Chapter 2
The Mechanical Equilibrium of Rotating Stars

“Epur si muove” said Galileo Galilei when claiming that the Earth is rotating. Due
to rotation, the equatorial radius of the Earth is about 21.4 km longer than its polar
radius, so that the Mississippi from its source to the Gulf of Mexico is “raising” away
from the Earth center. Of course, in terms of the equipotentials it is “descending” to
the sea.

The same can also be said about the stars, where the effects of rotation are on the
average much larger than on the Earth. In stars, the equatorial radius can be much
bigger than the polar radius, up to about 1.5 times the polar radius. This shows the
importance of the possible rotational effects. In addition, while the Earth rotates like
a solid body, stars may have an internal differential rotation, with for example a core
rotating faster than the outer envelope. Moreover, stellar rotation not only produces a
flattening of the equilibrium configuration, but it drives internal circulation motions
and various instabilities which transport both the chemical elements and the angular
momentum.

2.1 Equilibrium Configurations

2.1.1 From Maclaurin Spheroids to the Roche Models

The stability of rotating configurations has been studied since long (see review in
[315]), for example with Maclaurin spheroids, where the density o is supposed con-
stant or with the Roche model, which assumes an infinite central condensation. The
complex reality lies between these two extreme cases.

In the case of the Maclaurin spheroids, the equilibrium configurations flatten for
high rotation. For extremely high angular momentum, it tends toward an infinitely
thin circular disk. The maximum value of the angular velocity £2 (supposed to be
constant in the body) is .Qr%m = 0.4494 1 G 0. In reality, some instabilities would
occur before this limit is reached.

In the case of the Roche model with constant €2 (this is not a necessary assump-
tion), the equilibrium figure also flattens to reach a ratio of 2/3 between the polar
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20 2 The Mechanical Equilibrium of Rotating Stars

and the equatorial radii, with a maximum angular velocity 22, = 0.72157Gp,
where o is the mean density (see Sect. 4.4.2). Interestingly enough, for all stellar
masses the rotational energy of the Roche model amounts to at most about 1% of
the absolute value of the potential energy of the models considered with their real
density distributions. Except for the academic case of stars with constant density or
nearly constant density, the Roche approximation better corresponds to the stellar
reality. Recent results from long-baseline interferometry [94, 465] support the ap-
plication of the Roche model in the cases of Altair and Achernar, which both rotate
very fast close to their break-up velocities (see Sect. 4.2.3). These new possibilities
of observations open interesting perspectives.

Here, we consider models of real stars, with no a priori given density distributions
and obeying a general equation of state. The properties of rotating stars depend on
the distribution Q(r) in the stellar interiors. The first models were applied to solid
body rotation, i.e., £2 = const. throughout the stellar interior. More elaborate models
consider differential rotation, in particular the case of the so-called shellular rotation
[632], i.e., with a rotation law £2(r) constant on isobaric shells and depending on the
first order of the distance to the stellar center (see Sect. 2.2). The reason for such a
rotation law rests on the strong horizontal turbulence in differentially rotating stars,
which imposes a constancy of €2 on isobars [632]. In the vertical direction, the
turbulence is weak due to the stable density stratification.

Interestingly enough, recent models with rotation and magnetic fields give ro-
tation laws €2(r) rather close to solid body rotation (Sect. 13.6), nevertheless with
some significant deviations from constant £2. Thus, whether or not magnetic fields
play a role, it is necessary to account for rotation laws which are not constant in
stellar interiors during evolution.

2.1.2 Hydrostatic Equilibrium for Solid Body Rotation

We first consider the angular velocity {2 = as constant throughout the star. Let us
assume hydrostatic equilibrium and ignore viscous terms. The Navier—Stokes equa-
tion (1.2) becomes with account of the centrifugal acceleration

lvr— vou % Q*V(rsin®)?, @.1)
0

according to (B.24) and following remarks. @ = r sin® is the distance to the rota-
tion axis (Fig. 2.1). The above expression of the centrifugal force gives a projection
Q2@ sin® along vector r and a projection Q2@ cos ¥ along vector ¥. The quan-
tity @ is the gravitational potential, which is unmodified by rotation in the Roche
approximation,
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Fig. 2.1 Some geometrical parameters in a rotating star. The angle € is the angle between the

vector radius and the normal —g.¢ to an equipotential

The components of g are (—g, 0, 0) and g = a—? (cf. 1.35). If Q is constant or
has a cylindrical symmetry, the centrifugal acceleration can also be derived from a

potential, say V. One has

1
-VV =Q’6G andthus V = —5.(22&52 .

The total potential ¥ is
Y=0+V,

and with (1.44) one has

V¥ = V20 +V?V with V20 =4nGop.

In cylindrical coordinates, one can write

(VV)g = %% (-0°Q%) = —2Q?

and thus the Poisson equation with rotation becomes

VYW = 4nGo—2Q7%.

Barotropic star: the equation of hydrostatic equilibrium becomes

1
7VP = —V‘P = Zeff-
o

(2.3)

(2.4)

2.5)

(2.6)

2.7)

(2.8)
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The effective gravity g.s results from both gravitation and centrifugal acceleration.
Care must be given on how @ and ¥ are defined, since one often finds expressions
with a different sign. The above expression implies that the pressure is constant
on an equipotential, i.e., one has P = P(¥). Thus, the equipotentials and isobars
coincide in this case and the star is said to be barotropic, otherwise it is said to
be baroclinic (Sect. 2.2). With VP = (dP/d'¥) V¥, (2.8) becomes (1/0)dP/d¥ =
—1. Thus, the density is also a function o = o(¥) of ¥ only. Through the equation
of state P = P(o,T), one also has T = T'(¥). The quantities ¢, P, T are constant
on the equipotentials ¥ = const. The same conclusions are valid for € constant on
cylindrical surfaces around the rotation axis.

2.1.3 Stellar Surface and Gravity

The stellar surface is an equipotential ¥ = const., otherwise there would be “moun-
tains” on the star and matter flowing from higher to lower levels. The total potential
at a level r and at colatitude ¥ (% = 0 at the pole) in a star of constant angular
velocity €2 can be written as

GM,
r

Y(ro) = — — %.Qz r*sin” 0. (2.9)
One assumes in the Roche model that the gravitational potential @ = —GM,/r of
the mass M, inside radius r is not distorted by rotation. The inner layers are con-
sidered as spherical, which gives the same external potential as if the whole mass is
concentrated at the center.

Let us consider a star of total mass M and call R(1}) the stellar radius at colat-
itude 9. Since the centrifugal force is zero at the pole, the potential at the stellar
pole is just GM /Ry, where R, is the polar radius. This fixes the constant value of
the equipotential at the stellar surface, which is given by

G—M—i-lestinzﬁ _ oM ) (2.10)
R 2 Ry

A more tractable form is given below (2.18). The shape of a Roche model is illus-
trated in Fig. 2.2 for different rotation velocities (the radii for non-rotating stars of
different masses and metallicities Z are given in Fig. 25.7). Figure 2.3 illustrates
the variation of the ratio of the equatorial radius to the polar radius for the Roche
model as a function of the parameter @ = Q /€. We see that up to @ = 0.7, the
increase of the equatorial radius is inferior to 10%. The increase of the equatorial
radius essentially occurs in the high rotation domain.

The effective gravity resulting from the gravitational potential and from the cen-
trifugal force is given by (2.8). If e, and ey are the unity vectors in the radial and
latitudinal directions, the effective gravity vector at the stellar surface is
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Fig. 2.2 The shape R(¥) of a rotating star in one quadrant. A 20 M, star with Z = 0.02 on the
ZAMS is considered with various ratios @ = €/ of the angular velocity to the critical value
at the surface. One barely notices the small decrease of the polar radii for higher rotation velocities
(cf. Fig. 2.7). Courtesy of S. Ekstrom
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Fig. 2.3 The variation of the ratio R./R,, of the equatorial to the polar radius as a function of the
rotation parameter @ in the Roche model

_ GM
Zeft = R(0)

+Q*R(V)sin* V| e, + [Q*R(V)sinVcos V] ey . (2.11)

The gravity vector is not parallel to the vector radius as shown in Fig. 2.1. The
modulus gesr = | gefr| of the effective gravity is
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1

2

GM 2 .2 g 452 22 2
+Q°R(Y)sin“ ¥ | +Q R (¥)sin" Ycos“ | , (2.12)

8eff = _W

which can also be written as in (2.20).

2.1.4 Critical Velocities

The critical velocity, also called break-up velocity, is reached when the modulus of
the centrifugal force becomes equal to the modulus of the gravitational attraction
at the equator. The maximum angular velocity €., which makes g.sr = O at the
equator (% = 7/2) is thus from (2.12)

GM
Qe = 25— 2.13)
e,crit

where R. . is the equatorial radius at break-up. If one introduces this value of
Qi in the equation of the surface (2.10) at break-up, one gets for the ratio of the
equatorial to the polar radius at critical velocity,

Re,crit 3

== (2.14)
Rp,crit 2

At break-up, the equatorial radius is equal to 1.5 times the polar radius. The equato-
rial break-up velocity is thus

M  2GM
v2. = Q% R? _ oM _ 26 ) (2.15)

crit, 1 crit “te,crit -
’ Re,crit 3 Rp,crit

This expression is the one quite generally used; however, formally it applies to solid
body rotation. The index “1” indicates the classical critical velocity, to distinguish
it from a second value v » wWhich applies to high mass stars with a high Eddington
factor (see Sect. 4.4.2). If we now introduce a non-dimensional rotation parameter
, defined as the ratio of the angular velocity to the angular velocity at break-up,

QZR3 .
o which gives  @* = Gi};cm . (2.16)

w =

One can also write o 8 GMw?

= = — (2.17)
3 k)
27 Rpcrit
and the equation of the surface (2.10) becomes with x = R/R;, crit
1 4 Ry cri
-+ — @*Psin? 9 = 2L (2.18)

x 27 Ry(o)
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If the polar radius does not change with @ (but see Fig. 2.7), the second member is
equal to 1. Equation (2.18) is an algebraic equation of the third degree. Our expe-
rience suggests it is better solved by the Newton method rather than by the Cardan
solutions of a third degree polynomial, because the Cardan solutions may diverge at
the poles. Also depending on the value of Ry, cit/Rp (@), for @ close to 1 the discrim-
inant of the polynomial equation may change its sign implying another form for the
solution. The comparison with the interferometric observations of stellar oblateness
and gravity darkening is given in Sect. 4.2.3.

Figure 2.4 shows the critical velocities v, for stars of various masses and
metallicities. The critical velocities grow with stellar masses, because the stellar
radii increase only slowly with stellar masses. The critical velocities are very large
for low metallicity stars, since their radii are much smaller as a result of their lower
opacities. Comparison between observed and theoretical values of velocities is given
in Table 4.1. The distribution of rotational velocities for about 500 B-type stars is
shown in Fig. 27.1.

Figure 2.5 shows the ratio v/vcri,; of the equatorial velocity to the critical equa-
torial velocity as a function of the parameter @ = Q /€ in the Roche model. For
low rotation (@ < 0.5), a linear approximation of v in terms of  is valid

, 8 GMo* , 8 GMow’
V= - RIx
27 R ¢ 27 Rpait

p,crit

= gaﬂ Vil - (2.19)
as illustrated in Fig. 2.5. The relation of (v/veri1) vs. @ would be independent of
stellar mass M and metallicity Z if the polar radius would not vary with rotation.
As Ry, is a function of @ which slightly depends on M and Z (cf. Fig. 2.7), this also
introduces some slight dependence on mass and metallicity, not accounted for in the
relation illustrated by Fig. 2.5.
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Fig. 2.4 The critical velocities vy, as a function of stellar masses for different metallicities Z for
stars on the ZAMS. The effect of the changes of the polar radius with rotation is accounted for.
From S. Ekstrom et al. [176]
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Fig. 2.5 The variation of the ratio v/ver;,; of the equatorial velocity to the critical velocity as a
function of the rotation parameter @ in the Roche model. The polar radius is assumed not to change
with the stellar mass here. The dotted line connects the origin to the maximum value

The variations of the equatorial velocities v as a function of w are illustrated for
stars of different masses in Fig. 2.6. As the stellar radii change with M and Z, the
relations of the velocities v with respect to @ are evidently different for the different
masses and metallicities (in addition account is also given to the small effect of
the change of the polar radius for the different M and Z, as mentioned above). The
critical velocities for the most massive stars, where radiation pressure effects are
large, are discussed in Sect. 4.4.

In terms of the parameters x and @, the surface gravity at a colatitude ¥ on a
rotating star can be expressed as

GM 18 5\ (8 , 2|’
Qeff = 7R§.Cm <_x2 + > @%x sin? 19) + <27 ®*x sin ¥ cos 19) ,  (2.20)

where GM / R}%mt is the gravity at the pole at break-up. This is the maximum value

and the term in square bracket is always smaller than 1.0.

Angle between g and r: On the surface of a rotating star, the normal to the
surface does not coincide with the direction of the vector radius (it coincides only at
the pole and equator). There is an angle €, generally small, between the directions
of r and of —g (see Fig. 2.1)

Beff ' I

—_ (2.21)
|gest] - |7]

COSE =
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Fig. 2.6 Variations of the surface velocity v at the equator as a function of the rotation parameter
® = Q/Q. for stars of different masses and metallicities Z with the same coding as in Fig. 2.4.
From S. Ekstrom et al. [176]

By using (2.11), one gets for the angle € in terms of x and ®,

x% - % @’ xsin?
COSE = - (222)

1,8 20\, (8 2|°
{(_)62+27a)2xsin 19) + (35 @ x sin® cos V) ]

The angle € intervenes in the expression of the surface element do on an equipo-
tential of a rotating star

2 .
do - " sindodv ’ 2.23)
COSE
where ¢ is the longitude such that 2 = d¢/dt. This means that the element of
arc in ¥ along the real surface is slightly longer than the element of spherical arc
(Fig. 2.1). The above expression is used in the calculation of the stellar surface and
of the emergent flux from a rotating star.

2.1.5 Polar Radius as a Function of Rotation

In first approximation, one may consider that the polar radii are independent of rota-
tion and use values such as given by Fig. 25.7. In reality the polar radii R,(®) have
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a slight dependence on @, which results from the small changes of internal structure
brought about by centrifugal force. The rate of change is given by the models of
internal structure with rotation. While the equatorial radius strongly inflates, the po-
lar radius decreases by a few percent in general (Fig. 2.7), mostly as a result of a
slight decrease of the internal 7 due to the lower effective gravity. Below 40 M,
the decrease of R,(®) at the critical velocity amounts to less than 2% [408]. Near
1 Mg, the decrease of R, (@) with rotation is larger.

Surprisingly, at 60 M, there is an increase of the polar radius with growing ro-
tation (Fig. 2.7). This results from the fact that the radiation pressure is relatively
important. As the temperature in the polar regions is much higher than at the equator
as a result of von Zeipel’s theorem (Sect. 4.2.2), the relative increase of the radiation
pressure in the outer layers is much higher with a consequent inflation of the polar
radius.

One may rather well represent the change of the polar radius as a function of @
by a form

Ry(®) =Rp(0) (1 —aw?), (2.24)

where a is a constant for models of a given mass [181]. Figure 2.8 provides infor-
mation on the changes of polar radii at other Z values. It shows the changes of the
polar radius at @ = 0.90 for stars of different masses and metallicities. One again
notices the general slight decrease of the polar radius at high rotation for most stellar
masses, while the most massive stars in particular at the higher metallicities experi-
ence an increase.
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Fig. 2.7 Variations of the polar radius as a function of the rotation parameter @ normalized to
the value without rotation for stars of different initial masses at Z = 0.02. From S. Ekstrom
et al. [176]
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Fig. 2.8 Variations of the ratio of the polar radius at @ = 0.90 to the value at zero rotation as a
function of initial masses for different Z. Courtesy from S. Ekstrom

2.2 Equations of Stellar Structure for Shellular Rotation

Let us consider the interesting case of shellular rotation, where €2 is constant on
isobars (i.e., surface of constant pressure), but varies according to the radial coor-
dinate of the isobars. Rotation is shellular because differential rotation in radiative
regions produces anisotropic turbulence [632], much stronger in the horizontal di-
rection than in the vertical one due to stable stratification (Sect. 12.1). Since one
has the relation VP = g, the words “constant in the horizontal direction” mean
constant on isobars, i.e., Q = Q(P). One writes at a given point (r, %) in spherical
coordinates the angular velocity 2

Q(r,0)=Q(r)+Q2(r9), (2.25)

with Q < Q (the average Q on an isobar with radius r is taken according to (10.105)
so as to satisfy the equation for the conservation of angular momentum [632]).
The quantity Q(r, %) can be developed in terms of the Legendre polynomials. The
account of terms higher than the second order allows one to consider higher rotation
velocities [386]. To the second order, one writes

Q(r,9) = Q(r) Py(cos V) . (2.26)

This writing is sufficient for the approximation developed here. However, for the
developments of Q(r, ) used for the transport of angular momentum, one should
rather write for consistency Q(r,9) = Q,(r) [P>(cos ) + (1/5)]. This is demon-
strated in Appendix B.6.1, see also [386]. For the present purpose, we do not need
to specify the development of Q(r,¥). The different variables P, T, o, etc. can be
developed in Legendre polynomials (e.g., Sect. 11.1.1).
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Let us emphasize that the isobars are not spherical surfaces. There is an angle €
(see Fig. 2.1) between the radial direction and the direction of gravity or between a
spherical shell and an equipotential. As an example, in the Roche model at break-
up rotation at a colatitude ¥ = 45° this angle is 13°. For lower rotation, it rapidly
decreases, behaving like Q2. Thus, if one writes the shellular rotation as Q = Q (r),
one should not consider the cases of extreme rotation velocities.

2.2.1 Properties of the Isobars

In the case of shellular rotation, the centrifugal force cannot be derived from a po-
tential and thus (2.3) does not apply. Let us consider the surface of constant ‘¥ (2.9),

1
¥ =0o-— 5.(22 r*sin® ¥ = const. 2.27)

As in Sect. 1.2.1, the gravitational potential is defined by d®/dr = GM,/r* and
@ = —GM,/r in the Roche approximation. The components of the gradient of ¥
are in polar coordinates (r, )

¥ 0P 2Q

2
a5 = or — Q%rsin® ¥ — * sin? 6Q—ar (2.28)
1o¥ 190 10Q
;ﬁ—;ﬁ*g rSlnﬂCOSﬁfr Sln 09*% (229)

The first two components of the gravity gesr = (—geff,r, &eff,0, 0) are according to
(2.11) in the Roche model,

0D
Geff.r = a5 —Q%rsin’9  and
’ r

Geff.p = Q°rsindcos v . (2.30)
Thus, by comparing these terms and the derivatives of ¥, one can write
gett = —V¥ — sin’ 9 QVQ. (2.31)
The equation of hydrostatic equilibrium VP = o g is thus
VP = — (V¥ +r7sin" 9 QVQ) . (2.32)

Since Q is constant on isobars, the vector VQ is parallel to VP. The hydro-
static equation (2.32) implies the parallelism of VP and V¥. Thus, in this non-
conservative case the surfaces defined by W = const. (2.27) are isobaric surfaces
[408], but they are not equipotential and the star is said to be baroclinic. In the case
of solid body rotation, isobars and equipotentials coincide and the star is barotropic.
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In literature, ¥ and @ are often defined with different signs, care has to be given
because this may lead to different expressions.

Thus, for shellular rotation one may choose to write the equations of the stellar
structure on the isobars and use, with little changes, a method devised for the con-
servative case [283], with the advantage to keep the equations for stellar structure
one-dimensional. The main change concerns the expression of the average density
between isobars, as given below (cf. 2.47). Some further properties of baroclinic
stars are studied in Sect. 10.5.3.

2.2.2 Hydrostatic Equilibrium

It is useful to write the equations of hydrostatic equilibrium and mass conservation
in a form similar to that of the non-rotating case [283] in order to minimize the
modifications necessary for calculating rotating stars with shellular rotation. One
associates a radius rp to an isobar, it is defined by
4w 4
Vp= —1p, (2.33)
3

where Vp is the volume inside the isobar. For any quantity ¢, which is not constant
over an isobaric surface, a mean value is defined by

1
<g>= —7{ qdo (2.34)
SP W=const
where Sp is the total surface of the isobar and do is an element of this surface
defined by (2.23).
The effective gravity can no longer be defined as a gradient g.;r = —V'P, since

¥ is not a potential. One uses the fact that VQ is parallel to VP,
dQ
VQ = —aVV¥ ith o=|—|. 2.35
wi ‘ P (2.35)

Let us call dn the average distance between two neighboring isobaric surfaces,
(dn = drp). From (2.31), we get for the modulus of gefr = (—geff.r, &eff,05 0),

d¥Y
gert = (1—r*sif® 9 Qo) — . (2.36)
dn
The equation of hydrostatic equilibrium (2.32) becomes similarly
dp o d¥
%:79 (lfr sin 19.(20()%, (2.37)

which shows the constancy of ¢ (1 —7?sin® 9 Q ) on isobars.
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We want to use the mass Mp inside an isobar as the independent variable,

d
dMp = / odndo = d¥ 0" uo
W=const Y—const d¥
(1 —r2sin> 9 Q a)
=d¥ 0 do . (2.38)
Y=const 8eff

The last equality is obtained by using (2.36). Since o (1 —r2sin® 9 Q oc) is constant
on isobars, we can easily integrate this equation by using also the definition (2.34)

d¥ 1
= — - . (2.39)
dMp o (1-r?sin® 0 Qo) < gt > Sp
With (2.37), this becomes simply
dP -1
= — . (2.40)
dMp < g > Sp
We define a quantity
4y 1
fo= b (2.41)

~ GMpSp <ggffl >

which is equal to 1.0 for a non-rotating star. With this definition the equation of
hydrostatic equilibrium in Lagrangian coordinates finally becomes [408]

P GMp

__GMr 2.42
My~ amd (242

Apart from the factor fp, this equation keeps the same form as in the non-rotating
case (cf. 1.15).

2.2.3 Continuity Equation

Similarly, we want an equation equivalent to (1.15) for shellular rotation. According
to (2.33), the volume of a shell between two isobars is

dVp =4mrpdrp (2.43)

which can also be written as

dn
dVp = / dndo = d¥ —do
i W =const ¥ =const d¥v

(1 —rzsinzﬁQa)

¥ =const 8eff

=d¥

do , (2.44)
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where we have used (2.36). By applying (2.34), we get

dVp = d¥PSp [< gt > — < g r’sin® ¥ > Qa . (2.45)
This expression together with (2.43) and (2.39) leads to

d 1
i = T 2> (2-46)
dMp  4rmrpo

0 (l —rzsinzﬁQot) <ge_f} >
<Gt > — < gurtsin? v > Qa

with 0= (2.47)
The quantity o is not equal to < ¢ >. From the definition (2.34), < o > is the average
density on an isobar, while from (2.46) we see that formally o is the average density
in the element volume between two isobars. When the mass steps are very small
the difference between < o > and ¢ becomes negligible; however, it is preferable to
strictly respect the above definitions.

The two Eqgs. (2.42) and (2.46) are the basic equations for the hydrostatic equi-
librium of stars with shellular rotation [408], replacing the corresponding Eq. (1.15)
of the case without rotation.

2.2.4 Equation of the Surface for Shellular Rotation

In the case of shellular rotation, the isobars are defined by expression (2.27), which
is identical to the expression of the equipotentials for solid body rotation. We may
search the equation of the equipotential, in particular for the stellar surface. An
equipotential is defined by the condition that a displacement ds on it neither requires
nor produces energy,

gefi-ds = 0. (2.48)

The effective gravity is given by (2.31) and the above product becomes

g 1 0¥ 2Q Q0Q
ydr—y ;%rdﬁ + % sin? ﬁQWdr—i- 2 sin® 67%rd0 =0. (2.49)
For shellular rotation, this equation simplifies to
dQ
d¥ + r*sin> ¥ Q —dr=0. (2.50)
r

This is a more general form of the equation of equipotentials (cf. 2.9). If £2 = const.
it simplifies to ¥ = const. and gives (2.10) again. Expression (2.50) can be inte-
grated to give the equation of the stellar surface,

GM
R(D)

1 R(9) dQ GM
— —Q%R*(¥)sin® ¥ +sin® B () Q——dr=—. (251)
2 JR, dr Ry
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This equation gives the shape R(¥}) of the star as a function of Q(r) in the external
regions. If dQ /dr < 0 in the external layers, the above expression indicates that the
real oblateness of the star is slightly larger than the one which would be obtained by
using the € value effectively observed at the equator. In general, in the outer stellar
layers the gradient d€2 /dr is nearly flat, thus the difference with respect to the usual
Roche surface should be small. We have assumed that the gravitational potential of
the inner layers is still the potential of a spherical object, which is satisfactory for
evolution in the H-burning phase, but maybe not in advanced stages where central
rotation may become very high. Interferometric observations are reported in Sect.
4.2.3.

The above developments allow us to construct equilibrium models of rotating
stars in one dimension, which is most useful in view of the calculation of grids of
evolutionary models of rotating stars. Ignoring the effects of rotation on the structure
equations leads to incomplete models. We emphasize that in general the main effects
of rotation on the evolution are those due to the internal mixing of the chemical
elements, to the transport of angular momentum and to the enhancement of the
mass loss in massive stars. These effects are studied in further chapters.
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