Chapter 2
Derived Functors

Derived functors are A-functors out of derived categories, giving rise, upon
application of homology, to functors such as Ext, Tor, and their sheaf-
theoretic variants—in particular sheaf cohomology. Derived functors are
characterized in §2.1 below by a universal property, and conditions for their
existence are given in 2.2, leading up to the construction of right-derived
functors via injective resolutions in 2.3 and, dually, of some left-derived
functors via flat resolutions in 2.5. We use ideas of Spaltenstein [Sp] to deal
throughout with unbounded complexes. The basic examples RHom® and ®
are described in 2.4 and 2.5 respectively. Illustrating all that has gone before,
their relation “adjoint associativity” is given in 2.6, which also includes an
abbreviated discussion of what is, in all conscience, involved in constructing
natural transformations of multivariate derived functors: a host of underlying
category-theoretic trivialities, usually ignored, but of whose existence one
should at least be aware. The last section 2.7 develops further refinements.

2.1 Definition of Derived Functors

Fix an abelian category A, let J be a A-subcategory of K(A), let Dy be the
corresponding derived category, and let

Q=Q;:J— Dy

be the canonical A-functor (see (1.7)). For any A-functors F' and G from J to
another A-category E, or from Dy to E, Hom(F, G) will denote the abelian
group of A-functor morphisms from F' to G.

Definition 2.1.1. A A-functor F': J — E is right-derivable if there exists a
A-functor
RF: Dy — E
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and a morphism of A-functors
(: F—RFoQ@Q

such that for every A-functor G: Dy — E the composed map

Hom(RF, G) Jatural, Hom(RFoQ, GoQ) Yia ¢, Hom(F, GoQ)
is an isomorphism (i.e., by (1.5.1), the map “via ¢” is an isomorphism).
The A-functor F' is left-derivable if there exists a A-functor

LF: Dy — E

and a morphism of A-functors
§:LFoQ — F

such that for every A-functor G: Dy — E the composed map

Hom(G, LF) 2™ Hom(GoQ, LFoQ) 225 Hom(GoQ, F)

is an isomorphism (i.e., by (1.5.1), the map “via £’ is an isomorphism).
Such a pair (RF,() (respectively: (LF,{)) is called a right-derived
(respectively: left-derived) functor of F.

As in (1.5.1), composition with @ gives an embedding of A-functor
categories

Homa (Dj, E) — Homa (J, E), (2.1.1.1)

with image the full subcategory whose objects are the A-functors which trans-
form quasi-isomorphisms into isomorphisms. Consequently we can regard a
right-(left-)derived functor of F as an initial (terminal) object [M, p.20] in
the category of A-functor morphisms F — G’ (G’ — F) where G’ ranges
over all A-functors from J to E which transform quasi-isomorphisms into
isomorphisms. As such, the pair (RF,¢) (or (Lf,&))—if it exists—is unique
up to canonical isomorphism.

Complement 2.1.2. Let A’ be another abelian category. Any additive
functor F': A — A’ extends to a A-functor F': K(A) — K(A’) (see (1.5.2)).
Q' K(A) — D(A’) being the canonical map, we will refer to derived
functors of ' F, or of the restriction of Q'F to some specified A-subcategory J
of K(A), as being “derived functors of I’ and denote them by RF or LF.

Example 2.1.3. If I': J — E transforms quasi-isomorphisms into isomor-
phisms then F' = Fo(@ for a unique F': Dy — E; and (F, identity) is both a
right-derived and a left-derived functor of F'.
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Remarks 2.1.4. Let A’ be an abelian category, and in (2.1.1) suppose that
E is a A-subcategory of K(A’) or of D(A’). If RF exists we can set

R'F(A):= H(RF(4)) (A€, iel).

Since RF' is a A-functor, any triangle A — B — C' — A[1] in J is transformed
by RF into a triangle in E, and hence we have an exact homology sequence
(see (1.4.5)H):
- — R"™'F(C) - R'F(A) - R'F(B) —» R'F(C) — R F(A) — - -
(2.1.4)H

This applies in particular to the triangle (1.4.4.2)™ associated to an exact
sequence of A-complexes

0—-A—-B—-C—0 (A,B,C eJ).

A similar remark can be made for LF.

2.2 Existence of Derived Functors

Derivability of a given functor is often proved by reduction, via suitable
A-equivalences of categories, to the trivial example (2.1.3), as we now
explain—and summarize in (2.2.6).

We consider, as in (1.7), a diagram

J J J”

o e

D/ D//
J

where J/ C J” are A-subcategories of K(A), D’ and D” are the corresponding
derived categories, Q" and Q" are the canonical A-functors, j is the inclusion,
and j is the unique A-functor making the diagram commute; and we assume
that the conditions of (1.7.2) or of (1.7.2)°P obtain. In other words we have
a family of quasi-isomorphisms

vx: Ax — X, XelJ' Ax eJ, (sce (1.7.2)), (2.2.1)
or a family of quasi-isomorphisms

oy X — Ax, X el Ax €J, (see (1.7.2)°P). (2.2.1)°P
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In either situation, j identifies D’ with a A-subcategory of D”; there is a
A-functor (p,6): D’ — D’ with

p(X) = Ax (X eJ);
and there are isomorphisms of A-functors
1pr —> Jp, 1pr = pj (2.2.2)
induced by ¥ or by .

Proposition 2.2.3. With preceding notation, let E be a A-category, let
F:J' — E be a A-functor, and suppose that the restricted functor

F''=Foj:J - E
has a right-derived functor
RF':D' - E, (' F' - RF'oQ.

If there exists a family ¢x: X — Ax as in (2.2.1)°P, whence a functor p
as above, then F has the right-derived functor (RF, () where

RF =RF'op: D" - E

so that
RF(X) = RF'(Ax) (X eJ,

and where for each X € 3", ((X) is the composition

¢'(Ax)
s

Fx) 299 piayg) = F/(Ax) RF'(Ay) = RF(X).

A similar statement holds for left-derived functors when there exists a
family ¢y as in (2.2).

Proof. We check first that ( is actually a morphism of A-functors. Consider
amap u: X — Y in J”. Since Q" (py) is an isomorphism, there is a unique
map @: Ax — Ay in D” (and hence in the full subcategory D’) making the
following D”-diagram commute:

X Q" (ex) AX

- I

Y —— Ay
Q" (#y)
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By the definition of the functor p (see proof of (1.7.2)), that ¢ is a morphism
of functors means that the following diagram D(u) commutes for all u:

Fx) 29 poay) S REAy)
F(u)l ?i lRF’(ﬁ)

F(Y) —— F(Ay) RE'(Ay)

F(py) ¢ (Ay)

If there were a J-map u': Ax — Ay such that w¢y = ¢y u, whence
Q" (W)Q"(px) = Q" (py)Q"(u) and @ = Q" (uv') = Q'(u'), then the broken
arrow in D(u) could be replaced by the map F(u’), making both resulting
subdiagrams of D(u), and hence D(u) itself, commute. We don’t know that
such a v’ exists; but, I claim, there exists a quasi-isomorphism v: Y — Z
such that (with self-explanatory notation) both v’ and (vu)’ exist. This being
so, both diagrams D(v) and D(vu) commute; and since v is an isomorphism
(because v is a quasi-isomorphism), therefore RF’(?) is an isomorphism, and
it follows easily that D(u) also commutes, as desired.

To verify the claim, use (1.6.3) to construct in J” a commutative diagram

X 2, Ay

l\\

Py ® ¥z

Az
with ¢ a quasi-isomorphism, and set

vi= popy
v'i= g0

vu) == @, ow.
z

Then v'¢y = ¢,v and (vu) oy = p,(vu), as desired.
Thus ¢ is a morphism of functors; and it is straightforward to check, via
commutativity of (1.7.2.2), that ¢ is in fact a morphism of A-functors.

Now we need to show (see (2.1.1)) that for every A-functor G: D" — E
the composed map

[a.5.1)

Hom(RF, G) —— Hom(RFoQ", GoQ") —— via © ——— Hom(F, GoQ")
is bijective. For this it suffices to check that the following natural composition

is an inverse map:
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Hom(F, GoQ") —— Hom(Foj, GoQ"oj)

—— Hom(F’, GojoQ’)

CID Hom(RF!, Goj)

gy

(2.2.2)
-

(
(
Hom(RF'op, Gojop)
Hom(RF'op, G)
(

—— Hom(RF, G).

This checking is left to the reader, as is the proof for left-derived functors.
Q.E.D.

Example 2.2.4 [H, p.53, Thm.5.1]. Let j: J — J”, F: J’ — E, and
vy : X — Ax be as above, and suppose that the restricted functor F':= Foj
transforms quasi-isomorphisms into isomorphisms (or, equivalently, F'(C') 2 0
for every exact complex C' € J’, see (1.5.1)). Then by (2.1.3), F” has a right-
derived functor (RF’, 1) where F/ = RF’o@’ and 1 is the identity morphism
of F'.
So by (2.2.3), F has a right-derived functor (RF, () with
RF(X) = F(Ax)

and

((X) = Flgx): F(X) — F(Ax) = RF(X)

for all X € J”. Note that if X € J’ then ¢y is a quasi-isomorphism in J’,
whence ((X) is an isomorphism.

The action of RF on maps can be described thus: if u: X — Y is a map
in J” then with v" and (vu)’ as in the preceding proof,

RF(u/1) = F(v') Yo F((vu));
and for any map f/s in D” (see §1.2), we have
F(f/s) = RE(f/1)oRF(s/1)~"
As for the A-structure on RF, one has for each X the isomorphism

0(X): RE(X[1])=F(Axpy) o) F(Ax[1]) = F(Ax)[1] = RE(X)[1]

where
Nx = Q" (ex[1) 0 Q" (pxy) ™"+ Axp = Ax|[1],

and where the isomorphism 6r comes from the A-functoriality of F.
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(2.2.5). Let A be an abelian category, let J be a A-subcategory of K(A),
and let F' be a A-functor from J to a A-category E. We say that a complex X
in J is right-F -acyclic if for each quasi-isomorphism u: X — Y in J there is a
quasi-isomorphism v: Y — Z in J such that the map F(vu): F(X) — F(Z)
is an isomorphism. Left-F-acyclicity is defined similarly, with arrows reversed.

For example, if J:= J” in (2.2.4), then every complex X € J’ is right-
F-acyclic—just take Z:= Ay and v:= ¢,.. Conversely:

Lemma 2.2.5.1. The right-F-acyclic complexes in J are the objects of a
localizing subcategory (§1.7). Moreover, the restriction of F' to this subcategory
transforms quasi-isomorphisms into isomorphisms; in other words, if the
complex X is both exact and right-F-acyclic, then F(X) 220 (see (1.5.1)).

Proof. Since F' commutes with translation—up to isomorphism—it is clear
that X is right- F-acyclic iff so is X[1].

Next, suppose we have a triangle X — X; — X5 — X[1] in which X; and
Xo are right- F-acyclic. We will show that then X is right- F-acyclic. Any
quasi-isomorphism u: X — Y can be embedded into a map of triangles

X X, X, X[1]
S S I
Y Y, Ya Y1

where wu; is a quasi-isomorphism whose existence is given by (1.6.3), and
where ug is then given by (A3)" and (A3)” in §1.4. Such a ug is also a
quasi-isomorphism, as one sees by applying the five-lemma to the natural
map between the homology sequences of the two triangles (see (1.4.5)H).
Similarly, from the definition of right- F-acyclic we deduce a triangle-map

Vi Y Y1 Yi[1]
vll ml y[1]l lvl[l]
Z Zy Z1] Z1[1]

where vy, v9, and v are quasi-isomorphisms such that F(viuy) and F(vaus)
are isomorphisms. (Here (A2) in §1.4 should be kept in mind.) We can then
apply the A-functor F' to the map of triangles

X1 Xs X[1] X1 [1]
Uﬂ“J, vzuzl (vu)[l]J{ l(vlul)[l]
A Zy Z1] Zy[1]

and deduce from (A3)* that F'((vu)[1]), and hence F(vu), is also an isomor-
phism. Thus X is indeed right- F-acyclic.
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In particular, the direct sum of two right- F-acyclic complexes is right-
F-acyclic, because the direct sum is the summit of a triangle whose base is
the zero-map from one to the other, see (1.4.2.1). Also, 0 € J is clearly right-
F-acyclic. We see then that the right- F-acyclic complexes are the objects of
a A-subcategory of J.

For this subcategory to be localizing it suffices, by (1.7.1)°P, that if
X — Y — Z is as in the definition of right- F-acyclic, then Z is right-
F-acyclic; and this follows from:

Lemma 2.2.5.2. If X s right-F-acyclic and if there ezists a quasi-
isomorphism «: X — Z such that F(«): F(X) — F(Z) is an epimorphism,
then Z 1is right-F-acyclic.

Proof. Given a quasi-isomorphism Z — Y’  there exists a quasi-
isomorphism Y’ — Z’ such that F(X) — F(Z) — F(Z') is an isomorphism
(since X is right- F-acyclic); and since F(X) — F(Z) is an epimorphism,

therefore F'(Z) — F(Z') is an isomorphism. Q.E.D.
To justify the last assertion in (2.2.5.1), take Y := 0 in the definition of
right- F-acyclicity. Q.E.D.

We leave it to the reader to establish a corresponding statement for
left- F-acyclic complexes.

In summary:

Proposition 2.2.6. Let A be an abelian category, let J be a A-subcategory
of K(A), and let F be a A-functor from J to a A-category E. Suppose J
contains a family of quasi-isomorphisms ¢y : X — Ax (X € J) such that Ax
is right-F-acyclic for all X, see (2.2.5). Then F' has a right-derived functor
(RF,¢) such that for all X € J,

RF(X)=F(Ax) and ((X)=F(¢y): F(X)— F(Ax)=RF(X).
Moreover, X is right-F-acyclic < ((X) is an isomorphism.

Proof. Everything is contained in (2.2.4) and (2.2.5), except for the fact
that if ((X) is an isomorphism then X is right-F-acyclic, which is proved
by taking, in (2.2.5), Z:= Ay, v:= ¢y, and noting that then F(vu) is the
composite isomorphism

F(X) i’:) RF(X) = RF(Y)=F(Z)
Q.E.D.

Corollary 2.2.6.1. With assumptions as in (2.2.6), if G: E — E' is any
A-functor then (GoRF, G({)) is a right-derived functor of GF.

Proof. Clearly, right- F-acyclic complexes are right-(GF)-acyclic. It follows
then from (2.2.4) and (2.2.5) that the assertion need only be proved for the
restriction of F' to the subcategory of right- F-acyclic complexes, in which
case it follows from (2.1.3). Q.E.D.
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Corollary 2.2.7. Let A, A’ be abelian categories, let J C K(A), J € K(A')
be A-subcategories with canonical functors Q:J — Dj, Q':J — Dy
to their respective derived categories, and let F:' J — J and G: J — E be
A-functors. Assume that G has a right-derived functor RG and
that every complexr X €J admits a quasi-isomorphism into a right-
(Q'F)-acyclic complex Ax such that F(Ax) is right-G-acyclic. Then Q'F
and GF have right-derived functors, denoted RE and R(GF), and there is a
unique A-functorial isomorphism

a: R(GF) = RGRF
such that the following natural diagram commutes for all X € J:
GF(X) —— R(GF)(QX)
| = |at@x) (2.2.7.1)
RGQ'F(X) —— RGRF(QX)

Proof. Derivability of Q'F results from (2.2.6). Derivability of GF re-
sults similarly once we show, as follows, that Ax is right-(GF)-acyclic:
note for any quasi-isomorphism Ay — Y in J that, by (2.2.5.1), the re-
sulting composed map F(Ax) — F(Y) — F(Ay) is a quasi-isomorphism
and so GF(Ax) = GF(Ay). The existence of a unique A-functorial o
making (2.2.7.1) commute follows from the definition of right-derived functor.
Since Ax is right-(GF)-acyclic and right-(Q'F')-acyclic, and F(Ax) is right-
G-acyclic, (2.2.6) implies that «(QX) is isomorphic to the identity map
of GF(Ax). Thus « is an isomorphism. Q.E.D.

We leave the corresponding statements for left- F-acyclic complexes and
left-derived functors to the reader.

Incidentally, (2.2.6) generalizes in a simple way to triangulation-compatible
multiplicative systems in any A-category (see [H, p.31]). It is of course of
little interest unless we can construct a family (¢ ). That matter is addressed
in the following sections.

Exercises 2.2.8. (a) Verify that F transforms quasi-isomorphisms into isomorphisms
iff every complex X € J is right- F-acyclic.

(b) Verify that if X € J is exact then X is right- F-acyclic iff F'(X) = 0.

(c) Let F' be a A-functor from J to a A-category E. Let J’ be the full subcategory
of J whose objects are all the complexes in J admitting a quasi-isomorphism to a
right- F-acyclic complex. Then J’ is a A-subcategory of J.

(d) X is right- F-acyclic iff every map C — X in J with C exact factors as
C — C" — X with C’ exact and F(C’) 0.
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(e) X is said to be “unfolded for F” if for every Z € E the natural map
Homg(Z, F(X)) — li_r)nHomE(Z,F(Y))
X—=Y
is an isomorphism, where the Eg is taken over the category of all quasi-isomorphisms
X — Y in J [De, p.274, (iv)]. Check that any right- F-acyclic X is unfolded for F;
and that the converse holds under the hypotheses of (2.2.6).
(f) Show: X is unfolded for F iff every map C — X in J with C exact factors

as C — C' — X with C’ exact and F(C) — F(C’) the zero map. (For this, the
octahedral axiom in E may be needed, see §1.4.)

2.3 Right-Derived Functors via Injective Resolutions

The basic example of a family (¢y) as in (2.2.6) arises when A has enough
injectives, i.e., every object of A admits a monomorphism into an injec-
tive object. Then every complex X € K*(A) admits a quasi-isomorphism
oy X — Ix into a bounded-below complex of injectives (see (1.8.2)); and
by (2.3.4) and (2.3.2.1) below, this Ix is right-F-acyclic for every
A-functor F: K*(A) — E, whence F is right-derivable.

Later on, however, it will become important for us to be able to deal

with unbounded complexes; and for this purpose the following more general
injectivity notion is, via (2.3.5), essential.
Definition 2.3.1. Let A be an abelian category, and let J be a A-subcategory
of K(A). A complex I € J is said to be g-injective in J (or J-g-injective) if
for every diagram Y <~ X L I'inJ with s a quasi-isomorphism, there exists
g: Y — I such that gs = f.!

Lemma 2.3.2. I € J is J-g-injective iff every quasi-isomorphism I — Y
i J has a left inverse.

Proof. In (2.3.1) take X := I and f:= identity to see that if I is g-injective
then the quasi-isomorphism s has a left inverse. Conversely, by (1.6.3) any

diagram Y <& X ERy SN part of a commutative diagram

f

X ——

Ik

Yy — Y’

in which s’ is a quasi-isomorphism; and then if ¢ is a left inverse for s’ and
g:=tf’, we have gs = f. Q.E.D.

I Here “q” stands for the class of quasi-isomorphisms. The equivalent term “K-
injective” in [Sp, p.127] seems to me less suggestive.
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Corollary 2.3.2.1. I € J is J-g-injective iff I is right-F-acyclic for every
A-functor F: J — E.

Proof. If any quasi-isomorphism I — Y has a left inverse, then setting
X:=1in (2.2.5) we see at once that I is right- F-acyclic. Conversely, if I is
right- F-acyclic for the identity functor J — J, then every quasi-isomorphism
I — Y has a left inverse. Q.E.D.

Taking F':= identity in (2.2.5.1), we deduce:

Corollary 2.3.2.2. The J-g-injective complexes are the objects of a localizing
subcategory 1. Fvery quasi-isomorphism in I is an isomorphism, so the pair
(I,identity) has the universal property of the derived category Dy (§1.2), and
therefore 1 = Dy can be identified with a A-subcategory of Dy.

Corollary 2.3.2.3. Suppose that there exists a family of g-injective resolu-
tions oy : X — Ix (X € J), d.e., for each X, ¢y is a quasi-isomorphism
and Ix is J-q-injective. Then any A-functor F': J — E has a right-derived
functor (RF,¢)? with

RF(X) = F(Ix) and C(X)= Flpy): F(X) - F(Ix) = RF(X),
and such that for any morphism f/s: X; & X 4, X5 in Dy,
RE(f/s) = F(f)oF(s)™!

where f' is the unique map in I making the following square in J commute

XLP—X>IX

fl lf’

Xy — Ix,
Pxq

and similarly for s'.

Proof. Since ¢y becomes an isomorphism in Dy, the map [’ exists
uniquely in Dy, hence in I (2.3.2.2). For the rest see (2.2.4), with J' := 1,
J”:=J, and v:= identity. Q.E.D.

Example 2.3.3. An object I in A is injective iff when considered as a com-
plex vanishing in all nonzero degrees it is q-injective in K(A) (or in KP(A)).

Sufficiency: for any A-diagram Y <— X T with 0 a monomorphism,
take Y to be the complex which looks like the natural map Y° — coker(s")
in degrees 0 and 1, and vanishes elsewhere, and take s: X — Y to be the
obvious quasi-isomorphism; then deduce from (2.3.1) that if I is g-injective
there exists ¢°: Y? — I such that ¢°s® = f—so that I is A-injective.

2 So the embedding functor (2.1.1.1) has a left adjoint, taking F' to RF.
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For necessity, use (2.3.2): to find a left inverse in K(A) for a quasi-
isomorphism : I — Y we may replace Y by the complex 7Y, to which YV
maps quasi-isomorphically (§1.10), i.e., we may assume that Y vanishes in
all negative degrees; then 3 induces a monomorphism (in A) 3°: I — Y9,
which has a left inverse if I is A-injective, and that gives rise, obviously, to
a left inverse for 4. (One could also use (iv) in (2.3.8) below.)

Example 2.3.4. Any bounded-below complex I of A-injectives is g-injective
in K(A). Indeed, by [H, p.41, Lemma 4.5], I satisfies the condition in
(2.3.2). (One could also use (2.3.8)(iv).) Thus (2.3.2.3) applies to J:= K*(A)
whenever A has enough injectives (see beginning of §2.3). In that case,
further, every K"’(.A)—q—injective complex admits a quasi-isomorphism, hence,
by (2.3.2.2), an isomorphism, to a bounded-below complex of A-injectives.

Example 2.3.5. Let U be a topological space, O a sheaf of rings on U, and A
the abelian category of left O-modules. Then a theorem of Spaltenstein [Sp,
p. 138, Theorem 4.5] asserts that every complex in K(A) admits a g-injective
resolution. Hence by (2.3.2.3), every A-functor out of K(.A) is right-derivable.

More generally, a g-injective resolution exists for every complex in any
Grothendieck category, i.e., an abelian category with exact direct limits
and having a generator [AJS, p. 243, Theorem 5.4]. For example, injective
Cartan-Eilenberg resolutions [EGA, III, Chap.0, (11.4.2)] always exist in
Grothendieck categories; and their totalizations—which generally require
countable direct products—give g-injective resolutions when such products
of epimorphisms are epimorphisms (a condition which holds in the category
of modules over a fixed ring, but fails, for instance, in most categories of
sheaves on topological spaces).

Example 2.3.6. Let A;, Ay be abelian categories, A; having enough injec-
tives. As in (1.5.2) any additive functor F': A; — Ay extends to a A-functor
F: K*(A;)) — K*(Ay) which has, by (2.3.4), a right-derived functor

RTF: D*(A)) — K*(Ay)
satisfying, for a given family ¢ : X — Ix of injective resolutions,
RYF(X) = F(Ix).

We can extend the domain of RF to D*(A;) by composing with the
equivalence 7 defined in (1.8.1).

Moreover, if every Aj-complex has a g-injective resolution, then there
is a further extension to a derived functor RF': D(A;) — K(Az)—whose
composition with the canonical map K(A2) — D(Asz) is RF, see (2.1.2).
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With H? the usual homology functor, let R'F: Ay — Ay (i € Z) be the
composition

1.2.2)
Ay H22 DA T K (Ay) T A

(cf. (2.1.4)). Then R'F = 0 for i < 0, and there is a natural map of functors
F — R°F which is an isomorphism if and only if F is left-exact.

Example 2.3.7. Let f: U; — Us be a continuous map of topological spaces.
Let A; be the category of sheaves of abelian groups on U; (i = 1,2). Then A;
is abelian, and has enough injectives. The direct image functor f,: A; — Ao
is left-exact, and has, as in (2.3.6), a derived functor

R+ﬁ: ﬁ+(¢41) — K+(.A2) .

By (2.3.5), the composition K(A;) =, K(Az) R D(A3) has a derived
functor Rf,, whose restriction to D¥(A;) is isomorphic to QOR+ﬁ.

In particular, when Us is a single point then A, = 2b, the category of
abelian groups, and f, is the global section functor I' = I'(Uy, —). In this case
one usually sets, for i € Z, see (2.1.4),

Rf. = RT, R'f, = R'T = H', R'f.(=) = H\(Uy,—) .

Here are some other characterizations of g-injectivity, see [Sp, p.129,
Prop. 1.5], [BN, Def. 2.6 etc.].

Proposition 2.3.8. Let A be an abelian category, and let J be a A-subcate-
gory. of K(A). The following conditions on a complex I € J are equivalent:
(i) I is g-injective in J.
(i)' For every diagram Y <= X Lo I in 3 with s a quasi-isomorphism
there is a unique g: Y — I such that gs = f.
) Every quasi-isomorphism I —Y in J has a left inverse.
ii) Every quasi-isomorphism I —Y in J is a monomorphism.
ii) I is right-F-acyclic for every A-functor F:J — E.
i)’ I is right-F-acyclic for F the identity functor J — J.
) For every exact compler X € J, we have Homy(X,I) = 0.
iv)" The A-functor Hom®(—, I): J — K(2(b) of (1.5.3) takes quasi-
isomorphisms into quasi-isomorphisms.
(v) For every complex X € J, the natural map

Homy(X,T) — Homp,(X,T)
is bijective.
Proof. The equivalence of (i), (ii), (iii) and (iii)" has already been shown
(see (2.3.2) and the proof of (2.3.2.1)). For (ii) < (i)’ see (1.4.2.1). Taking

Y := 0 in (2.3.1), we see that (i) = (iv). The equivalence of (iv) and (iv)’
results from the footnote in (1.5.1) and the easily-checked relation
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H" (Hom'(X, I)) = HomJ(X[—n], I) (n €7, X e J). (2.3.8.1)

The implications (v) = (i)’ = (i) are simple to verify.

We show next that (iv) = (ii). Let X be the summit of a triangle 7" in J
whose base is a quasi-isomorphism I — Y. By [H, p. 23, 1.1b)], the resulting
sequence

Hom(X,T) — Hom(Y,I) — Hom(I,I) — Hom(X[-1],T)

is ezact. Moreover, the exact homology sequence (1.4.5)" of T shows that
X is exact. So if (iv) holds, then Hom(Y,I) — Hom(I,T) is bijective, and
(ii) follows.
Finally, we show (ii) = (v). For any map f/s: X — I in Dy, (1.6.3) yields
a commutative diagram in J, with s’ a quasi-isomorphism:
f

A ——— T

"

X — B

If ts' = identity, then f/s = (s'/1)71(f'/1) = (tf')/1, and so the map
Homy(X,I) — Homp, (X, I) is surjective. For injectivity, given f: X — I
in J, note that f/1 =0 = there exists a quasi-isomorphism ¢: X’ — X
such that ft =0 (see §1.2) = there exists a quasi-isomorphism s: I — Y
such that sf = 0 [H, p. 37]; and if s has a left inverse, then sf =0 = f =0.

Q.E.D.

Exercise 2.3.9. Show that if A is a Grothendieck category then D(A) is equivalent
to the homotopy category of g-injective complexes. Hence if A has inverse limits then
so does D(A).

2.4 Derived Homomorphism Functors

Let A be an abelian category, and let L be a A-subcategory of K(.A) in which
there exists a family of quasi-isomorphisms ¢y : X — Ix (X € L) such that
Ix € L is g-injective in K(A) for every X. Then for any quasi-isomorphism
s: X — Y with YV in K(A) there exists, by (2.3.1), a map g: Y — Ix,
necessarily a quasi-isomorphism, such that gs = ¢y; and hence by (1.7.1)°P,
L is a localizing subcategory of K(.A), i.e., the derived category Dy, identifies
naturally with a A-subcategory of D(A).

For example, if A has enough injectives we could take L := K*(A),
see (2.3.4). Or, if U is a topological space with a sheaf of rings O and A is
the category of left O-modules, we could take L:= K(A), see (2.3.5).
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By (2.3.2.3), every A-functor F': L — E is right-derivable. So for any fixed
object A € K(A), the A-functor F4: L — K(2b) given by

F4(B) = Hom®(A4, B) (Bel)
(see (1.5.3)) has a right-derived functor
RE,: Dy, — K(2b)

with
RFA(B) = Hom'(A, IB)

For fixed B and variable A, Hom® (A, Ip) is a contravariant A-functor from
K(A) to K(b) (see 1.5.3), which takes quasi-isomorphisms in K(A) to
quasi-isomorphisms in K(2b) ((2.3.8)(iv)’) and hence—after composition
with the natural functor @’: K(2b) — D(2(b)—to isomorphisms in D(2b).
So by (1.5.1)—and the exercise preceding it—there results a A-functor
D(A)°P — D(2b). Thus we obtain a functor of two variables

RHom® (A, B): D(A)° x Dy, — D(2b)

which, together with appropriate 6 (see (1.5.3)), is a A-functor in each
variable separately:

RHom® (A, B) = Q'Hom®(A4, Ip) (2.4.1)

for all objects A € D(A)°P, B € Dy,; and we leave it to the reader to make
explicit the effect of RHom® on morphisms in D(A4)°P and Dy, respectively.

From (2.3.8)(v) and (2.3) (with J:= K(.A)), we deduce canonical isomor-
phisms (Yoneda theorem):

H"(RHom*(X, B)) > Homp (X, Bln])  (n € Z). (2.4.2)

This leads, in particular, to an elementary interpretation of the exact se-
quence (2.1.4)! when F:= Fy, see [H, p. 23, Prop. 1.1, b)].

(2.4.3). The variables A, B are treated quite differently in the above
definition of RHom®. But there is a more symmetric characterization of this
derived functor, analogous to the one in (2.1.1). This is given in (2.4.4), after
the necessary preparation.

Let K1, K2, E be A-categories, with respective translation functors 77,
Ty, T. A A-functor from K; x Ko to E is defined to be a triple (F, 61, 65)
with

F: Kl X K2 — E

a functor and

01: Fo(Ty x1) =5 ToF, Os: Fo(l xTy) =5 ToF
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isomorphisms of functors, such that for each B € Ky the functor
Fu(A)= F(A, B)

together with 6, is a A-functor from K; to E, and for each A € K; the
functor
FA(B):=F(A,B)

together with 05 is a A-functor from Ko to E; and such that furthermore the
composed functorial isomorphisms

via 64

F(Ty xTy) = F(Ty x 1)(1 x Tp) 2% TP1 x Ty) 2%, 77F

via 69

F(Ty xTy) =F(1 xTy)(Th x1) —= TF(Ty x 1) via 01

are negatives of each other. Similarly, we can define A-functors of three or
more variables—with a condition indicated by the equation

(via 0;)o(via 6;) = —(via 6;) o (via 6;) (t #£ 7).

Morphisms of A-functors are defined in the obvious way, see (1.5).
For example, let L C K := K(A) be as above, with respective derived
categories Dy, C D, and consider the functor

Hom®: K° x L — K(2b).

As in the exercise preceding (1.5.1), we can consider the opposite cate-
gory K°P to be triangulated, with translation inverse to that in K, in such
a way that the canonical contravariant functor K — K°P and its inverse,
together with # = identity, are both A-functors. This being so, one checks
then that Hom® is a A-functor (see (1.5.3)).
Similarly
RHom®: D°P x Dg, — D(2Ib)

is a A-functor. Furthermore, the g-injective resolution maps pg: B — Ip
induce a natural morphism of A-functors

n: Q'Hom®(A, B) — Q'Hom"®(A, Ip) (@241 RHom®(QA, QB)

where Q: K — D is the canonical functor. This 7 is, in the following sense,
universal (hence unique up to isomorphism):

Lemma 2.4.4. Let
G: D°P x Dy, — D(21b)

be a A-functor, and let

p: QHom® (A, B) — G(QA,QB) (Ae K, Bel)
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be a morphism of A-functors. Then there exists a unique morphism of
A-functors
7i: RHom® — G

such that p = un.

Proof. Tt is the composition

RHom®(QA, QB) = Q'Hom"® (A, Ip) - G(QA,QIz) = G(QA,QB).
The rest is left to the reader. (See also (2.6.5) below.)

(2.4.5). Next we discuss the sheafified version of the above. Let U be a
topological space, O a sheaf of commutative rings, and A the abelian category
of (sheaves of) O-modules. The “sheaf-hom” functor

Hom: AP x A — A
extends naturally to a A-functor
Hom®: K(A)% x K(A) — K(A)

(essentially because everything in (1.5.3) is compatible with restriction to
open subsets—details left to the reader).
Taking note of the following Lemma, we can proceed as above to derive a
A-functor
RHom®: D(A)°P x D(A) — D(A).

Lemma 2.4.5.1. If I is a g-injective complex in K(A) then the functor
Hom?®(—, I) takes quasi-isomorphisms to quasi-isomorphisms.

Proof. For A € K(A) and i € Z, the homology H'(Hom?®(A,I)) is the
sheaf associated to the presheaf

V — H'(D(V,Hom®(A, I)) = H'(Hom*(A|V, I|V))  (V open in U).

We can then apply (2.3.8)(iv) to the category Ay of (O|V)-modules, as soon
as we know:

Lemma 2.4.5.2. Let V be an open subset of U, with inclusion mapi: V — U.
Then for any g-injective complex I € K(A), the restriction i*I = I|y is
g-injective in K(Ay).

Proof. The extension by zero of an Oy-module M is the sheaf M
associated to the presheaf on U which assigns M (W) to any open W C V
and 0 to any open W ¢ V. The restriction i*#/M can be identified with M;
and the stalk of i/ M at any point w ¢ V is 0. So 4 is an exact functor.
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Now from any diagram YV < X LT of maps of Ay -complexes with s a
quasi-isomorphism, we get the diagram
Wy &g x 2 S
where ;s is a quasi-isomorphism (since 7, is exact) and « is the natural map.

By (2.3.1), there exists a map g: /X — I such that goijs = aoi)f in K(A);
and then we have, in K(Ay ),

i*gos = i*goi*is = i*aoi*i f =lof = f.

Thus %I is indeed g-injective. Q.E.D.

(2.4.5.3). Similarly, any functor having an exact left adjoint preserves
g-injectivity.

2.5 Derived Tensor Product

Let U be a topological space, O a sheaf of commutative rings, and A the
abelian category of (sheaves of ) O-modules. Recall from (1.5.4) the definition
of the tensor product (over O) of two complexes in K(A), and its A-functorial
properties. The standard theory of the derived tensor product, via resolutions
by complexes of flat modules, applies to complexes in D™(A), see e.g.,
[H, p.93]. Following Spaltenstein [Sp] we can use direct limits to extend
the theory to arbitrary complexes in D(A). Before defining, in (2.5.7), the
derived tensor product, we need to develop an appropriate acyclicity notion,
“g-flatness.”

Definition 2.5.1. A complex P € K(A) is g-flat if for every quasi-
isomorphism Q1 — @2 in K(A), the resulting map P® @1 — P ® Q2 is
also a quasi-isomorphism; or equivalently (see footnote under (1.5.1)), if for
every exact complex @) € K(A), the complex P ® @ is also exact.

Example 2.5.2. P € K(A) is g-flat iff for each point « € U, the stalk P, is
g-flat in K(A;), where A, is the category of modules over the ring O,. (In
verifying this statement, note that an exact O,-complex @, is the stalk at x
of the exact O-complex @ which associates @, to those open subsets of U
which contain z, and 0 to those which don’t.)

For instance, a complex P which vanishes in all degrees but one (say n)
is g-flat if and only if tensoring with the degree n component P is an exact
functor in the category of O-modules, i.e., P™ is a flat O-module, i.e., for
each z € U, P is a flat O,-module.
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Example 2.5.3. Tensoring with a fixed complex @ is a A-functor, and so
the exact homology sequence (1.4.5)" of a triangle yields that the g-flat
complexes are the objects of a A-subcategory of K(A).

A bounded complex

P: o5 0—=0—=P" ... 5P" 50—0—---

fits into a triangle P — P — P” — P'[1] where P’ is P"™ in degree n
and 0 elsewhere, and where P” is the cokernel of the obvious map P’ — P.
So starting with (2.5.2) we see by induction on n — m that any bounded
complex of flat O-modules is g-flat.

Example 2.5.4. Since (filtered) direct limits commute with both tensor
product and homology, therefore any such limit of g-flat complexes is again
q-flat.

A bounded-above complex

is the limit of the direct system Py — P, — --- — P; — .-+ where P; is
obtained from P by replacing all the components P/ with j < n — i by 0,
and the maps are the obvious ones. Hence, any bounded-above complex of
flat O-modules is g-flat.

A g¢-flat resolution of an A-complex C' is a quasi-isomorphism P — C
where P is g-flat. The totality of such resolutions (with variable P and C) is
the class of objects of a category, whose morphisms are the obvious ones.

Proposition 2.5.5. Every A-complex C is the target of a quasi-isomorphism
Ve from a g-flat complex P, which can be constructed to depend functorially
on C, and so that Pppyy = Po1] and ¢qpy) = ¢e(1].

Proof. Every O-module is a quotient of a flat one; in fact there exists a
functor Py from A to its full subcategory of flat O-modules, together with a
functorial epimorphism Py(F) - F (F € A). Indeed, for any open V. C U
let Oy be the extension of O|V by zero, (i.e., the sheaf associated to the
presheaf taking an open W to O(W) if W C V and to 0 otherwise), so that
Oy is flat, its stalk at © € U being O,, if x € V and 0 otherwise. There is a
canonical isomorphism

¥: F(V) = Hom(Oy, ) (FeA

such that () takes 1 € Oy (V) to A\. With O, := Oy for each A € F(V),
the maps 1(\) define an epimorphism, with flat source,

o=@ @ o)-7

V open AeF(V)

and this epimorphism depends functorially on F.
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We deduce then, for each F, a functorial flat resolution
= P(F) = Pi(F) = R(F) » F

with Pi(F) := Py(ker(Po(F) — 7)), etc. Set Po(F) = 0 if n < 0.
Then to a complex C' we associate the flat complex P = P, such that
P" := @®y_p—r P,(C™) and the restriction of the differential P" — Pr+!
to P, (C™) is P,(C™ — C™ ) @ (—1)™(P,(C™) — P,—1(C™)), together
with the natural map of complexes P — C induced by the epimorphisms
Py(C™) — C™ (m € Z). Elementary arguments, with or without spec-
tral sequences, show that for the truncations 7_,,C of §1.10, the maps

O 7., C are quasi-isomorphisms. Since homology commutes with

direct limits, the resulting map
Yo: Fo=lim P, o —lim7, C=C,

(which depends functorially on C') is a quasi-isomorphism; and by (2.5.4),
Fe is g-flat. That Py = P.[1] and Yop) = Y [1] is immediate. Q.E.D.

Exercises 2.5.6. (a) Let P and @ be complexes of O-modules, and suppose that for
all integers s,t,u, v the complex 7<s7>¢ P ®0 T<uT>+Q is exact. Then

POQ=lmr PoT.,Q

is exact.

(b) If for all n € Z the homology H™(P) is a flat O-module and furthermore, for
all n the kernel of P* — P"*! is a direct summand of P™ (or, for all n the image of
P — P"tl s a direct summand of P"*1) then P is g-flat. (Use (a) to reduce to
where P is bounded; then apply induction to the number of n such that P™ # 0.)

(2.5.7). Let A be, as above, the category of O-modules, and let
J cK:=K(A)

be the A-subcategory of K whose objects are all the g-flat complexes,
see (2.5.3). Fix B € K and consider the A-functor

Fp: K —D:=D(A)

such that
Fp(A)=A®B (see (1.5.4)).

If A is both q-flat and exact, then A ® B is exact: to see this, we may replace B
by any quasi-isomorphic complex B’ (since A is g-flat), and by (2.5.5) we
may assume that B’ is ¢-flat, whence, by (2.5.1), A® B’ is exact. Hence the
restriction of Fg to J' transforms quasi-isomorphisms into isomorphisms.
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There exists, by (2.5.5), a functorial family of quasi-isomorphisms
Ya: Py — A (AEK, PAEJ/).

with Py, = P4[1]. An argument dual to that in (2.2.4) (with J”:= K shows
then that Fp has a left-derived A-functor

(LFg, identity): D — D (2.5.7.1)

with
LFp(A)=Py,® B P, ® Pgp =2 A® Pg,

the isomorphisms being the ones induced by ¥4 and ¥g. Alternatively, P4 is
left- F-acyclic for all A, B (see 2.5.10(d)), so one can apply (2.2.6).

For fixed A and variable B, P, ® B is a A-functor from K to D which takes
quasi-isomorphisms to isomorphisms, so by (1.5.1) there results a A-functor
from D to D. Hence there is a functor of two variables, called a derived tensor
product,

®:DxD-—D

which together with appropriate 6 (see (1.5.4)) is a A-functor in each variable
separately (i.e., it is a A-functor as defined in (2.4.3)).

Though the variables A and B have been treated differently in the
foregoing, their roles are essentially equivalent. Indeed, there is a universal
property analogous to (the dual of) that in (2.4.4), characterizing the natural
composite map of A-functors from K x K to D:

QA® QB = Q(Py® Pg) — Q(A® B).

Hence, in view of (1.5.4.1), there is a canonical A-bifunctorial isomorphism
B A~ A®B.

This arises, in fact, from the natural isomorphism Pg ® P4y =~ P4 ® Pp.

(2.5.8). The local hypertor sheaves are defined by

TJor,(A,B)=H "(A® B)  (ne€Z; A BeD).

Asin (2.1.4), short exact sequences in either the A or B variable give rise to
long exact hypertor sequences.

We remark that when U is a scheme and O = Oy, if the homology sheaves
of the complexes A and B are all quasi-coherent then so are the sheaves
Jor, (A, B). This is clear, by reduction to the affine case, if A and B are
quasi-coherent Ox-modules (i.e., complexes vanishing except in degree 0). In
the general case, since

A B=limr_ A®T_,DB,
s <
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we may assume A and B lie in D7, and then argue as in [H, p. 98, Prop. 4.3],
or alternatively, use the Kiinneth spectral sequence

E, = i+€jB—q Jor,(H"(A), H7(B)) = TJor.(A, B)
(as described e.g., in [B, p. 186, Exercise 9(b)], with flat resolutions replacing
projective ones). Thus, with notation as in (1.9), denoting by Dgqc the
A-subcategory Dy C D with A* C A the subcategory of quasi-coherent
Op-modules (which is plump, see [GD, p.217, (2.2.2) (iii)]), we have a
A-functor

®: Dge x Dge — Dyc - (2.5.8.1)

(2.5.9). The definitions in (1.5.4) can be extended to three (or more)
variables, to give a A-functor A ® B ® C from K x K x K to K.
There exists a A-functor 73: D x D x D — D together with a A-functorial
map
n: T3(A,B,C) — A B® C (A,B,C € K)

such that for any A-functor H: D x D x D — D and any A-functorial
map pu: H(A,B,C) — A ® B ® C there is a unique A-functor map
fi: H — T3 such that p = nof. (The reader can fill in the missing @’s.)
In fact there is such a T3 with

T3(A,B,C) = Py ® P ® P

We usually write
T3(A,B,C) =A@ BaC.

There are canonical A-functorial isomorphisms
(A®B)®C = A@B®C «~ A (B®(C).
Similar considerations hold for n > 3 variables. Details are left to the
reader. (See, for example, (2.6.5) below.)

Exercises 2.5.10. (a) Show that if A € K(A) is g-flat and B € K(A) is g-injective
then Hom® (A, B) is g-injective.

(b) Let I': A — 2b be the global section functor. Show that there is a natural
isomorphism of A-functors (of two variables, see (2.4.3))

RHom® (A, B) =~ RI'RHom®(A, B).

(Use (a) and (2.2.7), or [Sp, 5.14, 5.12, 5.17].)
(c) Let (Aq) be a (small, directed) inductive system of A-complexes. Show that
for any complex B € D(A) there are natural isomorphisms

lim Torn (Aa, B) = Torn ((lim Aa), B)  (n€2Z).
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(d) Show that for P to be g-flat it is necessary that P be left- Fp-acyclic for all B
(Fp as in (2.5.7)), and sufficient that P be left- Fp-acyclic for all exact B. (For the
last part, (2.2.6) could prove helpful.) Formulate and prove an analogous statement
involving g-injectivity and Hom?®. (See (2.3.8).)

2.6 Adjoint Associativity

Again let U be a topological space, O a sheaf of commutative rings, and A
the abelian category of O-modules. Set K:= K(.A), D:= D(.A). This section
is devoted to (2.6.1)—or better, (2.6.1)* at the end—which expresses the
basic adjointness relation between the A-functors RHom®: D°P x D — D
and ®: D x D — D defined in (2.4.5) and (2.5.7) respectively.

Proposition 2.6.1. There is a natural isomorphism of A-functors

RHom*(A® B, C) =~ RHom*(A, RHom*(B, C)).

Remarks. (i) In fact, the A-functors RHom® and @ are defined only up to
canonical isomorphism, by universal properties, as in (2.5.9). We leave it to
the reader to verify that the map in (2.6.1) (to be constructed below) is
compatible, in the obvious sense, with such canonical isomorphisms.

(ii) A proof similar to the following one® yields a natural isomorphism

RHom® (A2 B, C) — RHom®(A, RHom®*(B, C)).
Applying homology H® we have, by (2.4), the adjunction isomorphism

Homp (A ® B, C) —~~ Homp (A, RHom*(B, C)). (2.6.1)

(iii) Prop. (2.6.1) gives a derived-category upgrade of the standard sheaf
isomorphism

Hom(F® G, H) = Hom(F, Hom(G, H)) (F,G,Hec A). (2.6.2)

Proof of (2.6.1). We discuss the proof at several levels of pedantry, begin-
ning with the argument, in full, given in [I, p. 151, Lemme 7.4] (see also [Sp,
p. 147, Prop. 6.6]): “Resolve C' injectively and B flatly.”

This argument can be expanded as follows. Choose quasi-isomorphisms

Oﬂfc, PBHB

3 Or application of the functor RI" to (2.6.1), see (2.5.10),
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where I¢ is g-injective and Pp is g-flat. It follows from (2.3.8)(iv) that the
complex of sheaves Hom®(Pp, I¢) is g-injective, since for any exact complex
X € K, the isomorphism of complexes

Hom®(X ® Pg, Ic) = Hom®(X, Hom®(Pg, I¢))
coming out of (2.6) yields, upon application of homology H?,
0= HOIIlK(X ® Ppg, Ic) = HOIIIK(X, HOTTl.(PB, Ic))

Now consider the natural sequence of D-maps

RHom®*(A® B, O) RHom®(A, RHom*(B, ())
RHom'(i ® B, Ic) RHom?®(A, Riom'(B, 1))
RHom'(AlQ{) Pg, Ic) RHom®(A, R}(om’(P& 1))
RHom'(Al@ Pg, Ic) RHom® (4, Hlm.(P& Ico))

I I

Hom*(A® Pg, Ic) Hom® (A, Hom®(Pg, I¢))

from (2.6.2)

Since Pp is g-flat, and I and Hom®(Pp, I¢) are g-injective, all these maps
are isomorphisms (as follows, e.g., from the last assertion of (2.2.6)); so we
can compose to get the isomorphism (2.6.1).

But we really should check that this isomorphism does not depend on the
chosen quasi-isomorphisms, and that it is in fact A-functorial. This can be
quite tedious. The following remarks outline a method for managing such
verifications. The basic point is (2.6.4) below.

Let M be a set. An M-category is an additive category C plus a map
t: M — Hom(C,C) from M into the set of additive functors from C to C,
such that with T,, := t(m) it holds that T;0T; = T;0T; for all 4,5 € M.
Such an M-category will be denoted Cj;, the map f—or equivalently, the
commuting family (7),)menm—understood to have been specified; and when
the context renders it superfluous, the subscript “M” may be omitted.

An M-functor F: C,; — Cj, is an additive functor F': C — C’ together
with isomorphisms of functors

0;: FoT;, = T/oF (i€ M)
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(with (T7,)menm the commuting family of functors defining the M-structure
on C') such that for all i # j, the following diagram commutes:

via 0;

FoT;oT; —— T/oFoT; T/oTjoF

| H

FoT;joT;, —— TjoFoT; ——— T/oT/oF
via 0; 7 ~T(0:) 7

T (05)
—

where, for instance, TJ’- (0;) is the isomorphism of functors such that for each
object X € C, [T(0;)](X) is the C'-isomorphism

T!(0:(X)): TI(FT(X)) =5 THTIF(X)).

A morphism n: (F,{0;}) — (G,{1:}) of M-functors is a morphism of
functors n: ' — G such that for every ¢ € M and every object X in C,
the following diagram commutes:

FT(x) 29X mRx)

n(Ti<X>>l lT{(n(X))
CTy(X) —— TIG(X)
)

7
i

Composition of such 1 being defined in the obvious way, the M-functors
from C to C’, and their morphisms, form a category H:= Hom,/(C, C’). If
M’ > M and Cj,, is viewed as an M-category via “restriction of scalars” then
H is itself an M'-category, with 7 € M’ being sent to the functor Tj# "H—-H
such that on objects of H,

TF(F, {0:}) = (TjoF, {~T}(6,)}),
where the isomorphism of functors
Ti(0;): (TjoF)oT; = TjoT/oF =T/o(T]oF)

is as above.* The definition of T]#n (n as above), and the verification that
H is thus an M’-category, are straightforward.

Suppose given such categories Ajs, By, and Cj;yn, where the sets M
and N are disjoint. A x B is considered to be an (M U N)-category, with
i € M going to the functor 7T; x 1 and j € N to the functor 1 x T}. Also,
Homy (B, C) is considered, as above, to be an (M U N)-category.

4 The reason for the minus sign in the definition of T]# is hidden in the details of
the proof of Lemma (2.6.3) below.
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Lemma 2.6.3. With preceding notation, there is a natural isomorphism of
M U N-categories

HomMuN(A x B, C) - HomM(A,HomN(B,C))

The proof, left to the reader, requires very little imagination, but a good
deal of patience.

For any positive integer n, let A, be the set {1,2,...,n}. From now
on, we deal with A-categories, always considered to be Aj-categories via
their translation functors. If Cq,...,C, are A-categories, then the product
category C = C1 x Cy x -+ x Cp becomes a A,-category by the product
construction used in (2.6.3). A A-category E can also be made into an
A -category by sending each i € A, to the translation functor of E. With
these understandings, we see that the A,-functors from C; x Cg X -+ X Cy
to E are just the A-functors of (2.4.3) (categories of which we denote
by Homa). For example, one checks that the source and target of the
isomorphism in (2.6.1) are both As-functors.

Now for 1 < i < n fix abelian categories A;, and let L be a A-subcategory
of K(A;), with corresponding derived category D; and canonical functor
Qi: L; — D;. Let E be any A-category. We can generalize (1.5.1) as follows:

Proposition 2.6.4. The canonical functor

Lix---x Ly,

Dix---xD
Q1X...XQnp ! "

induces an isomorphism from the category Homa (D1 x Dax -+ x Dy, E) to
the full subcategory of Homa (Lqy X Lg X - -+ x Ly, E) whose objects are the
A-functors F such that for any quasi-isomorphisms aq, ..., in Ly, ..., Ly
respectively, F(aq,...,a,) is an isomorphism in E.

Proof. The case n = 1 is contained in (1.5.1). We can then proceed by
induction on n, using the natural isomorphism

Homp, (Cy x Cz X -+ x Cy, E)
<~ Homp, (C1, Homp,,_,(Cz x ... x Cy, E))

provided by (2.6.3) (with C;:= D; or Ly). Q.E.D.

Suppose next that we have pairs of A-subcategories Lj C L in K(A;),
with respective derived categories D}, DY, and canonical functors @} : L{—D!,
Q)L — DY (1 < i < n). Suppose further that every complex A € L
admits a quasi-isomorphism into a complex I4 € L{. Then as in (1.7.2) the
natural A-functors j;: D — D! are A-equivalences, having quasi-inverses p;

satisfying p;(A) = Ia (A € L{'). There result functors
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7" :Homa (D} x --- x D, E) — Homa (D} x --- x D}, E)
p* : Homa (D} x --- x Di,, E) — Homa (D] x --- x D, E)

together with functorial isomorphisms
77p* =5 identity, p 7" =5 identity,

i.e., 7* and p* are quasi-inverse equivalences of categories.

We deduce the following variation on the theme of (2.2.3), thereby arriving
at a general method for specifying maps between A-functors on products of
derived categories:?

Corollary 2.6.5. With above notation let H: L} x --- x L, — E, F': D} x
oo x DI - E; and G: DY x --- x D — E be A-functors. Let

C: H — Fo(le/l X Xj’l’LQ;L)?
ﬁ: H— Go(lell X Xan{rz)

be A-functorial maps, with { an isomorphism. Then:
(i) There exists a unique A-functorial map 3: F — G such that for all
Ay el), ..., A, €L, B(Ay,..., A,) factors as
H(Ay, ... Ay) —— F(Ay, ... A) —2— G(AL,..., Ay).
(2.6.5.1)

Moreover, if 3 is an isomorphism then so is 3.

(ii) If H in (1) extends to a A-functor H: LY x ... x L — E, and ¢
(respectively B) to a A-functorial map (: H — Fo(jQf x ... x 7,Q")
(respectively 8: H — Go(7,Q) x...xj,Q)), then the factorization (2.6.5.1)
of B(Ax,...,A,) holds for all Ay e LY, ..., A, € L.

Proof. (i) The assertion just means that 3 is the unique map (resp. iso-
morphism) F' — G in the category Homa (DY x ... x D}, E) corresponding
via the above equivalence 7* and (2.6.4) to the map (resp. isomorphism) 3¢ !
in the category Homa (L} x ... x L], E).

(ii) Use quasi-isomorphisms A; — I, to map (2.6.5.1) into the corre-
sponding diagram with I4, € L{ in place of A;. To this latter diagram
(i) applies; and as the resulting map G(Ay,...,A,) — G(1a,,...,14,) is
an isomorphism, the rest is clear. Q.E.D.

5 This is no more (or less) than a careful formulation of the method used, e.g.,
throughout [H, Chapter IIJ.
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We can now derive (2.6.1) as follows. Take n = 3, and set

L/1::K

, {A—subcategory of K whose objects are
2=

the g-flat complexes (2.5.3).

;o {A—subcategory of K whose objects are
3=

the g-injective complexes (2.3.2.2).

Let DY, D%, D% be the corresponding derived categories, and set
L/:=K, D!:=D (i1=1,2,3),

so that the natural maps j;: Dy’ — D{ are A-equivalences, with quasi-
inverses obtained for ¢ = 2 and ¢ = 3 from g-flat (resp. g-injective) resolutions,
i.e., from families of quasi-isomorphisms

P — B (BeK, PgelL)),
C—lIc (CeK, Is € Ly).
In Corollary (2.6.5)(ii), let H: LY x L§ x L§ — D be the A-functor
H(A,B,C):=Hom®*(A® B, C),
let ¢ be the natural composed A-functorial map

Hom®*(A® B, C) - RHom*(A® B,C) — RHom*(A® B,C),

and let 8 be the natural composed A-functorial map

Hom*(A® B, C) (%)Hom’(A, Hom®(B, C))

— RHom*(4, Hom*(B, ()
— RHom®(A, RHom®(B, C)).

(Meticulous readers may wish to insert the missing Q’s).

We saw near the beginning of the proof of (2.6.1), that for (B, C') € Ly x L,
the complex Hom?®(B, C) is g-injective, and hence for such (B,C), ¢ and 8
are isomorphisms. Modifying (2.6.5) in the obvious way to take contravari-
ance into account, we deduce the following elaboration of (2.6.1):

Proposition (2.6.1)*. There is a unique A-functorial isomorphism

a: RHom*(A® B, C) =~ RHom*(A, RHom*(B, C))
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such that for all A,B,C € D, the following natural diagram (in which
H® stands for Hom®) commutes:

H*(A® B,C) —— RH*(A@B,C) —— RH*(A@B,C)

Vial(2‘6.2) Zla

H*(A, H*(B,C)) —— RH*(A, H*(B,C)) —— RH*(A, RH*(B,C))

This A-functorial isomorphism is the same as the one described—mnon-
canonically, via Pg and Ic—mnear the beginning of this section. See also
exercise (3.5.3)(e) below.

From (2.5.7.1) and (3.3.8) below (dualized), we deduce:

Corollary 2.6.6. For fivzed A the A-functor Fy(—):= Hom®(A,—) of §2.4
has a right-derived A-functor of the form (RF 4, identity).

Exercise 2.6.7 (see [De, §1.2]). Define derived functors of several variables, and
generalize the relevant results from §§2.2-2.3.

2.7 Acyclic Objects; Finite-Dimensional Derived
Functors

This section contains additional results about acyclicity, used to get some
more ways to construct derived functors, further illustrating (2.2.6). It can
be skipped on first reading.

Let A, A’ be abelian categories, and let ¢: A — A’ be an additive functor.
We also denote by ¢ the composed A-functor

K(A) 22 k) —2- D)

where K(¢) is the natural extension of the original ¢ to a A-functor. We say
then that an object in A is right-(or left-)¢-acyclic if it is so when viewed as
a complex vanishing outside degree zero (see (2.2.5) with J:= K(A)). In this
section we deal mainly with the “left” context, and so we abbreviate “left-
¢-acyclic” to “g-acyclic.” (The corresponding—dual—results in the “right”
context are left to the reader. They are perhaps marginally less important
because of the abundance of injectives in situations that we will deal with.)

If X € Aand Z — X is a quasi-isomorphism in K(A), then the
natural map 7_,Z — Z of §1.10 is a quasi-isomorphism. If furthermore the
induced map ¢(Z) — ¢(X) is a quasi-isomorphism and the functor ¢ is
either right exact or left exact, then, one checks, the natural composition
d(1-0Z) — &(Z) — ¢(X) is also a quasi-isomorphism.
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One deduces the following characterization of ¢-acyclicity:

Lemma 2.7.1. If X € A is such that every exact sequence

Y, Y Yo X 0

embeds into a commutative diagram in A

Za 7 Zo X 0
| | | H
Y, Y1 Yo X 0

with the top row and its image under ¢ both exact, then X is ¢-acyclic; and
the converse holds whenever ¢ is either right exact or left exact.

Proposition 2.7.2. With preceding notation, let P be a class of objects in
A such that
(i) every object in A is a quotient of (i.e., target of an epimorphism
from) one in P;
(ii) if A and B are in P then sois A® B; and
(iil) for every exact sequence 0 — A — B — C — 0 in A, if B and
C are in P, then A € P and moreover the corresponding sequence
0— ¢pA — ¢B — ¢C — 0 in A is also ezact.
Then every bounded-above P-complex (i.e., complex with all components
in P)—in particular every object in P—is ¢-acyclic; the restriction ¢_ of ¢
to K™ (A) has a left-derived functor Lo_: D™(A) — D(A); and if ¢ 20
then dim*Lo_ =0 (see (1.11.1)).

Proof. Since P is nonempty—by (i)—therefore (iii) with B = C € P
shows that 0 € P. Then (ii) implies that the P-complexes in K™ (A) are the
objects of a A-subcategory, see (1.6). Starting from (i), an inductive argument
([H, p. 42, 4.6, 1)], dualized—and with assistance, if desired, from [Iv, p. 34,
Prop.5.2]) shows that every complex in K™ (A)—and so, via (1.8.1)7, in
K™ (A)—is the target of a quasi-isomorphism from a bounded-above P-
complex. Hence, for the first assertion it suffices to show that ¢ transforms
quasi-isomorphisms between bounded-above P-complexes into isomorphisms,
i.e., that for any bounded-above exact P-complex X°®, $(X*) = 0 (see (1.5.1)).

Using (iii), we find by descending induction (starting with ig such that
X7 =0 for all j > ig) that for every i, the kernel K of X* — X**! lies in P
and the obvious sequence

0= ¢(K') — ¢(X') = ¢(K'™) — 0

is exact. Consequently, the complex obtained by applying ¢ to X*® is exact,
fe, ¢(X°®) =20 in D(A").
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Now by (2.2.4) (dualized) we see that L¢_ exists and dim*L¢_ < 0, with
equality if ¢(A) 2 0 for some A € A, because there is a natural epimorphism
HLo_A — ¢(A). Q.E.D.

Exercise 2.7.2.1. Let ¢: A — A’ be as above. Let (A;)p<i<oc be a “homological
functor” [Gr, p.140], with Ag = ¢. Let P consist of all objects B in A such that
A;(B) = 0 for all ¢ > 0, and suppose that every object A € A is a quotient of one
in P. Then L¢_ exists, and the homological functors (A;) and (A}):= (H~‘L¢é_) are
coeffaceable, hence universal [Gr, p. 141, Prop. 2.2], hence isomorphic to each other.

Example 2.7.3. A ringed space is a pair (X, Ox) with X a topological space
and Ox a sheaf of commutative rings on X; and a morphism of ringed spaces
(f.0): (X,0x) — (Y,0Oy) is a continuous map f: X — Y together with
a map 0: Oy — f.Ox of sheaves of rings. Any such (f,6) gives rise to a
(left-exact) direct image functor

fe: {Ox-modules} — {Oy-modules}

such that [f,M]|(U) = M(f~U) for any Ox-module M and any open set
U C Y, the Oy-module structure on f,M arising via 0; and also to a (right-
exact) inverse image functor

f*: {Oy-modules} — {Ox-modules}

defined up to isomorphism as being left-adjoint to f. [GD, Chap.0, §4]. For
every Oy-module N, the stalk (f*N); at z € X is Ox 2 @0y ;) Nf(a)-

An Oy-module F is flat if the stalk F, is a flat Oy ,-module for
all yeY. The class P of flat Oy-modules satisfies the hypotheses of (2.7.2)
when ¢= f*: (i) is given by [H, p.86, Prop.1.2], (ii) is easy, and for (iii)
see [B/, Chap. 1, §2, no. 5]. Thus the restriction f* of f* to K™(Y) has a left-
derived functor

Lf*: D (Y) - D(X)

(where D(X) is the derived category of the category of Ox-modules, etc.),
defined via resolutions (on the left) by complexes of flat Oy-modules.

Using the family of quasi-isomorphisms ¢4: P4 — A (A € D(Y)) with Py
g-flat (see (2.5.5)), we can, in view of (2.5.2) and (2.5.3), show as in (2.5.7)
that Lf* extends to a derived A-functor

(Lf*, identity): D(Y) — D(X) (2.7.3.1)

satisfying Lf*(A) = f*(Pa).
For any Oy-module N, the stalk of the homology

Lif*(N):=H'Lf*(N)  (i>0)

at any = € X is Tor?y‘f(m)((’)x’z, Ny (z))- So by the last assertion in (2.2.6)
(dualized), or in (2.7.4), N is f*-acyclic iff Torl(-gy’f(w)(@xw, Niw) = 0
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for all x € X and 7 > 0. (Note here that since f* is right exact, the natural
map is an isomorphism Lo f*(N) == f*(N).) Thus—or by (2.7.2)—any flat
Oy-module is f*-acyclic.

Recall that an Ox-module M is flasque (or flabby) if the restriction map
M(X) — M(U) is surjective for every open subset U of X. For example,
injective Ox-modules are flasque [G, p. 264, 7.3.2] (with L = Ox). The class
of flasque Ox -modules satisfies the hypotheses of (2.7.2) (dual version) when
¢ = fu: for (i) see [G, p. 147], (ii) is easy, and (iii) follows from the fact that if

0—-F—-G—H—0

is an exact sequence of Ox-modules, with F' flasque, then for all open sets
V C X the sequence

0—-FV)-GV)—-HV)—0

is still exact [G, p. 148, Thm. 3.1.2]. So the restriction fi of f* to K*(X) has
a right-derived functor

RfI: DT (X) — D(Y)

defined via resolutions (on the right) by complexes of flasque Ox-modules.

Of course we already know from (2.3.4), via (somewhat less elementary)
injective resolutions, that Rf; exists, and by (2.3.5) it extends to a derived
functor Rf,: D(X) — D(Y). (See also (2.3.7).) In fact, in view of (2.7.3.1),
it follows from (3.2.1) and (3.3.8) (dualized) that:

(2.7.3.2). The A-functor (f., identity) has a derived A-functor of the form
(Rf, identity).

An Ox-module M is fi-acyclic iff the “higher direct image” sheaves
R'f(M):= H'Rf.(M)  (i>0)

vanish for all ¢ > 0, see last assertion in (2.2.6) or in (2.7.4) (dualized).
(Since f. is left-exact, the natural map is an isomorphism f, -~ Rf,.)
Flasque sheaves are f.-acyclic.

For more examples involving flasque sheaves see [H, p.225, Variations 6
and 7] (“cohomology with supports”).

Proposition 2.7.4. Let A and A’ be abelian categories, and let ¢: A — A’
be a right-exact additive functor. If C is ¢-acyclic, then for every exvact
sequence 0 - A — B — C' — 0 in A the corresponding sequence 0 — ¢A —
¢B — ¢C — 0 is also exact, and A is ¢-acyclic iff B is. So if every object in
A is a quotient of a ¢-acyclic one, then the conclusions of (2.7.2) hold with
P the class of ¢-acyclic objects; and then D € A is ¢-acyclic iff the natural
map Lo_(D) — ¢(D) is an isomorphism in D(A'), i.e., iff H 'Le_(D) =0
for alli > 0.
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Proof. For the first assertion, note that by (2.7.1) there exists a commuta-
tive diagram

C, 0 -2 0 C 0
| | o
0 A B C 0

such that the top row is exact and remains so after application of ¢.
There results a commutative diagram

Cy Oy
5 5
0 0 Ch Cq 0
¥ Y
0 A CO X B Oo 0
A —— B C 0
0 0 0

with exact columns, in which the middle row is split exact, a right inverse for
the projection 7 being given by the graph of the map 3.5 (The coordinates
of 7/ are v and 0.) Applying ¢ preserves split-exactness; and then, since ¢ is
right-exact, so that e.g., ¢C = coker(¢y), the “snake lemma” yields an exact
sequence

0 — ker(¢y') — ker(¢y) — ¢pA — ¢B — ¢C — 0.

Since
ker(dy) = im(69) € ker(¢)

we conclude that 0 — ¢ A — ¢B — ¢C — 0 is exact, as asserted in (2.7.4).

In other words, if Z is the complex which looks like A — B in degrees —1
and 0 and which vanishes elsewhere, then the quasi-isomorphism Z — C given
by the exact sequence 0 — A — B — C' — 0 becomes, upon application of ¢,
an isomorphism in D(A’); and hence, by (2.2.5.2) (dualized), Z is a ¢-acyclic
complex.

6 Recall that Co X ¢ B is the kernel of the map Co @ B — C whose restriction to Co
is af and to B is —a.
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The natural semi-split sequence 0 — B — Z — A[l] — 0 leads, as in
(1.4.3), to a triangle

B — Z — A[l] — BJ[1];

and since the ¢-acyclic complexes are the objects of a A-subcategory, see
(2.2.5.1), it follows that A is ¢-acyclic iff B is.

Since A-subcategories are closed under direct sum, it is clear now that
(i) and (iii) in (2.7.2) hold when P is the class of ¢-acyclic objects, whence
the second-last assertion in (2.7.4). In view of (2.7.2) and its proof, the last
assertion of (2.7.4) is contained in (2.2.6). Q.E.D.

The derived functor L¢_ of (2.7.4) satisfies dim"L¢_ =0 (unless ¢ = 0,
see (2.7.2)). When its lower dimension satisfies dim~L¢_ < oo, more can be
said.

Proposition 2.7.5. Let ¢: A — A’ be a right-exact functor such that every
object in A is a quotient of a ¢-acyclic one, and let Lo_ be a left-derived
functor of ¢|K~(A), see (2.7.4). Then the following conditions on an integer
d >0 are equivalent:

(i) dim L¢_ <d.

(ii) For any F € A we have

Li¢p(F):= H7L¢_(F) =0 forall j>d.
(iii) In any exact sequence in A
0—>O—>Bd—>Bd,1—>...—>Bo,

if By, Bi,...,Bq_1 are all ¢-acyclic then so is By.”
(iv) For any F' € A there is an exact sequence

0—B;g—Bg1—...—4By—F—0

in which every B; is ¢-acyclic.

(v) For any complex F* € K(A) and integers m < n, if F7 =0 for all
j & [m,n] then there exists a quasi-isomorphism B® — F* where
B is ¢-acyclic for all j and BI =0 for j ¢ [m —d, n).

(vi) For any complex F* € K(A) and integer m, if F7 =0 for all j <m
then there exists a quasi-isomorphism B® — F*® where B is p-acyclic
for all j and BY =0 for all j < m —d.

7 For d = 0 this means that every B € A is ¢-acyclic, i.e., ¢ is an ezact functor,
see (2.7.4) (and then every F'®* € K(A) is ¢-acyclic, see (2.2.8(a)).
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When there exists an integer d > 0 for which these conditions hold, then:

(a) Ewvery complex of ¢-acyclic objects is a ¢p-acyclic complex.

(b) Every complex in A is the target of a quasi-isomorphism from a
¢-acyclic complex.

(¢) A left-derived functor Lo: D(A) — D(A’') exists, dim"Lep =0
(unless ¢ = 0) and dim~L¢ < d.

(d) The restriction Lo|px 4y is a left-derived functor of ¢|gx 4, and

Lo(D*(A)) c D*(A)  (x=+, -, orb).

Proof. (i)<(ii). This is given by (iii) and (iv) in (1.11.2).

(iii)=-(v)=-(iv). Let F** and m < n be as in (v). As in the proof of (2.7.2),
there is a quasi-isomorphism P® — F* with P7 ¢-acyclic for all j and P = 0
for j > n. Let B™~% be the cokernel of P~4=1 — Pm=4_Tf (iii) holds, then
B™~% is ¢-acyclic: this is trivial if d = 0, and otherwise follows from the
exact sequence

0— Bm—d N Pm—d+1 NN Pm—l — pm.

So all components of the complex B® = T.,,,_q¢P° (see (1.10)) are ¢-acyclic,
and clearly P®* — F'® factors naturally as P®* — B® — F'® = 7.,,,_qF® where
both arrows represent quasi-isomorphisms. Thus (iii)=(v); and (v)=-(iv) is
obvious.

Recalling from (2.7.4) that B € A is ¢-acyclic iff L;¢(B) = 0 for all i > 0,
we easily deduce the implications (iv)=-(ii)=-(iii) from:

Lemma 2.7.5.1. Let
0=Bg+1 2 Bg—Bg-1— - —=DBy—=F—0

be an exact sequence in A with By, B1, ..., Bq_1 all ¢-acyclic, and let K; be
the cokernel of Bj11 — Bj (0 < j < d). Then for any i > 0, there results a
natural sequence of isomorphisms
Livap(F) = Liyap(Ko) = Liva—19(K1) = -+
© =5 Lit29(Ka—2) = Lit19(Ka-1) = Li¢(Ka) = Li¢(Ba) -

Proof. When d = 0, it’s obvious. If d > 0, apply (2.1.4)" (dualized) to the
natural exact sequences

0—>Kj—>Bj,1—>Kj71—>0 (0<]§d)
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to obtain exact sequences

0= Liyi—j+10(Bj-1) = Liya—j+10(K;_1)
— Li+d7j¢(Kj) — Lier,qus(Bj,l) =0. QED

(iii)=-(vi). Condition (iii) coincides with condition (iii) of [H, p. 42, Lemma
4.6, 2)] (dualized, and with P the set of ¢-acyclics in A). Condition (i) of
loc. cit. holds by assumption, and condition (ii) of loc. cit. is contained in
(2.7.4). So if (iii) holds, loc. cit. gives the existence of a quasi-isomorphism
B* — F*® with B’ ¢-acyclic for all j; and the recipe at the bottom of [H,
p. 43] for constructing B® allows us, when FY = 0 for all j < m, to do so in
such a way that B/ = 0 for all j < m — d.

(vi)=(ii). Assuming (vi), we can find for each object F' € A a quasi-
isomorphism B® — F with all B’ ¢-acyclic and B? = 0 for j < —d. If K is
the cokernel of B! — B° then the natural composition

H'(B*) — K — F
is an isomorphism, whence so are the functorially induced compositions
Lig(H'(B%)) — Lio(K) — Li¢(F)  (j€Z). (2752)

But for every j > d, (2.7.5.1) with K in place of F yields L;¢(K) = 0, so
that the isomorphism (2.7.5.2) is the zero-map. Thus (ii) holds.

Now suppose that (i)—(vi) hold for some d > 0. We have just seen, in
proving that (iii)=(vi), that then every complex in A receives a quasi-
isomorphism from a complex B® of ¢-acyclics; and so, as in the proof
of (2.7.2), assertion (2.7.5)(a)—and hence (b)—will result if we can show that
whenever such a B® is exact, then so is ¢(B®). But condition (iii) guarantees
that when B® is exact, the kernel K* of B* — B! is ¢-acyclic for all i,
whence by (2.7.4) we have exact sequences

0= K ")—¢(B™")—o(K')—0 (i€Z)

which together show that ¢(B®) is indeed exact.
The existence of L¢, via resolutions by complexes of ¢-acyclic objects, fol-
lows now from (2.2.6); and the dimension statements follow, after application

of (1.8.1)" or (1.8.1) 7, from (v) with m = —o0o (obvious interpretation, see be-
ginning of above proof that (iii)=(v)) and from (vi). Similar considerations
yield (d). Q.E.D.

Example 2.7.6. The dimension dim f of a map f: X — Y of ringed spaces
is the upper dimension (1.11) of the functor Rf: D*(X) — D(Y) of (2.7.3):

dim f:= dim*Rf/,
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a nonnegative integer unless f,Ox = 0, in which case dim f = —oo. When
f has finite dimension, (2.7.5)(c) (dualized) gives the existence of a derived
functor Rf.: D(X) — D(Y) via resolutions (on the right) by complexes of
f«-acyclic objects, and we have co > dim f = dim* R f,.

The tor-dimension (or flat dimension) tor-dim f of a map f: X — Y of
ringed spaces is defined to be the lower dimension (see (1.11)) of the functor

Lf*: D7 (Y) — D(X) of (2.7.3):
tor-dim f:= dim~Lf*,

a nonnegative integer unless Ox = 0, in which case tor-dim f = —oo. When
f has finite tor-dimension, (2.7.5)(c) gives the existence of a derived functor
Lf*: D(X) — D(Y) via resolutions (on the left) by complexes of f*-acyclic
objects, and we have oo > tor-dim f = dim~Lf*.

Following [I, p.241, Définition 3.1] one says that an Ox-complex E has
flat f-amplitude in [m,n] if for any Oy-module F,

H'(E®Lf*F) =0 for all i ¢ [m,n],
or equivalently, for the functor Lg(F):= E@Lf*F of Oy-module F,
dim*L <m and dim~L < —n.

This means that the stalk E, at each x € X is D(Oy f(,))-isomorphic to a
flat complex vanishing in degrees outside [m,n|, see [I, p.242, 3.3], or argue
as in (2.7.6.4) below. E has finite flat f-amplitude if such m and n exist.

It follows from (2.7.6.4) below and [I, p. 131, 5.1] that f has finite tor-
dimension <= Ox has finite flat f-amplitude.

(2.7.6.1). If X is a compact Hausdorff space of dimension < d (in the
sense that each point has a neighborhood homeomorphic to a locally closed
subspace of the Euclidean space RY), and Ox is the constant sheaf Z, then
dim f <d.

Indeed, if I°® is a flasque resolution of the abelian sheaf F', then for any
open U C Y the restriction I*|f~1(U) is a flasque resolution of F|f~1(U), and
RIf.(F) is, up to isomorphism, the sheaf associated to the presheaf taking
any such U to the group HY(D(f~Y(U), I*|f~*(U)), a group isomorphic
to HI(f~Y(U), F|f~*(U)) |G, p.181, Thm.4.7.1(a)], and hence vanishing
for j > d, see [Iv, Chap.III, §9].

More generally, if X is locally compact and we assume only that the fibers
f~Yy (y € Y) are compact and have dimension < d, then dim f < d (because
the stalk (R’f.F), is the cohomology H’(f~ 'y, F|f~'y), see [Iv, p.315,
Thm. 1.4], whose proof does not require any assumption on Y).

(2.7.6.2). (Grothendieck, see [H, p. 87]). If (X, Ox) is a noetherian scheme
of finite Krull dimension d, then dim f < d.
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(2.7.6.3). For a ringed-space map f: X — Y with Ox 2 0, the following
conditions are equivalent:

(i) tor-dim f =0.

(i) Every Oy-module is f*-acyclic.

(i) The functor f* of Oy-modules is exact.

(i) fis flat (i.e., Ox s is a flat Oy (,)-module for all x € X).

Proof. Since every Ox-module is a quotient of a flat one, which is f*-acyclic (see
(2.7.3)), the equivalence of (i), (i)’, and (i)’ is given, e.g., by that of (i) and (iii)
in (2.7.5) (for d = 0). The equivalence of (i) and (ii) is the case d = 0 of:

(2.7.6.4) Let f: X — Y be a ringed-space map and d > 0 an integer. Then
tor-dim f < d <= for each z € X there exists an exact sequence of Oy ¢(s)-
modules

0Py —Pij_1—...—5P1—>Py—0Ox,4,—0 @)

with P; flat over Oy f(5) (0 <i < d).

Proof. (“if”) Let F be an Oy-module and let Q®* — F be a quasi-isomorphism
with Q°® a flat complex (1.8.3). Then for j > 0, the homology

Lif*(F)= HI(f*Q%)  (see (2.7.3))
vanishes iff for each x € X, with y = f(x), R = Oy,y, and S = Ox,; we have
0= H9((f*Q%).) = H7 (S ®r Q%) = Tor®(S, F,)

where the last equality holds since Q? — F), is an R-flat resolution of F), whence
Y Y Yy
the assertion.

(“only if”) Suppose only that Lgi1f*(F) = 0 for all F, so that (see above)
Tort | (S, Fy) = 0; and let

-—P,—P - P/—-S5S—-0
be an R-flat resolution of S. Then, I claim, the module
Pg:= coker(Pj,, — P})
is R-flat, whence we have (x) with P; = P/ for 0 < ¢ < d.
Indeed, the flatness of Py is equivalent to the vanishing of Torf*(Py, R/I) for all

R-ideals I [B’, §4, Prop. 1]. But any such I is J, where 3 C Oy is the Oy -ideal such
that for any open U C Y,

JU)={reOyU)|rycl} ityeU
=0 if y ¢ U;
so that if F' = Oy /J, then R/I = F,; and from the flat resolution
'_’Pé+2_’P(/1+1_>Pé_’Pd_>O
of Py, we get the desired vanishing:

Tor?* (P4, R/I) = Tor®(Py, F,) = Torg;,_l(S, Fy)=0.
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Exercise 2.7.6.5. (For amusement only.) If Y is a quasi-separated scheme,
then f: X — Y satisfies tor-dim f < d if (and only if) for every quasi-coherent
Oy -ideal J, we have
Lit1f*(Oy /) =0.

If in addition Y is quasi-compact or locally noetherian, then we need only consider
finite-type quasi-coherent Oy -ideals.

[The following facts in [GD] can be of use here: p.111, (5.2.8); p.313, (6.7.1);
p.294, (6.1.9) (i); p. 295, (6.1.10)(iii); p. 318, (6.9.7).]
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