3

Basic Concepts of SOA Security

This chapter presents the basic notions and concepts of security. We will
elaborate on these in later chapters in context of a motivating case study
from e-government in Chapter 5 and an extensive case study from healthcare
in Chapter 12.

Based on the many meanings of security we elaborate a definition of se-
curity appropriate to the context of distributed and decentralized systems in
Section 3.1. We move on to define security concerns in context of such sys-
tems in Section 3.2. We introduce the key concepts facilitating the expression
of these concerns in terms of security “needs” of an asset: either when engi-
neering and managing security-critical systems (as Security Policies in Section
3.3) or when evaluating them in light of the three driving forces defining the
state of a system’s security: Vulnerabilities, Threats and Security Controls (as
Security Requirements in Section 3.4). We close with Section 3.5 introducing
Web Services Security Standards as a means to realize SOA Security.

3.1 What Is (SOA) Security?

Common knowledge defines Security as a state of freedom from risk or danger.
It can also mean a state free from doubt, anxiety, or fear. Computer security
narrows the focus to computing systems. It describes a field of computer sci-
ence dealing with risk, threats and mechanisms related to the use of computing
systems. Even seen in that context, the definition of security comes in (too)
many flavours. For example, Garfinkel et al. define computer security in a very
broad sense, emphasising the notion of a system’s availability [96]:

“A computer is secure if you can depend on it and its software to
behave as you expect.”

However security obviously does not only describe a desirable state, where
systems function as intended. It also encompasses amongst other things - the

28 3 Security Policies

notion of actively taking measures to preserve this state through security
measures. Gollmann gives a complementary definition [100]. Accordingly,
security

“ .. deals with the techniques employed to maintain security within a
computer system.”

Nevertheless, these two definitions — even taken together — fall short on one
important point. Nowadays, computing systems cannot be viewed anymore as
isolated hosts offering computational functionality to human users. Rather,
modern computing systems are loosely coupled components distributed over
a network and communicating with each other: they are heterogeneous, dis-
tributed, and inter-connected. For one, it is evident that a system which is
connected to other systems is exposed to a considerable amount of additional
security threats. Nevertheless there is another quality in todays computing ar-
chitectures. Computer systems are not conceived as centralized architectures
anymore. A Service Oriented Architecture represents an inherently decentral-
ized computing concept. Hence, an appropriate understanding of the concept
of security needs to take into account the system, its context and dependencies
between both.

Therefore, the first dimension we need to add to reach a working definition
of security for our goals is the dependency of a system on its “surrounding” or
context — which in our case refers to distributed and decentralized architec-
tures.

Once we identify all relevant dependencies of a system’s well functioning
on its context, security can be analysed properly and implemented correctly.
These dependencies make security a relative attribute, which may best be
understood in terms of how much it contributes to achieve a specific category
of “needs”. As a consequence, the second dimension we add to our definition
of computer security is the relationship to specific goals — in terms of security
needs — to be reached.

Accordingly, we define security as (extended and adapted from [100], [53],
and [162]):

“ ..the sum of all techniques, methods, procedures and activities em-
ployed to maintain an ideal state specified through a set of rules of
what s authorized and what is not in a heterogeneous, decentralized,
and inter-connected computing system.”

Going beyond the requirements of traditional, monolithical computing sys-
tems, this definition of Security addresses the specificities of Services Oriented
Architectures in three dimensions:

1. the architecural blueprint of SOA: SOA infrastructures realize security-
critical business processes involving many partners and spanning multiple
security domains — this significantly augments the number and complexity
of security requirements to be met,

3.2 Security Objectives 29

2. the organizational aspect of SOA: partners want to stay in control over
their part of the workflow, thereby imposing a decentralized, peer-to-peer
style architecture, and

3. the administrative challenge of managing and enforcing SOA security: par-
ties may not know each other prior to engaging in a buisness relationship.
Some partners may even stay (at least partially) unknown to each other
when interacting.

Taken together, these three dimensions clearly justify the need for the
definition and analysis of security challenges and concepts in light of SOA.
We will take our definition of security as a starting point to clarify relevant
concepts of SOA Security in the next Section.

3.2 Security Objectives

Security Objectives provide a categorization of the most basic security needs
of an asset. [12] defines a Security Objective as:

“...a statement of intent to counter identified threats and/or satisfy
identified organisation security policies and assumptions.”

Security Objectives are also called security properties, security aspects, se-
curity concerns or security states [172]. Literature categorizes them according
to various taxonomies. For example, Bishop identifies three basic aspects of
computer security: confidentiality, integrity and availability, whose interpreta-
tion vary according to the context in which they arise [53]. Menezes et al. list as
many as seventeen basic objectives for information security, among them com-
mon objectives such as confidentiality, integrity, identification, and authoriza-
tion [142]. They also identify signatures, timestamps, and receipts as security
objectives, which in conventional terms are rather seen as mechanisms, means
to realize a specific objective. However those security objectives are derived
by the four cryptographic goals: confidentiality, integrity, authentication and
non-repudiation. Eckert identifies six basic security objectives (Authenticity,
Confidentiality, Integrity, Availability, Accountability, and Anonymity) [78].

For our purpose, we identify three broad categories of generic Security
Objectives according to the basic goal that is pursued for a given asset. We
rely on the taxonomy given in [53] and define the three objectives accordingly:

1. Confidentiality is the goal that data should be readable to actors with
appropriate permission.

2. Integrity is the goal that data and information should not be altered if
not explicitly allowed.

3. Availability is the goal that assets have to be available to authenticated
and authorized individuals when needed.

30 3 Security Policies

The definition is deliberately kept abstract so to emphasize the indepen-
dence of any technical, architectural and application level context.

We define other security objectives as mentioned in literature (e.g.,[142]) as
Security Policies which realize one or more of the three generic Security Objec-
tives. For example Authenticity actually refers to the Integrity of information
identifying the sender; a Break-Glass-Policy (BGP) specifying emergency ac-
cess to sensitive information realizes Confidentiality but also Availability: it
aims at making information about who accessed what information availiable
(e.g., through logging) in case of a security incident. An introduction into
Security Policies is given in the next Section.

In part II, Chapter 7 extensively covers Basic Security Policies realizing
exactly one objective whereas Chapter 11 covers Advanced Security Policies
realizing a combination of the three basic objectives.

3.3 Security Policies

Security Objectives provide a generic categorization of goals that — when
strived for — may contribute to reach a certain kind of security need. Security
needs may take either of two forms depending on the context of their use: we
subsequently introduce the concept of Security Policy, and the next section
introduces Security Requirements.

A Security Policy realizes a specific Security Objective (or a combination
thereof). A Security Policy is defined as [53]:

“ .. a statement of what is, and, what is not allowed.”

We define Security Policies as semi-formal models. Formal in the sense
that they can be expressed in a machine-readable way so to configure security
mechansims, informal in the sense that we do not provide a mathematical
definition. This may give raise to legitimate criticism: policies may not be
formulated unambiguously. However, our apporach focuses on applicability
and usability in an industrial context. A formal policy may add a considerable
degree of precision and even be the only way to prove the policy’s correctness
at a specific level of assurance. But this usually comes at a price too high with
regard to general applicability. We define an effective policy as based on the
common consensus and interpretation of the community supposed to use it.
Nevertheless, formal models can be integrated in the framework as needed:
in later chapters we will integrate models with a proven formal underpinning
(e.g., for Role Based Access Control) to support the definition of complex
policies.

We differentiate between Basic Security Policies and Advanced Security
Policies. The latter are based on a formal Policy Model. We will present the
four most prominent Policy Models before introducing Advanced Security
Policies.

3.3 Security Policies 31
3.3.1 Basic Security Policies

A Basic Security Policy considers one of the Security Objectives (Confiden-
tiality, Integrity, and Availability) in isolation.

Confidentiality Policy

A Confidentiality Policy specifies system states where only those entities which
are authorized can access information. Such a policy realizes the Security Ob-
jective of Confidentiality. Nevertheless it relies on authentication and autho-
rization as a means to realize access control. Whereas authentication is the
mechanism to establish and verify an entity’s identity, authorization realizes
a specific security model on how to grant various privileges to authenticated
entities. This is the reason why both — authentication as well as authoriza-
tion — where not defined as Security Objectives but are mere means to an end.
Security Policy Models are covered in Section 3.3.2, Security Mechanisms in
Section 3.4.2,

SOA are message based systems. The use of open and machine processable
standards makes the messages particular prone to manipulation and unau-
thorized disclosure. In such systems communication is secured through the
use of cryptography. Confidentiality is realized through the encryption at the
message-layer. The possibility to encrypt various parts of a message with dif-
ferent keys allows end-to-end security, keeping the message parts confidential
and accessible only to the intended recipient even if travelling over interme-
diaries (or stored with them temporarily). In SOA, a Confidentiality Policy
is enforced through standards like XML-Encryption, XML-Digitial Signature
and WS-Security (Please, refer to Section 3.5).

Note that we do not interpret such a policy in the sense of guaranteing what
is commonly known as an Information Flow Policy based on complex math-
ematical models (e.g., Bell-LaPadula or Biba and Clark-Wilson for Integrity
[53]). As we will see in later chapters, we define this policy as preventing the
unauthorized disclosure of information in a basic, distributed SOA scenario,
where peers exchange documents.

Integrity Policy

An Integrity Policy identifies authorized ways in which information may be
altered and subjects authorized to alter it. Integrity comes in two flavors:
data integrity ensures that data are not compromised and can thus be trusted
over a specific period of time, whereas integrity of origin guarantees that
information about a recipient is correct. Both are implemented with the same
cryptographic primitive: digital signature.

Like message confidentiality, integrity is realized through the application
of cryptographic primitives at the message level. In most cases only parts of
a message are signed. Besides boosting performance (leaving uncritical parts

32 3 Security Policies

unsigned) this also caters to the fact that a message travelling over many in-
termediary may be subject to many transformations (e.g., adding application-
level information during process execution). A message may therefore not pass
an integrity check even after a single transformation. This means that in-
tegrity must be realized at a level of granularity below the message level (e.g.,
elements, or parts of a message). An Integrity Policy is enforced through
standards like XML-Encryption, XML-Digitial Signature and WS-Security
(Please, refer to Section 3.5).

Availability Policy

An Awailability Policy specifies system states where the provision of a specific
resource has to be guaranteed. Availability is not only an important aspect
of reliability, guaranteeing the existence of a resource. In security, the aspect
of availability is interpreted in the sense of non-repudiation: someone may
use a resource, access information, or call a service as needed under specific
conditions, and that use must not be deniable.

Non-repudiation is an important security requirement for the realization
of SOA executing mission-critical processes. Electronic transactions have to
comply with a plethora of legal regulations. In scenarios where partners mostly
unknown to each other engage in a business relation, the digital signature is
a means to realize a legally binding commitment which holds before court.
For example, the Austrian E-Government Law [158] puts the digital signature
on a par with its “handwritten” equivalent and specifies requirements for its
realization in distributed architectures [91].

In SOA, a Non-repudiation Policy is basically implemented through an ex-
change of signed and time-stamped messages documenting transactions (e.g.,
the Company sending its annual statement to the Tax Advisor) leveraging
standards like XML-Encryption, XML-Digitial Signature and WS-Security
(Please, refer to Section 3.5). The variant of our implementation realizing
Non-repudiation of Reception as well Non-repudiation of Sending is covered
extensively in Chapter 8.

3.3.2 Policy Models

In an industrial context, security concerns usually go way beyond what we
cover with the category Basic Security Policy. The electronic realization of
security-critical processes is tightly coupled with concerns about how to best
realize security in compliance with the many provisions, regulations and laws
imposed by regional, national, international and industry legislations.
Security Models abstract from specific policies and their particular charac-
teristics. A Security Model represents the formal foundation for an Advanced
Security Policy with complex characteristics and dependencies between its
statements. This model-based abstraction allows a systematic analysis of a
policy’s correctness and supports systematic reasoning about its properties.

3.3 Security Policies 33

We subsequently analyse four of the most important Policy Models with
respect to their ability to cope with complex Authorization Policies — which
are covered in Chapter 11. Authorization restricts access to authenticated en-
tities holding the privileges to perform an action on a resource. Authorization
Policies define the rules of what is allowed and what is not. They are enforced
at the various service providers’ endpoints through a security infrastructure
acting as a single point of entry — a so-called Policy enforcement Point— into
the security domains. Prior to granting access to a resource the requester is
authenticated and then assigned privileges according to the underlying Secu-
rity Model. The infrastructure decides by checking upon assigned privileges
captured in executable XML policies whether to grant access or not.

In SOA, the administration of these endpoints is a crucial issue. End-
points not only need to be aware of the technology used to enforce security at
the interaction partner’s end (e.g., by advertising their technical security re-
quirements through machine-readable policies with WS-Security Policy, cf. to
Section 3.5.3), but they also need an efficient concept to dynamically manage
these privileges.

The efficient administration of Authorization Policies in distributed envi-
ronments is a pivotal criteria for the choice of an appropriate Security Model.

Discretionary Access Control (DAC)

In DAC based systems, users in possession of an object are considered to be
the owners of the resources. They have full control over the resource. This
enables them to use objects they own as they wish, and, for example, to
delegate access rights deliberately to any further user [117]. The latter in turn
becomes an owner as well and may proceed as he likes.

This notion of Resource Qwnership makes the DAC model unsuitable for
exclusive use in many distributed systems. For example, in a SOA based
healthcare scenario, medical data is created by users of healthcare informa-
tion systems in the domains of various collaborating partners. Evidently, none
of those can actually claim ownership of the data. Those to whom the data
may be of most value (or, alternatively, those who may suffer the greatest loss
when used inappropriately) — the patients — have no control at all.

As a sideline we would like to point out, that the debate about ownership
of sensitive medical data is currently gaining momentum in light of technolog-
ical advances facilitating storage, dissemination, and duplication of sensitive
data (e.g., [76], [28] and [139]). The outcome is very likely to be linked to an
appropriate definition of the concept of ownership. Ownership can obviously
be interpreted in various ways: does the radiologist who actually produced the
x-ray own the artefact, the hospital which is bound to store the document for
a specific time period, is it your doctor who ordered the x-ray, or is it your
insurance who paid for it. The issue is far from resolved and for the time being
the intuitive answer may be rooted in the fact that medical data actually is
of most value to the individual concerned — the patient — and that he should

34 3 Security Policies

be empowered to determine its appropriate use. So in our context, an appro-
priate security policy model will be evaluated with respect to its abilities to
integrate this viewpoint.

The administration of policies based on DAC in distributed environments
is evidently almost infeasible.

Mandatory Access Control (MAC)

In MAC based systems, users and their rights are enforced by a central mech-
anism (e.g., the operating system) and administered by a central authority
(e.g., the system adminsitrator). Users do not have the ability to override the
policy.

MAC is traditionally associated with multi-level secure systems. The con-
cept of MAC is realized by assigning security labels to data elements at very
fine-granular levels, thereby expressing their security sensitivity and assigning
clearance levels to subjects. In MLS, less-sensitive information can be accessed
by higher-cleared individuals, and higher-cleared individuals can share “sani-
tized” documents — where sensitive information that the less-cleared individual
is not allowed to see is removed— with less-cleared individuals.

MLS was the concept of choice in the mainframe era, where many users
had to be granted simultaneous access to sensitive information. It is still in
use today in operating systems, however, in many SOA scenarios MAC is
of limited use: e.g., inter-organizational healthcare scenarios involve many
actors accessing resources scattered over multiple domains and the centralized
administration and enforcement architecture of MAC is incompatible with
SOA-based Systems which advocate loose coupling with decentralized control.

Role Based Access Control (RBAC)

RBAC enforces access control according to access policies, which define a
number of roles and assign permissions to roles [169]. Subjects are assigned
one or more roles. A role hierarchy defines inheritance relations between roles.
The principal motivation of RBAC — this is to provide administrative con-
venience — can be further strengthened by using RBAC to manage RBAC
([170]). Many approaches analyse the application of RBAC to workflow man-
agement (e.g., [38], [206]) even taking distributed scenarios into account (e.g.,
[93] and [94)).

The limitations of the basic RBAC model become obvious especially when
used in context of Service Oriented Architectures.

Firstly, in practice authorization can generally never be granted exclusively
based on permissions assigned to roles as in static RBAC. Rather, access rights
depend on a set of dynamic constraints: the right to call an operation of a
specific Web service may primarily depend on the caller’s role but may be
further confined by attributes of the system’s environment (e.g., a principal
may access a service only between 9.00 a.m. to 5.00 p.m. on working days),
of the service call himself (e.g., authentication mode) or on the content of

3.3 Security Policies 35

resources (e.g., a principal with role Tax Advisor may only access the files
of Clients he is mandating). Dynamic constraints define the conditions under
which a role has the right to access services.

Additonally, the level of granularity necessary for the definition of access
rights in security-critical SOA scenarios goes well beyond what is possible
with basic RBAC. A requester’s permissions may not only be restricted at the
services level (e.g., the right of a princpal to call a service that may return
a document) but his access rights may have to be further limited at a finer
level of granularity (e.g., the permission to only read specific parts of the
document). Constraints on permissions support the specification of access
rights at various level of granularity.

The framework we are going to present in this book — SECTET — han-
dles these points of criticism by supporting the dynamic constraints through
SECTET-PL, a language with predicate logic conditions (cf. Chapter 11).

However, the limitations of RBAC much further: for example, it does not
cater for the notion of continuity in access control. This means that it does not
support the revocation of access rights once granted. The set of suggestion for
improvement is ever groving (e.g., [28]). With these limitations in mind, we will
replace the RBAC model with an extended security model — the UCON 45¢
model in Chapter 12. It is briefly introduced subsequently.

UCONaBc

UCON pc is a comprehensive policy model for usage control. It extends
traditional access control models in two respects [160]:

1. continuity of access decision, and
2. mutability of attributes.

Continuity of access decision means that the decision to access an object is
not only verified before but also during access and may result in the revocation
of permissions, whenever conditions are not met. For example, a Tax Advisor
should be allowed to retrieve and read a Client’s tax file only as long as he his
mandating that client. Once his mandate lost, he should not be able to read
the tax file anymore. Policy conditions in UCON consist of subject, object
and environment attributes.

Mutability of attributes refers to subject or object attributes changing as
side-effects of accessing a resource. This may additionally result in a change in
ongoing or subsequent access decisions. This facillitates for example a policy,
where access is confined by access history. For example, a Chartered Accoun-
tant working for a Tax Advisor should not mandate a Company that stands
in direct competition to any of his former clients (a so-called Chinese Wall
Policy [53]).

Policy statements in UCON consist of authorizations, obligations and con-
ditions. Authorizations refer to predicates based on subject or object at-
tributes. Obligation actions are directives to a subject to perform additional

36 3 Security Policies

actions before or during access. Predicates exclusively based on environment
attributes such as system time, device type etc., are categorized as conditions.
Authorizations, oBligations and Conditions are collectively referred to as the
building blocks of UCON 4p¢. UCON conditions can be used to express static
constraints (e.g., duration, purpose) as well as dynamic constraints (e.g., num-
ber of times to access a resource, location-dependent access).

In a similar manner to RBAC, UCON uses the concept of server-side ref-
erence monitoring for access control and trust management. However it also
leverages technologies of client-side reference monitoring to enforce usage con-
trol and digital rights management. It divides access rights into functional cat-
egories like Viewing a resource or Modifying a data object (e.g., a Physician
has privileges to view and update the Patient’s medical record).

3.3.3 Advanced Security Policies

Many industry scenarios impose complex security requirements. In this sec-
tion we introduce scenarios requiring some Advanced Security Policies. Some
of these use cases already stand as candidates for near future integration
into various industry-concerted initiatives (e.g., “Integrating the Healthcare
Enterprise (IHE)”-projects [4]) whereas others represent more an educated
guess based on discussions with experts on what the industries — especially
e-government and e-health — may be needing in a couple of years. All of them
are extensively covered in Chapter 11.

Dynamic Access Control Policies

In many security-critical scenarios, permissions to execute services cannot
be assigned statically. Instead, they are associated with a set of Dynamic
Constraints. Such constraints refer to subject, system or object attributes
and are evaluated at runtime.

Referring to our running example, a dynamic constraint could state the
following: “A Tax Advisor can modify any taz file records of Clients he is
mandating.” It is evident, that this condition has to be checked at runtime as
the undelying facts can change over time.

Delegation of Rights Policies (DRP)

DRP allow a user to delegate her rights to other legitimate users of the system
in specific situations with defined limitations. For example, in healthcare a
patient referral corresponds to such a policy: “A4 Primary Care Physician
delegates her rights to access an online Patient file to a Radiologist.”

In other scenarios the patient himself could want to grant access to the
specialist using the delegated rights of the primary physician [130]. DRP may
be further restricted: the rights of the delegatee may depend on additional
information such as her legal status, credentials, purpose, duration etc.

3.3 Security Policies 37
Break-Glass Policy (BGP)

BGP is an authorization scheme granting access in case of emergency. An ex-
ample policy from healthcare could state the following: “An attending Physi-
cian can bypass routine access control restrictions to a Patient’s medical
records in order to provide timely treatment.”Hence, treatment can occur with-
out any delay due to administrative or technical complexities (e.g., [173, 116]).
As an additional safeguard against misuse access could be logged providing
evidence in case of abuse.

4-Eyes-Principle

The 4-FEyes-Principle is a form of Multiple Authorization. It requires two users
with a common interest to access the system simultaneously. This principle
supports monitoring of the data access, e.g., when one user accesses data
the other user monitors it (e.g., [182]). In a healthcare scenario, the 4-Eyes-
Principle could state that “The Patient needs to be present when a Physician
accesses her records.”

The physician’s access is logged during the visit by some trusted Prozxy
Service. Enforcement of the 4-Eyes-Principle is usually performed indirectly
and supported with storing the access record into a logging database for fu-
ture auditing. Logging and auditing capabilities permit the patient to set her
privacy preferences based on access history and support the identification of
potential abuse.

Usage Control Policies (UCP)

A UCP is an extension of access control because it does not only control data
access but also how accessed data may or may not be used or distributed
afterwards. In a healthcare scenario a usage requirement could state that
“Access to tax files is allowed for 5 times only and should last for at most 48
hours, after its first access.”

Qualified Signature

In many e-government applications, a system signature is not legally binding.
For example, filing your income tax return online with a typical e-government
application, the “technical” signature provided by your application or even
the security gateway at the organization’s domain boundaries is not sufficient
when submitting a document. In such a case legal regulations may stipulate
that the signatory be a natural person (e.g, the Austrian E-Government Law
[158]). This requirement extends the concept of digital (system) signatures to
the Qualified Signature, requiring the signatory be a natural person.

38 3 Security Policies
Privacy Policies

In healthcare, a patient is still to be considered the owner of his records. He
retains legal rights over his medical records. Patients concerned about who
may read their records could want to define a “Privacy Policy” restricting
access to data even if scattered over many repositories.

In public procurement, Anonymity of Bidders is guaranteed by a specific
security protocol and in most cases requires a trusted third party. Anonymity
of Bidders can be considered a variant of a Privacy Policy.

3.4 Security Analysis

A Security Policy is enforced through one or more Security Controls. The
dependency between policies and controls needs to be constantly evaluated in
the light of Security Objectives targeted, underlying assumptions, and looming
threats: this is done during Security Analysis — an on-going evaluation process.

3.4.1 Security Requirements

In contrast to a Security Policy which is used for the management of security
(e.g., during runtime) as a set of statements of what is allowed, and what
is not, Security Requirements focus on the early stages of enigneering, the
elicitation phase.

A Security Requirement is a detailed context-dependent explication of a
Security Objective. It breaks a Security Objective down into several more
detailed descriptions based on the results of Security Analysis.

Security Requirements also play a role when defined in context of systems
evaluation: security evaluation techniques (e.g., TCSEC [16], ITSEC [11], CC
[12]) guarantee that a system may qualify as a trusted system when meeting
specific Security Requirements under specific conditions. Standardized, these
methodologies provide a measurement of trust based on specific security re-
quirements and evidence of assurance.

We will perform a detailed Security Analysis in the context of use cases
for e-government and healtcare systems in Chapters 6 and 12 respectively.

3.4.2 Attacks

Attacks can inflict some kind of loss or harm on computing systems. At its
very core computer-based security revolves around three main forces: Threats,
Security Controls and Vulnerabilities.

Potential attacks may be the same for SOA as for traditional information
systems inside a particular partner node (e.g., malicious software, buffer over-
flows, trojans, denial of service attacks, cryptoanalysis). They may be based
on the same vulnerabilities (e.g., missing user awareness, flawed code and/or

3.4 Security Analysis 39

design, wrong administration etc.), and can thus be countered by the same
security mechanisms.

Nevertheless, the properties of SOA open the door to a category of spe-
cific threats. These threats have to be countered with dedicated technologies
catering to the specificities of SOA. As we will see, most of these technologies
— the so-called security controls — are based on SOA and Web services stan-
dards. We will cover threats and securtity controls specifically in context of
SOA subsequently.

Threats and Vulnerabilities

A Vulnerability is a flaw in a system’s design or its implementation. It is
a weakness that might be exploited to cause a system to malfunction, ulti-
mately resulting in some harm or loss. However, a vulnerability may remain
undetected and not be exploited at all.

A Threat is a specific set of circumstances that bears the potential to cause
loss or harm. A threat remains a potential violation of security. It material-
izes into an attack when a subject (a person or another system) exploits a
vulnerability and attacks the system.

Threats can be divided into four broad classes (cf. [53] and [178]):

. deception which corresponds to the acceptance of false data

. disclosure resulting in unauthorized access to information;

. disruption preventing correct system operation;

. usurpation leads to the unauthorized control of some part of a system.

=N

In the following we give examples attack vectors that may be launched
in the context of SOA architectures and specifically leverage technical vul-
nerabilities, rooted in the implementation of underlying technologies (as in
91]).

XML-specific Attacks. The use of XML for messaging makes the infras-
tructure particularily prone to attacks targeting those components processing
the messages (be they part of the security- ot the services infrastructure).
XML-bombs (XML documents with endless recursions), X-Path injections (a
technique used to exploit Web services by crafting malicious XPath queries
as user-supplied input) and schema poisoning (a modifications of a message’s
grammatical structure (XML Schema) leading to inconsistencies) may at least
render the infrastructure unavailable and at worst compromise the whole sys-
tem opening access to unauthroized users. Here, a validation service acting as
a security proxy or “filter” to any application service can efficiently counter
the threat.

Service Scanning. Reconnaissance (aka footprinting) is the activity nec-
essary to a successful operation against a target (e.g., an application, a host
in a network, or a service). It refers to information-gathering behavior that
aims to profile the target in order to identify efficient attack tactics. It is

40 3 Security Policies

evident, that in SOA publicly available information on services (methods, pa-
rameters etc.) in their WSDL files could be used for a systematic analysis for
weaknesses, for example through automated tests — so-called fuzzying.

Compromised Services. In a distributed scenario service information
needs to be retrieved through a service repository. The service repository may
hold information on a manipulated, compromised service. This threat can
only be countered by authenticating the service provider and checking upon
his trustworthyness.

Replay Attacks. One of the most evident attacks on SOA is based on
a central property of Web services: their statelessness. As a consequence of
that, an attacker could simply intercept a message from an earlier call for
a service request and replay it to that service at a later point in time. In
case service requests are coupled with costs (e.g., retrieving a Tax File from
a Municipality) this has the potential to inflict serious damage.

A system providing a service never remembers which messages already
where processed. This necessitates a mechanism to firstly, authenticate a
message, e.g., through a digital signature and a timestamp and, secondly,
to provide some application level state information. The latter could be im-
plemented through the security infrastructure which keeps status information
on messages received and would simply dismiss a replayed message.

For an exhaustive account on technical attacks on SOA architectures, the
interested reader may refer to [177].

Most of these attack vectors leverage technical vulnerabilities. However,
the Security Analyses in Chapters 6 and 12 will basically cover applica-
tion layer threats like Eavesdropping through compromised communication
channels (e.g., the channel between the Tax Advisor Server and and the Munic-
ipality Application Server may be compromised) and Unauthorized Access
due to faulty configuration (e.g., access to the service send AnnualStatement is
not properly configured; services may thus be accessible to companies offering
tax sevices which are not anymore actively involved in the scenario).

Security Controls

A Security Control is broadly defined as any managerial, operational, and/or
technical safeguard put into place to mitigate identified risks. This rather
general definition especially applies when performing a Security Analysis (e.g.,
during requirements engineering).

For our purposes — when designing, implementing or managing a security-
critical system — we narrow down the definition to any technical, architectural,
or mathematical concept that counters a specific Threat in order to enforce a
Security Policy.

In the context of SOA, Web Services Security Standards leverage these
techniques, algorithms and mechanisms, and thereby abstract from specific
implementational details (e.g., application programming interfaces, manage-
ment architecture, protocols etc.).

3.5 Web Services Security Standards 41

We hence differentiate between Technical Security Controls and Web Ser-
vices Security Standards.

Technical Security Controls are generally categorized according to their se-
curity function (e.g., Identification and Authentication, Access Control, Audit
and Accountability and Systems and Communication and many more [168]).
Each one leverages one or more technical, architectural, or mathematical
concept (e.g., public- or secret key cryptography for confidentiality through
encryption, for integrity, identification and authentication through digital sig-
natures, message protocols for the establishment of trust and accountability,
the use of reference monitor for access control etc.). Technical Security Con-
trols accross various layers and tiers (application, operating system, network-
ing, middleware, database etc.) are extensively covered in literature (e.g., [53],
[162], [78]).

Henceforth, we will only cover Technical Security Controls in context of
their integration into Web Services Security Standards in the next section
(Section 3.5) as well as in later chapters when designing and realizing enforce-
ment architectures for various policies in the use cases (Chapters 8 and 11).

The integration into the various Web Services Security Standards and
specifications is also extensively covererd in literature, e.g., in [167], [156], and
[114]. For a good overview covering these security standards see e.g., [143].

3.5 Web Services Security Standards

3.5.1 Confidentiality, Integrity, and Authenticity

Basic security objectives targeting message security, like Confidentiality, In-
tegrity of data and Integrity of origin (authenticity) are covered by the three
basic security standards: WS-Security, XML-Digital Signature, and XML-
Encryption.

OASIS proposed an extension of the SOAP message structure to enable the
addition of security features to Web services based messaging: WS-Security
is the basic building block for secure interactions in scenarios on top of Web
services technology [37]. The specification describes how to embed security
tokens in the header of SOAP messages. These tokens may be used by senders
and/or recipients to digitally sign and encrypt the message or parts of it. WS-
Security also specifies how to embed these encrypted and signed parts within
the SOAP message.

Example: Figure 3.1 shows how the security infrastructure at the Com-
pany’s side would first encrypt the application relevant data to some cipher
value with a symmetric encrytpion scheme (triple-DES-cbc) and then embed
that value as an encrypted string according to the standards XML-Encryption
and XML-Digital Signature. The symmetric key is encrypted with the recipi-
ents public key based on an RSA encryption scheme.

42 3 Security Policies

<xenc:EncryptedData Id="SecretData"
xmins:xenc="..."
Type="http://www.w3.0rg/2001/04/xmlenc#Element">
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo xmins:ds="...">

TA:Company> <ds:RetrievalMethod URI="#KeyA"
<TA:Name> XY Inc. </TA:Name> Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey"/>
<TA:TaxID> 1234567890 </TaxID> </ds:Keylnfo>
<xenc:CipherData>
<TA:Address> <xenc:CipherValue>B457V645B45........ </xenc:CipherValue>
<TA:Street> ABC Avenue </TA:Street> </xenc:CipherData>

<TA:Country> Austria </TA:Country>
<xenc:EncrypedKey Id="KeyA"
</TA:Address> xmins:xenc="..."

<xenc:EncryptionMethod
<TA:Annual Revenues> 100.000 € </TA:AnnualRevenues> Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5"/>
<ds:Keylnfo xmins:ds="...">
/TA:Company> <ds:KeyName>Key B</ds:KeyName>

</ds:Keylnfo>
<xenc:CipherData>
<xenc:CipherValue>C5V6HJKKO........ </xenc:CipherValue>
</xenc:CipherData>
</xenc:EncrypedKey
</xenc:EncryptedData>

Fig. 3.1. Application Data Encrypted According to XML-Encryption and XML-
Digital Signature

In the example, the second cipher value refers to the symmetric key en-
crypted with the recipients public key based on an RSA encryption scheme.
Upon reception and once decrypted, the recipient (Tax Advisor) uses this key
to decrypt the first cipher value. This means that the interaction partners
are relying on a hybrid crypto scheme to secure their communication. The
advantage over using pure public key cryptography lies in better performance
during encryption and decryption.

WS-Security in turn relies heavily on the underlying XML-standards XML-
Digital Signature [43] and XML-Encryption [119] for the signing and encryp-
tion of XML documents. Both standards specifiy a process for encrypting or
signing arbitrary application data and representing the result in XML format.

Example: Figure 3.2 shows how the security infrastructure at the Com-
pany’s side would then embed the XML structure with the cipher value in
the SOAP message structure according to WS-Security before calling the Tax
Advisor’s service and thereby sending the document.

Vendors and Open Source Initiatives are beginning to offer reference im-
plementation of these standards. For example, Web Services Security for Java
(WSS4J) [89] is a prototypic extension of the Apache Axis SOAP engine [189]
that implements the standard.

3.5.2 Authentication

The process of authentication binds an identity to a subject. Authentication is
a technical means to achieve the premises to any non-anonymous interaction.

Authentication is integral to many policies as an implicit prerequisite.
For example, an Authorization Policy stating that a Tax Advisor can access
his Client’s tax files implies the existence of an underlying authentication

3.5 Web Services Security Standards 43

<?xml version="1.0"?>
<SOAP:Envelope
xmins:SOAP="http://schemas.xmlsoap.org/soap/envelope/”>
<SOAP:Header>
<wsse:Security>
<xenc:ReferenceList>
<DataReference URI“#bodyID“/>
<xenc:ReferenceList>
<wsse:Security>
<SOAP:Header>
<SOAP:Body>
<xenc:EncryptedData |d="bodyID*
xmins:xenc="http://www.w3.0rg/2001/04/xmlenc#"
Type="http://www.w3.0rg/2001/04/xmlenc#Element">
<xenc:EncryptionMethod
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeylInfo xmiIns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:RetrievalMethod URI="#KeyA"
Type="http://www.w3.0rg/2001/04/xmlenc#EncryptedKey*/>
</ds:Keylnfo>
<xenc:CipherData>
<xenc:CipherValue>B457V645B45........ </xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</SOAP:Body>
</SOAP:Envelope>

Fig. 3.2. Encryted XML Embedded in SOAP Message According to WS-Security

mechanism checking the identity of the requester. Before a request can be
evaluated and access granted or denied the requester has to be authenticated.
In our context authentication is neither a Security Objective nor a Security
Policy. It is considered a technical concept.

Authentication may generally be performed based on:

e something the subject may know (e.g., pin, password, pass phrase, shared
secret),
something the subject may possess (e.g., key, card, token), or
physical attributes of the subject (e.g., biometrics).

In SOA, authentication occurs at the application- or the SOAP layer in-
stead of relying on transport- and HTTP-layer authentication schemes (e.g.,
SSL and TLS). The reasons are, for one, that transport layer security is lim-
ited to point-to-point interactions, and two, that applications cannot directly
retrieve security context information (username, role and/or password of re-
quester) from the transport layer.

Leaving authentication to the application inevitably leads to interoperabil-
ity problems: in a distributed, heterogenous environment the various applica-
tions at the endpoints will, in all likelhood, implement proprietary solutions.
Securing communication between all peers turns into a nightmare.

Thus, the most efficient way to realize authentication in SOA, is the in-
tegration of security mechanisms in the SOAP message structure. However,
SOAP does not provide a specific security model for its protocol. Instead,

44 3 Security Policies

it supports security extensions inside the SOAP headers for various security
models and mechanisms. WS-Security is designed to incorporate existing se-
curity mechanisms for authentication (e.g., X509 certificates, Kerberos tickets,
username tokens etc.). The way on how to embed a specific format is defined
in token profiles.

Nevertheless, WS-Security does not support much beyond its capability
to integrate security tokens. These tokens, incorporating security claims, need
to be verified, policies need to be advertised, tokens may need to be mapped
from one technology to another etc. This is covered by Advanced Web Services
Security Standards building on top of the three basic standards.

3.5.3 Advanced Web Services Security Standards

In this section we briefly introduce advanced Web services standards. The
specifications cover application level security concerns that go much beyond
what can be covered trough the standards presented in the last section. We
confine ourselves to a verbal description without giving code examples as the
relevant standards will be covered in-depth as needed in the second part of
the book.

The Extensible Access Control Markup Language (XACML) is an OASIS
standard supporting the specification of authorization policies to access (Web)
services [147]. The standard defines a language for the formulation of policies
and describes the messages for related queries between components of the
security infrastructure. It specifies functionalities needed for the processing
of access control policies and defines an abstract data flow model between
functional components. The Role Based Access Control Profile of XACML
2.0 extends the standard for expressing policies that use Role Based Access
Control (RBAC) with a scope confined to core and hierarchical RBAC [29].

Example: The Tax Advisor may want to control access to his local services
by his employees or external parties through a reference monitor acting as a
security proxy to Web services. Every service call would be intercepted, the
requester authenticated through some credentials (e.g., message signature),
and his rights would be checked against a machine-readable policy stored in
XACML format. Once access granted, the service request is forwarded to the
application.

XACML is closely related to the Security Assertion Markup Language
(SAML), which is the XML-based framework for exchanging security asser-
tions [67]. SAML is integrated into XACML as a profile [30]. It supports the
integration of further security-related information — so-called assertions — into
the SOAP header.

Example: In a slightly more complex scenario involving many parties,
the Tax Advisor may only want to authenticate once (e.g., with an identitiy
providing third party), to get an assertion in the form of an Authentication
Statement and have this information propagated automatically through tokens

3.5 Web Services Security Standards 45

when accessing services of further parties (e.g., Municipality, Notary etc.).
These parties can check up with the party that issued the assertion.

The XML Key Management Specification (XKMS) describes how devel-
opers can integrate access to Public Key Infrastructures in order to secure
inter-application communication especially in SOA environments [113]. The
specification describes how to use XML- and Web services based interfaces
and protocols to third parties providing “expensive” cryptographic services.
XKMS consists of two parts - the XML Key Information Service Specification
(XKISS) and the XML Key Registration Service Specification (XKRSS). The
specifications define specific protocols that can be used for the exchange of
messages between an XKMS client and an XKMS server implementation.

Example: The Tax Advisor could rely on XKMS messaging to retrieve
certificates from a trusted third party (e.g., certificate authority) to verify the
signatures of parties he needs to authenticate.

WS-Trust [33] is based on the security mechanisms of WS-Security and de-
fines an extensible model for establishing and maintaining trust relationships
across security domains. In SOA, trust is usually realized through the issuance,
exchange and validation of security tokens, services offered by a Security To-
ken Service. WS-Trust also defines necessary extensions to the SOAP message
structure as well as the protocol bewteen parties relying on and offering the
services.

Example: Any peer in the said scenario may need to get some credentials
in the form of security tokens from a Security Token Service for authentication
with his partners. The format for requesting the tokens is described in WS-
Trust. Another example would be the request to a Security Token Service to
map from one format (e.g., username token) to another (e.g., Kerberos ticket).

WS-SecureConversation offers features for the establishment of a context
for secure communication similar to the concept of HTTPS [32]. Instead of
leveraging transport layer security it is based on application-level messaging.
It is a protocol that uses a concept based on public keys for the exchange
of session keys for message encryption and signature. It thereby provides en-
hanced efficiency.

WS-Federation realizes the concept of federated security, which allows a
set of stakeholders to define a virtual security domain [41]. The specification
standardizes the way companies share identities with each other. This is the
case whenever authentication and authorization systems are spread across cor-
porate boundaries. Together, WS-Trust and WS-Federation provide a model
to create and broker trust within and across federations.

Example: The Tax Advisor may want to communicate (over Web services
interaction) with regular partners in a more efficient way. He could do so by
establishing and sharing a security context with e.g., the Municipality. This
would also allow him to derive much more performant session keys to secure
communication. This increases the overall performance and the security of
subsequent exchanges.

2 Springer
http://www.springer.com/978-3-540-79538-4

Security Engineering for Service-Criented Architectures
Hafner, M.; Breu, R.

2009, ¥V, 248 p. 124 illus., Hardcover
ISBN: 978-3-540-79538-4

