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The Electromagnetic Fields Created
by Time-Sinusoidal Current

Abstract. This chapter is a recall of the properties of the long-range part of the
electromagnetic fields created by time-periodic currents, as they may be observed
in particular in the Zeeman effect. The aim of this part is also to place the vector
frame of these observations, that is, one of the spherical coordinates, which is in the
center of the presentation in the real formalism of the relativistic central potential
problem. This frame is the one in which are expressed the Dirac probability current,
associated with a state and with the transition between two states. But it is to notice
that, as a specificity of the real formalism, the form given by Hestenes to the wave
function of the electron, strictly equivalent to the Dirac spinor, may be presented,
in the case of central potential, as a combination of the vectors of this frame.

2.1 Properties of the Electromagnetic Field Emitted
by an Electron Bound in an Atom

The observation of the electromagnetic fields emitted by electrons bound in
an atom, achieved when a magnetic field is present (Zeeman effect), shows
that the field owns the following particularities:

1. The field is time-sinusoidal and polarized.

2. If the observation is orthogonal to the direction of the magnetic field, the
polarization appears as being linear along this direction.

3. If the observation is parallel to this direction, the polarization appears as
being circular and in a plane orthogonal to this direction.

Such data of the observations allow one to precise the general form of the
electric currents, which are the source of the field.

The extension of these particularities to the transitions where no magnetic
field is present, that is, spontaneous or stimulated emissions processes, is not
directly observable. But it is confirmed not only by other experimental data,
but also by the fact that the theoritical construction of the transition currents
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is deduced from the Darwin solutions of the Dirac equation, and that these
solutions give exactly (if one excepts the small variation called the Lamb shift)
the values of the levels of energy of an electron bound in an atom.

2.2 The Field at Large Distance of a Time-Periodic
Current

The calculation of the field that is used here is based on the pure laws of
Maxwell, without quantization. Indeed, using Quantum Field Theory is not
a necessity in the domain studied here. It leads exactly to the same results
(see [12]), with sometimes longer calculations.

We consider only the long-range part of the field by applying the following
theorem [41]. If the source of the field is negligible outside a small neighbour-
hood of the origin O, the long-range part of the field is deduced from the
integral formula of the retarded potential in such a way that

o [jt@’—Rx")

E(z%r) = —45.5 7 dr’, (2.1)
i
0 nxjt(z*—-R,r’
H(2%r) = —q@/ i 7 ) dr’, (2.2)

where the coordinates z# are in the form (z° = ct,r) and ¢ is the charge of
the source.

The vector j= is the component of the spatial part j = (5, j2,°) of the
space—time vector j*, orthogonal to the vector n = R/R, where R =r — 7/,
R = |R|. Note that the time component j° of the current does not intervene.

In the theory of the electron, the vector j# has the meaning of a current
of probability of the presence of the electron and ¢ = —e is the charge.

We can notice furthermore that if j# in time-independent, the long-range
part of the field is null. As it is the case of the Dirac probability current j*
associated with the state of a bound electron, this explains the reason why no
electromagnetic field may be observed outside a passage from a state to one
another.

If the field is time-sinusoidal, the source current is of the form

¢(2%,1) = q [cos wa® ju (r) + sin wa® jo(x)], (2.3)
where the vectors jj are to be precised.

At large distance r from the origin O, we may replace » — ' by » = rn in
(2.1) and write

E@°r) = —g% /jL(xO —r,r')dr’ (2.4)
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and so we can write

E(%r) = q%[sinw(xo —r) Ut —cosw(z® —r) Uy}, (2.5)

where
Ui = /jﬁ(r’) dr’', k=1,2. (2.6)

2.3 Source Currents of Time-Sinusoidal Polarized Field

Let (e1, ez, e3) be an orthogonal frame of the three-space of the laboratory
galilean frame. The most convenient coordinates system for defining the cur-
rent is the (r, 8, p) spherical coordinate system, in which the vector es defines
a privileged direction, the one of the magnetic field in the case of the presence
of this field,

U =cosp ey +sinpes, vV=—snpe;+cosy ey,

n =cosf ez +sinfu, w=-—sinfez+cosb@u, r=rn (2.7)

For taking into account the polarizations, the components j1, 7o of the current
may be then defined in the following way:

Ji1=cosep jr +sinep jrr, j2 = —sinep j; +cosep i, (2.8)

where
jI = b(’l“, 0) v, jII = CL(T, 0) u + C(Tv 9) €3, (29)

and where € may be taken equal to 0 or 1. We consider the vector

U = cosws’ Uy +sinwz’ Uy, Uy, = /jk(r) dr. (2.10)

2.3.1 Linear Polarization: e = 0

Inthiscasewehavej; = jrandjo = jrr. Therelationsdr = (rsin 6dyp)(rdf)dr
27 27 .

and [;"ude=0= [;" v dp give

[ee] s
U, =0,Uy=Ces, C= 27r/ / c(r, 9)7‘2 sin@ drdf U = sinwa® Ces.
o Jo
(2.11)
2.3.2 Circular Polarizations: € = +1
In this case we deduce immediately

§E = (+a —b)cospsing e; + (b cos® ¢ + a sin? ) ey + ¢ sin g e,
J5 = (£bsin® ¢ + a cos® ) e + (a F b) cos psin g ey + ¢ cos p e3



8 2 The Electromagnetic Fields Created by Time-Sinusoidal Current
and after integration

Uli:(J[iJ]])EQ, U;Z(iJI—i-J[[) e,
U+—A(sinwx0 ey + coswz’ er), A=Ji+Ji,
U~ stmw:v elfcoswzoeg) B=Ji— Jy, (2.12)

J[:ﬂ'/ / r@r sin 6 drdf, J[[_ﬂ'/ / r@r sin @ drdo .

2.4 Flux of the Poynting Vector Through a Sphere
of Large Radius

Let us consider the flux F', per unit of time, through a sphere S of large radius,
of the Poynting vector of the field, created by the transition current between
two states, of an electron bound in an atom. If we consider the energy E
released at each transition, the ratio F//E gives the number of transitions per
second.

If no external field is present, the transition is called spontaneous emission.
The number of these transitions may be experimentally observed, and, for
comparison, the theoretical calculation presents an interest (see Chap. 7).

We consider that F' is averaged on a period T' = 27w of the source current
and denoted by

T
1 / X da°,
T Jo
the average of X.

Because E and H = n x E are orthogonal to n, we can write for a sphere

S of center 0 of radius R

F:i/ (n- (E x H) R*do,
47T So
then
C
F= E?) R%d 2.13
i |, (B°) Rido, (2.13)

where Sy is the sphere unity. Now

(cos? w(2® — R)) = (sin®w(z® — R))
(cos 2w(z® — R)sinw(z” — R))

S o=

In other respect, let (6, po) be the system of spherical coordinates of Sy, such
that the axis of the poles is colinear with one of the vectors Uy.
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We can write (Ui-)? = U? sin” 6 and
27 K
8
/ (U)?do = / / [U% sin? 0] sin 0 dpdfy = %Uz, (2.14)
So o Jo

and taking into account the presence of 1/R? in E?, we can replace in all the
cases of polarization (2.13) by the equation

Cu}2€2

3

F= (U3 +U3). (2.15)

2.5 Units

The only constants we use are the three fundamental constants (revised in
1989 by B.N. Taylor):

1. The light speed ¢ = 2.99 792 458 x 10'% cms™!.

2. The electron charge magnitude e = 4.803 206 x 10710 (e.s.u.).

3. The reduced Planck constant i = h/27 = 1.054 572 x 10~%7 ergs. In addi-
tion we use

4. the electron mass m = 9.109 389 x 10728 g. All the other constants used
will be derived from these four ones, in particular,

5. the fine structure constant

€2 1

= — = — in e.s.u. 2.16
=T TaTossosy (emesu) (2.16)
and as unit of length:
6. the “radius of first Bohr orbit”
a=h?/(me*) = h/(mea) = 5.291 772 x 10~ cm. (2.17)

Note

In other respects, one introduces in the expression of the electromagnetic
potentials the factor 1/(4meg) (the presence of 47 is due to the writing 47 j*
instead of j* in the current term of the Maxwell equations), where ¢q is the
permittivity of free space, and e is expressed in e.m.u:

€ = 8.854187 x 107 F m™', e =1.6021777 x 107 (e.m.u.)

That gives (with ¢ expressed in metres) the same value of « with the expression

e2

=——,  (ein em.u. 2.18

4meghe ( ) ( )
For simplicity and to be in agreement with the largest part of the reference
articles and treatises mentioned here, we use the former expressions of the
potentials and the constant «, in preference to these last ones.
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