
H.-B. Kittlaus and P.N. Clough, Software Product Management and Pricing. 5
© Springer-Verlag Berlin Heidelberg 2009

Chapter 2
Software Products: Terms and Characteristics

Software is an intangible economic good, with no physical form, its utility or value
not even perceptible in another form. So only the functionality of software is percep-
tible e.g. via a user interface, or as the result of a controlled transaction via software,
e.g. as an account movement. What exactly constitutes a software product is often
rather subjective. As with many highly technical products, many people do not
understand how software products work. Software is therefore in the truest sense of
the word “intangible.” Software thus contrasts greatly with other investments or
acquisitions of consumer goods. In particular the customer does not really acquire
the product when buying software, rather very specific, precisely defined rights of
use in a license contract. However, investments in software today represent a larger
proportion of spending for IT infrastructure than investments in hardware, and soft-
ware contracts with large companies often amount to multiple million of dollars.

Software belongs not to the three classic economic factors of capital, land, and
labor, but in the new fourth category of “knowledge.” Software is the manifestation
of human know-how in bits and bytes and in this form also possesses the invaluable
advantage (and simultaneous disadvantage), that it can be easily copied and quickly
circulated over any distance. The right software, ideally applied, can represent a
more important strategic competitive advantage in today’s economic life than all
the other factors. Software can be crucial for competitiveness in production proc-
esses, functionality, the availability of service products, and thus for a company’s
success or failure on the market. But what is a software product and what is it not –
or not yet? What role does the price play? How should we classify services that are
offered on the basis of software?

We find it reasonable not to limit the term “software product” to the world of
software vendors, but also to use it in the world of corporate IT organizations. Is,
for example, an online account with a direct bank, a mobile phone in combination
with a special mobile phone tariff or the membership to a chat community a soft-
ware product? In this chapter we attempt to define the term “software product” and
to discuss certain features of software and their relevance for products and product
management.

Marketing generally defines the term “product” as follows: “a product is any-
thing that can be offered to a market for attention, acquisition, or consumption that
might satisfy a want or a need.” (See [KotArm07]).

6 2 Software Products: Terms and Characteristics

In our definition we avoid the market term (which focuses the conceptualization
too much on a “mass market” for our purposes) and prefer to put the relationship
between two parties in the foreground, so that individual developments and internal
customer/supplier relationships can be included.

 Product = Combination of (material and/or intangible) goods and services,
which one party (called vendor) combines in support of their commercial inter-
ests, to transfer defined rights to a second party (called customer).

 Software product = Product whose primary component is software.

The word “party” indicates that we are not necessarily dealing with a corporate
entity. It can also be areas within a company or an individual person. The phrase
“in support of their commercial interests” should make clear that it refers to busi-
ness but does not necessarily lead to a payment. There is also a commercial inter-
est behind Open Source even if only to harm the established software vendors.
Even a product free of charge (e.g. the Microsoft PowerPoint Viewer) has a com-
mercial goal – to increase market penetration of another product from the same
software vendor which is subject to a fee. The phrase “defined rights” expresses
that there is some room for variation here, e.g. right of use (possibly with restric-
tions), property right, right to resale etc. Details are typically defined in the soft-
ware vendor’s licensing terms or in an individual contract between the parties
concerned.

This product definition should also express that something can already be a
product when it has not yet been bought by a customer; that is it does not become
a product through the buying process, but through the intention to sell it. In estab-
lishing the boundaries of what a software product is and is not, we have knowingly
chosen a “flexible” phrase: the word “primary” should make it clear that there is
room for discretion.

A mobile phone is not a software product according to our definition (rather a
telecommunication product), even if software is an important part and may have
absorbed a large proportion of the development costs. In this case we would be
talking about embedded software, which “serves” the function of making phone
calls and is therefore an underlying part of the whole product, which cannot be
bought separately. We define:

 Embedded software = A piece of software that is not sold as a stand-alone
software product, but is integrated in a non-software product.

Embedded software does not manage and operate only a computer or a processor,
but rather is embedded in a technical system which consists of other components as
well, which allow the whole thing to become a product. This can be the software
for programming and managing a machine, but also diagnosis software for finding
errors in an automobile or software for servicing a dialysis machine in medicine.
These programs serve highly specialized interfaces, which are typically very
closely integrated with hardware. Therefore the requirements and the product man-
agement are driven by the functionality of the complete system. According to our
definition from the beginning of this chapter, since embedded software is not a
stand-alone software product, it will not be discussed further in this book.

Another important term in this context is “OEM product”. OEM stands for
Original Equipment Manufacturer. The term was originally coined in the hardware
business and later transferred into the software world. It means that one manufac-
turer sells one of his products to another manufacturer who uses it as a component
in one of his products without showing its origin openly. We define:

 OEM software product = software product of software vendor A that is used
by company B as a component under the covers of one of B’s products.

Notice that B’s product can be, but does not have to be a software product. A vendor
is usually willing to sell his products as OEM products at a significantly reduced
price in order to increase the volume. We will discuss the pro’s and con’s of this
approach in chapter 5.

Let’s look at some more examples. A games console is also not a software prod-
uct (rather a games product). The same arguments are valid here as for the mobile
phone. A game for this console – purchased separately, separately packaged with its
own price and own terms of licensing – is obviously a software product, however.

An online account is not a software product according to this definition, rather
it is a banking product realized with help of software (products) within the bank.
The customer receives online access to his account from his bank, which allows
him to carry out bank transactions (bank balance enquiries, transfers, establishment
of standing orders etc.) at home or wherever he happens to be. The software is only
useful and usable in connection with the account. So the account is the primary
component.

A search offering like Google qualifies as a software product even though that
may be contrary to some people’s intuitive understanding. It does fulfill all the cri-
teria of our definition: there is a commercial interest, the customer gets the right to
use it, and its primary component is software. This approach is close to the
“Software as a Service” model (SaaS) that we will discuss in more detail. Google’s
case is special since the price is zero, but Google makes significant profit with the
advertisements displayed with the search results.

2.1 External and Internal Views on a (Software) Product

By changing the perspective or the point of view, a “non-software product” can
very quickly become a “pure” software product. Let us keep the example of the
online account from the last chapter: The online account is seen as a bank product
through the eyes of the bank’s end customer or the bank’s executive board. For this
purpose, there may be a product manager in the bank’s organization, who works on
the customers’ requirements and generally makes sure that the bank has a consist-
ent and competitive home banking offer for its customers.

The online account is realized internally via several hardware, software and
service components, which can originate from various sources. Let us accept that
the product is realized by the components online application, HBCI (Home Banking
Computer Interface) server and a call center. Furthermore:

2.1 External and Internal Views on a (Software) Product 7

8 2 Software Products: Terms and Characteristics

● The online application is created by Application Development as part of the
corporate IT organization.

● The HBCI server is bought as standard software and integrated with the online
applications by the corporate IT organization, tested and put into production.

● The call center is outsourced to an external service provider.

From the point of view of the corporate IT organization, the “online application”
component is a software product. Since it was developed internally, an internal
software product management is needed that receives – at least functional require-
ments – from the product manager of the bank product “online account”.
Furthermore, the bank may decide to sell this software product to other banks,
which would underline the necessity of an explicit software product management.

For the standard product “HBCI Server” on the other hand, the bank is a cus-
tomer of a software vendor. Since the product does not fulfill all of the bank’s spe-
cific requirements from the perspective of the IT organization, corresponding
requirements are given to the product manager of the software vendor who has to
commit to their implementation.

The call center, including infrastructure and agents, was completely handed over
to an external service provider. Service level agreements (e.g. average and maxi-
mum time that the customer is supposed to spend in the queue) were negotiated and
secured contractually; no requirements were placed on individual software
products.

The external service provider implements the call center for the bank via hard-
ware and software as well as personnel recruitment. This includes components such
as ACD (Automatic Call Distribution), CTI (Computer Telephone Integration), and
IVR (Interactive Voice Response) Units, call recording etc. As the service provider
offers call center solutions for many firms, this is one of their main products from
their point of view, and therefore they assign a product manager who manages
requirements from customers (e.g. the bank) and elicits requirements against the
integrated hardware and software products from other vendors.

As this example shows, which can easily be detailed even further, the definition
of what a product is depends on the individual perspective. Many non-software
products have software products inside. So the topic of software product manage-
ment often plays a role in those product areas as well.

2.2 The Software Product as Type and the Customer-Specific
Installation as Instance

To understand the term “software product,” we must differentiate between type and
instance. For example, the development of an automobile, e.g. of the Audi A4,
defines a type. This can have a multitude of different parameters which influence
the production process.

Audi A4 type
Model: Sedan, Avant, Cabriolet
Engine: 2.0, 3.2
Color: grey, white, red, beige, blue

When ordering a specific car for a customer, the model features are specified (prod-
uct configuration). In this way, during the manufacturing process an instance of the
A4 type is created.

A4 for Fred Miller = Audi A4
 (Model: Sedan,
 Engine: 3.2,
 Color: red)

Afterwards the instance is delivered to the customer and no longer changed by the
manufacturer or the customer.

The product manager for the Audi A4 is therefore responsible for the whole
“type” of A4; even when there are many different models, the number is always
finite and all combinations are known before production begins.

Software products can also be distributed by the manufacturer in diverse varia-
tions. However, in many cases, not only a selection of a variation before distribution
is carried out, but a customer-specific customization of the software product to its
environment on location. This can be carried out by the customers themselves, or
with the support and advice of the software manufacturer or a consulting company.

 Salary and wages type
 Platform: IBM AIX, SUN Solaris, HP-UX, Linux
 Language: German, English, French, Italian
 Tax table: Germany_2009, Italy_2009,
 Switzerland_2009, Austria_2009,
 England_2009, France_2009
 Medium: CD, Download

 S&W for Vienna = Salary and wages
 (Platform: SUN Solaris,
 Language: German,
 Tax table: Austria_2009,
 Medium: CD)

If parts of the product are also distributed in source code, the product itself can be
changed beyond pure customization. For this there are unpredictable numbers of
possibilities, which cannot all be considered, planned, and checked by the product
manager. Nor does the software vendor wish to be dependent on code for which he
does not control the quality. For all these reasons, as a rule the manufacturer’s
guarantee relates only to items originally distributed by the vendor, but does not
apply to code modified by the customer.

2.2 The Software Product as Type and the Customer-Specific Installation as Instance 9

10 2 Software Products: Terms and Characteristics

2.3 Product Platform, Family, and Line

For technology companies it can make sense to differentiate between product plat-
form, product family, and individual product. McGrath defines ([McGrat01]): “A
product platform is not a product. It is a collection of the common elements, espe-
cially the underlying defining technology, implemented across a range of products.
A product platform is primarily a definition for planning, decision making, and
strategic thinking. The choice of a defining technology in platform strategy is per-
haps the most critical strategic decision that a high-technology company makes.”
So we define:

 Product Platform = the technical foundation on which several software prod-
ucts are based.

An example of a product platform is the SAP core system that serves as the basis
for all SAP components. McGrath sees the product platform as key competitive
factor the management of which must be a core competency of a company. For him
a product platform must be controlled by the company. For software there can be
platforms that are not under control of the software vendor but which nevertheless
may have key influence on the success of their product. For example, for any kind
of PC software the question of the operating system platform(s) needs to be
answered. For some time the decision for Microsoft Windows was easy because of
its dominance in the market whereas several years ago IBM’s OS/2 was a valid
option, and today Linux makes the decision more difficult again.

A product platform is usually not an independent product, but rather a combina-
tion of technological elements used in various products. Such a platform often con-
stitutes an especially valuable asset and serves as a market differentiation factor. It
therefore requires very sensitive management, since errors will immediately have
serious consequences for all products based on the platform and thus for the com-
pany as a whole. An example is Wang Laboratories, which dominated the word
processing market in the late 70s with its combined hardware and software products.
Wang viewed the combination of hardware and software as a defining element of its
product platform and continued to do so – which proved to be a fatal mistake – even
after the computer market had developed and customers thus no longer wanted hard-
ware intended solely for word processing. If Wang had, at the time, realized that the
defining element of its product platform was software and ported this software onto
the new computer platforms, Wang might still be the major supplier of word process-
ing software today. In fact, Wang disappeared from the market, giving Microsoft the
opportunity to take over the word processing market.

A positive example on the part of commercial users is Amazon, the large
Internet e-commerce company. Amazon developed a product platform and defin-
ing technology comprised of software that today not only sets the standard for
e- commerce, but also serves as a basis for geographic and product-range-related
expansion of commercial transactions.

A platform that brings real competitive advantage may serve as a base not only
for one product, but for a family of products. The establishment of a product

 family in the market, however, is motivated by pure marketing reasons. An exam-
ple is IBM’s DB2 family. In the 1990s, IBM combined all relational database
products on the various system platforms to the DB2 product family and gave all
products this name (which had previously only been used for the host product).
However, this was not based on a joint code base of the individual products, even
though this would have been preferable from a development perspective. In any
case, customers associated the same family name with a large degree of similar-
ity. We define:

 Product Family = A group of software products which for marketing reasons
are marketed as belonging together under a common family name.

A software vendor groups various products together under a “family name” which
can then be marketed more efficiently than a single product. This approach suggests
that the products belong together, implying that they are either technologically
similar or that together they provide a solution for specific problems. The techno-
logical similarity can be a common product platform, e.g. SAP products, or a com-
mon basic technology, e.g. IBM’s DB2 family. Microsoft Office is an example of a
product family comprising a group of products that address specific problems, in
this case office tasks, even if the components of Office have not always had a seam-
less relationship. The above examples illustrate that the terms “product platform”
and “product family” sometimes coincide, i.e., products based on a common prod-
uct platform can be – but do not have to be – marketed as a product family.
Conversely, products that are marketed as a family can have – but do not have to
have – a common product platform. Whether or not it is advisable to establish a
family concept is primarily a marketing decision, which does, however, have an
impact on the requirements for the products concerned. Customers expect products
belonging to a product family to exhibit more common features in terms of integra-
tion of product combinations or interface similarities in the case of technologically
similar products. A negative example is the Norton security products System Suite
and Utilities, which are fundamentally one menu from which multiple unrelated
programs may be invoked. If the products do not adequately meet customer integra-
tion expectations, the family concept can have a negative market impact.

The term “product line” has gained a lot of attention in the last couple of years,
primarily in, but not restricted to the area of embedded software. We define:

 Product Line = A group of software products which are variants of a base prod-
uct governed by a common software architecture.

An example is an application software for offer calculation for craftsmen that needs
to be adapted to any specialized craft it supports, like plumber, gardener, etc. Here
adaptation means more than just customization, i.e. it means not just setting param-
eters differently, but requires changes to parts of the code of the base product. That
is why in this case we do not call the base product a product platform which by
definition would have to be identical for all products based on it.

All three concepts, product platform, product family and product line generally
increase the complexity of software product management (see chapter 4).

2.3 Product Platform, Family, and Line 11

12 2 Software Products: Terms and Characteristics

2.4 Product Name, Version Numbers and Compatibility

For most software products development continues throughout its commercial
(sales) lifetime. An important question in this context is if and when the develop-
ment of a product results in a different product (with a new product name etc.) or
simply a “new edition” of the existing product. There is no universally applicable
answer to this question. Marketing aspects frequently play a more important role
than technical aspects when selecting a name. It has become common to denomi-
nate software versions after a specific nomenclature, which is generally dependant
on the manufacturer, however.

IBM uses a three-level hierarchy of software levels, for example:

● Version: Denotes a new product, which as a rule comprises crucial expansions
and improvements. Furthermore, a new version is always subject to a fee and
also always receives a new (internal) product number.

● Release: Denotes a new level of software with bigger functional or other
improvements. New releases are generally free of charge for customers with a
maintenance contract, and keep the product name, product number and the price
model from the predecessor.

● Modification Level: Denotes a new status of software with limited expansions
and delivery of error and cosmetic corrections to the predecessor.

An example of complete product identification is IBM z/OS Version 1 Release 9
Modification Level 5 (in short z/OS 1.9.5).

Anecdotally, customers seem to be more accepting of new version designations
(a.k.a. new product) if the version is declared on an obvious boundary and the most
satisfactory boundary seems to be a machine architecture and operating system
change boundary.

There may be a number of motivations to rename a follow-on product. If, for
example, the product currently on the market had a quality problem during intro-
duction this may have led to an image problem in the long term, which is naturally
associated with the product name. In this case, a new name may signal a new begin-
ning and as little in common as possible with the previous product. A new name
can also be necessary due to the standardization of product names in connection
with a larger product portfolio or a product family like IBM’s DB2 family (see
above).

Frequently, further development is needed – if not mandatory – due to techno-
logical progress and changes in products which serve as a basis for the software
product (prerequisites). For example, an operating system must support new
h ardware (processors, storage mediums, etc.). The old version of the operating
system will be taken out of service at some point, so that – often with a certain time
delay – a chain of upgrades is required for the system and application software
products on higher layers of the technology stack. In this case, the version and
release numbers underline upward compatibility of products and investment

 protection ensured by the vendor for its customers. Therefore, a change in the prod-
uct name should always be well considered to prevent potential irritation of the
customers. Naturally not all software vendors adhere to this “unwritten” law of
upward compatibility, and there are enough examples in which the product name
was kept and the customers experienced a nasty surprise when changing to the new
version.

By upward compatibility, it is understood that:

● In changing from software version n of a product to the next version n+1, exist-
ing functions of version n continue to be supported.

● Data from version n can be transferred to and used with version n+1 without
changes.

● Interfaces of version n (APIs, Interfaces for other Systems/Products) remain
unchanged.

Should only parts of these conditions be fulfilled, we speak of function, data and
interface compatibility.

Frequently, with a new release of a product comes an expansion and change of
the underlying data model which leads to changes to the data structures. In this
case, data compatibility cannot be achieved easily. A separate data migration is
required, for which the software vendor should preferably provide in the form of
procedures and scripts.

By downward compatibility, it is understood that:

● Data from version n+1 can be transferred to and used with version n without
changes.

● Version n+1 can communicate to Version n, i.e. Version n interfaces are
supported.

In contrast to the upward compatibility, downward compatibility cannot always be
expected or presumed. For example, a document created with MS Word 2007, as a
rule, cannot be read using an older version of MS Word and must be converted
before being read to the internal format of the older version. The opposite way
should not lead to any problems. (Note: in response to customer demand, Microsoft
has made available add-ons to some of their old Office products which allow open-
ing the newer file types. From personal experience we can assert, however, that
there remain incompatibilities, e.g. Formatting in Excel 2007 vs. Excel 2002).

2.5 Attributes of Software Products

Software products have specific attributes, which classify software in more detail
and which help to highlight certain aspects of product management, as different
kinds of software products pose different questions and also demand different
approaches in product management. Basic description criteria are, for example:

2.4 Attributes of Software Products 13

14 2 Software Products: Terms and Characteristics

● Market:
 c Consumer (B2C), e.g. games software
 c Business (B2B)

 ● Horizontal (i.e. across many industries): e.g. systems software,
middleware

 ● Vertical (i.e. industry specific): e.g. securities application for brokerage
industry

● Functional areas, e.g. systems software, middleware, application
● Development focus, i.e. standard software vs. services vs. individual

development
● Conditions:
 c Terms of contract, e.g. open source, freeware, shareware, priced licensing,

SaaS
 c Development at a fixed price or a price according to effort

The term “services” has emerged as a new topic as the base of service-oriented
software architecture, often in the form of web services. Web services are usually
offered via APIs (application programming interfaces) that can be accessed over a
network, such as the Internet, and executed on a remote system hosting the software
that performs the requested services. The business models and marketing and oper-
ation strategies for services are currently still in the experimentation stages, even
though the concept has been around for quite a while.

In every software installation, there are three basic types of software products:
1) the operating system, 2) middleware, and 3) applications. The operating system
provides a standard base of system facilities (e.g. the ability to read and write to
storage) and takes care of interactions with the hardware. The term “middleware”
refers to the software that connects software components and sits “in the middle”
between the operating system and the applications. It includes web servers, applica-
tion servers, database systems and transaction monitors. Finally applications are
written to perform functions requested by end users, so that they can accomplish
useful business or personal tasks with their computers.

An especially important differentiator of products is triggered by market criteria,
i.e. the question, is the customer a company (Business-to-Business or B2B) or a
consumer, i.e. packaged software products for the mass market, which appeal to
individual end users (Business-to-Consumer or B2C). Mostly, this refers to PC or
games software.

Of course, there are overlaps between B2B and B2C. The best examples are PC
operating systems, security products, and office products. Usually packaging and
pricing differ for these target markets. While PC products for the end user market
are typically sold at the list price as so-called shrink-wrapped products with all the
corresponding media (software on CD, printed documents) or via download on the
internet, the same software is offered to a company with a multi-user or enterprise
license with just one copy of the media or download rights at an individually nego-
tiated or volume offering price. Furthermore, many vendors, e.g. Microsoft, create
variations of their base PC software products by limiting functionality. Thus they
can sell it at different price points in the end user market.

There are clear differences between these two product areas. Business software,
in comparison to consumer software must be customizable for the specific needs of
the company. The expenditure for adaptation and implementation of software prod-
ucts for business customers is typically in the same range as the price paid for the
software or may even exceed it. Studies have shown that, for example, firms who
employ ERP (Enterprise Resource Planning) software typically spend 30% of the
total expenditure on the licensing of the software products and 70% on services for
customization and implementation. Some software vendors perform this work for
their customers themselves; others predominantly leave such activities to partner
companies in the service sector. The advantages and disadvantages of the respective
strategies will be more closely looked at in Chapter 4. In connection with this high
investment in customization and implementation, the installation of more complex
business software products typically lasts for months, while PC users are used to
installing a product within a few minutes and immediately using it in a productive
manner.

A further difference between business software and consumer software lies in
the fact that consumer software is developed and marketed for millions of individ-
ual customers, while the number of customers for business software is clearly
lower, but with significantly more complex installations on networked systems with
a large number of users.

Business software and consumer software require significantly different priori-
tization of their most important product management tasks (see [HoRoPL00]). For
consumer software, the marketing strategy is at the top of the list of priorities, fol-
lowed by the partner strategy and the question of whether and how quickly a prod-
uct will be offered on the international market. For business software, the partner
strategy has the highest priority, followed by the service strategy, thus the question
with which partners or resources the successful implementation of the product can
be guaranteed to the customer. The marketing strategy is the next priority for busi-
ness software, interestingly only in third place.

The influence of these characteristic attributes on software product management
will be discussed in detail in Chapter 4.

2.4 Attributes of Software Products 15

http://www.springer.com/978-3-540-76986-6

