Preface

Almost a century has gone by since the discovery of general relativity and quantum
mechanics, yet the goal of finding a consistent theory of quantum gravity nonethe-
less remains elusive. After the two major triumphs of modern quantum field theory,
quantum electrodynamics and the quantization of non-abelian gauge theories (in-
cluding quantum chromodynamics and the electro-weak theory) the early seventies
provided high hopes that a quantum treatment of general relativity might be around
the corner. However, to the dismay of many, the results of t” Hooft and Veltman con-
clusively established that quantum gravity is not perturbatively renormalizable, thus
confirming earlier suspicions based on purely dimensional arguments. Disturbingly,
the divergences which appear in gravity at one loop order in the semiclassical expan-
sion, involving curvature squared terms, cannot be re-absorbed into a redefinition
of the coupling constants, thereby making it difficult to derive unambiguous state-
ments about the properties of the underlying quantum theory. More importantly, the
now exhaustively explored examples of quantum electrodynamics and non-abelian
gauge theories have established that until these ultraviolet renormalization effects
are consistently and systematically brought under control, it will be very difficult to
make any sort of physically relevant predictions. To this day, the ultraviolet prob-
lems of quantum gravity border on the speculative for many: after all, if quantum
gravity effects are relevant at distances of the order of the Planck length (10~ *3cm),
then these might very well have little relevance for laboratory particle physics in the
foreseeable future. But how could one so conclude without actually doing the rele-
vant calculations? What if new, non-perturbative scales arise in the renormalization
procedure, as occurs in non-abelian gauge theories?

Since the seventies, strategies that deal with the problem of ultraviolet diver-
gences in quantum gravity have themselves diverged. Some have advocated the
search for a new theory of quantum gravity, a theory which does not suffer from
ultraviolet infinity problems. In supersymmetric theories, such as supergravity and
ten-dimensional superstrings, new and yet unobserved particles are introduced thus
reducing the divergence properties of Feynman amplitudes. In other, very restricted
classes of supergravity theories in four dimensions, proponents have claimed that

vii



viii Preface

enough conspiracies might arise thereby making these models finite. For super-
strings, which live in a ten-dimensional spacetime, one major obstacle prevails to
date: what dynamical mechanism would drive the compactification of spacetime
from the ten dimensional string universe to our physical four-dimensional world, or
for that matter, to any other dimension less than ten?

A second approach to quantum gravity has endeavored to pursue new avenues
to quantization, by introducing new quantum variables and new cutoffs, which in-
volve quantum Hamiltonian methods based on parallel transport loops, spacetime
spin foam and new types of quantum variables describing quantum dust. It is char-
acteristic of these methods that the underlying theory is preserved, it essentially
remains a quantum version of Einstein’s relativistic theory, yet the ideas employed
are intended to go past the perturbative treatment. While some of these innovative
tools have had limited success in exploring the much simpler non-perturbative fea-
tures of ordinary gauge theories, proponents of such methods argue that gravity is
fundamentally different, thereby necessitating the use of new methods.

The third approach to quantum gravity, which forms the underlying topic of this
book, focuses on the application of modern methods of quantum field theory, whose
cornerstones include the manifestly covariant Feynman path integral approach, Wil-
son’s modern renormalization group ideas and the development of lattice methods
to define a regularized form of the path integral, which then allows non-perturbative
calculations. In non-ablelian gauge theories and in the standard model of elementary
particle interactions, said methods are invariably the the tools of choice; the covari-
ant Feynman path integral approach is crucial in proving the renormalizability of
non-abelian gauge theories; modern renormalization group methods establish the
core of the derivation of the asymptotic freedom result and the related discussion
of momentum dependence of amplitudes in terms of running coupling constants;
and finally, the lattice formulation of gauge theories, which thus far provides the
only convincing theoretical evidence of confinement and chiral symmetry breaking
in non-abelian gauge theories.

Therefore, this book shall cover key aspects and open issues related to a consis-
tent regularized formulation of quantum gravity from the perspective of the covari-
ant Feynman path integral quantization. In the author’s opinion, such a formulation
is an important and essential step towards a quantitative and controlled investigation
of the physical content of the theory.

An Outline of the Book

This book is composed of three major sections. Part I introduces basic elements of
the covariant formulation of continuum quantum gravity, with some emphasis on
those issues which bear an immediate relevance for the remainder of the book. Dis-
cussion will include the nature of the spin-two field, its wave equation and possible
gauge choices, the Feynman propagator, the coupling of a spin two field to matter
and the implementation of a consistent local gauge invariance to all orders, ulti-
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mately leading to the Einstein gravitational action. Additional terms in the gravita-
tional action, such as the cosmological constant and higher derivative contributions,
are naturally introduced at this stage.

A section on the perturbative weak field expansion will later introduce the main
aspects of background field method as applied to gravity, including issues such as
the choice of field parametrization and gauge fixing. Then, results related to the
structure of one- and two-loop divergences in pure gravity shall be discussed, lead-
ing up to the statement of perturbative non-renormalizability for the Einstein theory
in four dimensions. One important aspect that will be stressed is that perturbative
methods generally rely on a weak field expansion for the metric fluctuations, and are
therefore not necessarily well suited for the investigation of potentially physically
relevant regime of large metric fluctuations.

Next, the Feynman path integral for gravitation will be introduced by closely
analogizing the theory with the related Yang-Mills case. The discussion brings up
the thorny issue of the gravitational functional measure, a threshold requirement
used to define Feynman’s sum over histories, as well some other important aspects
related to the convergence of the path integral and derived quantum averages, along
with the origin of the conformal instability affecting the Euclidean case. Emphasis
will be drawn to the strongly constrained nature of the theory, which depends on
the absence of matter, and its close analogy to pure Yang-Mills theories, on a single
dimensionless parameter GA, besides the required usual short distance cutoff.

Since quantum gravity is not perturbatively renormalizable, the next question
arises naturally: what other theories are not perturbatively renormalizable, and what
can be derived from those theories? The following sections will thus summarize the
methods of Wilson’s 2 + € expansion as applied to gravity, expanding the deviation
of the space-time dimensions from two; in such a dimension the gravitational cou-
pling becomes dimensionless and the theory is therefore power-counting renormal-
izable. As an initial motivation, but also for illustrative and pedagogical purposes,
the non-linear sigma model is introduced first. The latter represents a reasonably
well understood perturbatively non-renormalizable theory above two dimensions
which is characterized by a rich two-phase structure, and whose scaling properties
in the vicinity of the fixed point can nevertheless be accurately computed in three
dimensions (via the 2 + € expansion, as well as by other methods which include the
strong coupling expansions and a variety of other lattice approximation techniques),
and whose universal predictions are known to compare favorably with experiments.
Within the context of gravity, which is discussed next the main results of the pertur-
bative expansion are the existence of a nontrivial ultraviolet fixed point close to the
origin above two dimensions (a phase transition in statistical field theory language),
and the predictions of non-trivial universal scaling exponents in the vicinity of the
new fixed point.

Generally, discussion of the quantization of gravity without referring in some de-
tail to the Hamiltonian formulation is not possible. As in ordinary non-relativistic
quantum mechanics, there are a number of important physical results which are ob-
tained much more readily using this approach. Particularly notable, in the case of
gravity, involves the nature of the Hamiltonian constraint, which implies that the to-
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tal energy of a quantum gravitational system is zero, and the Wheeler-DeWitt equa-
tion, a Schrodinger-like equation for the vacuum functional, whose solution in some
simple cases can be obtained using reduced phase space (minisuperspace) methods.
In addition, the Hamiltonian method can be used as a starting point for a lattice de-
scription of quantum gravity, whose results may be regarded as complementary to
those obtained via the Feynman path integral approach. The ambiguities that appear
here as operator ordering problems have their correspondence in the path integral
approach, under the rubric of issue associated with the choice of functional measure.
The Hamiltonian approach also presents additional problems, including the lack of
covariance due to the choice of time coordinate, and the difficulty of doing practical
approximate non-perturbative calculations. Closely related to Hamiltonian approach
is an array of semiclassical methods which have been used to obtain approximate
cosmological solutions to the Wheeler-DeWitt equations, which are discussed later
in some detail. The section ends with the exposition of some physically relevant
results such as black hole radiance, and some more general issues which arise in a
semiclassical treatment of quantum gravity.

Part II discusses the lattice theory of gravity based on Regge’s simplicial for-
mulation, with a primary focus on the physically relevant four-dimensional case.
The starting point is a description of discrete manifolds in terms of edge lengths
and incidence matrices, then moving on to a description of curvature in terms of
deficit angles, thereby offering a re-formulation of continuum gravity in terms of a
discrete action and a set of lattice field equations. The direct and clear correspon-
dence between lattice quantities (edges, dihedral angles, volumes, deficit angles,
etc.) and continuum operators (metric, affine connection, volume element, curva-
ture tensor etc.) allows one to define, as an example, discrete versions of curvature
squared terms which arise in higher derivative gravity theories, or more generally as
radiatively induced corrections. An important element in the lattice-to-continuum
correspondence is the development of the lattice weak field expansion, allowing a
clear and precise identification between lattice and continuum degrees of freedom,
as well as their gauge invariance properties, as illustrated for example in the weak
field limit by the arbitrariness in the assignments of edge lengths used to cover a
given physical geometry. On the lattice one can then see how the lattice analogs of
gravitons arise naturally, and how their transverse-traceless nature is made evident.

When coupling matter fields to lattice gravity one needs to introduce new fields
localized on vertices, as well as appropriate dual volumes which enter the defini-
tion of the kinetic terms for those fields. In the fermion case, it is necessary (as in
the continuum) to introduce vierbein fields within each simplex, and then use an
appropriate spin rotation matrix to relate spinors between neighboring simplices. In
general the formulation of fractional spin fields on a simplicial lattice is useful in
formulating a lattice discretization of supergravity. At this point it will be useful to
compare and contrast the simplicial lattice formulation to other discrete approaches
to quantum gravity such as, the hypercubic (vierbien-connection) lattice formulation
and simplified fixed-edge-length approaches such as dynamical triangulations.

Subsequent sections deal with the interesting problem of what gravitational ob-
servables should look like, that is which expectation values of operators (or ratios
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thereof) have meaning and physical interpretation in the context of a manifestly
covariant formulation, specifically in a situation where metric fluctuations are not
necessarily bounded. Such averages naturally include expectation values of the inte-
grated scalar curvature and other related quantities (involving for example curvature
squared terms), as well as correlations of operators at fixed geodesic distance, some-
times referred to as bi-local operators. Another set of physical averages refer to the
geometric nature of space-time itself, such as the fractal dimension. Finally, one
more set of physical observables correspond to the gravitational analog of the Wil-
son loop, which provides information about the parallel transport of vectors, and
therefore on the effective curvature, around large near-planar loops, and the corre-
lation between particle world-lines, which gives the static gravitational potential.
These quantities play an important role in the physical characterization of the two
phases of gravity, as seen both in the 2 + € expansion and in the lattice formulation
in four dimensions.

Part II of the book discusses applications of the lattice theory to non-perturbative
gravity. Ultimately, investigations of the strongly coupled regime of quantum grav-
ity where metric fluctuations cannot be assumed to be small, requires the use of
numerical methods applied to the lattice theory. A discrete formulation combined
with numerical tools can therefore be viewed as an essential step towards a quanti-
tative and controlled investigation of the physical content of the theory: that is, in
the same way that a discretization of a complicated ordinary differential equation
can be viewed as a mean to determine the properties of its solution with arbitrary
accuracy. These methods are outlined next, together with a summary of the main lat-
tice results, showing the existence of two phases, depending on the value of the bare
gravitational coupling, and in good agreement with the qualitative predictions of
the 2 4 € expansion. Specifically, lattice gravity in four dimensions is characterized
by two phases: a weak coupling degenerate polymer-like phase, and a strong cou-
pling smooth phase with small average curvature. The somewhat technical aspect
of the determination of universal critical exponents and non-trivial scaling dimen-
sions, based on finite size methods, is outlined, together with a brief discussion of
how the lattice continuum limit has to be approached in the vicinity of a non-trivial
ultraviolet fixed point.

The determination of non-trivial scaling dimensions in the vicinity of the fixed
point leads to a discussion of the renormalization group properties of fundamental
couplings, that is their scale dependence, as well as the emergence of physical renor-
malization group invariant quantities, such as the fundamental gravitational corre-
lation length and the closely related gravitational condensate. These are discussed
next, with an eye towards physical applications. This includes a discussion of the
physical nature of the expected quantum corrections to the gravitational coupling,
based, in part on an analogy to QED and QCD, on the effects of a virtual gravi-
ton cloud, and of how the two phases of lattice gravity relate to the two opposite
scenarios of gravitational screening (for weak coupling, and therefore unphysical
due to the branched polymer nature of this phase) versus anti-screening (for strong
coupling, and therefore physical).
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A final section touches on the general problem of formulating running gravita-
tional couplings in a context that does not assume weak gravitational fields. The
discussion includes a brief presentation on the topic of covariant running of G based
on the formalism of non-local field equations, with the scale dependence of G ex-
pressed through the use of a suitable covariant d’ Alembertian. Simple applications
to standard metrics (static isotropic and homogeneous isotropic) are briefly summa-
rized and their potential physical consequences and interpretation elaborated. The
book ends with a general outlook on future prospects for lattice studies of quantum
gravity, some open questions and work that can be done to help elucidate the re-
lationship between discrete and continuum models, such as extending the range of
problems addressed by the lattice, and providing new impetus for further develop-
ments in covariant continuum quantum gravity.

One final comment on the notation used in this book. Unless stated otherwise,
the same notation is used as in (Weinberg, 1972), with the sign of the Riemann
tensor reversed; the signature in the Lorentzian case is therefore —, +,+,+. In the
Euclidean case t = —iT on the other hand the flat metric is of course the Kronecker
5uv’ with the same conventions as before for the Riemann tensor.

Berlin, May 2008 Herbert W. Hamber
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