
Chapter 2
Feynman Path Integral Formulation

2.1 The Path Integral

So far the discussion of quantum gravity has focused almost entirely on perturbative
scenarios, where the gravitational coupling G is assumed to be weak, and the weak
field expansion based on ḡμν = gμν + hμν can be performed with some degree of
reliability. At every order in the loop expansion the problem then reduces to the
systematic evaluation of an increasingly complex sequence of Gaussian integrals
over the small quantum fluctuation hμν .

But there are reasons to expect that non-perturbative effects play an important
role in quantum gravity. Then an improved formulation of the quantum theory is
required, which does not rely exclusively on the framework of a perturbative ex-
pansion. Indeed already classically a black hole solution can hardly be considered
as a small perturbation of flat space. Furthermore, the fluctuating metric field gμν
is dimensionless and carries therefore no natural scale. For the simpler cases of a
scalar field and non-Abelian gauge theories a consistent non-perturbative formula-
tion based on the Feynman path integral has been known for some time and is by
now well developed. Combined with the lattice approach, it provides an effective
and powerful tool for systematically investigating non-trivial strong coupling be-
havior, such as confinement and chiral symmetry breaking. These phenomena are
known to be generally inaccessible in weak coupling perturbation theory. Further-
more, the Feynman path integral approach provides a manifestly covariant formula-
tion of the quantum theory, without the need for an artificial 3+1 split required by
the more traditional canonical approach, and the ambiguities that may follow from
it. In fact, as will be seen later, in its non-perturbative lattice formulation no gauge
fixing of any type is required.

In a nutshell, the Feynman path integral formulation for pure quantum gravitation
can be expressed in the functional integral formula

Z =
∫

geometries
e

i
h̄ Igeometry , (2.1)
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Fig. 2.1 Quantum mechani-
cal amplitude of transitioning
from an initial three-geometry
described by g at time tinitial

to a final three-geometry
described by g′ at a later
time t f inal . The full amplitude
is a sum over all interven-
ing metrics connecting the
two bounding three-surfaces,
weighted by exp(iI/h̄) where
I is a suitably defined gravita-
tional action.
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(for an illustration see Fig. 2.1), just like the Feynman path integral for a non-
relativistic quantum mechanical particle (Feynman, 1948; 1950; Feynman and Hi-
bbs, 1965) expresses quantum-mechanical amplitudes in terms of sums over paths

A(i → f ) =
∫

paths
e

i
h̄ Ipath . (2.2)

What is the precise meaning of the expression in Eq. (2.1)? The remainder of this
section will be devoted to discussing attempts at a proper definition of the gravita-
tional path integral of Eq. (2.1). A modern rigorous discussion of path integrals in
quantum mechanics and (Euclidean) quantum field theory can be found, for exam-
ple, in (Albeverio and Hoegh-Krohn, 1976), (Glimm and Jaffe, 1981) and (Zinn-
Justin, 2002).

2.2 Sum over Paths

Already for a non-relativistic particle the path integral needs to be defined quite
carefully, by discretizing the time coordinate and introducing a short distance cutoff.
The standard procedure starts from the quantum-mechanical transition amplitude

A(qi, ti → q f , t f ) = < q f |e−
i
h̄ H(t f −ti) |qi > , (2.3)

and subdivides the time interval into n+1 segments of size ε with t f = (n+1)ε+ ti.
Using completeness of the coordinate basis |q j > at all intermediate times, one ob-
tains the textbook result, here for a non-relativistic particle described by a Hamilto-
nian H(p,q) = p2/(2m)+V (q),
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A(qi, ti → q f , t f ) = lim
n→∞

∫ ∞

−∞

n

∏
j=1

dq j√
2πih̄ε/m

×exp

{
i
h̄

n+1

∑
j=1

ε

[
1
2 m

(
q j −q j−1

ε

)2

−V

(
q j +q j−1

2

)]}
.

(2.4)

The expression in the exponent is easily recognized as a discretized form of the
classical action. The above quantum-mechanical amplitude A is then usually written
in shorthand as

A(qi, ti → q f , t f ) =
∫ q f (t f )

qi(ti)
[dq ] exp

{
i
h̄

∫ t f

ti
dt L(q, q̇)

}
, (2.5)

with L = 1
2 mq̇2 −V (q) the Lagrangian for the particle. What appears therefore in

the exponent is the classical action

I =
∫ t f

ti
dt L(q, q̇) , (2.6)

associated with a given trajectory q(t), connecting the initial coordinate qi(ti) with
the final one q f (t f ). Then the quantity [dq] is the functional measure over paths q(t),
as spelled out explicitly in the precise lattice definition of Eq. (2.4). One advantage
associated with having the classical action appear in the quantum mechanical ampli-
tude is that all the symmetries of the theory are manifest in the Lagrangian form. The
symmetries of the Lagrangian then have direct implications for the study of quan-
tum mechanical amplitudes. A stationary phase approximation to the path integral,
valid in the limit h̄ → 0, leads to the least action principle of classical mechanics

δ I = 0 . (2.7)

In the above derivation it is not necessary to use a uniform lattice spacing ε; one
could have used as well a non-uniform spacing εi = ti−ti−1 but the result would have
been the same in the limit n →∞ (in analogy with the definition of the Riemann sum
for ordinary integrals). Since quantum mechanical paths have a zig-zag nature and
are nowhere differentiable, the mathematically correct definition should be taken
from the finite sum in Eq. (2.4). In fact it can be shown that differentiable paths have
zero measure in the Feynman path integral: already for the non-relativistic particle
most of the contributions to the path integral come from paths that are far from
smooth on all scales (Feynman and Hibbs, 1965), the so-called Wiener paths, in turn
related to Brownian motion. In particular, the derivative q̇(t) is not always defined,
and the correct definition for the path integral is the one given in Eq. (2.4). A very
complete and contemporary reference to the many applications of path integrals to
non-relativistic quantum systems and statistical physics can be found in two recent
monographs (Zinn-Justin, 2005; Kleinert, 2006).
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As a next step, one can generalized the Feynman path integral construction to N
particles with coordinates qi(t) (i = 1,N), and finally to the limiting case of contin-
uous fields φ(x). If the field theory is defined from the start on a lattice, then the
quantum fields are defined on suitable lattice points as φi.

2.3 Eulidean Rotation

In the case of quantum fields, one is generally interested in the vacuum-to-vacuum
amplitude, which requires ti →−∞ and t f → +∞. Then the functional integral with
sources is of the form

Z[J] =
∫

[dφ ]exp

{
i
∫

d4x[L (x)+ J(x)φ(x)]
}

, (2.8)

where [dφ ] =∏x dφ(x), and L the usual Lagrangian density for the scalar field,

L = − 1
2 [(∂μφ)2 −μ2 φ 2 − iε φ 2]−V (φ) . (2.9)

However even with an underlying lattice discretization, the integral in Eq. (2.8) is
in general ill-defined without a damping factor, due to the i in the exponent (Zinn-
Justin, 2003).

Advances in axiomatic field theory (Osterwalder and Schrader, 1972; 1973;
1975; Glimm and Jaffe, 1974; Glimm and Jaffe, 1981) indicate that if one is able to
construct a well defined field theory in Euclidean space x = (x,τ) obeying certain
axioms, then there is a corresponding field theory in Minkowski space (x, t) with

t = − iτ , (2.10)

defined as an analytic continuation of the Euclidean theory, such that it obeys the
Wightmann axioms (Streater and Wightman, 2000). The latter is known as the Eu-
clidicity Postulate, which states that the Minkowski Green’s functions are obtained
by analytic continuation of the Green’s function derived from the Euclidean func-
tional. One of the earliest discussion of the connection between Euclidean and
Minkowski filed theory can be found in (Symanzik, 1969). In cases where the
Minkowski theory appears pathological, the situation generally does not improve
by rotating to Euclidean space. Conversely, if the Euclidean theory is pathological,
the problems are generally not removed by considering the Lorentzian case. From a
constructive field theory point of view it seems difficult for example to make sense,
for either signature, out of one of the simplest cases: a scalar field theory where the
kinetic term has the wrong sign (Gallavotti, 1985).

Then the Euclidean functional integral with sources is defined as

ZE [J] =
∫

[dφ ]exp

{
−
∫

d4x[LE(x)+ J(x)φ(x)]
}

, (2.11)
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with
∫

LE the Euclidean action, and

LE = 1
2 (∂μφ)2 + 1

2 μ
2φ 2 +V (φ) , (2.12)

with now (∂μφ)2 = (∇φ)2 +(∂φ/∂τ)2. If the potential V (φ) is bounded from be-
low, then the integral in Eq. (2.11) is expected to be convergent. In addition, the
Euclidicity Postulate determines the correct boundary conditions to be imposed on
the propagator (the Feynman iε prescription). Euclidean field theory has a close and
deep connection with statistical field theory and critical phenomena, whose founda-
tions are surveyed for example in the comprehensive monographs of (Parisi, 1981)
and (Cardy, 1997).

Turning to the case of gravity, it should be clear that to all orders in the weak
field expansion there is really no difference of substance between the Lorentzian (or
pseudo-Riemannian) and the Euclidean (or Riemannian) formulation. Indeed most,
if not all, of the perturbative calculations in the preceding sections could have been
carried out with the Riemannian weak field expansion about flat Euclidean space

gμν = δμν +hμν , (2.13)

with signature + + ++, or about some suitable classical Riemannian background
manifold, without any change of substance in the results. The structure of the diver-
gences would have been identical, and the renormalization group properties of the
coupling the same (up to the trivial replacement of say the Minkowski momentum
q2 by its Euclidean expression q2 = q2

0 +q2 etc.). Starting from the Euclidean result,
the analytic continuation of results such as Eq. (1.161) to the pseudo-Riemannian
case would have been trivial.

2.4 Gravitational Functional Measure

It is still true in function space that one needs a metric before one can define a
volume element. Therefore, following DeWitt (DeWitt, 1962; 1964), one needs first
to define an invariant norm for metric deformations

‖δg‖2 =
∫

ddxδgμν(x)Gμν ,αβ (g(x)
)
δgαβ (x) , (2.14)

with the supermetric G given by the ultra-local expression

Gμν ,αβ (g(x)
)

= 1
2

√
g(x)

[
gμα(x)gνβ (x)+gμβ (x)gνα(x)+λ gμν(x)gαβ (x)

]
,

(2.15)
with λ a real parameter, λ �= −2/d. The DeWitt supermetric then defines a suitable
volume element

√
G in function space, such that the functional measure over the

gμν ’s taken on the form
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∫
[d gμν ] ≡

∫
∏

x

[
detG[g(x)]

]1/2

∏
μ≥ν

dgμν(x) . (2.16)

The assumed locality of the supermetric Gμν ,αβ [g(x)] implies that its determinant
is a local function of x as well. By a scaling argument given below one finds that, up
to an inessential multiplicative constant, the determinant of the supermetric is given
by

detG[g(x)] ∝ (1+ 1
2 dλ )

[
g(x)

](d−4)(d+1)/4
, (2.17)

which shows that one needs to impose the condition λ �=−2/d in order to avoid the
vanishing of detG. Thus the local measure for the Feynman path integral for pure
gravity is given by

∫
∏

x

[
g(x)

](d−4)(d+1)/8 ∏
μ≥ν

dgμν(x) . (2.18)

In four dimensions this becomes simply
∫

[d gμν ] =
∫
∏

x
∏
μ≥ν

dgμν(x) . (2.19)

However it is not obvious that the above construction is unique. One could have
defined, instead of Eq. (2.15), G to be almost the same, but without the

√
g factor in

front,

Gμν ,αβ [g(x)
]

= 1
2

[
gμα(x)gνβ (x)+gμβ (x)gνα(x)+λ gμν(x)gαβ (x)

]
. (2.20)

Then one would have obtained

detG[g(x)] ∝ (1+ 1
2 dλ )

[
g(x)

]−(d+1)
, (2.21)

and the local measure for the path integral for gravity would have been given now
by ∫

∏
x

[
g(x)

]−(d+1)/2 ∏
μ≥ν

dgμν(x) . (2.22)

In four dimensions this becomes
∫

[d gμν ] =
∫
∏

x

[
g(x)

]−5/2 ∏
μ≥ν

dgμν(x) , (2.23)

which was originally suggested in (Misner, 1957).
One can find in the original reference an argument suggesting that the last mea-

sure is unique, provided the product ∏x is interpreted over “physical” points, and
invariance is imposed at one and the same “physical” point. Furthermore since there
are d(d + 1)/2 independent components of the metric in d dimensions, the Misner
measure is seen to be invariant under a re-scaling gμν → Ω 2gμν of the metric for
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any d, but as a result is also found to be singular at small g. Indeed the DeWitt
measure of Eq. (2.18) and the Misner scale invariant measure of Eqs. (2.22) and
(2.23) could be just as well regarded as two special cases of a slightly more general
supermetric G with prefactor

√
g(1−ω), with ω = 0 and ω = 1 corresponding to the

original DeWitt and Misner measures, respectively.
The power in Eqs. (2.17) and (2.18) can be found for example as follows. In

the Misner case, Eq. (2.22), the scale invariance of the functional measure follows
directly from the original form of the supermetric G(g) in Eq. (2.20), and the fact
that the metric gμν has 1

2 d(d +1) independent components in d dimensions. In the
DeWitt case one rescales the matrix G(g) by a factor

√
g. Since G(g) is a 1

2 d(d +
1)× 1

2 d(d +1) matrix, its determinant is modified by an overall factor of gd(d+1)/4.
So the required power in the functional measure is − 1

2 (d +1)+ 1
8 d(d +1) = 1

8 (d−
4)(d +1), in agreement with Eq. (2.18).

Furthermore, one can show that if one introduces an n-component scalar field
φ(x) in the functional integral, it leads to further changes in the gravitational mea-
sure. First, in complete analogy to the gravitational case, one has for the scalar field
deformation

‖δφ‖2 =
∫

ddx
√

g(x)
(
δφ(x)

)2
, (2.24)

and therefore for the functional measure over φ one has the expression
∫

[dφ ] =
∫
∏

x

[√
g(x)

]n/2 ∏
x

dφ(x) . (2.25)

The first factor clearly represents an additional contribution to the gravitational mea-
sure. One can indeed verify that one just followed the correct procedure, by evalu-
ating for example the scalar functional integral in the large mass limit,

∫
∏

x

[√
g(x)

]n/2 ∏
x

dφ(x) exp

(
− 1

2 m2
∫ √

gφ 2
)

=
(

2π
m2

)nV/2

= const.

(2.26)
so that, as expected, for a large scalar mass m the field φ completely decouples,
leaving the dynamics of pure gravity unaffected.

These arguments would lead one to suspect that the volume factor gσ/2, when
included in a slightly more general gravitational functional measure of the form

∫
[d gμν ] = ∏

x
[g(x)]σ/2 ∏

μ≥ν
dgμν(x) , (2.27)

perhaps does not play much of a role after all, at least as far as physical properties are
concerned. Furthermore, in d dimensions the

√
g volume factors are entirely absent

(σ = 0) if one choosesω = 1−4/d, which would certainly seem the simplest choice
from a practical point of view.

When considering a Hamiltonian approach to quantum gravity, one finds a rather
different form for the functional measure (Leutwyler, 1964), which now includes
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non-covariant terms. This is not entirely surprising, as the introduction of a Hamil-
tonian requires the definition of a time variable and therefore a preferred direction,
and a specific choice of gauge. The full invariance properties of the original action
are no longer manifest in this approach, which is further reflected in the use of a
rigid lattice to properly define and regulate the Hamiltonian path integral, allowing
subsequent formal manipulations to have a well defined meaning. In the covariant
approach one can regard formally the measure contribution as effectively a modifi-
cation of the Lagrangian, leading to an Le f f . The additional terms, if treated con-
sistently will result in a modification of the Hamiltonian, which therefore in general
will not be of the form one would have naively guessed from the canonical rules
(Abers, 2004). One can see therefore that the possible original measure ambiguity
found in the covariant approach is still present in the canonical formulation. One
new aspect of the Hamiltonian approach is though that conservation of probability,
which implies the unitarity of the scattering matrix, can further restrict the form of
the measure, if such a requirement is pushed down all the way to the cutoff scale
(in a simplicial lattice context, the latter would be equivalent to the requirement of
Osterwalder-Schrader reflection positivity at the cutoff scale). Whether such a re-
quirement is physical and meaningful in a geometry that is strongly fluctuating at
short distances, and for which a notion of time and orthogonal space-like hypersur-
faces is not necessarily well defined, remains an open question, and perhaps mainly
an academic one. When an ultraviolet cutoff is introduced (without which the theory
would not be well defined), one is after all concerned in the end only with distance
scales which are much larger than this short distance cutoff.

Along these lines, the following argument supporting the possible irrelevance
of the measure parameter σ can be given (Faddeev and Popov, 1973; Fradkin and
Vilkovisky, 1973). Namely, one can show that the gravitational functional measure
of Eq. (2.27) is invariant under infinitesimal general coordinate transformations,
irrespective of the value of σ . Under an infinitesimal change of coordinates x′μ =
xμ + εμ(x) one has

∏
x

[g(x)]σ/2 ∏
μ≥ν

dgμν(x) → ∏
x

(
det

∂x′β

∂xα

)γ

[g(x)]σ/2 ∏
μ≥ν

dgμν(x) , (2.28)

with γ a power that depends on σ and the dimension. But for an infinitesimal coor-
dinate transformations the additional factor is equal to one,

∏
x

(
det

∂x′β

∂xα

)γ

= ∏
x

[
det(δ β

α +∂αεβ )
]γ = exp

{
γ δ d(0)

∫
ddx ∂αεα

}
= 1 ,

(2.29)
and we have used

ad∑
x

→
∫

ddx , (2.30)

with lattice spacing a = π/Λ and momentum cutoff Λ [see Eq. (1.98)]. So in some
respects it appears that σ can be compared to a gauge parameter.
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In conclusion, there is no clear a priori way of deciding between the various
choices for σ , and the evidence so far suggests that it may very well turn out to
be an irrelevant parameter. The only constraint seems that the regularized gravita-
tional path integral should be well defined, which would seem to rule out singular
measures, which need additional regularizations at small volumes. It is noteworthy
though that the gσ/2 volume term in the measure is completely local and contains no
derivatives. Thus in perturbation theory it cannot affect the propagation properties
of gravitons, and only contributes ultralocal δ d(0) terms to the effective action, as
can be seen from

∏
x

[
g(x)

]σ/2 = exp

{
1
2 σ δ

d(0)
∫

ddx lng(x)
}

(2.31)

with
lng(x) = 1

2 h μ
μ − 1

4 hμνhμν +O(h3) , (2.32)

which follows from the general formal expansion formula for an operator M≡ 1+K

tr ln(1+K) =
∞

∑
n=1

(−1)n+1

n
trKn , (2.33)

which is valid provided the traces of all powers of K exist. On a spacetime lattice
one can interpret the delta function as an ultraviolet cutoff term, δ d(0) ≈Λ d . Then
the first term shifts the vacuum solution and the second one modifies the bare cos-
mological constant. To some extent these type of contributions can be regarded as
similar to the effects arising from a renormalization of the cosmological constant,
ultimately affecting only the distribution of local volumes. So far numerical studies
of the lattice models to be discussed later show no evidence of any sensitivity of the
critical exponents to the measure parameter σ .

Later in this review (Sect. 6.9) we will again return to the issue of the functional
measure for gravity in possibly the only context where it can be posed, and to some
extent answered, satisfactorily: in a lattice regularized version of quantum gravity,
going back to the spirit of the original definition of Eq. (2.4).

In conclusion, the Euclidean Feynman path integral for pure Einstein gravity with
a cosmological constant term is given by

Zcont =
∫

[d gμν ] exp
{
−λ0

∫
dx

√
g +

1
16πG

∫
dx
√

gR
}

. (2.34)

It involves a functional integration over all metrics, with measure given by a suitably
regularized form of

∫
[d gμν ] =

∫
∏

x
[g(x)]σ/2 ∏

μ≥ν
dgμν(x) , (2.35)

as in Eqs. (2.18), (2.22) and (2.27). For geometries with boundaries, further terms
should be added to the action, representing the effects of those boundaries. Then
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the path integral will depend in general on some specified initial and final three-
geometry (Hartle and Hawking, 1977; Hawking, 1979).

2.5 Conformal Instability

Euclidean quantum gravity suffers potentially from a disastrous problem associated
with the conformal instability: the presence of kinetic contributions to the linearized
action entering with the wrong sign.

As was discussed previously in Sect. 1.7, the action for linearized gravity without
a cosmological constant term, Eq. (1.7), can be conveniently written using the three
spin projection operators P(0),P(1),P(2) as

Ilin =
k
4

∫
dx hμν [P(2) −2P(0)]μναβ ∂ 2 hαβ , (2.36)

so that the spin-zero mode enters with the wrong sign, or what is normally referred
to as a ghost contribution. Actually to this order it can be removed by a suitable
choice of gauge, in which the trace mode is made to vanish, as can be seen, for
example, in Eq. (1.13). Still, if one were to integrate in the functional integral over
the spin-zero mode, one would have to distort the integration contour to complex
values, so as to render the functional integral convergent.

The problem is not removed by introducing higher derivative terms, as can be
seen from the action for the linearized theory of Eq. (1.150),

Ilin = 1
2

∫
dx { hμν [ 1

2 k + 1
2 a(−∂ 2)](−∂ 2)P(2)

μνρσ hρσ

+ hμν [−k−2b(−∂ 2)](−∂ 2)P(0)
μνρσ hρσ } , (2.37)

as the instability reappears for small momenta, where the higher derivative terms
can be ignored [see for example Eq. (1.152)]. There is a slight improvement, as the
instability is cured for large momenta, but it is not for small ones. If the perturbative
quantum calculations can be used as a guide, then at the fixed points one has b <
0, corresponding to a tachyon pole in the spin-zero sector, which would indicate
further perturbative instabilities. Of course in perturbation theory there never is a
real problem, with or without higher derivatives, as one can just define Gaussian
integrals by a suitable analytic continuation.

But the instability seen in the weak field limit is not an artifact of the weak field
expansion. If one attempts to write down a path integral for pure gravity of the form

Z =
∫

[d gμν ] e−IE , (2.38)

with an Euclidean action
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IE = λ0

∫
dx

√
g − 1

16πG

∫
dx
√

gR , (2.39)

one realizes that it too appears ill defined due to the fact that the scalar curvature
can become arbitrarily positive, or negative. In turn this can be seen as a direct
consequence of the fact that while gravitational radiation has positive energy, gravi-
tational potential energy is negative because gravity is attractive. To see more clearly
that the gravitational action can be made arbitrarily negative consider the conformal
transformation g̃μν =Ω 2gμν where Ω is some positive function. Then the Einstein
action transforms into

IE(g̃) = − 1
16πG

∫
d4x

√
g (Ω 2R+6 gμν∂μΩ ∂νΩ) , (2.40)

which can be made arbitrarily negative by choosing a rapidly varying conformal
factor Ω . Indeed in the simplest case of a metric gμν =Ω 2ημν one has

√
g(R−2λ ) = 6gμν∂μΩ ∂νΩ − 2λΩ 4 , (2.41)

which looks like a λφ 4 theory but with the wrong sign for the kinetic term. The
problem is referred to as the conformal instability of the classical Euclidean gravi-
tational action (Hawking, 1977). The gravitational action is unbounded from below,
and the functional integral is possibly divergent, depending on the detailed nature of
the gravitational measure contribution [dgμν ], more specifically its behavior in the
regime of strong fields and rapidly varying conformal factors.

A possible solution to the unboundedness problem has been described by Hawk-
ing, who suggests performing the integration over all metrics by first integrating
over conformal factors by distorting the integration contour in the complex plane to
avoid the unboundedness problem, followed by an integration over conformal equiv-
alence classes of metrics (Gibbons and Hawking, 1977; Hawking, 1978a,b; Gib-
bons, Hawking and Perry, 1978; Gibbons and Perry, 1978). Explicit examples have
been given where manifestly convergent Euclidean functional integrals have been
formulated in terms of physical (transverse-traceless) degrees of freedom, where the
weighting can be shown to arise from a manifestly positive action (Schleich, 1985;
Schleich, 1987). A similar convergent procedure seem obtainable for some so-called
minisuperspace models, where the full functional integration over the fluctuating
metric is replace by a finite dimensional integral over a set of parameters character-
izing the reduced subspace of the metric in question, see for example (Barvinsky,
2007). But it is unclear how this procedure can be applied outside perturbation the-
ory, where it not obvious how such a split for the metric should be performed.

An alternate possibility is that the unboundedness of the classical Euclidean grav-
itational action (which in the general case is certainly physical, and cannot therefore
be simply removed by a suitable choice of gauge) is not necessarily an obstacle
to defining the quantum theory. The quantum mechanical attractive Coulomb well
problem has, for zero orbital angular momentum or in the one-dimensional case,
a similar type of instability, since the action there is also unbounded from below.
The way the quantum mechanical treatment ultimately evades the problem is that
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the particle has a vanishingly small probability amplitude to fall into the infinitely
deep well. In other words, the effect of quantum mechanical fluctuations in the paths
(their zig-zag motion) is just as important as the fact that the action is unbounded.
Not unexpectedly, the Feynman path integral solution of the Coulomb problem re-
quires again first the introduction of a lattice, and then a very careful treatment of the
behavior close to the singularity (Kleinert, 2006). For this particular problem one is
of course aided by the fact that the exact solution is known from the Schrödinger
theory.

In quantum gravity the question regarding the conformal instability can then be
rephrased in a similar way: Will the quantum fluctuations in the metric be strong
enough so that physical excitations will not fall into the conformal well? Phrased
differently, what is the role of a non-trivial gravitational measure, giving rise to a
density of states n(E)

Z ∝
∫ ∞

0
dE n(E) e−E , (2.42)

regarding the issue of ultimate convergence (or divergence) of the Euclidean path
integral. Of course to answer such questions satisfactorily one needs a formulation
which is not restricted to small fluctuations and to the weak field limit. Ultimately
in the lattice theory the answer is yes, for sufficiently strong coupling G (Hamber
and Williams, 1984; Berg, 1985).
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