
Chapter 2

Derived Functors

Derived functors are Δ-functors out of derived categories, giving rise, upon
application of homology, to functors such as Ext, Tor, and their sheaf-
theoretic variants—in particular sheaf cohomology. Derived functors are
characterized in §2.1 below by a universal property, and conditions for their
existence are given in 2.2, leading up to the construction of right-derived
functors via injective resolutions in 2.3 and, dually, of some left-derived
functors via flat resolutions in 2.5. We use ideas of Spaltenstein [Sp] to deal
throughout with unbounded complexes. The basic examples RHom• and ⊗

=

are described in 2.4 and 2.5 respectively. Illustrating all that has gone before,
their relation “adjoint associativity” is given in 2.6, which also includes an
abbreviated discussion of what is, in all conscience, involved in constructing
natural transformations of multivariate derived functors: a host of underlying
category-theoretic trivialities, usually ignored, but of whose existence one
should at least be aware. The last section 2.7 develops further refinements.

2.1 Definition of Derived Functors

Fix an abelian category A, let J be a Δ-subcategory of K(A), let DJ be the
corresponding derived category, and let

Q = QJ : J → DJ

be the canonical Δ-functor (see (1.7)). For any Δ-functors F and G from J to
another Δ-category E, or from DJ to E, Hom(F , G) will denote the abelian
group of Δ-functor morphisms from F to G.

Definition 2.1.1. A Δ-functor F : J → E is right-derivable if there exists a
Δ-functor

RF : DJ → E
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and a morphism of Δ-functors

ζ : F → RF ◦Q

such that for every Δ-functor G : DJ → E the composed map

Hom(RF , G) natural−−−−→ Hom(RF ◦Q, G◦Q)
via ζ−−−→ Hom(F , G◦Q)

is an isomorphism (i.e., by (1.5.1), the map “via ζ” is an isomorphism).
The Δ-functor F is left-derivable if there exists a Δ-functor

LF : DJ → E

and a morphism of Δ-functors

ξ : LF ◦Q → F

such that for every Δ-functor G : DJ → E the composed map

Hom(G, LF ) natural−−−−→ Hom(G◦Q, LF ◦Q)
via ξ−−−→ Hom(G◦Q, F )

is an isomorphism (i.e., by (1.5.1), the map “via ξ” is an isomorphism).
Such a pair (RF , ζ)

(
respectively: (LF , ξ)

)
is called a right-derived

(respectively: left-derived) functor of F .

As in (1.5.1), composition with Q gives an embedding of Δ-functor
categories

HomΔ(DJ, E) ↪→ HomΔ(J, E), (2.1.1.1)

with image the full subcategory whose objects are the Δ-functors which trans-
form quasi-isomorphisms into isomorphisms. Consequently we can regard a
right-(left-)derived functor of F as an initial (terminal ) object [M, p. 20] in
the category of Δ-functor morphisms F → G′ (G′ → F ) where G′ ranges
over all Δ-functors from J to E which transform quasi-isomorphisms into
isomorphisms. As such, the pair (RF , ζ) (or (Lf , ξ))—if it exists—is unique
up to canonical isomorphism.

Complement 2.1.2. Let A′ be another abelian category. Any additive
functor F : A → A′ extends to a Δ-functor F̄ : K(A) → K(A′) (see (1.5.2)).
Q′ : K(A′) → D(A′) being the canonical map, we will refer to derived
functors of Q′F̄ , or of the restriction of Q′F̄ to some specified Δ-subcategory J
of K(A), as being “derived functors of F” and denote them by RF or LF .

Example 2.1.3. If F : J → E transforms quasi-isomorphisms into isomor-
phisms then F = F̃ ◦Q for a unique F̃ : DJ → E; and (F̃ , identity) is both a
right-derived and a left-derived functor of F .
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Remarks 2.1.4. Let A′ be an abelian category, and in (2.1.1) suppose that
E is a Δ-subcategory of K(A′) or of D(A′). If RF exists we can set

RiF (A) := Hi(RF (A)) (A ∈ J, i ∈ Z).

Since RF is a Δ-functor, any triangle A → B → C → A[1] in J is transformed
by RF into a triangle in E, and hence we have an exact homology sequence
(see (1.4.5)H):

· · · → Ri−1F (C) → RiF (A) → RiF (B) → RiF (C) → Ri+1F (A) → · · ·
(2.1.4)H

This applies in particular to the triangle (1.4.4.2)∼ associated to an exact
sequence of A-complexes

0 → A → B → C → 0 (A,B,C ∈ J).

A similar remark can be made for LF .

2.2 Existence of Derived Functors

Derivability of a given functor is often proved by reduction, via suitable
Δ-equivalences of categories, to the trivial example (2.1.3), as we now
explain—and summarize in (2.2.6).

We consider, as in (1.7), a diagram

J′ j−−−−→ J′′

Q′
⏐
⏐
�

⏐
⏐
�Q′′

D′ −−−−→
j̃

D′′

where J′ ⊂ J′′ are Δ-subcategories of K(A), D′ and D′′ are the corresponding
derived categories, Q′ and Q′′ are the canonical Δ-functors, j is the inclusion,
and j̃ is the unique Δ-functor making the diagram commute; and we assume
that the conditions of (1.7.2) or of (1.7.2)op obtain. In other words we have
a family of quasi-isomorphisms

ψX : AX → X, X ∈ J′′, AX ∈ J′, (see (1.7.2)), (2.2.1)

or a family of quasi-isomorphisms

ϕX : X → AX , X ∈ J′′, AX ∈ J′, (see (1.7.2)op). (2.2.1)op
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In either situation, j̃ identifies D′ with a Δ-subcategory of D′′; there is a
Δ-functor (ρ, θ) : D′′ → D′ with

ρ(X) = AX (X ∈ J′′);

and there are isomorphisms of Δ-functors

1D′′ −→∼ j̃ρ, 1D′ −→∼ ρj̃ (2.2.2)

induced by ψ or by ϕ.

Proposition 2.2.3. With preceding notation, let E be a Δ-category, let
F : J′′ → E be a Δ-functor, and suppose that the restricted functor

F ′ := F ◦j : J′ → E

has a right-derived functor

RF ′ : D′ → E, ζ ′ : F ′ → RF ′◦Q′.

If there exists a family ϕX : X → AX as in (2.2.1)op, whence a functor ρ
as above, then F has the right-derived functor (RF , ζ) where

RF = RF ′◦ρ : D′′ → E

so that
RF (X) = RF ′(AX) (X ∈ J′′),

and where for each X ∈ J′′, ζ(X) is the composition

F (X)
F (ϕX)−−−−→ F (AX) = F ′(AX)

ζ′(AX)−−−−→ RF ′(AX) = RF (X) .

A similar statement holds for left-derived functors when there exists a
family ψX as in (2.2).

Proof. We check first that ζ is actually a morphism of Δ-functors. Consider
a map u : X → Y in J′′. Since Q′′(ϕX) is an isomorphism, there is a unique
map ũ : AX → AY in D′′ (and hence in the full subcategory D′) making the
following D′′-diagram commute:

X
Q′′(ϕX)−−−−−→ AX

Q′′(u)

⏐
⏐
�

⏐
⏐
�ũ

Y −−−−−→
Q′′(ϕY )

AY
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By the definition of the functor ρ (see proof of (1.7.2)), that ζ is a morphism
of functors means that the following diagram D(u) commutes for all u:

F (X)
F (ϕX)−−−−→ F (AX)

ζ′(AX)−−−−→ RF ′(AX)

F (u)

⏐
⏐
� ?

⏐
⏐
�RF ′(ũ)

F (Y ) −−−−→
F (ϕY )

F (AY ) −−−−→
ζ′(AY )

RF ′(AY )

If there were a J′-map u′ : AX → AY such that u′ϕX = ϕY u, whence
Q′′(u′)Q′′(ϕX) = Q′′(ϕY )Q′′(u) and ũ = Q′′(u′) = Q′(u′), then the broken
arrow in D(u) could be replaced by the map F (u′), making both resulting
subdiagrams of D(u), and hence D(u) itself, commute. We don’t know that
such a u′ exists; but, I claim, there exists a quasi-isomorphism v : Y → Z
such that (with self-explanatory notation) both v′ and (vu)′ exist. This being
so, both diagrams D(v) and D(vu) commute; and since ṽ is an isomorphism
(because v is a quasi-isomorphism), therefore RF ′(ṽ) is an isomorphism, and
it follows easily that D(u) also commutes, as desired.

To verify the claim, use (1.6.3) to construct in J′′ a commutative diagram

X
ϕX−−−−→ AX

u

⏐
⏐
� w

Y −−−−→
ϕY

AY −−−−→
ϕ

Z −−−−→
ϕZ

AZ

with ϕ a quasi-isomorphism, and set

v := ϕ◦ϕY

v′ := ϕZ ◦ϕ

(vu)′ := ϕZ ◦w.

Then v′ϕY = ϕZv and (vu)′ϕX = ϕZ(vu), as desired.
Thus ζ is a morphism of functors; and it is straightforward to check, via

commutativity of (1.7.2.2), that ζ is in fact a morphism of Δ-functors.
Now we need to show (see (2.1.1)) that for every Δ-functor G : D′′ → E

the composed map

Hom(RF , G)
(1.5.1)−−−−→ Hom(RF ◦Q′′, G◦Q′′)

via ζ−−−−→ Hom(F , G◦Q′′)

is bijective. For this it suffices to check that the following natural composition
is an inverse map:
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Hom(F , G◦Q′′) −−−−→ Hom(F ◦j, G◦Q′′ ◦j)

Hom(F ′, G◦ j̃◦Q′)
(2.1.1)−−−−→ Hom(RF ′, G◦ j̃)

−−−−→ Hom(RF ′◦ρ, G◦ j̃◦ρ)
(2.2.2)−−−−→ Hom(RF ′◦ρ, G)

Hom(RF , G) .

This checking is left to the reader, as is the proof for left-derived functors.
Q.E.D.

Example 2.2.4 [H, p. 53, Thm. 5.1]. Let j : J′ ↪→ J′′, F : J′′ → E, and
ϕX : X → AX be as above, and suppose that the restricted functor F ′ := F ◦j
transforms quasi-isomorphisms into isomorphisms (or, equivalently, F (C) ∼= 0
for every exact complex C ∈ J′, see (1.5.1)). Then by (2.1.3), F ′ has a right-
derived functor (RF ′, 1) where F ′ = RF ′◦Q′ and 1 is the identity morphism
of F ′.

So by (2.2.3), F has a right-derived functor (RF , ζ) with

RF (X) = F (AX)

and

ζ(X) = F (ϕX) : F (X) → F (AX) = RF (X)

for all X ∈ J′′. Note that if X ∈ J′ then ϕX is a quasi-isomorphism in J′,
whence ζ(X) is an isomorphism.

The action of RF on maps can be described thus: if u : X → Y is a map
in J′′ then with v′ and (vu)′ as in the preceding proof,

RF (u/1) = F (v′)−1 ◦F ((vu)′) ;

and for any map f/s in D′′ (see §1.2), we have

RF (f/s) = RF (f/1)◦RF (s/1)−1.

As for the Δ-structure on RF , one has for each X the isomorphism

θ(X) : RF (X[1])=F (AX[1]) ˜−−−−→
F (ηX)

F (AX [1]) −̃−→
θF

F (AX)[1] = RF (X)[1]

where
ηX := Q′′(ϕX [1])◦Q′′(ϕX[1])−1 : AX[1] −̃−→ AX [1] ,

and where the isomorphism θF comes from the Δ-functoriality of F .
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(2.2.5). Let A be an abelian category, let J be a Δ-subcategory of K(A),
and let F be a Δ-functor from J to a Δ-category E. We say that a complex X
in J is right-F -acyclic if for each quasi-isomorphism u : X → Y in J there is a
quasi-isomorphism v : Y → Z in J such that the map F (vu) : F (X) → F (Z)
is an isomorphism. Left-F -acyclicity is defined similarly, with arrows reversed.

For example, if J := J′′ in (2.2.4), then every complex X ∈ J′ is right-
F -acyclic—just take Z := AY and v := ϕY . Conversely:

Lemma 2.2.5.1. The right-F -acyclic complexes in J are the objects of a
localizing subcategory (§1.7). Moreover, the restriction of F to this subcategory
transforms quasi-isomorphisms into isomorphisms; in other words, if the
complex X is both exact and right-F -acyclic, then F (X) ∼= 0 (see (1.5.1)).

Proof. Since F commutes with translation—up to isomorphism—it is clear
that X is right-F -acyclic iff so is X[1].

Next, suppose we have a triangle X → X1 → X2 → X[1] in which X1 and
X2 are right-F -acyclic. We will show that then X is right-F -acyclic. Any
quasi-isomorphism u : X → Y can be embedded into a map of triangles

X −−−−→ X1 −−−−→ X2 −−−−→ X[1]

u

⏐
⏐
� u1

⏐
⏐
� u2

⏐
⏐
�

⏐
⏐
�u[1]

Y −−−−→ Y1 −−−−→ Y2 −−−−→ Y [1]

where u1 is a quasi-isomorphism whose existence is given by (1.6.3), and
where u2 is then given by (Δ3)′ and (Δ3)′′ in §1.4. Such a u2 is also a
quasi-isomorphism, as one sees by applying the five-lemma to the natural
map between the homology sequences of the two triangles (see (1.4.5)H).
Similarly, from the definition of right-F -acyclic we deduce a triangle-map

Y1 −−−−→ Y2 −−−−→ Y [1] −−−−→ Y1[1]

v1

⏐
⏐
� v2

⏐
⏐
� v[1]

⏐
⏐
�

⏐
⏐
�v1[1]

Z1 −−−−→ Z2 −−−−→ Z[1] −−−−→ Z1[1]

where v1, v2, and v are quasi-isomorphisms such that F (v1u1) and F (v2u2)
are isomorphisms. (Here (Δ2) in §1.4 should be kept in mind.) We can then
apply the Δ-functor F to the map of triangles

X1 −−−−→ X2 −−−−→ X[1] −−−−→ X1[1]

v1u1

⏐
⏐
� v2u2

⏐
⏐
� (vu)[1]

⏐
⏐
�

⏐
⏐
�(v1u1)[1]

Z1 −−−−→ Z2 −−−−→ Z[1] −−−−→ Z1[1]

and deduce from (Δ3)∗ that F ((vu)[1]), and hence F (vu), is also an isomor-
phism. Thus X is indeed right-F -acyclic.
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In particular, the direct sum of two right-F -acyclic complexes is right-
F -acyclic, because the direct sum is the summit of a triangle whose base is
the zero-map from one to the other, see (1.4.2.1). Also, 0 ∈ J is clearly right-
F -acyclic. We see then that the right-F -acyclic complexes are the objects of
a Δ-subcategory of J.

For this subcategory to be localizing it suffices, by (1.7.1)op, that if
X → Y → Z is as in the definition of right-F -acyclic, then Z is right-
F -acyclic; and this follows from:

Lemma 2.2.5.2. If X is right-F -acyclic and if there exists a quasi-
isomorphism α : X → Z such that F (α) : F (X) → F (Z) is an epimorphism,
then Z is right-F -acyclic.

Proof. Given a quasi-isomorphism Z → Y ′, there exists a quasi-
isomorphism Y ′ → Z ′ such that F (X) → F (Z) → F (Z ′) is an isomorphism
(since X is right-F -acyclic); and since F (X) → F (Z) is an epimorphism,
therefore F (Z) → F (Z ′) is an isomorphism. Q.E.D.

To justify the last assertion in (2.2.5.1), take Y := 0 in the definition of
right-F -acyclicity. Q.E.D.

We leave it to the reader to establish a corresponding statement for
left-F -acyclic complexes.

In summary:

Proposition 2.2.6. Let A be an abelian category, let J be a Δ-subcategory
of K(A), and let F be a Δ-functor from J to a Δ-category E. Suppose J
contains a family of quasi-isomorphisms ϕX : X → AX (X ∈ J) such that AX

is right-F -acyclic for all X, see (2.2.5). Then F has a right-derived functor
(RF , ζ) such that for all X ∈ J,

RF (X) = F (AX) and ζ(X) = F (ϕX) : F (X) → F (AX) = RF (X) .

Moreover, X is right-F -acyclic ⇔ ζ(X) is an isomorphism.

Proof. Everything is contained in (2.2.4) and (2.2.5), except for the fact
that if ζ(X) is an isomorphism then X is right-F -acyclic, which is proved
by taking, in (2.2.5), Z := AY , v := ϕY , and noting that then F (vu) is the
composite isomorphism

F (X) −̃−→
ζ(X)

RF (X) −̃−→ RF (Y ) = F (Z).

Q.E.D.

Corollary 2.2.6.1. With assumptions as in (2.2.6), if G : E → E′ is any
Δ-functor then (G◦RF , G(ζ)) is a right-derived functor of GF .

Proof. Clearly, right-F -acyclic complexes are right-(GF )-acyclic. It follows
then from (2.2.4) and (2.2.5) that the assertion need only be proved for the
restriction of F to the subcategory of right-F -acyclic complexes, in which
case it follows from (2.1.3). Q.E.D.
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Corollary 2.2.7. Let A, A′ be abelian categories, let J ⊂ K(A), J′ ⊂ K(A′)
be Δ-subcategories with canonical functors Q : J → DJ, Q′ : J′ → DJ′

to their respective derived categories, and let F : J → J′ and G : J′ → E be
Δ-functors. Assume that G has a right-derived functor RG and
that every complex X ∈J admits a quasi-isomorphism into a right-
(Q′F )-acyclic complex AX such that F (AX) is right-G-acyclic. Then Q′F
and GF have right-derived functors, denoted RF and R(GF ), and there is a
unique Δ-functorial isomorphism

α : R(GF ) −→∼ RGRF

such that the following natural diagram commutes for all X ∈ J:

GF (X) −−−−→ R(GF )(QX)
⏐
⏐
� �

⏐
⏐
�α(QX)

RGQ′F (X) −−−−→ RGRF (QX)

(2.2.7.1)

Proof. Derivability of Q′F results from (2.2.6). Derivability of GF re-
sults similarly once we show, as follows, that AX is right-(GF )-acyclic:
note for any quasi-isomorphism AX → Y in J that, by (2.2.5.1), the re-
sulting composed map F (AX) → F (Y ) → F (AY ) is a quasi-isomorphism
and so GF (AX) −→∼ GF (AY ). The existence of a unique Δ-functorial α
making (2.2.7.1) commute follows from the definition of right-derived functor.
Since AX is right-(GF )-acyclic and right-(Q′F )-acyclic, and F (AX) is right-
G-acyclic, (2.2.6) implies that α(QX) is isomorphic to the identity map
of GF (AX). Thus α is an isomorphism. Q.E.D.

We leave the corresponding statements for left-F -acyclic complexes and
left-derived functors to the reader.

Incidentally, (2.2.6) generalizes in a simple way to triangulation-compatible
multiplicative systems in any Δ-category (see [H, p. 31]). It is of course of
little interest unless we can construct a family (ϕX). That matter is addressed
in the following sections.

Exercises 2.2.8. (a) Verify that F transforms quasi-isomorphisms into isomorphisms
iff every complex X ∈ J is right-F -acyclic.

(b) Verify that if X ∈ J is exact then X is right-F -acyclic iff F (X) ∼= 0.

(c) Let F be a Δ-functor from J to a Δ-category E. Let J′ be the full subcategory
of J whose objects are all the complexes in J admitting a quasi-isomorphism to a
right-F -acyclic complex. Then J′ is a Δ-subcategory of J.

(d) X is right-F -acyclic iff every map C → X in J with C exact factors as

C → C′ → X with C′ exact and F (C′) ∼= 0.
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(e) X is said to be “unfolded for F” if for every Z ∈ E the natural map

HomE(Z, F (X)) → lim−→
X→Y

HomE(Z, F (Y ))

is an isomorphism, where the lim
−→

is taken over the category of all quasi-isomorphisms

X → Y in J [De, p. 274, (iv)]. Check that any right-F -acyclic X is unfolded for F ;
and that the converse holds under the hypotheses of (2.2.6).

(f) Show: X is unfolded for F iff every map C → X in J with C exact factors
as C → C′ → X with C′ exact and F (C) → F (C′) the zero map. (For this, the
octahedral axiom in E may be needed, see §1.4.)

2.3 Right-Derived Functors via Injective Resolutions

The basic example of a family (ϕX) as in (2.2.6) arises when A has enough
injectives, i.e., every object of A admits a monomorphism into an injec-
tive object. Then every complex X ∈ K+(A) admits a quasi-isomorphism
ϕX : X → IX into a bounded-below complex of injectives (see (1.8.2)); and
by (2.3.4) and (2.3.2.1) below, this IX is right-F -acyclic for every
Δ-functor F : K+(A) → E, whence F is right-derivable.

Later on, however, it will become important for us to be able to deal
with unbounded complexes; and for this purpose the following more general
injectivity notion is, via (2.3.5), essential.

Definition 2.3.1. Let A be an abelian category, and let J be a Δ-subcategory
of K(A). A complex I ∈ J is said to be q-injective in J (or J-q-injective) if
for every diagram Y

s←− X
f−→ I in J with s a quasi-isomorphism, there exists

g : Y → I such that gs = f .1

Lemma 2.3.2. I ∈ J is J-q-injective iff every quasi-isomorphism I → Y
in J has a left inverse.

Proof. In (2.3.1) take X := I and f := identity to see that if I is q-injective
then the quasi-isomorphism s has a left inverse. Conversely, by (1.6.3) any

diagram Y
s←− X

f−→ I is part of a commutative diagram

X
f−−−−→ I

s

⏐
⏐
�

⏐
⏐
�s′

Y −−−−→
f ′

Y ′

in which s′ is a quasi-isomorphism; and then if t is a left inverse for s′ and
g := tf ′, we have gs = f . Q.E.D.

1 Here “q” stands for the class of quasi-isomorphisms. The equivalent term “K-
injective” in [Sp, p. 127] seems to me less suggestive.
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Corollary 2.3.2.1. I ∈ J is J-q-injective iff I is right-F -acyclic for every
Δ-functor F : J → E.

Proof. If any quasi-isomorphism I → Y has a left inverse, then setting
X := I in (2.2.5) we see at once that I is right-F -acyclic. Conversely, if I is
right-F -acyclic for the identity functor J → J, then every quasi-isomorphism
I → Y has a left inverse. Q.E.D.

Taking F := identity in (2.2.5.1), we deduce:

Corollary 2.3.2.2. The J-q-injective complexes are the objects of a localizing
subcategory I. Every quasi-isomorphism in I is an isomorphism, so the pair
(I, identity) has the universal property of the derived category DI (§1.2), and
therefore I ∼= DI can be identified with a Δ-subcategory of DJ.

Corollary 2.3.2.3. Suppose that there exists a family of q-injective resolu-
tions ϕX : X → IX (X ∈ J), i.e., for each X, ϕX is a quasi-isomorphism
and IX is J-q-injective. Then any Δ-functor F : J → E has a right-derived
functor (RF , ζ)2 with

RF (X) = F (IX) and ζ(X) = F (ϕX) : F (X) → F (IX) = RF (X) ,

and such that for any morphism f/s : X1
s← X

f→ X2 in DJ,

RF (f/s) = F (f ′)◦F (s′)−1

where f ′ is the unique map in I making the following square in J commute

X
ϕX−−−−→ IX

f

⏐
⏐
�

⏐
⏐
�f ′

X2 −−−−→
ϕX2

IX2

and similarly for s′.

Proof. Since ϕX becomes an isomorphism in DJ, the map f ′ exists
uniquely in DJ, hence in I (2.3.2.2). For the rest see (2.2.4), with J′ := I,
J′′ := J, and v := identity. Q.E.D.

Example 2.3.3. An object I in A is injective iff when considered as a com-
plex vanishing in all nonzero degrees it is q-injective in K(A) (or in Kb(A)).

Sufficiency: for any A-diagram Y 0 s0

←− X
f−→ I with s0 a monomorphism,

take Y to be the complex which looks like the natural map Y 0 → coker(s0)
in degrees 0 and 1, and vanishes elsewhere, and take s : X → Y to be the
obvious quasi-isomorphism; then deduce from (2.3.1) that if I is q-injective
there exists g0 : Y 0 → I such that g0s0 = f—so that I is A-injective.

2 So the embedding functor (2.1.1.1) has a left adjoint, taking F to RF .
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For necessity, use (2.3.2): to find a left inverse in K(A) for a quasi-
isomorphism β : I → Y we may replace Y by the complex τ≥0Y , to which Y
maps quasi-isomorphically (§1.10), i.e., we may assume that Y vanishes in
all negative degrees; then β induces a monomorphism (in A) β0 : I → Y 0,
which has a left inverse if I is A-injective, and that gives rise, obviously, to
a left inverse for β. (One could also use (iv) in (2.3.8) below.)

Example 2.3.4. Any bounded-below complex I of A-injectives is q-injective
in K(A). Indeed, by [H, p. 41, Lemma 4.5], I satisfies the condition in
(2.3.2). (One could also use (2.3.8)(iv).) Thus (2.3.2.3) applies to J := K+(A)
whenever A has enough injectives (see beginning of §2.3). In that case,
further, every K+(A)-q-injective complex admits a quasi-isomorphism, hence,
by (2.3.2.2), an isomorphism, to a bounded-below complex of A-injectives.

Example 2.3.5. Let U be a topological space, O a sheaf of rings on U , and A
the abelian category of left O-modules. Then a theorem of Spaltenstein [Sp,
p. 138, Theorem 4.5] asserts that every complex in K(A) admits a q-injective
resolution. Hence by (2.3.2.3), every Δ-functor out of K(A) is right-derivable.

More generally, a q-injective resolution exists for every complex in any
Grothendieck category, i.e., an abelian category with exact direct limits
and having a generator [AJS, p. 243, Theorem 5.4]. For example, injective
Cartan-Eilenberg resolutions [EGA, III, Chap. 0, (11.4.2)] always exist in
Grothendieck categories; and their totalizations—which generally require
countable direct products—give q-injective resolutions when such products
of epimorphisms are epimorphisms (a condition which holds in the category
of modules over a fixed ring, but fails, for instance, in most categories of
sheaves on topological spaces).

Example 2.3.6. Let A1, A2 be abelian categories, A1 having enough injec-
tives. As in (1.5.2) any additive functor F : A1 → A2 extends to a Δ-functor
F̄ : K+(A1) → K+(A2) which has, by (2.3.4), a right-derived functor

R+F̄ : D+(A1) → K+(A2)

satisfying, for a given family ϕX : X → IX of injective resolutions,

R+F̄ (X) = F̄ (IX) .

We can extend the domain of R+F̄ to D+(A1) by composing with the
equivalence τ+ defined in (1.8.1).

Moreover, if every A1-complex has a q-injective resolution, then there
is a further extension to a derived functor RF̄ : D(A1) → K(A2)—whose
composition with the canonical map K(A2) → D(A2) is RF , see (2.1.2).
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With Hi the usual homology functor, let RiF : A1 → A2 (i ∈ Z) be the
composition

A1
(1.2.2)−−−−→ D+(A1)

R+F−−−−→ K+(A2)
Hi

−−−−→ A2

(cf. (2.1.4)). Then RiF = 0 for i < 0, and there is a natural map of functors
F → R0F which is an isomorphism if and only if F is left-exact.

Example 2.3.7. Let f : U1 → U2 be a continuous map of topological spaces.
Let Ai be the category of sheaves of abelian groups on Ui (i = 1, 2). Then Ai

is abelian, and has enough injectives. The direct image functor f∗ : A1 → A2

is left-exact, and has, as in (2.3.6), a derived functor

R+f∗ : D+(A1) → K+(A2) .

By (2.3.5), the composition K(A1)
f∗−→ K(A2)

Q−→ D(A2) has a derived
functor Rf∗, whose restriction to D+(A1) is isomorphic to Q◦R+f∗.

In particular, when U2 is a single point then A2 = Ab, the category of
abelian groups, and f∗ is the global section functor Γ = Γ(U1,−). In this case
one usually sets, for i ∈ Z, see (2.1.4),

Rf∗ = RΓ, Rif∗ = RiΓ = Hi, Rif∗(−) = Hi(U1,−) .

Here are some other characterizations of q-injectivity, see [Sp, p. 129,
Prop. 1.5], [BN, Def. 2.6 etc.].

Proposition 2.3.8. Let A be an abelian category, and let J be a Δ-subcate-
gory. of K(A). The following conditions on a complex I ∈ J are equivalent:

(i) I is q-injective in J.

(i)′ For every diagram Y
s←− X

f−→ I in J with s a quasi-isomorphism
there is a unique g : Y → I such that gs = f .

(ii) Every quasi-isomorphism I → Y in J has a left inverse.
(ii)′ Every quasi-isomorphism I → Y in J is a monomorphism.
(iii) I is right-F -acyclic for every Δ-functor F : J → E.
(iii)′ I is right-F -acyclic for F the identity functor J → J.
(iv) For every exact complex X ∈ J, we have HomJ(X, I) = 0.
(iv)′ The Δ-functor Hom•(−, I) : J → K(Ab) of (1.5.3) takes quasi-

isomorphisms into quasi-isomorphisms.
(v) For every complex X ∈ J, the natural map

HomJ(X, I ) → HomDJ
(X, I )

is bijective.

Proof. The equivalence of (i), (ii), (iii) and (iii)′ has already been shown
(see (2.3.2) and the proof of (2.3.2.1)). For (ii) ⇔ (ii)′ see (1.4.2.1). Taking
Y := 0 in (2.3.1), we see that (i) ⇒ (iv). The equivalence of (iv) and (iv)′

results from the footnote in (1.5.1) and the easily-checked relation
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Hn
(
Hom•(X, I )

) ∼= HomJ(X[−n], I ) (n ∈ Z, X ∈ J). (2.3.8.1)

The implications (v) ⇒ (i)′ ⇒ (i) are simple to verify.
We show next that (iv) ⇒ (ii). Let X be the summit of a triangle T in J

whose base is a quasi-isomorphism I → Y . By [H, p. 23, 1.1 b)], the resulting
sequence

Hom(X, I ) → Hom(Y , I ) → Hom(I, I ) → Hom(X[−1], I )

is exact. Moreover, the exact homology sequence (1.4.5)H of T shows that
X is exact. So if (iv) holds, then Hom(Y , I) → Hom(I, I) is bijective, and
(ii) follows.

Finally, we show (ii) ⇒ (v). For any map f/s : X → I in DJ, (1.6.3) yields
a commutative diagram in J, with s′ a quasi-isomorphism:

A
f−−−−→ I

s

⏐
⏐
�

⏐
⏐
�s′

X −−−−→
f ′

B

If ts′ = identity, then f/s = (s′/1)−1(f ′/1) = (tf ′)/1, and so the map
HomJ(X, I) → HomDJ

(X, I) is surjective. For injectivity, given f : X → I
in J, note that f/1 = 0 =⇒ there exists a quasi-isomorphism t : X ′ → X
such that ft = 0 (see §1.2) =⇒ there exists a quasi-isomorphism s : I → Y
such that sf = 0 [H, p. 37]; and if s has a left inverse, then sf = 0 =⇒ f = 0.

Q.E.D.

Exercise 2.3.9. Show that if A is a Grothendieck category then D(A) is equivalent
to the homotopy category of q-injective complexes. Hence if A has inverse limits then
so does D(A).

2.4 Derived Homomorphism Functors

Let A be an abelian category, and let L be a Δ-subcategory of K(A) in which
there exists a family of quasi-isomorphisms ϕX : X → IX (X ∈ L) such that
IX ∈ L is q-injective in K(A) for every X. Then for any quasi-isomorphism
s : X → Y with Y in K(A) there exists, by (2.3.1), a map g : Y → IX ,
necessarily a quasi-isomorphism, such that gs = ϕX ; and hence by (1.7.1)op,
L is a localizing subcategory of K(A), i.e., the derived category DL identifies
naturally with a Δ-subcategory of D(A).

For example, if A has enough injectives we could take L := K+(A),
see (2.3.4). Or, if U is a topological space with a sheaf of rings O and A is
the category of left O-modules, we could take L := K(A), see (2.3.5).
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By (2.3.2.3), every Δ-functor F : L → E is right-derivable. So for any fixed
object A ∈ K(A), the Δ-functor FA : L → K(Ab) given by

FA(B) = Hom•(A, B) (B ∈ L)

(see (1.5.3)) has a right-derived functor

RFA : DL → K(Ab)

with
RFA(B) = Hom•(A, IB).

For fixed B and variable A, Hom•(A, IB) is a contravariant Δ-functor from
K(A) to K(Ab) (see 1.5.3), which takes quasi-isomorphisms in K(A) to
quasi-isomorphisms in K(Ab) ((2.3.8)(iv)′) and hence—after composition
with the natural functor Q′ : K(Ab) → D(Ab)—to isomorphisms in D(Ab).
So by (1.5.1)—and the exercise preceding it—there results a Δ-functor
D(A)op → D(Ab). Thus we obtain a functor of two variables

RHom•(A, B) : D(A)op × DL → D(Ab)

which, together with appropriate θ (see (1.5.3)), is a Δ-functor in each
variable separately:

RHom•(A, B) = Q′Hom•(A, IB) (2.4.1)

for all objects A ∈ D(A)op, B ∈ DL; and we leave it to the reader to make
explicit the effect of RHom• on morphisms in D(A)op and DL respectively.

From (2.3.8)(v) and (2.3) (with J := K(A)), we deduce canonical isomor-
phisms (Yoneda theorem):

Hn(RHom•(X, B)) −→∼ HomD(A)(X, B[n]) (n ∈ Z). (2.4.2)

This leads, in particular, to an elementary interpretation of the exact se-
quence (2.1.4)H when F := FX , see [H, p. 23, Prop. 1.1, b)].

(2.4.3). The variables A,B are treated quite differently in the above
definition of RHom•. But there is a more symmetric characterization of this
derived functor, analogous to the one in (2.1.1). This is given in (2.4.4), after
the necessary preparation.

Let K1, K2, E be Δ-categories, with respective translation functors T1,
T2, T . A Δ-functor from K1 × K2 to E is defined to be a triple (F , θ1, θ2)
with

F : K1 × K2 → E

a functor and

θ1 : F ◦(T1 × 1) −→∼ T ◦F , θ2 : F ◦(1 × T2) −→∼ T ◦F
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isomorphisms of functors, such that for each B ∈ K2 the functor

FB(A) := F (A,B)

together with θ1 is a Δ-functor from K1 to E, and for each A ∈ K1 the
functor

FA(B) := F (A,B)

together with θ2 is a Δ-functor from K2 to E; and such that furthermore the
composed functorial isomorphisms

F (T1 × T2) = F (T1 × 1)(1 × T2)
via θ1−−−−→ TF (1 × T2)

via θ2−−−−→ TTF

F (T1 × T2) = F (1 × T2)(T1 × 1) via θ2−−−−→ TF (T1 × 1) via θ1−−−−→ TTF

are negatives of each other. Similarly, we can define Δ-functors of three or
more variables—with a condition indicated by the equation

(via θi)◦(via θj) = −(via θj)◦(via θi) (i 
= j).

Morphisms of Δ-functors are defined in the obvious way, see (1.5).
For example, let L ⊂ K := K(A) be as above, with respective derived

categories DL ⊂ D, and consider the functor

Hom• : Kop × L → K(Ab).

As in the exercise preceding (1.5.1), we can consider the opposite cate-
gory Kop to be triangulated, with translation inverse to that in K, in such
a way that the canonical contravariant functor K → Kop and its inverse,
together with θ = identity, are both Δ-functors. This being so, one checks
then that Hom• is a Δ-functor (see (1.5.3)).

Similarly
RHom• : Dop × DL → D(Ab)

is a Δ-functor. Furthermore, the q-injective resolution maps ϕB : B → IB

induce a natural morphism of Δ-functors

η : Q′Hom•(A, B) → Q′Hom•(A, IB)
(2.4.1)

= RHom•(QA, QB)

where Q : K → D is the canonical functor. This η is, in the following sense,
universal (hence unique up to isomorphism):

Lemma 2.4.4. Let
G : Dop × DL → D(Ab)

be a Δ-functor, and let

μ : Q′Hom•(A, B) → G(QA,QB) (A ∈ Kop, B ∈ L)
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be a morphism of Δ-functors. Then there exists a unique morphism of
Δ-functors

μ : RHom• → G

such that μ = μη.

Proof. μ is the composition

RHom•(QA, QB) = Q′Hom•(A, IB)
μ−→ G(QA,QIB) −→∼ G(QA,QB) .

The rest is left to the reader. (See also (2.6.5) below.)

(2.4.5). Next we discuss the sheafified version of the above. Let U be a
topological space, O a sheaf of commutative rings, and A the abelian category
of (sheaves of) O-modules. The “sheaf-hom” functor

Hom : Aop ×A → A

extends naturally to a Δ-functor

Hom• : K(A)op × K(A) → K(A)

(essentially because everything in (1.5.3) is compatible with restriction to
open subsets—details left to the reader).

Taking note of the following Lemma, we can proceed as above to derive a
Δ-functor

RHom• : D(A)op × D(A) → D(A) .

Lemma 2.4.5.1. If I is a q-injective complex in K(A) then the functor
Hom•(−, I) takes quasi-isomorphisms to quasi-isomorphisms.

Proof. For A ∈ K(A) and i ∈ Z, the homology Hi(Hom•(A, I)) is the
sheaf associated to the presheaf

V �→ Hi
(
Γ(V ,Hom•(A, I)

)
= Hi

(
Hom•(A|V , I|V )

)
(V open in U).

We can then apply (2.3.8)(iv)′ to the category AV of (O|V )-modules, as soon
as we know:

Lemma 2.4.5.2. Let V be an open subset of U , with inclusion map i : V ↪→U .
Then for any q-injective complex I ∈ K(A), the restriction i∗I = I|V is
q-injective in K(AV ).

Proof. The extension by zero of an OV -module M is the sheaf i!M
associated to the presheaf on U which assigns M(W ) to any open W ⊂ V
and 0 to any open W � V . The restriction i∗i!M can be identified with M ;
and the stalk of i!M at any point w /∈ V is 0. So i! is an exact functor.
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Now from any diagram Y
s← X

f→ i∗I of maps of AV -complexes with s a
quasi-isomorphism, we get the diagram

i!Y
i!s←− i!X

i!f−→ i!i
∗I

α
↪→ I

where i!s is a quasi-isomorphism (since i! is exact) and α is the natural map.
By (2.3.1), there exists a map g : i!X → I such that g◦i!s = α◦i!f in K(A);
and then we have, in K(AV ),

i∗g◦s = i∗g◦i∗i!s = i∗α◦i∗i!f = 1◦f = f .

Thus i∗I is indeed q-injective. Q.E.D.

(2.4.5.3). Similarly, any functor having an exact left adjoint preserves
q-injectivity.

2.5 Derived Tensor Product

Let U be a topological space, O a sheaf of commutative rings, and A the
abelian category of (sheaves of) O-modules. Recall from (1.5.4) the definition
of the tensor product (over O) of two complexes in K(A), and its Δ-functorial
properties. The standard theory of the derived tensor product, via resolutions
by complexes of flat modules, applies to complexes in D−(A), see e.g.,
[H, p. 93]. Following Spaltenstein [Sp] we can use direct limits to extend
the theory to arbitrary complexes in D(A). Before defining, in (2.5.7), the
derived tensor product, we need to develop an appropriate acyclicity notion,
“q-flatness.”

Definition 2.5.1. A complex P ∈ K(A) is q-flat if for every quasi-
isomorphism Q1 → Q2 in K(A), the resulting map P ⊗ Q1 → P ⊗ Q2 is
also a quasi-isomorphism; or equivalently (see footnote under (1.5.1)), if for
every exact complex Q ∈ K(A), the complex P ⊗ Q is also exact.

Example 2.5.2. P ∈ K(A) is q-flat iff for each point x ∈ U , the stalk Px is
q-flat in K(Ax), where Ax is the category of modules over the ring Ox. (In
verifying this statement, note that an exact Ox-complex Qx is the stalk at x
of the exact O-complex Q which associates Qx to those open subsets of U
which contain x, and 0 to those which don’t.)

For instance, a complex P which vanishes in all degrees but one (say n)
is q-flat if and only if tensoring with the degree n component Pn is an exact
functor in the category of O-modules, i.e., Pn is a flat O-module, i.e., for
each x ∈ U, Pn

x is a flat Ox-module.
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Example 2.5.3. Tensoring with a fixed complex Q is a Δ-functor, and so
the exact homology sequence (1.4.5)H of a triangle yields that the q-flat
complexes are the objects of a Δ-subcategory of K(A).

A bounded complex

P : · · · → 0 → 0 → Pm → · · · → Pn → 0 → 0 → · · ·

fits into a triangle P ′ → P → P ′′ → P ′[1] where P ′ is Pn in degree n
and 0 elsewhere, and where P ′′ is the cokernel of the obvious map P ′ → P .
So starting with (2.5.2) we see by induction on n − m that any bounded
complex of flat O-modules is q-flat.

Example 2.5.4. Since (filtered) direct limits commute with both tensor
product and homology, therefore any such limit of q-flat complexes is again
q-flat.

A bounded-above complex

P : · · · → Pm → · · · → Pn → 0 → 0 → · · ·

is the limit of the direct system P0 → P1 → · · · → Pi → · · · where Pi is
obtained from P by replacing all the components P j with j < n − i by 0,
and the maps are the obvious ones. Hence, any bounded-above complex of
flat O-modules is q-flat.

A q-flat resolution of an A-complex C is a quasi-isomorphism P → C
where P is q-flat. The totality of such resolutions (with variable P and C) is
the class of objects of a category, whose morphisms are the obvious ones.

Proposition 2.5.5. Every A-complex C is the target of a quasi-isomorphism
ψC from a q-flat complex PC , which can be constructed to depend functorially
on C, and so that PC[1] = PC [1] and ψC[1] = ψC [1].

Proof. Every O-module is a quotient of a flat one; in fact there exists a
functor P0 from A to its full subcategory of flat O-modules, together with a
functorial epimorphism P0(F) � F (F ∈ A). Indeed, for any open V ⊂ U
let OV be the extension of O|V by zero, (i.e., the sheaf associated to the
presheaf taking an open W to O(W ) if W ⊂ V and to 0 otherwise), so that
OV is flat, its stalk at x ∈ U being Ox if x ∈ V and 0 otherwise. There is a
canonical isomorphism

ψ : F(V ) −→∼ Hom(OV , F) (F ∈ A)

such that ψ(λ) takes 1 ∈ OV (V ) to λ. With Oλ := OV for each λ ∈ F(V ),
the maps ψ(λ) define an epimorphism, with flat source,

P0(F) :=
( ⊕

V open

⊕

λ∈F(V )

Oλ

)
� F,

and this epimorphism depends functorially on F.
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We deduce then, for each F, a functorial flat resolution

· · · → P2(F) → P1(F) → P0(F) � F

with P1(F) := P0

(
ker(P0(F) � F)

)
, etc. Set Pn(F) = 0 if n < 0.

Then to a complex C we associate the flat complex P = PC such that
P r := ⊕m−n=r Pn(Cm) and the restriction of the differential P r → P r+1

to Pn(Cm) is Pn(Cm → Cm+1) ⊕ (−1)m
(
Pn(Cm) → Pn−1(Cm)

)
, together

with the natural map of complexes P → C induced by the epimorphisms
P0(Cm) � Cm (m ∈ Z). Elementary arguments, with or without spec-
tral sequences, show that for the truncations τ≤mC of §1.10, the maps
Pτ≤mC → τ≤mC are quasi-isomorphisms. Since homology commutes with
direct limits, the resulting map

ψC : PC = lim−→m
Pτ≤mC → lim−→m

τ≤m C = C,

(which depends functorially on C) is a quasi-isomorphism; and by (2.5.4),
PC is q-flat. That PC[1] = PC [1] and ψC[1] = ψC [1] is immediate. Q.E.D.

Exercises 2.5.6. (a) Let P and Q be complexes of O-modules, and suppose that for
all integers s, t, u, v the complex τ≤sτ≥tP ⊗O τ≤uτ≥vQ is exact. Then

P ⊗ Q = lim−→s,u
τ≤sP ⊗ τ≤uQ

is exact.

(b) If for all n ∈ Z the homology Hn(P ) is a flat O-module and furthermore, for
all n the kernel of P n → P n+1 is a direct summand of P n (or, for all n the image of
P n → P n+1 is a direct summand of P n+1), then P is q-flat. (Use (a) to reduce to
where P is bounded; then apply induction to the number of n such that P n 	= 0.)

(2.5.7). Let A be, as above, the category of O-modules, and let

J′ ⊂ K := K(A)

be the Δ-subcategory of K whose objects are all the q-flat complexes,
see (2.5.3). Fix B ∈ K and consider the Δ-functor

FB : K → D := D(A)

such that
FB(A) = A ⊗ B (see (1.5.4)).

If A is both q-flat and exact, then A⊗B is exact: to see this, we may replace B
by any quasi-isomorphic complex B′ (since A is q-flat), and by (2.5.5) we
may assume that B′ is q-flat, whence, by (2.5.1), A⊗B′ is exact. Hence the
restriction of FB to J′ transforms quasi-isomorphisms into isomorphisms.
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There exists, by (2.5.5), a functorial family of quasi-isomorphisms

ψA : PA → A (A ∈ K, PA ∈ J′).

with PA[1] = PA[1]. An argument dual to that in (2.2.4) (with J′′ := K) shows
then that FB has a left-derived Δ-functor

(LFB , identity) : D → D (2.5.7.1)

with
LFB(A) = PA ⊗ B ∼= PA ⊗ PB

∼= A ⊗ PB ,

the isomorphisms being the ones induced by ψA and ψB. Alternatively, PA is
left-FB-acyclic for all A, B (see 2.5.10(d)), so one can apply (2.2.6).

For fixed A and variable B, PA⊗B is a Δ-functor from K to D which takes
quasi-isomorphisms to isomorphisms, so by (1.5.1) there results a Δ-functor
from D to D. Hence there is a functor of two variables, called a derived tensor
product,

⊗
=

: D × D −→ D

which together with appropriate θ (see (1.5.4)) is a Δ-functor in each variable
separately (i.e., it is a Δ-functor as defined in (2.4.3)).

Though the variables A and B have been treated differently in the
foregoing, their roles are essentially equivalent. Indeed, there is a universal
property analogous to (the dual of) that in (2.4.4), characterizing the natural
composite map of Δ-functors from K × K to D:

QA ⊗
=

QB −→∼ Q(PA ⊗ PB) −→ Q(A ⊗ B) .

Hence, in view of (1.5.4.1), there is a canonical Δ-bifunctorial isomorphism

B ⊗
=

A −→∼ A ⊗
=

B .

This arises, in fact, from the natural isomorphism PB ⊗ PA −→∼ PA ⊗ PB .

(2.5.8). The local hypertor sheaves are defined by

Torn(A,B) = H−n(A ⊗
=

B) (n ∈ Z; A,B ∈ D).

As in (2.1.4), short exact sequences in either the A or B variable give rise to
long exact hypertor sequences.

We remark that when U is a scheme and O = OU, if the homology sheaves
of the complexes A and B are all quasi-coherent then so are the sheaves
Torn(A,B). This is clear, by reduction to the affine case, if A and B are
quasi-coherent OX -modules (i.e., complexes vanishing except in degree 0). In
the general case, since

A ⊗ B = lim−→s,u
τ≤sA ⊗ τ≤uB ,
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we may assume A and B lie in D−, and then argue as in [H, p. 98, Prop. 4.3],
or alternatively, use the Künneth spectral sequence

E2
pq = ⊕

i+j=q
Torp(H−i(A), H−j(B)) ⇒ Tor•(A,B)

(as described e.g., in [B, p. 186, Exercise 9(b)], with flat resolutions replacing
projective ones). Thus, with notation as in (1.9), denoting by Dqc the
Δ-subcategory D# ⊂ D with A# ⊂ A the subcategory of quasi-coherent
OU -modules (which is plump, see [GD, p. 217, (2.2.2) (iii)]), we have a
Δ-functor

⊗
=

: Dqc × Dqc −→ Dqc . (2.5.8.1)

(2.5.9). The definitions in (1.5.4) can be extended to three (or more)
variables, to give a Δ-functor A ⊗ B ⊗ C from K × K × K to K.

There exists a Δ-functor T3 : D×D×D → D together with a Δ-functorial
map

η : T3(A,B,C) −→ A ⊗ B ⊗ C (A,B,C ∈ K)

such that for any Δ-functor H : D × D × D → D and any Δ-functorial
map μ : H(A,B,C) −→ A ⊗ B ⊗ C there is a unique Δ-functor map
μ̄ : H → T3 such that μ = η◦ μ̄. (The reader can fill in the missing Q’s.)
In fact there is such a T3 with

T3(A,B,C) = PA ⊗ PB ⊗ PC .

We usually write
T3(A,B,C) = A ⊗

=
B ⊗

=
C .

There are canonical Δ-functorial isomorphisms

(A ⊗
=

B) ⊗
=

C −→∼ A ⊗
=

B ⊗
=

C ←−∼ A ⊗
=

(B ⊗
=

C) .

Similar considerations hold for n > 3 variables. Details are left to the
reader. (See, for example, (2.6.5) below.)

Exercises 2.5.10. (a) Show that if A ∈ K(A) is q-flat and B ∈ K(A) is q-injective
then Hom•(A, B) is q-injective.

(b) Let Γ: A → Ab be the global section functor. Show that there is a natural
isomorphism of Δ-functors (of two variables, see (2.4.3))

RHom•(A, B) −→∼ RΓRHom•(A, B).

(Use (a) and (2.2.7), or [Sp, 5.14, 5.12, 5.17].)

(c) Let (Aα) be a (small, directed) inductive system of A-complexes. Show that
for any complex B ∈ D(A) there are natural isomorphisms

lim−→α
Torn

(
Aα, B

)
−→∼ Torn

(
(lim−→α

Aα), B
)

(n ∈ Z).
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(d) Show that for P to be q-flat it is necessary that P be left-FB-acyclic for all B
(FB as in (2.5.7)), and sufficient that P be left-FB-acyclic for all exact B. (For the
last part, (2.2.6) could prove helpful.) Formulate and prove an analogous statement
involving q-injectivity and Hom•. (See (2.3.8).)

2.6 Adjoint Associativity

Again let U be a topological space, O a sheaf of commutative rings, and A
the abelian category of O-modules. Set K := K(A), D := D(A). This section
is devoted to (2.6.1)—or better, (2.6.1)∗ at the end—which expresses the
basic adjointness relation between the Δ-functors RHom• : Dop × D → D
and ⊗

=
: D × D → D defined in (2.4.5) and (2.5.7) respectively.

Proposition 2.6.1. There is a natural isomorphism of Δ-functors

RHom•(A ⊗
=

B, C) −→∼ RHom•(A, RHom•(B, C)) .

Remarks. (i) In fact, the Δ-functors RHom• and ⊗
=

are defined only up to
canonical isomorphism, by universal properties, as in (2.5.9). We leave it to
the reader to verify that the map in (2.6.1) (to be constructed below) is
compatible, in the obvious sense, with such canonical isomorphisms.

(ii) A proof similar to the following one3 yields a natural isomorphism

RHom•(A⊗
=
B, C) −→∼ RHom•(A, RHom•(B, C)) .

Applying homology H0 we have, by (2.4), the adjunction isomorphism

HomD(A ⊗
=

B, C) −→∼ HomD(A, RHom•(B, C)) . (2.6.1′)

(iii) Prop. (2.6.1) gives a derived-category upgrade of the standard sheaf
isomorphism

Hom(F ⊗ G, H) −→∼ Hom(F , Hom(G, H)) (F ,G,H ∈ A). (2.6.2)

Proof of (2.6.1). We discuss the proof at several levels of pedantry, begin-
ning with the argument, in full, given in [I, p. 151, Lemme 7.4] (see also [Sp,
p. 147, Prop. 6.6]): “Resolve C injectively and B flatly.”

This argument can be expanded as follows. Choose quasi-isomorphisms

C → IC , PB → B

3 Or application of the functor RΓ to (2.6.1), see (2.5.10),
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where IC is q-injective and PB is q-flat. It follows from (2.3.8)(iv) that the
complex of sheaves Hom•(PB , IC) is q-injective, since for any exact complex
X ∈ K, the isomorphism of complexes

Hom•(X ⊗ PB, IC) ∼−→ Hom•(X, Hom•(PB , IC))

coming out of (2.6) yields, upon application of homology H0,

0 = HomK(X ⊗ PB , IC) ∼−→ HomK(X, Hom•(PB , IC)).

Now consider the natural sequence of D-maps

RHom•(A ⊗
=

B, C) RHom•(A, RHom•(B, C))
⏐
⏐
�

⏐
⏐
�

RHom•(A ⊗
=

B, IC) RHom•(A, RHom•(B, IC))
⏐
⏐
�

⏐
⏐
�

RHom•(A ⊗
=

PB , IC) RHom•(A, RHom•(PB , IC))
�
⏐
⏐

�
⏐
⏐

RHom•(A ⊗ PB , IC) RHom•(A, Hom•(PB , IC))
�
⏐
⏐

�
⏐
⏐

Hom•(A ⊗ PB , IC) −−−−−−−→
from (2.6.2)

Hom•(A, Hom•(PB , IC))

Since PB is q-flat, and IC and Hom•(PB , IC) are q-injective, all these maps
are isomorphisms (as follows, e.g., from the last assertion of (2.2.6)); so we
can compose to get the isomorphism (2.6.1).

But we really should check that this isomorphism does not depend on the
chosen quasi-isomorphisms, and that it is in fact Δ-functorial. This can be
quite tedious. The following remarks outline a method for managing such
verifications. The basic point is (2.6.4) below.

Let M be a set. An M-category is an additive category C plus a map
t : M → Hom(C,C) from M into the set of additive functors from C to C,
such that with Tm := t(m) it holds that Ti◦Tj = Tj ◦Ti for all i, j ∈ M .
Such an M-category will be denoted CM , the map f—or equivalently, the
commuting family (Tm)m∈M—understood to have been specified; and when
the context renders it superfluous, the subscript “M” may be omitted.

An M-functor F : CM → C′
M is an additive functor F : C → C′ together

with isomorphisms of functors

θi : F ◦Ti −→∼ T ′
i ◦F (i ∈ M)
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(with (T ′
m)m∈M the commuting family of functors defining the M-structure

on C′) such that for all i 
= j, the following diagram commutes:

F ◦Ti◦Tj
via θi−−−−→ T ′

i ◦F ◦Tj
T ′

i (θj)−−−−→ T ′
i ◦T ′

j ◦F
∥
∥
∥

∥
∥
∥

F ◦Tj ◦Ti −−−−→
via θj

T ′
j ◦F ◦Ti −−−−−→

−T ′
j(θi)

T ′
j ◦T ′

i ◦F

where, for instance, T ′
j(θi) is the isomorphism of functors such that for each

object X ∈ C, [T ′
j(θi)](X) is the C′-isomorphism

T ′
j

(
θi(X)

)
: T ′

j

(
FTi(X)

)
−→∼ T ′

j

(
T ′

iF (X)
)
.

A morphism η : (F , {θi}) → (G, {ψi}) of M -functors is a morphism of
functors η : F → G such that for every i ∈ M and every object X in C,
the following diagram commutes:

FTi(X)
θi(X)−−−−→ T ′

iF (X)

η(Ti(X))

⏐
⏐
�

⏐
⏐
�T ′

i (η(X))

GTi(X) −−−−→
ψi(X)

T ′
iG(X)

Composition of such η being defined in the obvious way, the M -functors
from C to C′, and their morphisms, form a category H := HomM(C, C′). If
M ′ ⊃ M and C′

M ′ is viewed as an M-category via “restriction of scalars” then
H is itself an M ′-category, with j ∈ M ′ being sent to the functor T#

j : H → H
such that on objects of H,

T#
j

(
F , {θi}

)
=

(
T ′

j ◦F , {−T ′
j(θi)}

)
,

where the isomorphism of functors

T ′
j(θi) : (T ′

j ◦F )◦Ti −→∼ T ′
j ◦T ′

i ◦F = T ′
i ◦(T ′

j ◦F )

is as above.4 The definition of T#
j η (η as above), and the verification that

H is thus an M ′-category, are straightforward.
Suppose given such categories AM , BN , and CM∪N , where the sets M

and N are disjoint. A × B is considered to be an (M ∪ N)-category, with
i ∈ M going to the functor Ti × 1 and j ∈ N to the functor 1 × Tj . Also,
HomN (B, C) is considered, as above, to be an (M ∪ N)-category.

4 The reason for the minus sign in the definition of T#
j is hidden in the details of

the proof of Lemma (2.6.3) below.
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Lemma 2.6.3. With preceding notation, there is a natural isomorphism of
M ∪ N-categories

HomM∪N

(
A × B, C

)
−→∼ HomM

(
A,HomN (B,C)

)

The proof, left to the reader, requires very little imagination, but a good
deal of patience.

For any positive integer n, let �n be the set {1, 2, . . . ,n}. From now
on, we deal with Δ-categories, always considered to be �1-categories via
their translation functors. If C1, . . . ,Cn are Δ-categories, then the product
category C = C1 × C2 × · · · × Cn becomes a �n-category by the product
construction used in (2.6.3). A Δ-category E can also be made into an
�n-category by sending each i ∈ �n to the translation functor of E. With
these understandings, we see that the �n-functors from C1 ×C2 × · · · ×Cn

to E are just the Δ-functors of (2.4.3) (categories of which we denote
by HomΔ). For example, one checks that the source and target of the
isomorphism in (2.6.1) are both �3-functors.

Now for 1 ≤ i ≤ n fix abelian categories Ai, and let Li be a Δ-subcategory
of K(Ai), with corresponding derived category Di and canonical functor
Qi : Li → Di. Let E be any Δ-category. We can generalize (1.5.1) as follows:

Proposition 2.6.4. The canonical functor

L1× · · · × Ln −−−−−−−→
Q1×...×Qn

D1× · · · × Dn

induces an isomorphism from the category HomΔ(D1 ×D2× · · ·×Dn, E) to
the full subcategory of HomΔ(L1 × L2 × · · · × Ln, E) whose objects are the
Δ-functors F such that for any quasi-isomorphisms α1, . . . ,αn in L1, . . . ,Ln

respectively, F (α1, . . . ,αn) is an isomorphism in E.

Proof. The case n = 1 is contained in (1.5.1). We can then proceed by
induction on n, using the natural isomorphism

Hom�n

(
C1 × C2 × · · · × Cn, E

)

∼−→ Hom�1

(
C1, Hom�n−1(C2 × . . . × Cn, E)

)

provided by (2.6.3) (with Ci := Di or Li). Q.E.D.

Suppose next that we have pairs of Δ-subcategories L′
i ⊂ L′′

i in K(Ai),
with respective derived categories D′

i, D
′′
i , and canonical functors Q′

i : L′
i→D′

i,
Q′′

i : L′′
i → D′′

i (1 ≤ i ≤ n). Suppose further that every complex A ∈ L′′
i

admits a quasi-isomorphism into a complex IA ∈ L′
i. Then as in (1.7.2) the

natural Δ-functors j̃i : D′
i → D′′

i are Δ-equivalences, having quasi-inverses ρi

satisfying ρi(A) = IA (A ∈ L′′
i ). There result functors
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j̃∗ : HomΔ(D′′
1 × · · · × D′′

n, E) −→ HomΔ(D′
1 × · · · × D′

n, E)
ρ∗ : HomΔ(D′

1 × · · · × D′
n, E) −→ HomΔ(D′′

1 × · · · × D′′
n, E)

together with functorial isomorphisms

j̃∗ρ∗ −→∼ identity, ρ∗j̃∗ −→∼ identity,

i.e., j̃∗ and ρ∗ are quasi-inverse equivalences of categories.
We deduce the following variation on the theme of (2.2.3), thereby arriving

at a general method for specifying maps between Δ-functors on products of
derived categories:5

Corollary 2.6.5. With above notation let H : L′
1 × · · · × L′

n → E, F : D′′
1×

· · · × D′′
n → E, and G : D′′

1 × · · · ×D′′
n → E be Δ-functors. Let

ζ : H −→∼ F ◦(j̃1Q
′
1 × . . . × j̃nQ′

n),

β : H −→ G◦(j̃1Q
′
1 × . . . × j̃nQ′

n)

be Δ-functorial maps, with ζ an isomorphism. Then:
(i) There exists a unique Δ-functorial map β̄ : F → G such that for all

A1 ∈ L′
1, . . . , An ∈ L′

n, β(A1, . . . ,An) factors as

H(A1, . . . ,An)
ζ−−−−→ F (A1, . . . ,An)

β̄−−−−→ G(A1, . . . ,An).
(2.6.5.1)

Moreover, if β is an isomorphism then so is β̄.
(ii) If H in (i) extends to a Δ-functor H : L′′

1 × . . . × L′′
n → E, and ζ

(respectively β) to a Δ-functorial map ζ : H → F ◦(j̃1Q
′′
1 × . . . × j̃nQ′′

n)
(respectively β : H → G◦(j̃1Q

′′
1 × . . .× j̃nQ′′

n)), then the factorization (2.6.5.1)
of β(A1, . . . ,An) holds for all A1 ∈ L′′

1, . . . , An ∈ L′′
n.

Proof. (i) The assertion just means that β̄ is the unique map (resp. iso-
morphism) F → G in the category HomΔ(D′′

1 × . . . × D′′
n, E) corresponding

via the above equivalence j̃∗ and (2.6.4) to the map (resp. isomorphism) βζ−1

in the category HomΔ(L′
1 × . . . × L′

n, E).
(ii) Use quasi-isomorphisms Ai → IAi

to map (2.6.5.1) into the corre-
sponding diagram with IAi

∈ L′
i in place of Ai. To this latter diagram

(i) applies; and as the resulting map G(A1, . . . ,An) → G(IA1 , . . . , IAn
) is

an isomorphism, the rest is clear. Q.E.D.

5 This is no more (or less) than a careful formulation of the method used, e.g.,
throughout [H, Chapter II].
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We can now derive (2.6.1) as follows. Take n = 3, and set

L′
1 := K

L′
2 :=

{
Δ-subcategory of K whose objects are
the q-flat complexes (2.5.3).

L′
3 :=

{
Δ-subcategory of K whose objects are
the q-injective complexes (2.3.2.2).

Let D′
1, D′

2, D′
3 be the corresponding derived categories, and set

L′′
i := K, D′′

i := D (i = 1, 2, 3),

so that the natural maps ji : Di
′ → D′′

i are Δ-equivalences, with quasi-
inverses obtained for i = 2 and i = 3 from q-flat (resp. q-injective) resolutions,
i.e., from families of quasi-isomorphisms

PB → B (B ∈ K, PB ∈ L′
2),

C → IC (C ∈ K, IC ∈ L′
3).

In Corollary (2.6.5)(ii), let H : L′′
1 × L′′

2 × L′′
3 → D be the Δ-functor

H(A,B,C) := Hom•(A ⊗ B, C),

let ζ be the natural composed Δ-functorial map

Hom•(A ⊗ B, C) → RHom•(A ⊗ B,C) → RHom•(A ⊗
=

B,C),

and let β be the natural composed Δ-functorial map

Hom•(A ⊗ B, C) −→∼
(2.6.2)

Hom•(A, Hom•(B, C))

−→ RHom•(A, Hom•(B, C))

−→ RHom•(A, RHom•(B, C)).

(Meticulous readers may wish to insert the missing Q’s).
We saw near the beginning of the proof of (2.6.1), that for (B,C) ∈ L′

2×L′
3,

the complex Hom•(B, C) is q-injective, and hence for such (B,C), ζ and β
are isomorphisms. Modifying (2.6.5) in the obvious way to take contravari-
ance into account, we deduce the following elaboration of (2.6.1):

Proposition (2.6.1)*. There is a unique Δ-functorial isomorphism

α : RHom•(A ⊗
=

B, C) −→∼ RHom•(A, RHom•(B, C))
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such that for all A,B,C ∈ D, the following natural diagram (in which
H• stands for Hom•) commutes:

H•(A ⊗ B,C) −−−−→ RH•(A ⊗ B,C) −−−−→ RH•(A ⊗
=

B,C)

via

⏐
⏐
�(2.6.2) �

⏐
⏐
�α

H•(A, H•(B,C)) −−−−→ RH•(A, H•(B,C)) −−−−→ RH•(A, RH•(B,C))

This Δ-functorial isomorphism is the same as the one described—non-
canonically, via PB and IC—near the beginning of this section. See also
exercise (3.5.3)(e) below.

From (2.5.7.1) and (3.3.8) below (dualized), we deduce:

Corollary 2.6.6. For fixed A the Δ-functor FA(−) := Hom•(A,−) of §2.4
has a right-derived Δ-functor of the form (RFA , identity).

Exercise 2.6.7 (see [De, §1.2]). Define derived functors of several variables, and
generalize the relevant results from §§2.2–2.3.

2.7 Acyclic Objects; Finite-Dimensional Derived
Functors

This section contains additional results about acyclicity, used to get some
more ways to construct derived functors, further illustrating (2.2.6). It can
be skipped on first reading.

Let A, A′ be abelian categories, and let φ : A → A′ be an additive functor.
We also denote by φ the composed Δ-functor

K(A)
K(φ)−−−−→ K(A′)

Q−−−−→ D(A′)

where K(φ) is the natural extension of the original φ to a Δ-functor. We say
then that an object in A is right-(or left-)φ-acyclic if it is so when viewed as
a complex vanishing outside degree zero (see (2.2.5) with J := K(A)). In this
section we deal mainly with the “left” context, and so we abbreviate “left-
φ-acyclic” to “φ-acyclic.” (The corresponding—dual—results in the “right”
context are left to the reader. They are perhaps marginally less important
because of the abundance of injectives in situations that we will deal with.)

If X ∈ A and Z → X is a quasi-isomorphism in K(A), then the
natural map τ≤0Z → Z of §1.10 is a quasi-isomorphism. If furthermore the
induced map φ(Z) → φ(X) is a quasi-isomorphism and the functor φ is
either right exact or left exact, then, one checks, the natural composition
φ(τ≤0Z) → φ(Z) → φ(X) is also a quasi-isomorphism.
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One deduces the following characterization of φ-acyclicity:

Lemma 2.7.1. If X ∈ A is such that every exact sequence

· · · −−−−→ Y2 −−−−→ Y1 −−−−→ Y0 −−−−→ X −−−−→ 0

embeds into a commutative diagram in A

· · · −−−−→ Z2 −−−−→ Z1 −−−−→ Z0 −−−−→ X −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

∥
∥
∥

· · · −−−−→ Y2 −−−−→ Y1 −−−−→ Y0 −−−−→ X −−−−→ 0

with the top row and its image under φ both exact, then X is φ-acyclic; and
the converse holds whenever φ is either right exact or left exact.

Proposition 2.7.2. With preceding notation, let P be a class of objects in
A such that

(i) every object in A is a quotient of (i.e., target of an epimorphism
from) one in P;

(ii) if A and B are in P then so is A ⊕ B ; and
(iii) for every exact sequence 0 → A → B → C → 0 in A, if B and

C are in P, then A ∈ P and moreover the corresponding sequence
0 → φA → φB → φC → 0 in A′ is also exact.

Then every bounded-above P-complex (i.e., complex with all components
in P)—in particular every object in P—is φ-acyclic; the restriction φ− of φ
to K−(A) has a left-derived functor Lφ− : D−(A) → D(A′); and if φ 
∼= 0
then dim+Lφ− = 0 (see (1.11.1)).

Proof. Since P is nonempty—by (i)—therefore (iii) with B = C ∈ P
shows that 0 ∈ P. Then (ii) implies that the P-complexes in K−(A) are the
objects of a Δ-subcategory, see (1.6). Starting from (i), an inductive argument
([H, p. 42, 4.6, 1)], dualized—and with assistance, if desired, from [Iv, p. 34,
Prop. 5.2]) shows that every complex in K−(A)—and so, via (1.8.1)−, in
K−(A)—is the target of a quasi-isomorphism from a bounded-above P-
complex. Hence, for the first assertion it suffices to show that φ transforms
quasi-isomorphisms between bounded-above P-complexes into isomorphisms,
i.e., that for any bounded-above exact P-complex X•, φ(X•) ∼= 0 (see (1.5.1)).

Using (iii), we find by descending induction (starting with i0 such that
Xj = 0 for all j > i0) that for every i, the kernel Ki of Xi → Xi+1 lies in P
and the obvious sequence

0 → φ(Ki) → φ(Xi) → φ(Ki+1) → 0

is exact. Consequently, the complex obtained by applying φ to X• is exact,
i.e., φ(X•) ∼= 0 in D(A′).
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Now by (2.2.4) (dualized) we see that Lφ− exists and dim+Lφ− ≤ 0, with
equality if φ(A) 
∼= 0 for some A ∈ A, because there is a natural epimorphism
H0Lφ−A � φ(A). Q.E.D.

Exercise 2.7.2.1. Let φ : A → A′ be as above. Let (Λi)0≤i<∞ be a “homological
functor” [Gr, p. 140], with Λ0 = φ. Let P consist of all objects B in A such that
Λi(B) = 0 for all i > 0, and suppose that every object A ∈ A is a quotient of one
in P. Then Lφ− exists, and the homological functors (Λi) and (Λ′

i) := (H−iLφ−) are
coeffaceable, hence universal [Gr, p. 141, Prop. 2.2], hence isomorphic to each other.

Example 2.7.3. A ringed space is a pair (X,OX) with X a topological space
and OX a sheaf of commutative rings on X; and a morphism of ringed spaces
(f , θ) : (X,OX) → (Y ,OY ) is a continuous map f : X → Y together with
a map θ : OY → f∗OX of sheaves of rings. Any such (f , θ) gives rise to a
(left-exact) direct image functor

f∗ : {OX -modules} → {OY -modules}

such that [f∗M ](U) = M(f−1U) for any OX -module M and any open set
U ⊂ Y , the OY -module structure on f∗M arising via θ; and also to a (right-
exact) inverse image functor

f∗ : {OY -modules} → {OX -modules}

defined up to isomorphism as being left-adjoint to f∗ [GD, Chap. 0, §4]. For
every OY -module N , the stalk (f∗N)x at x ∈ X is OX,x ⊗OY ,f(x) Nf(x).

An OY -module F is flat if the stalk Fy is a flat OY,y-module for
all y ∈Y . The class P of flat OY -modules satisfies the hypotheses of (2.7.2)
when φ = f∗: (i) is given by [H, p. 86, Prop. 1.2], (ii) is easy, and for (iii)
see [B′, Chap. 1, §2, no. 5]. Thus the restriction f∗

− of f∗ to K−(Y ) has a left-
derived functor

Lf∗
− : D−(Y ) → D(X)

(where D(X) is the derived category of the category of OX -modules, etc.),
defined via resolutions (on the left) by complexes of flat OY -modules.

Using the family of quasi-isomorphisms ψA : PA → A (A ∈ D(Y )) with PA

q-flat (see (2.5.5)), we can, in view of (2.5.2) and (2.5.3), show as in (2.5.7)
that Lf∗

− extends to a derived Δ-functor

(Lf∗, identity) : D(Y ) → D(X) (2.7.3.1)

satisfying Lf∗(A) = f∗(PA).
For any OY -module N , the stalk of the homology

Lif
∗(N) := H−iLf∗(N) (i ≥ 0)

at any x ∈ X is TorOY ,f(x)
i (OX,x , Nf(x)). So by the last assertion in (2.2.6)

(dualized), or in (2.7.4), N is f∗-acyclic iff TorOY ,f(x)
i (OX,x , Nf(x)) = 0
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for all x ∈ X and i > 0. (Note here that since f∗ is right exact, the natural
map is an isomorphism L0f

∗(N) −→∼ f∗(N).) Thus—or by (2.7.2)—any flat
OY -module is f∗-acyclic.

Recall that an OX -module M is flasque (or flabby) if the restriction map
M(X) → M(U) is surjective for every open subset U of X. For example,
injective OX -modules are flasque [G, p. 264, 7.3.2] (with L = OX). The class
of flasque OX-modules satisfies the hypotheses of (2.7.2) (dual version) when
φ = f∗: for (i) see [G, p. 147], (ii) is easy, and (iii) follows from the fact that if

0 → F → G → H → 0

is an exact sequence of OX -modules, with F flasque, then for all open sets
V ⊂X the sequence

0 → F (V ) → G(V ) → H(V ) → 0

is still exact [G, p. 148, Thm. 3.1.2]. So the restriction f+
∗ of f∗ to K+(X) has

a right-derived functor

Rf+
∗ : D+(X) → D(Y )

defined via resolutions (on the right) by complexes of flasque OX -modules.
Of course we already know from (2.3.4), via (somewhat less elementary)

injective resolutions, that Rf+
∗ exists, and by (2.3.5) it extends to a derived

functor Rf∗ : D(X) → D(Y ). (See also (2.3.7).) In fact, in view of (2.7.3.1),
it follows from (3.2.1) and (3.3.8) (dualized) that:
(2.7.3.2). The Δ-functor (f∗, identity) has a derived Δ-functor of the form
(Rf∗, identity).

An OX -module M is f∗-acyclic iff the “higher direct image” sheaves

Rif∗(M) := HiRf∗(M) (i ≥ 0)

vanish for all i > 0, see last assertion in (2.2.6) or in (2.7.4) (dualized).
(Since f∗ is left-exact, the natural map is an isomorphism f∗ −→∼ R0f∗.)
Flasque sheaves are f∗-acyclic.

For more examples involving flasque sheaves see [H, p. 225, Variations 6
and 7] (“cohomology with supports”).

Proposition 2.7.4. Let A and A′ be abelian categories, and let φ : A → A′

be a right-exact additive functor. If C is φ-acyclic, then for every exact
sequence 0 → A → B → C → 0 in A the corresponding sequence 0 → φA →
φB → φC → 0 is also exact, and A is φ-acyclic iff B is. So if every object in
A is a quotient of a φ-acyclic one, then the conclusions of (2.7.2) hold with
P the class of φ-acyclic objects; and then D ∈ A is φ-acyclic iff the natural
map Lφ−(D) → φ(D) is an isomorphism in D(A′), i.e., iff H−iLφ−(D) = 0
for all i > 0.
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Proof. For the first assertion, note that by (2.7.1) there exists a commuta-
tive diagram

C2
δ−−−−→ C1

γ−−−−→ C0 −−−−→ C −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�β

∥
∥
∥

0 −−−−→ A −−−−→ B −−−−→
α

C −−−−→ 0

such that the top row is exact and remains so after application of φ.
There results a commutative diagram

C2 C2

δ

⏐
⏐
�

⏐
⏐
�δ

0 −−−−→ 0 −−−−→ C1 C1 −−−−→ 0
⏐
⏐
� γ′

⏐
⏐
�

⏐
⏐
�γ

0 −−−−→ A −−−−→ C0 ×C B −−−−→
π

C0 −−−−→ 0
∥
∥
∥

⏐
⏐
�

⏐
⏐
�

A −−−−→ B −−−−→ C −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 0 0

with exact columns, in which the middle row is split exact, a right inverse for
the projection π being given by the graph of the map β.6 (The coordinates
of γ′ are γ and 0.) Applying φ preserves split-exactness; and then, since φ is
right-exact, so that e.g., φC = coker(φγ), the “snake lemma” yields an exact
sequence

0 → ker(φγ′) → ker(φγ) → φA → φB → φC → 0 .

Since
ker(φγ) = im(φδ) ⊂ ker(φγ′)

we conclude that 0 → φA → φB → φC → 0 is exact, as asserted in (2.7.4).
In other words, if Z is the complex which looks like A → B in degrees −1

and 0 and which vanishes elsewhere, then the quasi-isomorphism Z → C given
by the exact sequence 0 → A → B → C → 0 becomes, upon application of φ,
an isomorphism in D(A′); and hence, by (2.2.5.2) (dualized), Z is a φ-acyclic
complex.

6 Recall that C0 ×C B is the kernel of the map C0 ⊕B → C whose restriction to C0
is αβ and to B is −α.
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The natural semi-split sequence 0 → B → Z → A[1] → 0 leads, as in
(1.4.3), to a triangle

B −→ Z −→ A[1] −→ B[1] ;

and since the φ-acyclic complexes are the objects of a Δ-subcategory, see
(2.2.5.1), it follows that A is φ-acyclic iff B is.

Since Δ-subcategories are closed under direct sum, it is clear now that
(ii) and (iii) in (2.7.2) hold when P is the class of φ-acyclic objects, whence
the second-last assertion in (2.7.4). In view of (2.7.2) and its proof, the last
assertion of (2.7.4) is contained in (2.2.6). Q.E.D.

The derived functor Lφ− of (2.7.4) satisfies dim+Lφ− = 0 (unless φ ∼= 0,
see (2.7.2)). When its lower dimension satisfies dim−Lφ− < ∞, more can be
said.

Proposition 2.7.5. Let φ : A → A′ be a right-exact functor such that every
object in A is a quotient of a φ-acyclic one, and let Lφ− be a left-derived
functor of φ|K−(A), see (2.7.4). Then the following conditions on an integer
d ≥ 0 are equivalent:

(i) dim−Lφ− ≤ d.
(ii) For any F ∈ A we have

Ljφ(F ) := H−jLφ−(F ) = 0 for all j > d.

(iii) In any exact sequence in A

0 → 0 → Bd → Bd−1 → . . . → B0 ,

if B0,B1, . . . ,Bd−1 are all φ-acyclic then so is Bd.7

(iv) For any F ∈ A there is an exact sequence

0 → Bd → Bd−1 → . . . → B0 → F → 0

in which every Bi is φ-acyclic.
(v) For any complex F • ∈ K(A) and integers m ≤ n, if F j = 0 for all

j /∈ [m,n] then there exists a quasi-isomorphism B• → F • where
Bj is φ-acyclic for all j and Bj = 0 for j /∈ [m − d, n].

(vi) For any complex F • ∈ K(A) and integer m, if F j = 0 for all j < m
then there exists a quasi-isomorphism B• → F • where Bj is φ-acyclic
for all j and Bj = 0 for all j < m − d.

7 For d = 0 this means that every B ∈ A is φ-acyclic, i.e., φ is an exact functor,
see (2.7.4) (and then every F• ∈ K(A) is φ-acyclic, see (2.2.8(a)).
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When there exists an integer d ≥ 0 for which these conditions hold, then:
(a) Every complex of φ-acyclic objects is a φ-acyclic complex.
(b) Every complex in A is the target of a quasi-isomorphism from a

φ-acyclic complex.
(c) A left-derived functor Lφ : D(A) → D(A′) exists, dim+Lφ = 0

(unless φ ∼= 0) and dim−Lφ ≤ d.
(d) The restriction Lφ|D*(A) is a left-derived functor of φ|K*(A) , and

Lφ(D*(A)) ⊂ D*(A′) (∗ = +, −, or b).

Proof. (i)⇔(ii). This is given by (iii) and (iv) in (1.11.2).
(iii)⇒(v)⇒(iv). Let F • and m ≤ n be as in (v). As in the proof of (2.7.2),

there is a quasi-isomorphism P • → F • with P j φ-acyclic for all j and P j = 0
for j > n. Let Bm−d be the cokernel of Pm−d−1 → Pm−d. If (iii) holds, then
Bm−d is φ-acyclic: this is trivial if d = 0, and otherwise follows from the
exact sequence

0 → Bm−d → Pm−d+1 → · · · → Pm−1 → Pm.

So all components of the complex B• = τ≥m−dP
• (see (1.10)) are φ-acyclic,

and clearly P • → F • factors naturally as P • → B• → F • = τ≥m−dF
• where

both arrows represent quasi-isomorphisms. Thus (iii)⇒(v); and (v)⇒(iv) is
obvious.

Recalling from (2.7.4) that B ∈ A is φ-acyclic iff Liφ(B) = 0 for all i > 0,
we easily deduce the implications (iv)⇒(ii)⇒(iii) from:

Lemma 2.7.5.1. Let

0 = Bd+1 → Bd → Bd−1 → · · · → B0 → F → 0

be an exact sequence in A with B0,B1, . . . ,Bd−1 all φ-acyclic, and let Kj be
the cokernel of Bj+1 → Bj (0 ≤ j ≤ d). Then for any i > 0, there results a
natural sequence of isomorphisms

Li+dφ(F ) = Li+dφ(K0) −→∼ Li+d−1φ(K1) −→∼ · · ·
· · · −→∼ Li+2φ(Kd−2) −→∼ Li+1φ(Kd−1) −→∼ Liφ(Kd) = Liφ(Bd) .

Proof. When d = 0, it’s obvious. If d > 0, apply (2.1.4)H (dualized) to the
natural exact sequences

0 → Kj → Bj−1 → Kj−1 → 0 (0 < j ≤ d)
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to obtain exact sequences

0 = Li+d−j+1φ(Bj−1) → Li+d−j+1φ(Kj−1)

→ Li+d−jφ(Kj) → Li+d−jφ(Bj−1) = 0. Q.E.D.

(iii)⇒(vi). Condition (iii) coincides with condition (iii) of [H, p. 42, Lemma
4.6, 2)] (dualized, and with P the set of φ-acyclics in A). Condition (i) of
loc. cit. holds by assumption, and condition (ii) of loc. cit. is contained in
(2.7.4). So if (iii) holds, loc. cit. gives the existence of a quasi-isomorphism
B• → F • with Bj φ-acyclic for all j; and the recipe at the bottom of [H,
p. 43] for constructing B• allows us, when F j = 0 for all j < m, to do so in
such a way that Bj = 0 for all j < m − d.

(vi)⇒(ii). Assuming (vi), we can find for each object F ∈ A a quasi-
isomorphism B• → F with all Bj φ-acyclic and Bj = 0 for j < −d. If K is
the cokernel of B−1 → B0 then the natural composition

H0(B•) −→ K −→ F

is an isomorphism, whence so are the functorially induced compositions

Ljφ(H0(B•)) −→ Ljφ(K) −→ Ljφ(F ) (j ∈ Z). (2.7.5.2)

But for every j > d, (2.7.5.1) with K in place of F yields Ljφ(K) = 0, so
that the isomorphism (2.7.5.2) is the zero-map. Thus (ii) holds.

Now suppose that (i)–(vi) hold for some d ≥ 0. We have just seen, in
proving that (iii)⇒(vi), that then every complex in A receives a quasi-
isomorphism from a complex B• of φ-acyclics; and so, as in the proof
of (2.7.2), assertion (2.7.5)(a)—and hence (b)—will result if we can show that
whenever such a B• is exact, then so is φ(B•). But condition (iii) guarantees
that when B• is exact, the kernel Ki of Bi → Bi+1 is φ-acyclic for all i,
whence by (2.7.4) we have exact sequences

0 → φ(Ki−1) → φ(Bi−1) → φ(Ki) → 0 (i ∈ Z)

which together show that φ(B•) is indeed exact.
The existence of Lφ, via resolutions by complexes of φ-acyclic objects, fol-

lows now from (2.2.6); and the dimension statements follow, after application
of (1.8.1)+ or (1.8.1)−, from (v) with m = −∞ (obvious interpretation, see be-
ginning of above proof that (iii)⇒(v)) and from (vi). Similar considerations
yield (d). Q.E.D.

Example 2.7.6. The dimension dim f of a map f : X → Y of ringed spaces
is the upper dimension (1.11) of the functor Rf+

∗ : D+(X) → D(Y ) of (2.7.3):

dim f := dim+Rf+
∗ ,
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a nonnegative integer unless f∗OX
∼= 0, in which case dim f = −∞. When

f has finite dimension, (2.7.5)(c) (dualized) gives the existence of a derived
functor Rf∗ : D(X) → D(Y ) via resolutions (on the right) by complexes of
f∗-acyclic objects, and we have ∞ > dim f = dim+Rf∗.

The tor-dimension (or flat dimension) tor-dim f of a map f : X → Y of
ringed spaces is defined to be the lower dimension (see (1.11)) of the functor
Lf∗

− : D−(Y ) → D(X) of (2.7.3):

tor-dim f := dim−Lf∗
− ,

a nonnegative integer unless OX
∼= 0, in which case tor-dim f = −∞. When

f has finite tor-dimension, (2.7.5)(c) gives the existence of a derived functor
Lf∗ : D(X) → D(Y ) via resolutions (on the left) by complexes of f∗-acyclic
objects, and we have ∞ > tor-dim f = dim−Lf∗.

Following [I, p. 241, Définition 3.1] one says that an OX -complex E has
flat f-amplitude in [m,n] if for any OY -module F ,

Hi(E ⊗
=

Lf∗F ) = 0 for all i /∈ [m,n],

or equivalently, for the functor LE(F ) := E ⊗
=

Lf∗F of OY -module F ,

dim+L ≤ m and dim−L ≤ −n.

This means that the stalk Ex at each x ∈ X is D(OY ,f(x))-isomorphic to a
flat complex vanishing in degrees outside [m,n], see [I, p. 242, 3.3], or argue
as in (2.7.6.4) below. E has finite flat f-amplitude if such m and n exist.

It follows from (2.7.6.4) below and [I, p. 131, 5.1] that f has finite tor-
dimension ⇐⇒ OX has finite flat f-amplitude.

(2.7.6.1). If X is a compact Hausdorff space of dimension ≤ d (in the
sense that each point has a neighborhood homeomorphic to a locally closed
subspace of the Euclidean space R

d), and OX is the constant sheaf Z, then
dim f ≤ d.

Indeed, if I• is a flasque resolution of the abelian sheaf F , then for any
open U ⊂ Y the restriction I•|f−1(U) is a flasque resolution of F |f−1(U), and
Rjf∗(F ) is, up to isomorphism, the sheaf associated to the presheaf taking
any such U to the group Hj(Γ(f−1(U), I•|f−1(U)) , a group isomorphic
to Hj(f−1(U), F |f−1(U)) [G, p. 181, Thm. 4.7.1(a)], and hence vanishing
for j > d, see [Iv, Chap. III, §9].

More generally, if X is locally compact and we assume only that the fibers
f−1y (y ∈ Y ) are compact and have dimension ≤ d, then dim f ≤ d (because
the stalk (Rjf∗F )y is the cohomology Hj(f−1y, F |f−1y), see [Iv, p. 315,
Thm. 1.4], whose proof does not require any assumption on Y ).

(2.7.6.2). (Grothendieck, see [H, p. 87]). If (X,OX) is a noetherian scheme
of finite Krull dimension d, then dim f ≤ d.
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(2.7.6.3). For a ringed-space map f : X → Y with OX � 0, the following
conditions are equivalent:

(i) tor-dim f = 0.
(i)′ Every OY -module is f∗-acyclic.
(i)′′ The functor f∗ of OY -modules is exact.
(ii) f is flat (i.e., OX,x is a flat OY ,f(x)-module for all x ∈ X).

Proof. Since every OX -module is a quotient of a flat one, which is f∗-acyclic (see
(2.7.3)), the equivalence of (i), (i)′, and (i)′′ is given, e.g., by that of (i) and (iii)
in (2.7.5) (for d = 0). The equivalence of (i) and (ii) is the case d = 0 of:

(2.7.6.4) Let f : X → Y be a ringed-space map and d ≥ 0 an integer. Then
tor-dim f ≤ d ⇐⇒ for each x ∈ X there exists an exact sequence of OY ,f(x)-
modules

0 → Pd → Pd−1 → . . . → P1 → P0 → OX,x → 0 (*)

with Pi flat over OY ,f(x) (0 ≤ i ≤ d).

Proof. (“if ”) Let F be an OY -module and let Q• → F be a quasi-isomorphism
with Q• a flat complex (1.8.3). Then for j ≥ 0, the homology

Ljf∗(F ) ∼= H−j(f∗Q•) (see (2.7.3))

vanishes iff for each x ∈ X, with y = f(x), R = OY,y, and S = OX,x we have

0 = H−j
(
(f∗Q•)x

)
= H−j

(
S ⊗R Q•

y

)
= TorR

j (S, Fy)

(where the last equality holds since Q•
y → Fy is an R-flat resolution of Fy), whence

the assertion.

(“only if ”) Suppose only that Ld+1f∗(F ) = 0 for all F , so that (see above)
TorR

d+1(S, Fy) = 0; and let

· · · → P ′
2 → P ′

1 → P ′
0 → S → 0

be an R-flat resolution of S. Then, I claim, the module

Pd := coker(P ′
d+1 → P ′

d)

is R-flat, whence we have (∗) with Pi = P ′
i for 0 ≤ i < d.

Indeed, the flatness of Pd is equivalent to the vanishing of TorR
1 (Pd, R/I) for all

R-ideals I [B′, §4, Prop. 1]. But any such I is Iy where I ⊂ OY is the OY -ideal such
that for any open U ⊂ Y ,

I(U) = { r ∈ OY (U) | ry ∈ I } if y ∈ U

= 0 if y /∈ U ;

so that if F = OY /I, then R/I = Fy; and from the flat resolution

· · · → P ′
d+2 → P ′

d+1 → P ′
d → Pd → 0

of Pd, we get the desired vanishing:

TorR
1 (Pd, R/I) = TorR

1 (Pd, Fy) = TorR
d+1(S, Fy) = 0.
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Exercise 2.7.6.5. (For amusement only.) If Y is a quasi-separated scheme,
then f : X → Y satisfies tor-dim f ≤ d if (and only if) for every quasi-coherent
OY -ideal I, we have

Ld+1f∗(OY /I) = 0.

If in addition Y is quasi-compact or locally noetherian, then we need only consider
finite-type quasi-coherent OY -ideals.

[The following facts in [GD] can be of use here: p. 111, (5.2.8); p. 313, (6.7.1);
p. 294, (6.1.9) (i); p. 295, (6.1.10)(iii); p. 318, (6.9.7).]
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