
Chapter 1
Introduction

1.1 Motivation

The construction of robust computational models integrating reasoning and learn-
ing is a key research challenge for artificial intelligence. Recently, this challenge was
also put forward as a fundamental problem in computer science [255]. Such a chal-
lenge intersects with another long-standing entry in the research agenda of artificial
intelligence: the integration of its symbolic and connectionist paradigms. Such in-
tegration has long been a standing enterprise, with implications for and applications
in cognitive science and neuroscience [51,66,130,178,179,238,240,247,248,250].
Further, the importance of efforts to bridge the gap between the connectionist and
symbolic paradigms of artificial intelligence has also been widely recognised (see
e.g. [51, 66, 229, 242, 243]).

Valiant [255] has pointed out that the construction of rich computational cog-
nitive models is one of the challenges computer science faces over the next few
decades. A positive answer to this challenge would provide a characterisation of a
semantics for cognitive computation,1 as follows:

The aim here is to identify a way of looking at and manipulating commonsense knowledge
that is consistent with and can support what we consider to be the two most fundamental as-
pects of intelligent cognitive behaviour: the ability to learn from experience, and the ability
to reason from what has been learned. We are therefore seeking a semantics of knowledge
that can computationally support the basic phenomena of intelligent behaviour [255].

Valiant also described the characteristics of the semantic formalisation needed for
supporting learning and reasoning:

One set of requirements [for a semantics to be adequate for commonsense reasoning] is that
it should support integrated algorithms for learning and reasoning that are computationally

1 The article [255] was published in 2003 in the Journal of the ACM, in a special issue celebrating
its 50th anniversary. In that issue, the editor-in-chief at the time (J.Y. Halpern) invited winners
of the Turing Award and Nevanlinna Prize to discuss up to three problems that these prominent
researchers thought would be major challenges for computer science in the next 50 years.
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tractable and have some nontrivial scope. Another requirement is that it has a principled
way of ensuring that the knowledge-base from which reasoning is done is robust, in the
sense that errors in the deductions are at least controllable [255].

Aiming at building integrated reasoning and learning methods, our approach pro-
vides a unified computational foundation for neural networks and nonclassical rea-
soning. Knowledge is expressed by a symbolic language, whereas deduction and
learning are carried out by a robust connectionist engine. This book also seeks to
contribute to the long-term aim of representing expressive symbolic formalisms in
learning systems [253], by means of neural-symbolic integration [66]. Ultimately,
the goal is to produce biologically motivated models with integrated reasoning and
learning capabilities, in which neural networks provide the inspiration and the ma-
chinery necessary for cognitive computation and learning, while several nonclas-
sical logics provide practical reasoning and explanation capabilities to the models,
facilitating the interaction between the models and the outside world. This book
contributes to the integration of both research programmes into a unified founda-
tion; both of these programmes are now widely but separately used in many areas
of computer science and artificial intelligence [42, 66, 87, 125].

A historical criticism of neural networks was raised by McCarthy back in 1988
[176]. McCarthy referred to neural networks as having a “propositional fixation”,
in the sense that they were not able to represent first-order logic. This, per se,
has remained a challenge for a decade, but several approaches have now dealt
with first-order reasoning in neural networks (see e.g. [43] and Chap. 10). Per-
haps in an attempt to address McCarthy’s criticism, many researchers in the area
have focused attention only on first-order logic. This has suppressed developments
in other important fronts, mainly in nonclassical, practical reasoning, which also
should be at the centre of neural-symbolic integration research owing to the prac-
tical nature of neural-network research. We have shown recently that nonclassi-
cal reasoning can be used in a number of applications in neural-symbolic sys-
tems [33, 68–72, 74, 76–79, 157]. This has been possible through the integration
of nonclassical logics and neural networks.

Notwithstanding this evidence, little attention has been given to nonclassical rea-
soning and its integration with neural networks. We believe that for neural com-
putation to achieve its promise, connectionist models must be able to cater for
nonclassical reasoning. Research on nonclassical logics, including new results on
modal, temporal, intuitionistic, and nonmonotonic logics and their combinations,
has been relevant not only to computer science and artificial intelligence, but also to
economics and the physical sciences. We believe that neural-symbolic systems can
benefit from the results and achievements that nonclassical logics have had in all
these areas.

In summary, we shall argue in this book that nonclassical reasoning is fundamen-
tal in the construction of computational connectionist models. If one assumes that
neural networks can represent rich models of human reasoning and learning, and
can offer an alternative solution to the challenges confronted by intelligent compu-
tation, it is undeniable that nonclassical logics should play a fundamental role at the
centre of this enterprise.
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1.2 Methodology and Related Work

Several approaches have been proposed for integrating the connectionist and sym-
bolic paradigms of artificial intelligence. Most provide a solution to the learning of
classical propositional logic or fragments of first-order logic by means of neural net-
works or related methods (see e.g. [12, 43, 148, 228, 229, 250, 254]). Our book [66]
surveys the work on neural-symbolic integration done until 2002, and proposes a
methodology for dealing with nonmonotonicity in artificial neural networks, includ-
ing knowledge extraction. In [12], a survey of recent developments in classical-logic
learning in neural networks is presented. Further, [66] showed that neural-symbolic
systems are also appropriate for tackling learning in real-world problems. In partic-
ular, the analysis presented in [66] shows that neural-symbolic systems can be used
effectively in a number of applications, ranging from the detection of large-scale
power system failures to DNA sequence analysis.

Despite the significant contributions of the developments in first-order logic to
knowledge representation, learning, and reasoning in artificial intelligence, a truly
intelligent agent or multiagent system, in the sense defined in [271], has several
dimensions that cannot be appropriately managed solely by the use of first-order
classical logic.

There are several extensions and alternatives to classical logic. Nonclassical log-
ics have become useful in computer science and artificial intelligence over the last
few decades. Such logics have been shown to be adequate for expressing several
features of reasoning, allowing for the representation of temporal, epistemic, and
probabilistic abstractions in computer science and artificial intelligence, as shown
for example, in [42, 87, 106, 121].

For instance, temporal, modal, and intuitionistic logics are now amongst the most
successful logical languages used in computing. Born in philosophy and mathemat-
ics, they have benefited from research efforts in applications of computing. Several
semantic models and (automated) proof systems have been designed for nonclassi-
cal logics [42, 88, 104]. Temporal logic has had a successful history in computer
science and artificial intelligence since the pioneering work of Pnueli, back in 1977
[207], as it allows an accurate and elegant formalism for reasoning about the dynam-
ics of computing systems. Temporal logic has had a large impact in both academia
and industry [89, 103]. Modal logic, in turn, has also become a lingua franca in
the areas of formalisation, specification, verification, theorem proving, and model
checking in multiagent and distributed computing systems [42,50,87,106,143,154].
Nonmonotonic reasoning dominated research in artificial intelligence in the 1980s
and 1990s, and intuitionistic logic is considered by many to be an adequate logi-
cal foundation in several core areas of theoretical computer science, including type
theory and functional programming [258]. Other applications of nonclassical logics
include the characterisation of timing analysis in combinatorial circuits [180] and
in spatial reasoning [23], with possible use in geographical information systems.
For instance, Bennett’s propositional intuitionistic approach provided for tractable
yet expressive reasoning about topological and spatial relations. In [106], several
applications of many-dimensional modal logic are illustrated.
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Automated reasoning and learning theory have been the subject of intensive in-
vestigation since the early developments in computer science and artificial intelli-
gence [81, 174, 251]. However, while machine learning has been developed mainly
by the use of statistical and connectionist approaches (see e.g. [125,173,184,262]),
the reasoning component of intelligent systems has been developed using classi-
cal and nonclassical logics (see e.g. [42, 87, 100, 104]). The acceptance of the need
for systems that integrate reasoning and learning into the same foundation, and the
evolution of the fields of cognitive and neural computation, has led to a number of
proposals integrating logic and machine learning [43, 51, 66, 77, 79, 118, 148, 164,
229, 250, 254, 255].

An effective model of integrated reasoning and learning has been shown to be
attainable by means of neural-symbolic learning systems [66, 69–72, 74, 79]. This
book advocates the use of nonclassical logics as a foundation for knowledge rep-
resentation and learning in neural-symbolic systems. We propose a new approach
for representing, reasoning with, and learning nonclassical logics in a connectionist
framework, which leads, in a principled way, to a powerful but computationally light
cognitive model combining expressive nonclassical reasoning and robust learning;
we call it f ibred network ensembles.

In contrast to symbolic learning systems, neural networks’ learning implicitly
encodes patterns and their generalisations in the networks’ weights, so reflecting the
statistical properties of the trained data [35]. The merging of theory (background
knowledge) and data learning (learning from examples) into neural networks has
been shown to provide a learning system that is more effective than purely symbolic
or purely connectionist systems, especially when the data are noisy [246,250]. This
result has contributed to the growing interest in developing neural-symbolic learning
systems. By integrating logic and neural networks, neural-symbolic systems may
provide (i) a logical characterisation of a connectionist system, (ii) a connectionist
(parallel) implementation of a logic, or (iii) a hybrid learning system that brings
together features from connectionism and symbolic artificial intelligence.

Until recently, neural-symbolic systems were not able to fully represent, com-
pute, and learn expressive languages other than propositional logic and fragments
of first-order, classical logic [12,43,51,238]. To the best of our knowledge, research
efforts towards representing nonclassical logical formalisms in connectionist sys-
tems were scant until the early 2000s. However, in [67, 70, 73, 74, 76–78], a new
approach to knowledge representation and reasoning in neural-symbolic systems
based on neural-network ensembles was proposed, namely connectionist nonclassi-
cal logics. In [75], connectionist modal logic (CML) was introduced, showing that
modalities can be represented effectively in neural networks. In [70,72,73], the lan-
guage of the Connectionist Temporal Logic of Knowledge (CTLK) was introduced,
and in [76–78] the computation of intuitionistic reasoning was shown to be learn-
able within neural networks. This new approach shows that a variety of nonclassical
logics can be effectively represented in artificial neural networks. To the best of our
knowledge, this was the first approach to combining nonclassical logics and neural
networks.
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Recently, it has also been shown that value-based argumentation frameworks can
be integrated with neural networks, offering a unified model for learning and rea-
soning about arguments, including the computation of circular and accrual argu-
mentation [68, 69]. The study of formal models of argumentation has also been a
subject of intensive investigation in several areas, notably in logic, philosophy, de-
cision theory, artificial intelligence, and law [25,31,39,48,83,210,212]. In artificial
intelligence, models of argumentation have been one of the approaches used in the
representation of commonsense, nonmonotonic reasoning. They have been partic-
ularly successful when modelling chains of defeasible arguments so as to reach a
conclusion [194, 209]. Although logic-based models have been the standard for the
representation of argumentative reasoning [31, 108], such models are intrinsically
related to artificial neural networks, as we shall show in Chap. 11. This relationship
between neural networks and argumentation networks provides a model in which
the learning of arguments can be combined with argument computation.

This book also presents a new neural-network architecture based on the idea of
fibring logical systems introduced by Gabbay [101]. Fibring allows one to com-
bine different systems (here, neural networks) in a principled way. Fibred neural
networks may be composed not only of interconnected neurons but also of other
networks in a recursive architecture. A fibring function then defines how this recur-
sive architecture must behave, by defining how the networks should relate to each
other (typically by allowing the activation of one network to influence the changes
of the weights of another). We show that, in addition to being universal approxi-
mators, fibred networks can approximate any polynomial function to any desired
degree of accuracy, and are thus more expressive than standard feedforward neural
networks.

Neural-symbolic systems that use simple neural networks, such as single-hidden-
layer feedforward or recurrent networks [125], typically only manage to repre-
sent and reason about propositional symbolic knowledge or if then else rules
[36,66,95,205,250]. On the other hand, neural-symbolic systems that are capable of
representing and reasoning about (fragments of) first-order logic are normally less
capable of learning new concepts efficiently [136, 149, 229, 243]. There is clearly
a need to strike a balance between the reasoning and learning capabilities of such
systems, and between expressiveness and computational complexity.

As argued in [43], if connectionism is an alternative paradigm to artificial intelli-
gence, neural networks must be able to compute symbolic reasoning in an efficient
and effective way. It is also argued that connectionist systems are usually fault-
tolerant, whereas symbolic systems may be ‘brittle and rigid’. We seek to tackle
these problems by offering a principled way of computing, representing, and learn-
ing nonclassical logics within connectionist models.

The combination of nonclassical reasoning and connectionism is achieved by
means of algorithms that translate logical clauses into neural-network ensembles.
Such algorithms can be proved correct in the sense that the ensembles compute a
semantics of the original theory. An immediate consequence of our approach is the
ability to perform learning from examples efficiently, by applying, for example, the
backpropagation learning algorithm [224] to each network of the ensemble. We also
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show the effectiveness of our approach as a (distributed) knowledge representation,
reasoning, argumentation, and learning mechanism by applying it to the well-known
test beds found in the literature [87, 121]. Our approach paves the way for modular,
integrated computation and learning of distributed, nonclassical knowledge, with a
broad range of applications from practical reasoning to evolving multiagent systems.

Technical aspects of this work will be presented throughout the book as the need
arises. No assumption is made that the reader has prior knowledge of nonclassical
logic or neural networks. Connectionist modal logic, a (one-dimensional) ensem-
ble of neural networks [66], is used to represent modalities such as necessity and
possibility. In CTLK, a two-dimensional network ensemble is used to represent
the evolution of knowledge through time. In both cases, each network ensemble
can be seen as representing a possible world that contains information about the
knowledge held by an agent in a distributed system. Learning in the CML system is
achieved by training each network in the ensemble independently, corresponding to
the evolution of an agent’s knowledge within a possible world. It is important that
these logics are investigated within the neural-computation paradigm. For instance,
applications in artificial intelligence and computer science have made extensive use
of decidable modal logics, including the analysis and model checking of distributed
and multiagent systems, program verification and specification, and hardware model
checking.2 In the case of temporal and epistemic logics, these logics have found a
large number of applications, notably in game theory and in models of knowledge
and interaction in multiagent systems [87, 89, 103, 207].

From a machine-learning perspective, the merging of theory (background knowl-
edge) and data learning (learning from examples) in neural networks has provided
learning systems that are more effective than purely symbolic or purely connec-
tionist systems [246, 250]. In order to achieve this merging, first one translates the
background knowledge into a neural network’s initial architecture, and then one
trains the network with examples using, for example, backpropagation. In the case
of CML, for instance, learning is achieved by training each individual network, each
of which is a standard network.

Another long-term aim is to contribute to the challenge of representing expressive
symbolic formalisms within learning systems. We are thus proposing a methodol-
ogy for the representation of several nonclassical logics in artificial neural networks.
We believe that connectionist approaches should take these logics into account by
means of adequate computational models catering for reasoning, knowledge repre-
sentation, and learning. This is necessary because real-world applications, such as
failure diagnosis, fraud prevention, and bioinformatics applications, will require the
use of languages more expressive than propositional logic. Bioinformatics, in par-
ticular, requires very much the ability to represent and reason about relations such
as those used in predicate logic [6]. In summary, knowledge is represented by a
symbolic language, whilst deduction and learning are carried out by a connectionist
engine.

2 It is well known that modal logic corresponds, in terms of expressive power, to the two-variable
fragment of first-order logic [264]. Further, as the two-variable fragment of predicate logic is decid-
able, this explains why modal logic is so robustly decidable and amenable to multiple applications.
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1.3 Structure of the Book

This research monograph is divided into the following chapters. Chapter 1 (the
present chapter) introduces the subject and overviews developments in the area of
connectionist models for integrated reasoning and learning. Chapter 2 introduces the
basic concepts of logic and knowledge representation. Chapter 3 introduces the con-
cepts of neural networks. Chapter 4 introduces the foundations of neural-symbolic
integration. Chapter 5 introduces connectionist modal logic, covering some foun-
dational results and introductory examples. Chapter 6 presents CTLK and its ap-
plications in distributed temporal knowledge representation and learning. Chapter 7
introduces intuitionistic reasoning and learning in neural networks. Chapter 8 de-
scribes some applications of connectionist nonclassical reasoning. Chapter 9 intro-
duces the idea of combining (fibring) networks, for example CTLK and intuitionism.
Chapter 10 describes the combination networks to represent and learn relations in a
first-order setting with variables. Chapter 11 establishes a close relatioship between
connectionist models and argumentation frameworks, and uses argumentation as
an application of fibring. Chapter 12 introduces symbolic reasoning under uncer-
tainty in neural networks and illustrates its feasibility using well-known test beds,
including the Monty Hall puzzle [121]. Chapter 13 concludes the book and indicates
directions for further research.

An extensive list of references cited is provided at the end of the book. The list
is by no means complete, as the literature in this field is vast.
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