre-
viously explained. Example curves for clastic rocks and carbonates are shown
in Fig. 2.12 with the parameters of the Athy’s hydrostatic depth model. Other
compaction models yield similar curves with the proposed default parameters.
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Fig. 2.12. Compressibility curves for various lithologies using Athy’s depth law
with the parameters of Fig. 2.8
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Comparison of Various Lithologies

Although the formulation of the various compaction models look very different
from each other, default parameters for most lithologies yield very similar
compaction curves. An exception is the mudstone model, which is generally
not suitable for approximation of the compaction trend in the lower porosity
range. The standard shale curves are shown in Fig. 2.13 for all described
models. Compaction parameters are mixed arithmetically. Example curves
for shale—sandstone mixtures are shown in Fig. 2.14.
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Fig. 2.13. Comparison of different
compaction laws for shale: The curves
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0.1916 MPa™", k, = 0.0527 MPa™ " and
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Athy’s hydrostatic depth law: k& = §h\3
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2.2.3 Permeability and Viscosity

The mobility p is a measure of the ability of a material to transmit fluids.
It includes the rock permeability k& and the fluid viscosity v: p = k/v. In
the Darcy law (2.9), the mobility is the proportional factor between pressure
gradients and fluid flow velocities. This applies to slow flowing (Newtonian)
fluids. The permeability is mainly affected by the pore structure of the rock,
and the viscosity describes the internal friction of the moving phase. This
indicates that flow velocity rises with rising permeability and reduces with
increasing viscosity.

Viscosity

Fluid viscosity is a measure of the resistance of the fluid against flow. It is
related to the attractive forces between the molecules. Viscosity generally
depends on pressure, temperature, and phase composition. The considered
viscosity is the dynamic viscosity v in contrast to the kinematic viscosity v/ p.
The unit of the dynamic viscosity is Poise (P, 1Pas = 0.1P).
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Fig. 2.14. Compaction curves for mixtures of shale and sandstone using arith-
metic averages of all compaction parameters. (a) Athy’s depth model with shale
¢o = 0.70,k = 0.83km ™" and sandstone ¢o = 0.41,k = 0.31km™~". (b) Schneider
model with shale ¢o = 0.70, ¢q = 0.35, ko = 0.1916 MPa™', k;, = 0.0527 MPa~' and
sandstone ¢ = 0.42, ¢, = 0.205; kq = 0.0416 MPa™!, k;, = 0.0178 MPa~*

The viscosity of saline water can be estimated from McCain Jr. (1990) in
Danesh (1998) as follows:

v = vy (0.9994 4 4.0295 x 10° P + 3.1062 x 109 P?)
vp = T~ (109.547 — 8.40564 s + 0.313314 52 4 8.72213 x 1073 )

a = 1.12166 — 2.63951 x 1072 s + 6.79461 x 10~* g2
+5.47119 x 107?53 — 1.55586 x 1076 s*

(2.39)

with v in mPas, T in °F, P in psi, s in mass %, and the validity intervals for
vr of 38°C < T < 200°C and s < 26%, and for v of 30°C < T < 75°C, and
P < 100 MPa.

Another formulation was published by Hewlett-Packard (1985) in Mc Der-
mott et al. (2004).
v=1y[1 —1.87 x 1073 5%% +2.18 x 1074525
+(T%% - 0.0135T)(2.76 x 1073 5 — 3.44 x 10~% s1-%)] (2.40)
Vo = 243.18 x 1077 102478/ (Tx—140) '
[14 1.0467 x 1076 P (T — 305)]

with v in mPas, T in °F, Tk in K, P in bar, s in %, and the validity interval
0°C < T < 300°C, s < 25% and P < 430°C. In the published equation P is
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the difference between the real and the saturation pressure, but the latter one
can be neglected for geological conditions.

Both formulations yield similar results for moderate pressures (Fig. 2.15).
The uncertainties of mobilities are controlled more by permeability than vis-
cosity. Hence, the following simplification of equation (2.39) without salinity
and pressure dependence is also proposed here (dotted curve inFig. 2.15.a).

25
a) 1.p=02MPakk] D)
2.p=0.3 MPa/K
3..p=0.5 MPa/K
2 4.p=1.0 MPa/K 2
® ---- no pressure, no salinity ”
g .1 g
g 1594 £ 15
£ i c
2 \ 4 2
g |} — ] 3
o 1 % Q 1
os \\\\\\ 3 05 \
~\Q:—2— 4
R -
% A S U S —— 0 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Temperature in °C Temperature in °C

Fig. 2.15. Pressure and temperature dependent water viscosity curves assuming
a salinity of 10% after (a) McCain Jr. (1990) in Danesh (1998) and (b) Hewlett-
Packard (1985) in Mc Dermott et al. (2004). The pressure and salinity independent
curve for the simplified equation (2.41) is the dashed curve in (a)

v[cp] = 109.5 71122 (2.41)

with temperature T in °F. The viscosity of liquid and vapor petroleum is
dependent on its composition. Viscosity ranges for standard oils and gases
and more sophisticated methods for calculating oil and gas viscosities from
compositions are described in (Sec. 5.6.5).

Permeability

Permeability consists of two factors namely rock (intrinsic) permeability and
relative permeability, the latter one is further described in Sec. 6.3. The in-
trinsic permeability k is mainly affected by the pore structure, especially pore
throat diameters and pore connectivity. Hence, it is dependent on the com-
paction state and usually tabulated as a function of porosity (App. A). The
unit of permeability is Darcy (1 D = 0.98692 x 10712 m?), or millidarcy (mD),
but logarithm millidarcy (log mD) is also used, since permeability values
often vary over orders of magnitude with decreasing porosity (1logmD =
10mD, 0logmD = 1mD, —1logmD = 0.1 mD, —2logmD = 0.01mD, ...).
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The most commonly used permeability relationship is the Kozeny—Carman
relation. A derivation can be drafted from Hagen—Poiseuille’s law for fluid flow
through a porous structure, which is approximated by a bundle of tubular
parallel capillaries.

The flow velocity of a viscous fluid of N parallel tubes of radius » embedded
in an rock matrix of bulk area A can be expressed with the Hagen—Poiseuille
law as follows.

N rim
T A sy
where Vp is the driving pressure gradient along the tubes. The porosity of
the considered tubular bundle is ¢ = N7r?/A, which yields the following fluid
velocity.

v (2.42)

A%

r2¢
- 8v Vp

The comparison with Darcy’s Law (2.9) results in a permeability of k =
r2¢/8. The introduction of a tortuosity 7 , which is defined as “the length
of the path actually followed between two points divided by the apparent path
between these two points” (Vidal-Beaudet and Charpentier, 2000) or as “the
averaged ratio of path—lengths traveled by a petroleum fluid to the geometrical
length of the region of rock considered” (England et al., 1987) yields

PR

=52

(2.43)

(2.44)

It can be estimated with 7 = v/3 for many rocks.
This equation can be rewritten to a so called Kozeny—-Carman type rela-
tionship of the form

B¢?
k= g2 (2.45)
with the specific surface area S = N27r/A and B a geometrical factor (Mavko

et al., 1998).

From consideration of sphere packing it is possible to estimate S =
(3/2)(1 — ¢)/d with d as grain size. Furthermore, it is common, to replace
the porosity ¢ with (¢ — ¢.) by assuming that the permeability vanishes be-
low a threshold porosity ¢. where the pores become unconnected (Mavko
et al., 1998).

However, the following revised Kozeny—Carman relationship has been pro-
posed by Ungerer et al. (1990) for practical use in basin modeling.

(;3/5 .
k =2x 100k ——— if ¢ <0.1
T g e O (2.46)
k(6) = 2 x 101 — 2 if ¢ >0.1
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with specific surface area S in m? /m3, s a lithotype dependent scaling factor
and ¢ a corrected porosity ¢’ = ¢ — 3.1 x 107195, Example parameters for
clastic rocks are given in Table 2.2.

Lithology |Specific Surface Area|Scaling Factor
in m?/m®

Shale 10° 0.01

Siltstone 107 0.5

Sandstone 106 10.0

Table 2.2. Kozeny—Carman parameters for various lithologies

The Kozeny—Carman type relation (2.46) has two different exponential
factors for the high and low porosity range. The permeability decrease for
highly porous rocks is mainly caused by the reduction of the pore throat
radius, while in the highly compacted rocks, the closure and elimination of
pore throats yields a decrease in pore connectivity (coordination number) and
a drop in permeability.

However, all Kozeny-Carman type models describe the intrinsic perme-
ability dependent on porosity, pore size, pore throat radii distribution, and
coordination number, which is a measure of the pore connectivities. Further
considerations based on more complex geometrical models are e.g. given in
Vidal-Beaudet and Charpentier (2000), Doyen (1988).

An alternative approach describes the permeability with a piecewise linear
function in the log permeability versus porosity diagram. Example curves for
many lithologies are tabulated in App. A in terms of three porosity versus
log permeability pairs. Some of these curves for clastic rocks and carbonates
together with the corresponding Kozeny—Carman curves with the parame-
ters from Table 2.2 are illustrated in Fig. 2.16. Salt, granite and basalt are
considered as impermeable.

Permeabilities are mixed geometrically for homogeneous mixtures or litho-
types. In layered mixtures the horizontal values are mixed arithmetically and
the vertical values are mixed harmonically.

Generally, permeability k is a symmetrical tensor with six independent
components. Similar to the thermal conductivity, it is often approximated
with only two independent components: the permeability along the geological
layer kp and permeability across the geological layer k, with an anisotropy
factor ar, = kp/k,. Typical anisotropy values are ar = 2...10 for clastic
rocks and ay = 1...3 for carbonates, they are tabulated for many rock types
in App. A.

The above permeability curves and tabulated permeability values mean
vertical permeabilities and equivalent hand-sample values, since most pub-
lished data and in-house databases in oil companies are derived from hand-
sample measurements. Basin scale values for horizontal and vertical perme-
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Fig. 2.16. Permeability curves for various lithologies with piecewise linear (solid)
and Kozeny—Carman (dashed) relationships. The parameters are from Table 2.2 and
from the Appendix A. A special curve is proposed for coal

abilities are calculated from the hand specimen values multiplied with a hori-
zontal and vertical upscaling factor, respectively. The higher values for larger
scales are caused by macro-fractures, inhomogeneities and permeable inclu-
sions. Upscaling factors to basin scale elements with lengths greater than 50
m are reported for sandstones: 500 (horizontal) and 10 (vertical) (Schulze-
Makuch et al., 1999). Based on the authors’ experience, we suggest upscaling
factors of 50 (horizontal) and 1 (no upscaling vertical) for all clastic rocks
and carbonates, and no upscaling otherwise. Different horizontal to vertical
upscaling increases the anisotropy factor in clastic rocks to a; = 100...500,
respectively.

The permeability of fractured rock is much higher than that of undisturbed
samples and is discussed in Sec. 2.6.1.

2.2.4 1D Pressure Solutions

Simplified 1D models can be used to discuss some fundamental processes of
overpressure formation and compaction, although 1D solutions are less practi-
cal, since most overpressure distributions are strongly influenced by horizontal
water flows along highly permeable layers (App. D). In this section, only me-
chanical compaction is considered in describing the interaction of overburden
due to sedimentation, overpressure formation and compaction. The 1D for-
mulation of the general pressure equation (2.13) is as follows.

ou  kou 0w
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Pressure curves for a unique rock type deposited with constant sedimenta-
tion rates are shown in Fig. 2.17 for shales and siltstones. Shale permeability
decreases rapidly during burial, since the log permeability to porosity curve
is very steep. Hence, there is only a small sedimentation rate dependent tran-
sition zone between the uppermost 1...3km and the deeper part, where the
pressure gradient is equal to the lithostatic gradient. The transition zone in
lower permeable rocks like siltstone occurs over a broader region of sometimes
several kilometers. The corresponding porosity curves for homogeneous de-
positions are shown in Fig. 2.18. The porosity reduction stops in the deep
impermeable blocks, when water outflow is near zero.

O) Pressure in MPa b) Pressure in MPa
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1..Hydrostatic 1..Hydrostatic
2..Rate 100 m/My 2..Rate 50m/My
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Fig. 2.17. Sedimentation rate dependent overpressure formation of (a) siltstones
and (b) shales with piecewise linear permeability curves of Fig. 2.16

The pressure formation in an alternating sandstone-shale sequence is
shown in Fig. 2.19. The pressure gradient in sandstone is equal to the hy-
drostatic gradient, while the pressure in the shale layer returns relatively
quickly (after 500m in the example) to almost the level of the pure shale
curve. Hence, the increase of pressure in seals could be much higher than the
lithostatic gradients.

The behavior of an impermeable seal is illustrated in Fig. 2.20. All over-
burden load above the seal is added to the pore pressure of all layers below
the seal, since no pore water can cross the impermeable seal. This yields
an increase to lithostatic pressure in the seal and a constant offset equal to
the overburden load of the overpressure below the seal during the time after
the sedimentation of the seal. This displacement with additional pressure is
marked with the dotted line in Fig. 2.20.b. The pore pressure (solid line) also
includes a small pressure exchange within the block below the seal.

The following calculation shows reservoir pressure decrease by water flow
through a permeable seal (Fig. 2.21). The considered reservoir has a thickness
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Fig. 2.18. Sedimentation rate dependent compaction of (a) siltstones and (b) shales
with compaction curves of Fig. 2.8
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Fig. 2.19. 1D overpressure formation in an alternating sand—-shale sequence

h,, a bulk compressibility C, and an overpressure u,.. The overpressure in the
seal with a permeability ks and a thickness hy drops to zero at or near the
top of the seal. The flow velocity in the seal is according to the Darcy’s law

as follows. L L
S S ur

(2.48)

Integration of equation (2.13) over the reservoir area with the assumption of
no sedimentation yields the following relationship.

/vnwz/c%Mh (2.49)
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Fig. 2.20. 1D overpressure formation below a perfect seal. (a) Present day pressure
versus depth curve. (b) Overpressure versus depth curves for the time of seal depo-
sition and at present day. The pressure curve at seal deposition (20 My) is shifted
to the corresponding present day locations to illustrate, that overpressure increase
in all layers below the seal from 20 My to present day is a almost the same. The
dashed curve is the 20 My curve plus the overburden load after seal deposition. The
difference of the dashed curve and the present day overpressure curve is caused by
water exchange in the layers below the seal

The outflow of the reservoir is restricted to the reservoir—seal interface with
surface A,.. Hence,

ou
Arv=-C.V, — 2.50
v Y (2.50)
with the reservoir volume V, = A, h,.. Thus,
ou, ks
=AU . 2.51
ot~ Covhih, " (2:51)
It yields an exponential decrease in the reservoir pressure as follows.
t +Vhgh,
ur(t) = woexp(——), 7= CVT . (2.52)

with an initial reservoir pressure ug. The time ¢, = 71n(2) when half of the
overpressure is dropped is controlled by the permeability of the seal, the bulk
compressibility of the reservoir, and the reservoir and seal thicknesses. Typical
values for ¢, (Fig. 2.22) show, that very low permeabilities are necessary to
seal pressure over significant times.

2.2.5 Pressure Solutions in 2D and 3D

Most of the effects discussed in the previous sections are also important in
multidimensional pressure calculations: the upper part of the basin is in a
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hydrostatic state, pressure increases in impermeable layers, and large over-
pressure areas occur below low permeability seals. Additionally, high perme-
able layers transmit high water flow rates and yield overpressure equalization
in the layer. Even thin high permeable layers affect the multidimensional over-
pressure field, especially when they are expanded over long distances or large
depths. This is illustrated in Fig. 2.23, where high permeability sand layers
of very different depths are well connected to each other and yield almost the
same overpressure everywhere in the sands. The calculated difference for the
connected layers with a permeability of k = —2.5 x log(mD) = 3.2 x 1073 mD
is about Au = 0.01 MPa.

The pressure difference is higher, when low permeability rocks interrupt
the connectivity of the sands. Darcy’s law states, that the assumption of the
same overall flow rate results in an increase in the pressure difference by one
order of magnitude, when the connected permeability decreases by one order of
magnitude (10mD). This example shows how sensitive the multidimensional
pressure solution depends on the connectivity of the highly permeable facies.
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Fig. 2.23. Overpressure equalization along high permeability layers: (a) connected
highly permeable sand layers are embedded in a thick shale package and yield almost
the same overpressure in the three sandy sub-layers. (b) The pressure difference in
the sand layers is almost proportional to the log permeability of the barrier. (c)
Pressure solution with highly permeable barriers between the sands

Another similar example is shown in Fig. 2.24. Here a permeable layer
connects a highly overpressured area below a thick shale block with a shal-
low hydrostatic pressure area. This permeable layer is able to discharge the
pressure below the shale with resting pressure gradients equivalent to the
permeability values of the connecting layer. A 3D example (Fig. 2.25) with
a thin permeable layer varying over several kilometers of depth, also shows
the pressure equilibration effect along a highly permeable flow avenue. These
examples show how the architecture of the sediments in the basin control the
pressure distribution.

The overpressure equation (2.13) does not deliver a solution in imperme-
able facies, such as salt, granite, or basalt, since these permeabilities are equal
to zero. The pressure in impermeable structures should be equal to lithostatic
pressure, since any fluid inclusion enclosed in an impermeable environment
could never drop its pressure due to fluid outflow and must bear the total
overburden. Hence, the inner points of impermeable rocks and salt are set
as inner boundary conditions with values equal to the lithostatic potential.
The overpressure gradient at the top of a salt dome can be a multiple of the
lithostatic gradient as the overpressure can increase from a nearly hydrostatic
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regime in the sediments above to a lithostatic regime in the salt layer over a
very short distance.

Uplift, together with erosion, yields overpressure release, since overburden
load is decreased, but the porosity is almost maintained and the decompaction
path during uplift is different from the normal compaction line (Fig. 2.6).
Hence, the compressibility during uplift is much smaller (or close to zero),
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which results in lower pressure release during erosion when compared with
pressure formation during burial.

Some of the multidimensional pressure effects are illustrated in the exam-
ple calculation of a 2D cross section from the Santos basin offshore Brazil
(Fig. 2.26). The pressure is hydrostatic in the shallow area up to the top over-
pressure surface in 1 to 3 km depth. The pressure is lithostatic in the imperme-
able salt domes. High overpressure occurs below the thick salt domes, which
gradually decrease toward the salt window. The overpressure is much lower
below the smaller salt bodies. A thick block of low permeable shale layers also
causes overpressure formation, while overpressures are almost equilibrated in
the highly permeable facies.

In the above description, the upper pressure boundary condition at the
sediment-water-interface is set to zero overpressure. In areas above sea level,
the upper boundary is the groundwater surface and the pressure boundary
condition is the groundwater potential, which is equal to the weight of the
groundwater column above sea level. The pressure variable u in equation
(2.13) is named hydraulic potential instead of overpressure in the terminology
of groundwater specialists. Both terms are synonymous. The onshore ground-
water level far from the coast is usually only some meters beneath the surface.
The topographic surface can be taken as the approximate groundwater sur-
face. The groundwater level close to the coast, or in very steep mountains can
be significantly decreased, so that the boundary value of the corresponding
hydraulic potential must be applied nearer to sea level with a much lower
value.

An onshore example with a groundwater potential is shown in Fig. 2.27.
The model has an aquifer with a depth of 3km and a water flow towards the
hydrostatic zone. The resulting water flow system and overpressure field of the
basin is a superposition of three effects: the topographic driven flow near the
surface follows the surface profile, the sedimentation controlled overpressure
flow is directed out of the thick sediments, and the aquifer layer transports
water toward the hydrostatic area. The water flow is much faster and the
overpressure is much smaller, when the mountains are less extended as shown
in Fig. 2.27.c.

The formation of mountains is always related with uplift and erosion, which
is accompanied by a decrease in the overpressure potential of the uplifted
blocks, since overburden is released during erosion. The overpressure release
in rapid uplift and erosional periods below the mountains can be so high, that
under-pressures arise in the aquifers, and the water flow can redirect toward
the mountains as shown in Fig. 2.27.d. An analytical solution of a linearly
varying horizontal groundwater potential is described in App. C.
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2.3 Special Processes of Pressure Formation

Special processes of pressure formation are quartz cementation (chemical com-
paction), aquathermal pressuring, pressure formation due to petroleum gen-
eration and cracking, and mineral transformations such as smectite-illite or
gypsum—anhydrite.

2.3.1 Chemical Compaction

All sandstones and carbonates are cemented during burial. Quantitative de-

scriptions of cementation processes are proposed by several authors (Walder-
haug, 1996, 2000; Walderhaug et al., 2001; Bjorkum, 1996; Bjgrkum and Nade-

nau, 1998; Bjgrkum et al., 1998, 2001; Schneider et al., 1996; Schneider and
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Hay, 2001; Lander and Walderhaug, 1999). Quartz cementation can be re-
garded as a three step process: quartz dissolution at grain-grain contacts,
transport of the dissolved silica through pore space and precipitation of sil-
ica on free quartz grain surfaces (Walderhaug 1996, Figs. 2.28, 2.29). The
transport of the solutes is performed via diffusion or pore water flow. All
three processes (dissolution, solute transport and precipitation) have different
effects on compaction, porosity reduction and pore pressure change. The ce-
mentation rate is controlled by the subsurface conditions, the water flow and
water chemistry. Subsurface conditions are temperature, total vertical stress,
and pore pressure. Water flow rates depend on the permeabilities of adjacent
rock, and water chemistry is characterized by the dissolved minerals and the
pH-value. It is a common approach to reduce the model to the precipitation
process and assume that the other processes always supply enough silica.

Precipitation

Diffusion
Fig. 2.28. Principal processes of chem-
ical compaction: (A) Pressure dissolu-
tion of silica into pore water. (B) Diffu- Pore Space
sion of dissolved silica within the pore ) )
water phase. (C) Precipitation of silica Dissolution
at quartz grains
a) Initial Volumes b) After Dissolution c) After Precipitation d) After Compaction
Rock Pore Rock Pore Rock Pore i Vq 3
Matrix Water Matrix Water Matrix Water
. Rock Pore
Matrix Water

e A
SO I EEESS A T A

4 V., 4

Fig. 2.29. Schematic volume balance for quartz dissolution and precipitation

The volume balance includes changes in the the solid volume (including
cement) V5, the pore fluid volume V,,, the volume of the precipitated cement
Vg, and the total volume V; = V, + V,, with the porosity ¢ = V,,/V, and the
cementation ¢ = V,/V}.

Dissolution of silica occurs along the grain contacts. The contact zone is
a thin film of adsorbed fluids between the rough surface of quartz grains.
The dissolution rate Cy is mainly controlled by the effective stress (pressure
dissolution) and is dependent on temperature.
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1oV,

Cy(ol,T) = —

(2.53)

During dissolution, the solid rock volume is decreased by the amounts of
dissolved quartz, while the pore volume is increased by the same amount.

The dissolved silica is transported in water by diffusion and together with
water as a separate phase flow. Hence, it depends on the quartz solubility of
water, the diffusion rate, the permeabilities and overpressure gradients. The
literature distinguishes between an open and closed systems approach, as-
suming relatively long and short transport paths (Schneider et al., 1996). The
closed systems approach is more important, since quartz is usually precipi-
tated near to the location of dissolution. However, the transport of dissolved
silica does not influence the porosity, compaction and overpressure. Precipi-
tation of silica as cement occurs on the free grain surfaces with preference to
pore throats, which decreases permeability significantly. Precipitation rates
C, are usually temperature dependent (Walderhaug, 1996).

1 9V

(2.54)

Pure precipitation increases the amount of solid material and reduces the
pore space by the same amount. The total balance of quartz dissolution and
precipitation is as follows.

oV
ot

o
=(Cp = Ca)V, aif =Cp. (2.55)

The total process yields much lower porosities for high effective stresses than
pure mechanical compaction would allow. It also increases the pore pressure,
since the dissolution of the solid matrix transfers lithostatic pressure to pore
pressure.

Closed System Approach

In the closed system approach, short diffusion tracks are assumed with pre-
cipitation near to the locations of dissolution. Hence, the precipitation rate
is equal to the dissolution rate and the total solid volume remains constant.
The ability to drop the porosity by cementation additionally to mechanical
compaction requires a change in the compaction law by either increasing the
bulk compressibility or adding an additional term f. as follows.

0 oo’

a—f = —CE — fe(T, o) (2.56)
with the Terzaghi’s compressibility C' for mechanical compaction.

The cementation controlled porosity loss is also realized by accompanied

water outflow and it is usually almost equal to the relative volume of the
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precipitated cement (f. ~ 01/0t). The measured relative volumes of silican
cement 1 are often used to derive empirical rules for the compaction term f..
Empirical laws for the cementation rate are proposed by Walderhaug
(2000) and Schneider et al. (1996), named respectively the Walderhaug and
Schneider models. The Walderhaug model is a precipitation rate-limited re-
action controlled by the temperature and the quartz surface area available for
precipitation. Walderhaug argues, that there is usually enough effective stress
at large depth to supply enough dissolved quartz and that the effective stress
dependency of the chemical compaction can be neglected. He proposed the
following relationship with an Arrhenius type temperature dependency:

0¢ _ M6~ fofv ¢
ot Pq dg bo

where R is the gas constant with R = 8.31447 Ws/mol/K, f, is the quartz
grain coating factor (the fraction of the quartz grain surface that is coated
and unsuitable for precipitation), f, is the quartz grain volume fraction
when precipitation starts (the fraction of the detrital grains that are quartz),
d, is the average quartz grain size, and A and E are the frequency fac-
tor and activation energy of the quartz precipitation rate. Fixed param-
eters are M, = 0.06009kg/mol and p, = 2650kg/m?, the quartz molar
mass and density. Default parameters are f, = 5, f, = 1, dy = 0.03cm,
A = 107" mol/cm?/s, and E = 61kJ/mol. The activation energy is primar-
ily used for calibration, when sample data are available. The porosity loss
described by the Walderhaug model is shown in Fig. 2.30 for various activa-
tion energies with smaller cementation rates for higher activation energies.

A viscoplastic type compaction model is proposed by Schneider et al.
(1996), who introduced the porosity loss rate proportional to the effective
stress o7, which represents the quartz supply by pressure induced dissolution.
The rate is dropped by a viscosity p, which decreases with higher temperature
according to a Arrhenius type dependency.

9 / E(1 1
87(? =-(1- ¢)%7 Jt = po eXp {k (T - To)] (2.58)

with the reference temperature Ty = 15°C and viscosity pg = 50 GPa/My.
The activation energy E can be used for calibration with default values be-
tween 16 and 18 kJ/mol. Porosity loss curves for fast and slow sedimentation
are shown in Fig. 2.31 for various activation energies. Contrary to the Walder-
haug model, porosity rates increase with higher activation energies.
The additional term in the compaction law also appears in the revised
pressure equation according to (2.11) as follows:
u k u
O%—V-;-Vu20%+fc(a;,T). (2.59)
The increase in pressure is caused by the transfer of rock stress to pore pressure
due to the abbreviation of the vertical stress bearing rock elements, by the

Ae B/RT (2.57)
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Fig. 2.31. Cemented porosity calculated with the Schneider model with a temper-
ature gradient dT'/dz = 30 °C/km, effective stress gradient do’,/dz = 10 MPa/km:
for sedimentation rates (a) S = 0.1km/My, (b) S = 1km/My
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pore space reduction due to precipitated cement, and by the permeability
decrease due to thinner pore throats.

An one dimensional example is shown in Fig. 2.32 with alternating shale
and sandstone layers. The Walderhaug and Schneider models are compared
with respect to porosity loss and additional overpressure generation. The
Walderhaug model generally predicts higher cementation rates than the
Schneider model. The difference in porosity loss (Fig. 2.32) is very high when
the proposed default values are used. The effects are more similar when higher
activation energies, rather than the default values, are used in both models.
Cementation of the sandy layers yields lower permeability values which sig-
nificantly influence the dewatering of the shale layers below. Additional over-
pressures in the sandstones also influence the pressure formation and porosity
loss of the overlaying shales.

2.3.2 Fluid Expansion Models

Fluid expansions yield fluid density increases and related overpressure for-
mation, which can be described with an additional source term f, in the
overpressure equation (2.59) as follows:
C%—V-%-Vu:C%+fc(0’z,T)+fa(T). (2.60)
The source terms in the above equation are understood as the relative pore
fluid volume increase over time. The volumetric formulation is obtained, as
in the initial mass balance equation (2.10) all the terms were already divided
by the pore water density assuming that the water density variations with
depth and time are relatively small on the considered scale. The fluid ex-
pansion models are here formulated on volume and not on mass balances,
although variable fluid densities are considered. They are easier to implement
and overview and the differences to more complex formulations are of minor
importance (Luo and Vasseur, 1992, 1996). One can also integrate the source
terms over the entire burial history for a deep sediment, for example in 5km
depth, to compare the order magnitudes of the different sources for pressure
formation with each other. The total source for overburden load F, is:

F, = /C Ot gy x Gy e 0.75 (2.61)
ot

where C' ~ 10 GPa~! is the average bulk compressibility and #; ~ 75MPa
is an average total load of a sediment in 5km depth. Assuming, that in the
initial sedimentation phase approximately one third of the overburden was
not converted to overpressure, a value of 0.5 is more realistic.

The total load source for chemical compaction F, is equal to the total
porosity reduction A¢ by cementation:

F.= /@dt ~ Ap~0.15. (2.62)
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Fig. 2.32. 1D example of three sandstone layers embedded in shale depositions.
Porosity loss and overpressure formation is calculated with the Walderhaug and
Schneider model for cementation of the sandstone layers and without cementation
for comparison. (a) Porosity loss due to mechanical and chemical compaction. The
activation energies of the Walderhaug and Schneider model are 61 kJ/mol and 20
kJ/mol. (b) Overpressure formation during cementation. (c), (d) Porosity loss of
the lower sandstone layer calculated with the Walderhaug and Schneider model,
respectively, for different activation energies

This has a significant effect compared to the overburden load, but is locally
restricted to sandstone and carbonate layers only.

Aquathermal Pressuring

Luo and Vasseur (1992) investigated the effect of overpressure formation
caused by thermal expansion of the pore water. The additional source term
fa in the overpressure equation depends on the isobaric thermal expansion
coefficient o = o, — ., which is the difference between the values for water
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ayp =5 x107*K and rock a,, = 3.3 x 107° K.

oT
Ja = agy (2.63)
which yields the following estimation for the total load source:
T
F, = /aa—dt ~ A¢ ~ 0.07 (2.64)
. Ot

with an assumed temperature 7' = 150°C' in a depth of 5km. Assuming, the
overburden is not converted to overpressure for early sedimentation, a value
of 0.05 is more realistic. It is one order of magnitude smaller than the effect
from the overburden load. The aquathermal pressure formation depends on
the heating rate and it becomes higher for fast burial.

Mineral Transformations

Some mineral transformations, such as smectite to illite and anhydrite to
gypsum conversion are related to pore fluid volumes changes. The conversion
from smectite to illite occurs in all shales and shaly rocks and is described as
a complex multi-stage process (Pytte and Reynolds, 1989; Swarbrick et al.,
2002). Some of the related processes increase and some decrease the pore
water volume with a general release of bound water into pore space and with
a total increase of the water relative volume up to 5%. The volume of the
solid matrix is also generally increased, since mainly Nat ions are exchanged
by KT ions with a higher ion radius. This process is controlled by temperature
and the availability of K* ions in the rock matrix. A widely accepted model
was proposed by Pytte and Reynolds (1989) as a fifth-order reaction of the

following type.

% =2k, k, (2.65)

where z is the smectite to illite ratio with an initial value of 0.8, k; =
74.2 exp(—2490/T[K]) is the chemical activity of potassium to sodium and
k, = 1.64 x 10*! My~ ! exp(—16600/T'[K]) is a Arrhenius type temperature
dependence. The equation can be written as a usual unimolecular forward
reaction type (Chap. 4) as follows:

% = —g® Ae B/ET (2.66)
with the activation energy E = 37.9kcal/mol, the frequency factor A =
1.217 x 10?3 My ~! and the gas constant R = 8.31447 Ws/mol/K. The conver-
sion depends on the heating rate, which is controlled by sedimentation rates
(Fig. 2.33). The simple approach is, that the transformation ratio of the re-
action TR, = (z — 0.2)/0.8 is related with a constant factor x ~ 0.05 to the
load source f, as follows:
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f=k %TR . (2.67)

Hence, the overpressure formation caused by smectite to illite conversion also
depends on the sedimentation rates with a total source of

F, = /HQTRdt = k= 0.05. (2.68)
ot

This effect is one order of magnitude smaller than the overburden load ef-
fect. Osborne and Swarbrick (1997) and Swarbrick et al. (2002) proposed the
separate consideration of smectite dehydration with the release of interlayer
water, but the authors consider this effect to be included in the usual me-
chanical compaction model for shale.
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Petroleum Generation Pressure

Catagenetic processes of organic matter change the relative volumes of kero-
gen, liquid, and vapor petroleum (Fig. 2.34). Here, the primary cracking
of kerogen and secondary cracking of the heavier petroleum components
are taken into account. The controlling parameters are the changes of the
petroleum phase masses and volumes, which result from the generated chem-
ical components and the PVT controlled dissolution into the two petroleum
phases (Chaps. 4, 5). The fluid models also provide corresponding modifica-
tions of the phase densities, which control the generation driven overpressure
formation. The actual densities (mass per volume) of the generated petroleum
components, which are dissolved in liquid and vapor phase, are denoted as
and p, with the phase densities p;, and p, , respectively. Then, the load source
for primary generation is as follows:
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1 1Y\ 0 1 1\ 0
a_<_>“z+<_> Py (2.69)
PPy Ot Py P/ Ot
The kerogen density p, has to be taken into account, since the reduction of
kerogen volume during cracking is also a significant value. For the estimation of
the magnitude of the load source, all generated petroleum with mass density

Wy 1s assumed to be dissolved in one super—critical petroleum phase with
density p,,.It follows from (4.8):

1 1\0
F, = / ( - ) %dt ~ (”T . pr) TOC, HI, (1 — ¢) ~ 0.033 (2.70)
t

Pp Pk Pp Pk

with an initial total organic carbon content TOC, = 5%, an initial hydrogen
index HI, = 500 mgHC/gTOC, a porosity ¢ = 20%, and densities of p, =
800 kg/m?, p, = 500 kg/m?, p, = 2200kg/m?>. This effect is one order of
magnitude smaller than the overburden load effect and it is restricted to source
rocks only. Exceptions are coals with TOC values higher than 50 % and coal
bed methane production, which can form very high overpressures in place. Gas
has a much higher compressibility (100 GPa~!) than the porous framework
(10 GPa™1!), which yields a retarded overpressure drop by pore fluid outflow
as described in equation (2.52), when high gas saturations occur. This slightly
increases the effect of gas generation controlled overpressures.

ROCK = Kerogen =-.

Fig. 2.34. Gas generation from kerogen changes the volumetrics of kerogen and
pore fluids

Secondary cracking can also change phase volumes and can be described
analogously to primary cracking. The resulting overpressure build up is much
smaller, especially because coke with higher density is formed as a by—product.

The generation of petroleum amounts can be more accurately formulated
in the multi-phase fluid flow equations (Chap. 2.9) with source terms for
the generated masses. Luo and Vasseur (1996) published a detailed analysis
for a two-phase system formulation with similar magnitudes for overpressure
build-up as described in equation (2.70).

The overpressure equation with all described effects is as follows.
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2.4 Overpressure Calibration

The overall overpressure is mainly determined by mechanical compaction.
Other sources for overpressure, such as chemical compaction or fluid expan-
sion, are often rather localized phenomena and for that reason not included
in this section.

Mechanical compaction, as formulated in (2.13), relates pore water flow
with porosity reduction and overpressure. An overpressure calibration is there-
fore a calibration of compressibility and permeability. It can be performed in
two major steps. The first step deals with the adjustment of rock compress-
ibilities and the second with permeabilities.

Compressibility is introduced via a relationship of effective stress and
porosity in (2.17). Effective stress is defined as the difference 6’ = o — pl.
Relationship (2.17) describes a local property of the rock, and does not con-
tain permeability. If porosity is known, a compaction model such as Athy’s
law or the Schneider model can be fitted to each lithology in the following
way: porosity and pressure value pairs of the same lithology are collected for
different depths and locations. It is possible to calculate the corresponding
overburden from the basin model for these points. Thus, effective stress can
be evaluated and plotted against porosity (Fig. 2.35). Finally, a compaction
model with an effective stress versus porosity formulation, is fitted against
these data points.
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Fig. 2.35. Fit of Athy’s law in porosity—effective o 10 20 30 40 50 € 70

stress formulation against a few data values Porosity [%]
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Note that this approach relates effective stress to porosity and not with
depth. A porosity depth fit is not achieved until the second major calibration
step of permeability adjustment is performed.

The second step consists of a permeability adjustment against overpres-
sure. This step can be sophisticated because overpressure depends in general
non—locally and ambiguously on permeability. For example, a pressure drop
due to water outflow can often be modeled by different positions and sizes of
the “leak”. However, some general rules of thumb can be stated. Highly imper-
meable rocks are not a matter for calibration. If there is no water flow within
these rocks, a small change in permeability does not change the overpressure
pattern at all. The situation is the other way around for highly permeable sand
layers. A change in permeability will not change the overpressure pattern. It
remains equilibrated inside these layers. Important for pressure calibration
are the layers in which overpressure builds up or is released (Fig. 2.36). Obvi-
ously, a permeability variation for these rocks will cause a significant change
in the overpressure pattern. Identification of these layers is a key point in over-
pressure calibration because it drastically reduces the number of calibration
parameters.

Pressure [MPa)
o 2‘EI -!‘EI E‘U E.U 98

101

1000
Fig. 2.36. An example of a pressure cal-
ibration by adjustment of the permeabili-
ties. Pressure builds up in layer Fm6 and
is slightly released in layer Fmb5. Hence
Fmb and Fm6 are the key layers in this
example. It is possible to calibrate the
model by variation of the permeabilities

2000

Depth [meter]

in these layers. Below Fmb5 a highly per- \i\ \ -
meable sandstone is located. It transports om0 o \

some water from this region through a

slightly higher permeable window area in \\ \ e

—| Source
I Fmt

Fmb5/Fm6, far away from this well. Hence
it is necessary to incorporate and adjust
the permeabilities in this window area for
good calibration

| Basement

Overpressure can, in principal, only be calibrated if the water flow and wa-
ter balance is adjusted correctly throughout the entire basin. In practice this
leads to a situation where the permeabilities of many layers, lithologies, and
rock types must be adjusted simultaneously. Due to long range pressure inter-
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actions caused by water flow, this is usually very problematic. It is found that
it is possible to tackle the problem iteratively. Calibration is first performed
on key layers which are connected directly or via other permeable layers to the
top of the basin. Water is transported along these pathways out of the basin.
Overpressure can be calibrated best if the total amount of water in the basin
is adjusted first. According to this picture adjustments of permeabilities in
more deeply buried regions will lead to a minor overall adjustment at least on
the global water balance.! On average, the water flow is upward and therefore
calibration should usually be performed from the top down and from more
to less permeable lithologies. The procedure can be repeated iteratively until
convergence is reached.

This workflow assumes, that recently no erosion with a reduction of over-
burden appeared. Otherwise, under the assumption of non-decompactable
rocks, porosity must be fitted against the maximum effective stress. How-
ever, the maximum effective stress might not be calculable as necessary paleo
overpressures are possibly unknown. This problem can be overcome with ad-
ditional overpressure shifts at paleo times, which are also calibrated against
the present day overpressure pattern. The whole overpressure calibration pro-
cedure including both steps must then iteratively be refined.

2.5 Geomechanical Models

The fundamentals of geomechanics would require a full book in itself. Here
only the most important equations, which are needed for basin modeling, are
mentioned. Detailed descriptions are given e.g. in Fjaer et al. (1992) and Parry
(2004).

Solids conduct forces through the material and react with deformations.
The forces and moments acting on each small volume element are described in
terms of stress and the deformations are represented in terms of strains. Most
materials respond with linear dependent recoverable strains on small stresses,
which is called linear elasticity. In practice, stress—strain relations also have
terms of non-linearity, irreversibly (plasticity), rate dependency (viscosity or
creep) and yield failure, when certain limits of the stress components are
exceeded.

The traditional stress—strain concept has been determined for solids. It can
be extended to porous media with an introduction of effective stresses, which
takes pore pressure into account. The difference between the concepts of rock
and soil mechanics is that the first takes into account cement between the
grains, while the second refers to unconsolidated rock with loosely connected
grain particles.

! More deeply buried rocks are usually more compacted and therefore less perme-
able. This also reduces the capability of water transport and the range of influence
on the overpressure pattern.



78 2 Pore Pressure, Compaction and Tectonics
2.6 Stress and Deformation

The total bulk stress tensor is a superposition of the stress tensors of the
grains and the pore pressure of the fluids. Tensors, their principal values and
invariants are introduced in Sec. 8.2. The stress tensor o,; has normal (i=17)
and shear (i # j) components, which act on surfaces perpendicular to the
coordinate axes (Fig. 2.37). Compressional normal components are positive.
The principal values are denoted as o, 0,, and o5 with 0y > 0, > 04. The
boundary vector t = n - o acting on arbitrary area with the normal n has a
normal and a tangential component ¢, and ¢,.
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Fig. 2.37. Representations of the stress tensor. (a) Normal and shear components,
(b) Boundary stresses at an arbitrary area, (c) Principal Stresses, (d) Mohr circles

There are two important representations of the three dimensional stress
state: the Mohr circles used in rock mechanics and the “p-q” plots used in
soil mechanics. The Mohr circle construction is based on principal stresses. An
arbitrary 3D stress tensor is pictured with three circles (Fig. 2.37) in a normal-
shear stress diagram and the area between the circles represents the boundary
stress vector acting on any cut-plane of the volume element. The outer circle
is important to analyze and illustrates rock failure. Stress in two dimensions
is represented with only one circle. Mohr circles for the special cases of biaxial
and isotropic stresses, and pure shear are illustrated in Fig. 2.38.
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a) A..Biaxial Stress B..Biaxial Stress C..Isotropic Stress D..Pure Shear
(Compression) (Compression/Extension) (Pressure)
icy i o, i o,
O3 O3 Gy G3 G3 O3
- « > —» «

o Fo for

b) c)

Shear Effective Stress o, Deviator Effective Stress q

B B

L]

D
D
c c *A
‘ Normal Effective Stress ’, Mean Effective Stress ¢’

Fig. 2.38. Stress characterization of special load cases (a) Principal stresses for
biaxial stresses, (b) Mohr circles, (c) soil mechanical p—q plot

The “p-q” plot uses two characteristic values, the mean stress ¢ and the
deviatoric stress ¢.> The mean stress is an average volumetric (compressional)
stress and the deviatoric stress represents an average shear stress as follows:

oc=0,+0,+0
Lo " (2.72)

9=/ [(0) = 03)* + (o) = 03)% + (05 — 03)?]
Any three dimensional stress state is a point in the ¢
in Fig. 2.38.

Any movement, rotation and deformation yields a change in the position
of the sample particles, which is described with the displacement u(r). The
deformation of a volume element is called strain € and can be derived from a
given displacement vector as follows:

‘p-q” plot as illustrated

€= %(Vu +(vu)T). (2.73)

This equation is only valid for small deformations. In case of large deforma-
tions, additional terms with products of Vu need to be incorporated in the
above equation (Zienkiewicz, 1984). The strain tensor €;; also has normal

1)}

2 The symbol “p” is usually used in soil mechanics terminology instead of &, but
the symbol “p” is already used for pore pressure here.
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(or direct) (¢ = j) and shear (or distortion) (¢ # j) components. The total
volumetric deformation €, = 3 € is the sum of the principal strains:

€, =€ T 6 +6g. (2.74)

The two special deformations of pure and simple shear have no volumetric
strain €, = 0 (Fig. 2.39).

Pure Shear Simple Shear
Shear Strain
A X
* &, £, > g,
- A @ """"" z
o — .
g, <= e=——¢, i>|E&, @ £,.=¢€, ﬁ & Direct
Strain
T T »
e &, g, &
€ <4 &,

Fig. 2.39. Pure shear and simple shear are special deformations without volumetric
strain. They are represented with the same Mohr circle, but they have different
orientations of the axes

The elasticity tensor E relates stresses and strains linearly o = FE - €
assuming the linear theory of elasticity. It contains only two elastic parameters
for isotropic behavior: the shear modulus G and the Poisson’s ratio v.

2Gv
€
1—-2v"

where I is the unit tensor. Alternatively, the Young’s modulus E or the bulk
modulus K can be used as follows.

o =2Ge+

I (2.75)

2G(1+v)
E=2G(1—- K=—"—"—"-—. 2.
Note, that the inverse of the bulk modulus is the bulk compressibility C =

1/K.

The meaning of the elasticity parameters is especially descriptive for uni-
axial compression with o, and the two resulting strains €, and € , where the
elastic properties are £ = 0, /e , v = _Ey/%a and K = /e . Anisotropy is
described with more then two elastic parameters in the elasticity tensor and
non-linear elastic behavior with additional terms of higher order strains.

The principle of force equilibrium states, that any body force f is compen-
sated by the stress tensor.

V-o+pf=0 (2.77)

where p is the bulk density. This yields the differential equation based bound-
ary value problem for the model of linear elasticity (2.75) with the gravity
(overburden) forces as follows.
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GAu +

1_2VVV-u+pgeZ_O. (2.78)
The boundary values are displacements u and boundary stresses t = n - o.
The differential equation is slightly different when large deformations are taken
into account (Zienkiewicz, 1984).

The above theory of stresses and strains has been developed and proofed
for pure solids. Extensions for composite media, as needed for pore fluids and
rocks, require very complex models for pore pressure and rock stresses. There
are simplified models proposed by Terzaghi on an experimental basis and
Biot on theoretical derivations, both are based on the idea of introducing an
effective stress o’ instead of the total stress o and using the principal equations
of the above concept with some modifications.

K
o' =0 —apl, with azl—?b (2.79)

S

where K, K_ are the bulk moduli for the bulk framework and the solid rock
matrix, respectively. Terzaghi’s effective stress is defined for @ = 1, which is
a good approximation except at very large depths. The corresponding effec-
tive stress based Mohr circles and “p’-q” plots for compacted sediments are
illustrated and explained in Fig. 2.40.3

2.6.1 Failure Analysis

Elastic material response means, that characteristic stress values like o, or
o increase linearly with the equivalent strain values €,, €,. The correspond-
ing stress-strain plots also show non-elastic behavior. The curves are usually
obtained by rock mechanical laboratory measurements, such as drained and
undrained uni- and triaxial tests. Mean stress and volumetric strain are the im-
portant parameters in basin modeling. Typical curves are shown in Fig. 2.41.
Usually, elastic and elasto-plastic regions are distinguished, separated by the
yield point, the point of maximum stress and the critical state point.

Elastic behavior means no permanent changes. Thus, the rebound curve
is identical to the load curve. Beyond the yield point the specimen will not
return to the original state, but it still supports increasing loads with yield-
ing. Softening begins at the point of maximum stress. Further deformation
yield less ability of the specimen to withstand stress. At the critical state, an
instable deformation occurs, like rupture or pore collapse. Failure is usually
defined at the point of maximum stress, although it is sometimes used for
yielding, since the material structure changes.

3 Equivalent to the term “p-q” plot, which was introduced as the mean stress versus
deviatoric stress diagram, the “p’-q” plot depicts the mean effective versus the
deviatoric effective stress diagram. Note that the deviatoric effective stress is
equal to the deviatoric total stress for Terzaghi’s definition of the effective stress
(2.2).
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Fig. 2.40. Effective stress based Mohr circles and “p’-q” plots for (a) burial and
uplift, (b) pore pressure changes, (c) tectonics. (d) Equivalent “p’-q” plot
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Fig. 2.41. Schematic stress versus strain plot for rocks. Characteristic points are
the yield point (YP), the maximum stress point (MS) and the critical state point
(CS). Brittle and ductile materials are distinguished by the relative length of the
elasto-plastic region. The rebound curve has approximately the same steep angle as
the linear elastic curve with a small hysteresis

The behavior of a sample is called ductile or brittle, when the elasto-
plastic region is large or small. The curve in the elasto-plastic region of the
same sample strongly depends on temperature and the speed of deformation.

Mohr Type Failure

For an arbitrary three dimensional stress state, the failure criterion is a func-
tion of all principal stresses, the yield function f:
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floy,09,05) =0. (2.80)

Mohr proposed a function, which depends only on maximum and min-

imum principal stresses. This is equivalent to a curve in the Mohr diagram

(Fig. 2.42). Failure occurs when the Mohr circle intersects the failure line. The

often used Mohr failure curve is a straight line with cohesion C' and internal

friction u as offset and steep angle of the line, respectively, which is called a
Mohr—Coulomb failure.
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Fig. 2.42. Stresses and pressures in porous rocks

o,=C+po, . (2.81)

Mohr—Coulomb failure initiates plastic flow along a failure plane, which
is directed at an angle 8 = (m + 2u)/4 between the axes of o, and o,. The
Mohr—Coulomb failure criterion is also equivalent to the surface of a hexagonal
pyramid in the principal stress space (Fig. 2.42). A Mohr-type failure curve
can also used to describe pore collapse, but with a negative friction angle,
which is equivalent to the “cap” of the Mohr-Coulomb pyramid.

In the extensional region, a Griffith type criterion is usually taken into
account. It is derived from a microscopic theory of crack extension in two-
dimensional samples. A simple generalization to three dimensional rock sam-
ples can be made with a parabolic failure curve in the Mohr diagram
(Fig. 2.42), which is equivalent to a parabolic “top” in the principal stress
space. Griffith formulated the failure equation for 2D only. The simplest ex-
tension to 3D-phenomena is Murell’s extension, where the failure surface, in
terms of principal stresses, is also a parabolic surface with a simple pyramid
on top.

(0, —03)*+ (0, —0y)* + (05— 03)? =24T, (0, + 0y + 03) (2.82)

or oy=-1T, or o,=-T; or o,=-1T,.

Note, that the maximum tensile strength is the only failure parameter for
Griffith failure and it is related to cohesion as C' = 127|. Griffith failure
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can also be extended to compressional regions with the same formula. This is
usually used for the description of fracturing as explained in Sec. 2.6.1.

Plastic Flow and Critical State

The term critical state indicates damage and the inability of the specimen
to support stresses. Usually, the same type of failure condition is used as for
yielding, but with different material parameters C,, 1;, and u. Plastic flow
occurs from the onset of yielding until the critical state is reached. Then, the
strain consists of elastic and plastic parts (Fig. 2.43),

e=€, te€,. (2.83)

The elastic strain is still related to the effective stress tensor with the elastic
modules, and the plastic deformations are directed perpendicular to the failure
surface in the principal stress space.

of
de, ;= dA o7

(2.84)

where A is the hardening parameter. In the above equation the plastic flow
vector demj is directed perpendicular to the yield surface in the o—space.
In porous media, a constant angle between flow vector and yield surface is
usually assumed. In general, the function f can be different from the yield
function and it is then called plastic potential. It is very important, to note,
that the direction of the plastic flow is controlled by the failure parameters C,),
T}, and p. Fault planes are directed along fixed angles between the minimum
and maximum principal stresses. The formulation of the corresponding elasto—
plastic boundary problem takes into account the plastic hardening law (2.84)
and the yield condition (2.81). Detailed descriptions are given in Zienkiewicz
(1984).

o,

Initial yield surface
Current yield surface

Critical
state
surface

Fig. 2.43. Failure surfaces for yield-
ing and critical state after Fjaer et al.
(1992). The process of yielding is equiv-
alent to hardening until the critical
state is reached and damage occurs

G,

The soil mechanical equivalent of the yield surface is the the Roscoe and
Hvorslev surface in the “p-q—v” diagram (Fig. 2.44), for normally consolidated
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and overconsolidated rocks, respectively.* When the effective stress state in a
rock intersects the yield surfaces, further compaction with increasing effective
stress occurs along both failure surfaces until the critical state line.

Deviator Effective Stress
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Fig. 2.44. Failure surfaces in a soil me-
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Fracturing

Fracturing is another type of failure, which is the formation and growth of
microfractures in rocks. Most fracture models are based on the Griffith theory,
which defines a brittle failure surface in principal effective stress diagrams.
The most common type of fractures are tensile fractures. They are formed
when traction exceeds the tensile strength 7},. Following the usal conven-
tion, traction is negative stress. Hence the maximum traction is equal to the
minimum principal effective stress ¢4 and the condition for the initiation of
fractures is
o, —p=1,. (2.85)

Obviously, the above condition is valid when the Mohr circle contacts the
failure line on the left side (Fig. 2.42). The Mohr circle moves to the left
mainly by overpressuring. The minimum overpressure, which is needed to
initiate fracturing for a given stress state, is called the fracturing pressure.
The fracturing pressure can be drawn in the pressure-depth space to illustrate
the threshold pore pressure for fracturing (Fig. 2.42). It is a very common
simplification in basin modeling programs to describe the fracturing condition
with a fixed fracturing pressure versus depth curve (Fig. 2.45). The tensile
strength differs for the different rock types. Hilgers et al. (2006) reported
T}, = 10 MPa for sandstone and a significant smaller value for shale. Thus, the
fracturing pressure gradient alternates within a shale-sand sequence.

Fracturing increases the rock permeabilities and drops the capillary entry
pressures as described with the following relationship.

4 Normally consolidated rocks are under the maximum effective stress, while over-
consolidated rocks have a lower effective stress than at maximum burial
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Fig. 2.45. Pressure and stress versus depth diagram for a fracturing model with hy-
drostatic pressure py, pore pressure p, fracturing pressure py, principal bulk stresses
o1, 03 and effective stresses o7, o4. The maximum stress is almost equal to the
lithostatic pressure and the minimum stress is assumed to be a fixed fraction of
the lithostatic pressure. (a) The difference between the minimum and maximum
effective stress increases with depth. (b) The Griffith model defines the fracturing
pressure as the required pore pressure to initiate fracturing. (¢) Fracturing occurs
when the pore pressure exceeds the fracturing pressure
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(2.86)

where k and &, are the permeability of the unfractured and fractured rock, p,
and p, 7 are the capillary entry pressures of the unfractured and fractured rock,
and A, and A_ are the fracturing parameters. For clastic rocks, the fracturing
parameters of A\, =3 log mD and A\, = 3 MPa are frequently used. Fractures can
partially anneal when the overpressure decreases below the minimum effective
stress, so that the tension turns into compression. It is usually not necessary
to exceed tensile strength again when fractures are re-opened, that means
that the pore pressure has to be equal to the minimum effective stress. In
some models, the simplified fracturing condition, that the fracturing pressure
is equal to the minimum principal stress, is used. However, the inclusion of
multiple closing and opening behaviors requires hysteresis effects with different
fracturing pressures and permeabilities.

2.7 Faults

Faults occur in most basins with large variations in length, thickness, throws,
gouge content and related properties. They play an important role in fluid
flow and pressure formation. Faults are initiated in consolidated sediments
due to extensional and compressional forces mainly caused by plate tectonics.
The process of fault formation and growth can be described and modeled with
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kinematic approaches. This is usually not part of basin modeling, instead the
fault geometry and main properties at present and paleo—times are given as
a predefined input. Geologists distinguish between normal, reverse, transform
and strike—slip faults, although most of the faults are mixed mode faults. The
fault type depends on stress conditions in the of formation Fig. 2.46. The fault
properties can be predicted by structural or fault seal analysis methods.

a) Normal fault Reverse fault b) Transform fault
o, vertical

o, [*H s /|
{ =
o, vertical
% ,

Footwall block Hanging wall block

c) Strike-slip fault d) Mixed mode
o, vertical

Yo £
ez

Fig. 2.46. Fault types formed under different stress conditions: (a) maximum prin-
cipal stress in a vertical direction cause normal and reverse faults. (b) Minimum
principal stress in a vertical direction causes transform faults. (¢) Medium principal
stress in a vertical direction causes strike-slip faults. (d) Most faults in nature are
mixed modes. The pictures are from Bahlburg and Breitkreuz (2004)

Fault extensions often exceed several hundreds of meters. Fault zones are
often in the range of several meters and much smaller than gridcells of basin
scale models. Location and orientation of faults are thus geometrically de-
scribed with fault planes in 3D-models and lines in 2D—models. Fault lines
and planes can be approximated with boundary elements along cell faces and
edges in cellular models as illustrated in Fig. 2.47 and Fig. 2.55. The fault
planes in 3D—models are constructed from fault lines, which are usually inter-
preted from seismic at the surface of horizon maps.

Faults can act as preferred migration avenues (in-fault flow) or as hydro-
carbon seals which hold column heights of hydrocarbons. The two related
flow properties are permeability and capillary entry pressure. Boundary fault
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Fig. 2.47. 2D-fault models. (a) Fault lines in a 2D—cross section. (b) Fault line
approximation with boundary elements, adjacent volume elements, or with locally
refined grid cells

elements can be used for modeling petroleum migration and accumulation.
They act between two volumetric elements with a zero volume. Capillary en-
try pressure can be defined for cells with an infinitesimally small volume,
but permeabilities cannot assigned to boundary elements without a volume.
This yields instantaneous flow for in—fault flow, which is assumed in some
petroleum migration models anyway.

Permeabilities can not be neglected for pore pressure calculations, if fault
gouge material with low permeability causes pressure contrasts and compart-
mentalization. Hence, the inclusion of fault permeabilities for pressure mod-
eling requires the consideration of a fault volume.

The simplest method to work with volumetric fault elements is to define
all cells adjacent to the fault plane as fault cells and assign the correspond-
ing fault permeabilities. Obviously, fault zones can be overestimated with this
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approach, which can yield large errors in the calculated pressures. This is
especially problematic for very low permeability faults, which have to be con-
tinuously connected to model compartments. Double or triple bands of cells
are necessary when topologically regular grids are considered. Irregular grid-
line spacing with higher gridline density in the vicinity of faults can be used
to lower the effect, but this is usually only applied in 2D—models, since the
number of gridcells increases significantly.

A good solution to the problem is the introduction of locally refined ele-
ments around faults (Figs. 2.47, 8.13), where the real fault width can be taken
into account. This method requires significant effort for the development of
automatic meshers in 3D, especially for the special cases of layer pinch—outs
and dendritic fault segments. An example pressure calculation with locally re-
fined elements around faults, fault widths of 10 m and fault permeabilities of
10~%mD is shown in Fig. 2.56. The pressure is constant within the sandstone
compartments and varies in the sandy shales.

The fault permeabilities and capillary pressures are mainly determined by
the gouge composition. Very thin faults can be handled as neutral or juxta-
position faults without any property assignment.

The gouge composition is a mixture of the rocks of all layers, which slipped
along the location during faulting. An important parameter of the composition
is the clay content. Various indicators are proposed (Yielding et al., 1997;
Fulljames et al., 1996), such as the shale smear factor or the shale gouge
ratio (Fig. 2.48). All of them pay attention to the juxtaposition of sediments
between the foot and the hanging wall and depend on fault distance or throw.
The shale gouge ratio (SGR) is the volumetric ratio of grains smaller then
100nm to the larger grains assuming that the value at an actual location
is simply the arithmetic average of all the material that slipped since fault
movement began. In this approach, it is not considered that different rock
types have different supply rates to the gouge. An advantage of the SGR
concept is, that the values can be calculated by simple volumetrics of the
fault adjacent sediments for each point on the fault surface.

Yielding (2002) proposed simple relations to convert SGR values to capil-
lary entry pressures and permeabilities. Capillary entry pressures control col-
umn heights at sealing faults. They are given as mercury-air values and can be
converted to the present petroleum-water system via in-situ interfacial tension
values of the compositional dependent petroleum phases. The fault capillary
pressures (FCP) are therefore capillary entry pressures for the mercury-air
displacement. Yielding found linearly increasing FCP values for SGR larger
than a threshold SGR, with different ascent angles but unique minimum SGR
of 18% in most of the samples. The average value for the parameter k in the
following equation is 50 MPa.

p, =k (SGR—0.18) . (2.87)
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Fig. 2.48. Definition of fault properties after Yielding et al. (1997): (a) juxtaposition
and gouge fault, (b) definition of shale smear factor (SF) and shale gouge ratio (SGR)

The permeability value controls in-fault flow, once the accumulation is able
to break into the fault, but this seems to be less important as the distances
are usually short before an exit to more conductive sediments is found.

Tt is obvious, that the fault properties (SGR, FCP) experience large varia-
tions through geological time. Thus, they have to be specified or precalculated
for several time periods. A common simplification is the introduction of spe-
cial fault properties: ideal open (SGR < 18%, FCP < 0.1 MPa) and ideal
closed (SGR > 95%, FCP > 50 MPa) to define faults as completely open or
completely closed or via special FCPs or SGRs as in Fig. 2.57.

Diagenetic processes or cataclasis in faults can be described by additional
temperature or effective stress dependent corrections of the SGR values.

2.8 Paleo—Models

In a basin with low faulting, throw and tectonics, back-stripping of the
present day geometry under consideration of decompaction, erosion and paleo—
thickness corrections is a good approximation of the paleo—geometries. De-
compaction and erosion are typically vertical phenomena, which do not take
into account any horizontal movements and changes in the total length of
the layer. Horizontal movements of single layers like salt domes are described
with paleo—thickness corrections based on rock volume balances which re-
sults in layer squeezing and stretching. Complex tectonic events often yield
strongly deformed geometries, which usually overstretch the possibilities of
backstripping. Complete paleo—geometries are alternatively used as input for
the simulation. They are constructed from structural modeling methods be-
fore basin modeling is performed. The simulator then jumps from predefined
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paleo—geometry to paleo—geometry in the analysis. It has to identify the new
location of each single facies and has to take into account facies movements
and deformations. In compressional tectonics, overthrusted layers can mul-
tiply be defined along a depth line, which is handled in practice with the
implementation of a block concept for the thrust belts. Each block represents
a compartment treated as a separate unit which can be moved along and
against any other block.

2.8.1 Event—Stepping

Backstripping is also called event stepping, since the paleo—geometries are re-
constructed from the present day geometry due to given “geological events”
with a suitable set of sophisticated rules, which yields topologically similar
paleo-models. Decompaction of a layer from present day thickness d, to de-
positional thickness d,, is calculated with the assumption of the conservation
of the solid matrix volume according to

dy (1= ¢y) =d,(1—9,) (2.88)

with present day and depositional porosities qﬁp and ¢, respectively. The
present day porosity is not known prior to analysis, since it depends on the
pore pressure development. Hence, the decompaction in the first simulation
run can only be made with an estimation of the present day porosities, used
as the steady state values for hydrostatic pressure conditions. The forward
simulation then yields calculated present day geometry based on pore pres-
sure controlled compaction, which usually differs from the given present day
geometry (Fig. 2.49). This difference is much smaller in the next simulation
run, when the calculated present day porosity can be derived for decompaction
instead of the estimated steady state values. This optimization procedure can
be applied multiple times, but usually two or three loops yield good results.

Modeling of erosion requires the definition of the eroded thicknesses and
the erosion ages. Eroded thicknesses can be given with virtual horizons or
thicknesses at the time of deposition, at present day or any other geological
event (Fig. 2.50). Multiple erosions of one layer and one erosion on multiple
layers can also easily be recognized with virtual horizons. The interpretation
of eroded thickness is often easier to perform on a backstripped and decom-
pacted paleo—geometry. Herein, the porosity at the erosion age has also to be
considered for decompaction of overconsolidated rocks. The eroded thickness
and the compaction history of the layer before erosion has to be taken into
account in the optimization procedure.

Horizontal movements of layers like salt can be described with additional
thickness maps during doming. The changes are realized by layer stretching
and thinning. The additional salt thickness layer should be calculated under
the assumption of total volume conservation. The simplest model considers
a homogeneous depositional layer with the total volume equal to the total
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Fig. 2.49. Backstripping with decompaction is based on estimated present day
porosities. The calculated porosities of the forward simulation usually improve back-
stripping in the next run
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Fig. 2.50. Definition of erosional thicknesses: (a) with virtual horizons at the present
day geometry, (b) with additional thicknesses at the time of sedimentation, (¢) with
virtual horizons at any geological event

volume of the present day salt domes and the definition of the doming ages.
A linear interpolation between the initial and the final salt thicknesses can
then be realized during doming. The opening of the salt windows should be
described with an additional salt map, since the salt windows would otherwise
open only during the last time step of the doming (Fig. 2.51).

Structural geologists often provide salt maps for various geological events
based on kinematic models, which also can be considered during simulation.
Additional thickness maps can be used for the thinning of the salt adjacent
layers or for doming of other lithologies, e.g. shale. High overburden can also
yield reverse domes and single salt pillows as illustrated in Fig. 2.52. This
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Fig. 2.51. A simple geometrical model with a linear interpolation of the salt thick-
nesses between the geometries of salt sedimentation, salt window opening and the
final doming

requires the introduction of several layers to avoid multiple occurrences of one
layer along a depth-line. Another method for handling salt intrusions into the
overburden layers is to exchange the lithology of the intruded layers with salt.
This is recommended when the intruded layers have big gaps in the present
geometry. In very complex basins, pre-computed paleo-geometries might be
necessary. This is described in the next subsection.

Reverse Salt

Dome 9

Single Salt
Pillow

Base Salt
Dome

Fig. 2.52. Reverse salt domes and salt
pillowing require multiple layer defini-
tions

2.8.2 Paleo—Stepping

The introduction of complete geometrical models for certain paleo—times re-
quires the recognition of facies locations together with the corresponding types
of movements and deformations during stepping from one paleo—geometry
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to the next. A section of a layer can be folded, migrated and/or otherwise
stretched so that location and shape in two successive time steps might be
very different (Fig. 2.53). A meshing algorithm based on pre-defined gridpoints
and sublayers can yield new volumetric cells which are no longer related to
the same rock of the previous time step. The consequence is that all bulk rock
properties have to be transferred according to the new location.

; ; Non-Uniform ;
Q) Uniform Folding . Move in from
Stretching Side Boundary
Paleo-
Event
Present
Day

b)

Fig. 2.53. Deformation types of facies during tectonics

In most cases, the deformation is uniform stretching or thinning, which can
be achieved with linear mapping operations. Any non-uniform deformations
have to be specified manually between paleo—geometries. For moving—in layers,
the side boundary values can be taken as the values for the previous time step.

In the following a method is described, how the pressure and compaction
problem is solved, when the compaction has already been predefined via paleo—
geometries. Both the pressure and the compaction equations can be solved in
the usual way. The change in the overburden load of each layer is calculated
from one paleo—geometry to the next. The transient equation for overpressure
(2.13) can then be solved with the transformed cell values of the previous
time step. The results are a change in the overpressure as well as a reduction
in the porosity. The only difference from the usual procedure is, that the
porosity change is not converted into the new layer thicknesses, since they are
already predefined with given paleo—geometries. Hence, porosity reduction and
compaction are decoupled processes here and it is accepted that the volume
rock matrix is no longer conserved.
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Backstripping or event—stepping is applied before the first occurrence of a
paleo—geometry with the usual method for optimization (Fig. 2.54).
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Paleo-Models
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Esimated i |
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Fig. 2.54. Decoupling of compaction and porosity calculation during paleo—stepping

A difficult problem is the automatic generation of additional paleo-models
for time steps between the interpretations. The simplest idea is to use linear
interpolations so that the thickness values of each gridpoint are interpolated,
but this often yields unsuitable connections in steep faults. Another method
is to directly jump to the next paleo-model, and use intermediate time steps
for the solution heat and fluid flow equations, but with the same geometry for
the whole geological event.

The above procedure clearly separates structural reconstruction from for-
ward basin modeling analysis by work flow and by data. The advantage of
this decoupled link is that it is possible to use advanced special tools for both
structural and basin modeling and the functionality of both tools are retained.
Due to decoupling of processes information is lost. Feedback between mod-
eled processes as well as coupled tools, handling structural and basin modeling
together, are principally possible.

2.8.3 Overthrusting

Blocks for overthrust belts are introduced to avoid multiple layer occurrences
along one depth-line (Fig. 2.58). Each block is then treated like a ”single
basin model” with suitable and varying coupling conditions between the block
boundaries. The number of blocks can vary during paleosteps, since the break-
ing of a so called super block into separate pieces leads to the development of
complex block substructures from a homogeneous initial model. A hierarchy
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of block heritages has to be specified as a model input. Splitting of a super
block into subblocks also has to be taken into account when considering the
shift of the fundamental layer values according to their new locations.

All block boundaries are faults. They can be treated as neutral (juxtapo-
sition), partially or ideally open or closed faults with capillary entry pressures
and permeabilities (Sec. 2.7).

Compression or extension yields a total section abbreviation or stretching,
which yields an increase or decrease in horizontal stress and causes additional
or retarded overpressuring and compaction. Then, compaction should be con-
trolled by mean effective stress instead of vertical effective stress components
with the following modified compaction law, which replaces equation (2.3).

9% _ o000 o 00-p)__ 5 00—

ot v ot vt T ot (2.89)

where C is the volumetric bulk compressibility, which is related to the Terza-
ghi compressibility C,. as follows:®

3(1—v

which yields a factor of 1.28...2.45 for Poisson ratios of v of 0.1...0.4. The
pressure equation (2.13) is modified as follows.

C, ou v k Vo C, 0(@—py,)

oot ~ v "' T1-¢ (2:91)

where p,, is the hydrostatic pressure and ¢ is the mean total stress. Assuming,
that the total stress differs from Terzaghi’s lithostatic pressure assumption
only by an additional horizontal stress component the tectonic stress o, the
total mean stress is related with the overburden weight pressure p, as follows:

1+v

mpl + 201& . (292)

o0=o0,+20, =
The additional assumption of a uniform compression o, > 0 or extension
o, < 0 with a constant tectonic stress o, yields a simple extension of the
pressure equation and compaction law which includes tectonic processes.

® In the case without tectonics, it is oy, /oy = v/(1—v) and with & = (1/3)(0»+201)
it follows that o, /0 = 3(1 —v)/(1 + v).
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Fig. 2.55. (a) Fault approximation with boundary elements in 3D. (b) Vertical view
with horizontal fault elements. (¢) Map view of cutout with fault traces
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Fig. 2.57. Capillary pressures and SGR values on fault planes in a 3D—model

Fig. 2.58. Introduction of blocks for compressional tectonics
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Summary: Overburden load and tectonic stresses cause rock stresses, fluid
pressure formation, and sediment compaction. An external load on a bulk
volume element is balanced partially by the rock skeleton and partially by
the pore water. Rock stresses and pore water pressure equalize overburden
and external tectonic stresses.

Many geomechanical processes are formulated with overpressure instead
of pore pressure and effective stress instead of total rock stress. Overpres-
sure is pore pressure minus hydrostatic pressure, which is the weight of the
overlaying pure water column (plus a depth independent shift for zero level
adjustment). Effective stress is the total stress minus pore pressure.

Water is mobile. Overpressure gradients causes pore fluid flow, which is
mainly controlled by the rock permeabilities. This allows for further rock
compaction with reordering of grains. The rock becomes more dense and its
internal stress rises as overpressure is usually reduced.

All basic effects of mechanical compaction and overpressure formation
can be modeled quite accurately with a Terzaghi—type approach. It is based
on the assumptions that rock grains and water are incompressible and that
rock compaction is a function of the vertical effective stress only, which is
called lithostatic pressure. Water flow is modeled with Darcy’s law. Overall
mass conservation is taken into account. Appropriate conditions for water
in— and outflow at model boundaries must be defined.

Various models for compaction vs. effective stress are proposed. The main
characteristic is a logarithmic dependency of effective stress on porosity. The
related compaction or bulk compressibilities functions are well known over
a wide porosity range for various lithotypes.

Overpressure calibration is a two step process. Firstly, the material pa-
rameters of the compaction law must be fitted locally to suitable porosity
vs. effective stress relationships. Secondly, permeabilities of relevant layers,
which control the overall water flow, must be adjusted. The second step is
rather sophisticated and relies on full simulation runs due to possibilities of
long range lateral water flows.

Besides pure mechanical compaction, pressure effects due to cementa-
tion of pore space, aquathermal expansion, mineral transformations and
petroleum generation are found as locally significant.

Alternatively to a calculation of the geometry from compaction laws
(event—stepping) the geometry might be imported from purely structural
analysis (paleo—stepping). However, overpressures and effective stresses are
simulated in any case with similar algorithms.

Faults can be approximated with special volumetric and boundary ele-
ments. The main mechanical properties are fault transmissibilities and capil-
lary entry pressures, which can be derived from measured or calculated shale
gouge ratios. The inclusion into pressure and fluid flow analysis requires so-
phisticated numerical models.
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