
Chapter 2

Perturbation Methods

Overview. In the previous chapter we have seen that the solu-
tion of a DGE model with a representative agent is given by a
set of policy functions that relate the agent’s choice variables to
the state variables that characterize the agent’s economic envi-
ronment. In this chapter we explore methods that use local in-
formation to obtain either a linear or a quadratic approximation
of the agent’s policy function. To see what this means, remember
from elementary calculus that a straight line that is tangent to
a function y = f(x) at x∗ locally approximates f : according to
Taylor’s theorem (see Section 11.2.1) we may write

f(x∗ + h) = f(x∗) + f ′(x∗)h
︸ ︷︷ ︸
linear function in h

+φ(h),

where the error φ(h) has the property

lim
h→0
h�=0

φ(h)

h
= 0.

Thus, close to x∗, f equals a slightly perturbed linear function.
To set up the linear function, we only need to know (i) the value
of f at x∗ and (ii) the value of its first derivative f ′ at the same
point.

Probably less well known is the following result. If xt = f(xt−1)
is a non-linear difference equation and x̄t = f ′(x∗)x̄t−1, x̄t = xt −
x∗ its linear approximation at x∗ defined by x∗ = f(x∗), then
the solution of the linear model provides a local approximation
of the solution of the non-linear equation.1 Perturbation methods

1 See Section 12.1 on difference equations, if you are unfamiliar with this
subject.
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rest on these observations. As we will see, they are not limited to
linear approximations. If f is n-times continuously differentiable,
we may use a polynomial in h of degree up to n − 1 to build a
local model of f .

In this chapter we mainly consider linear approximations. They
are the most frequently used solutions in applied research and are
easy to apply. As you will see in later chapters they also provide
a first guess for more advanced, non-local methods.

The next section considers deterministic models. In this con-
text it is relatively easy to demonstrate by means of an example
(the Ramsey model of Section 1.2) that we can get linear approx-
imations to the policy functions by either solving the linearized
system of Euler equations or by applying the implicit function
theorem to the steady state conditions of the model. We use this
result to provide a procedure that computes the solution of an ar-
bitrary deterministic model with n variables from the linearized
system of Euler equations.

Before we turn to the solution of stochastic DGE models in
Sections 2.3 and 2.4, we consider a model where the linear policy
functions provide an exact solution. This is the linear-quadratic
(LQ) model outlined in Section 2.2. Two different approximation
methods derive from the LQ problem. The first approach, consid-
ered in Section 2.3, approximates a given model so that its return
function is quadratic and the law of motion is linear and solves
the approximate model by value function iterations. The second
approach, taken up in Section 2.4, relies on a linear approximation
of the model’s Euler equations and solves the ensuing system of
linear stochastic difference equations.

We close the methodological part of this chapter in Section
2.5 with the quadratic approximation of the policy functions of
an arbitrary stochastic DGE model. The bottom line of Sections
2.3 through 2.5 are three programs: SolveLA and SolveLQA com-
pute linear approximations to deterministic as well as stochastic
DGE models. The difference between the two programs is the
way you must set up your model. SolveLA is a general purpose
routine, while SolveLQA is limited to models whose solution can
be obtained by solving a central planing problem. Yet, in some
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kinds of problems it is much easier to cast your model into the
framework of SolveLQA. The third program, SolveQA, computes
quadratic approximations of the policy functions of an arbitrary
DGE model. Various applications illustrate the use of these pro-
grams in Section 2.6.

2.1 Linear Solutions for Deterministic Models

This Section applies two tools. The implicit function theorem,
sketched in Section 11.2.2, allows us to compute the derivatives
of a system of policy functions that is implicitly determined by a
system of non-linear Euler equations. The close relation between
the local solution of a system of non-linear, first-order difference
equations and the solution of the related linearized system, out-
lined in Section 12.1, provides a second route to compute linear
approximations of a model’s policy functions. If you are unfamiliar
with any of these tools, you might consider reading the respective
sections before proceeding.

We use the deterministic growth model from Section 1.2 to
illustrate both techniques before we turn to the general approach.
We begin with the solution of the system of non-linear difference
equations that governs the model’s dynamics.

Approximate Computation of the Saddle Path. Consider
equations (1.17) that characterize the solution of the Ramsey
problem (1.8) from Section 1.2:

Kt+1 − f(Kt) + Ct =: g1(Kt, Ct, Kt+1, Ct+1)= 0,
(2.1a)

u′(Ct)− βu′(Ct+1)f
′(Kt+1) =: g2(Kt, Ct, Kt+1, Ct+1)= 0.

(2.1b)

Equation (2.1a) is the farmer’s resource constraint.2 It states that
seed available for the next period Kt+1 equals production f(Kt)

2 Remember, that in the notation of Section 1.2 f(K) := (1−δ)K+F (N,K),
where N are the farmer’s exogenously given working hours.
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minus consumption Ct. The first-order condition with respect to
the next-period stock of capital Kt+1 is equation (2.1b). These
two equations implicitly specify a non-linear system of difference
equations xt+1 = Ψ(xt) in the vector xt := [Kt, Ct]

′:

g(xt,Ψ(xt)) = 02×1, g = [g1, g2]′.

The stationary solution defined by

1 = βf ′(K∗), (2.2a)

K∗ = f(K∗)− C∗ (2.2b)

is a fixed point of Ψ. We obtain the linear approximation of Ψ at
x∗ = [K∗, C∗]′ via equation (11.38):

x̄t+1 = J(x∗)x̄t, x̄t := xt − x∗. (2.3)

with the Jacobian matrix J determined by

J(x∗) =

[
∂g1(x∗,x∗)

∂Kt+1

∂g1(x∗,x∗)
∂Ct+1

∂g2(x∗,x∗)
∂Kt+1

∂g2(x∗,x∗)
∂Ct+1

]−1 [
∂g1(x∗,x∗)

∂Kt

∂g1(x∗,x∗)
∂Ct

∂g2(x∗,x∗)
∂Kt

∂g2(x∗,x∗)
∂Ct

]

. (2.4)

The derivatives of g at the fixed point are easily obtained from
(2.1a) and (2.1b) (we suppress the arguments of the functions and
write f ′ instead of f ′(K∗) and so forth):

J(x∗) = −
[

1 0
−βu′f ′′ −u′′

]−1 [− 1
β

1

0 u′′

]
=

[ 1
β

−1

−u′f ′′
u′′ 1 + βu′f ′′

u′′

]
.

In computing the matrix on the rhs of this equation we used the
definition of the inverse matrix given in (11.14). The eigenvalues
λ1 and λ2 of J satisfy (see (11.24)):

det J =
1

β
= λ1λ2,

trJ = 1 +
1

β
+
βu′f ′′

u′′︸ ︷︷ ︸
=:∆

= λ1 + λ2.
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Figure 2.1: Eigenvalues of W

Therefore, they solve equation

φ(λ) := λ+
1/β

λ
= ∆.

The solutions are the points of intersection between the horizontal
line through ∆ and the hyperbola φ(λ) (see Figure 2.1). The graph
of φ obtains a minimum at λmin = 1/

√
β > 1, where φ′(λmin) =

1 − (1/β)λ−2 = 0.3 Since φ(1) = 1 + (1/β) < ∆, there must be
one intersection to the right of λ = 1 and one to the left, proving
that J has one real eigenvalue λ1 < 1 and another real eigenvalue
λ2 > 1.

Let J = TST−1 with

S =

[
λ1 s12

0 λ2

]

denote the Schur factorization of J (see (11.27) in Section 11.1.8).
In the new variables (where T−1 = (tij))

3 In Figure 2.1 λmin is so close to λ = 1 that we do not show it.
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yt = T−1x̄t ⇔
[
y1t

y2t

]
=

[
t11 t12

t21 t22

] [
Kt −K∗

Ct − C∗

]
(2.5)

the system of equations (2.3) is given by

yt+1 = Syt.

The second line of this matrix equation is

y2t+1 = λ2y2t.

Since λ2 > 1, the variable y2t will diverge unless we set y20 = 0.
This restricts the system to the stable eigenspace. Using y2t = 0
in (2.5) implies

0 = t21x̄1t + t22x̄2t, (2.6a)

y1t = (t11 − t12(t21/t22))x1t. (2.6b)

The first line is the linearized policy function for consumption:

Ct − C∗ = −t
21

t22
[Kt −K∗] . (2.7a)

The second line of (2.6) implies via y1t+1 = λ1y1t the linearized
policy function for savings:

Kt+1 −K∗ = λ1 [Kt −K∗] . (2.7b)

We illustrate these computations in the program Ramsey2a.g,
where we use u(C) = [C1−η − 1]/(1 − η) and F (N,K) = Kα.
In this program we show that it is not necessary to compute the
Jacobian matrix analytically as we have done here. You may also
write a procedure that receives the vector [Kt, Ct, Kt+1, Ct+1]

′ as
input and that returns the rhs of equations (2.1). This procedure
can be passed to a routine that numerically evaluates the partial
derivatives at the point (K∗, C∗, K∗, C∗). From the output of this
procedure you can extract the matrices that appear on the rhs of
equation (2.4).

Figure 2.2 compares the time path of the capital stock under
the analytic solution Kt+1 = αβKα

t (which requires η = δ = 1)
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Figure 2.2: Approximate Time Path of the Capital Stock in the
Deterministic Growth Model

with the path obtained from the approximate linear solution. The
parameters are set equal to α = 0.27 and β = 0.994, respectively.
The initial capital stock equals one-tenth of the stationary capital
stock. As we would have expected, far from the fixed point, the
linear approximation is not that good. Yet, after about five iter-
ations it is visually indistinguishable from the analytic solution.

Approximate Policy Functions. We now apply the implicit
function theorem directly to find the linear approximation of the
policy function for optimal savings. Let Kt+1 = h(Kt) denote this
function. Since K∗ = h(K∗), its linear approximation at K∗ is
given by

Kt+1 = h(Kt) � K∗ + h′(K∗)(Kt −K∗). (2.8)

Substituting equation (2.1a) for Ct = f(Kt)−h(Kt) into equation
(2.1b) delivers:

g(Kt) := u′ [(f(Kt)− h(Kt)]

− βu′ [(f(h(Kt))− h(h(Kt))] f
′(h(Kt)).
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We know that g(K∗) = 0. Theorem 11.2.3 allows us to compute
h′(K∗) from g′(K∗) = 0. Differentiating with respect to Kt and
evaluating the resulting expression at K∗ provides the following
quadratic equation in h′(K∗) (we suppress the arguments of all
functions):

(h′)2 − (1 + (1/β) + (βu′f ′′)/u′′)
︸ ︷︷ ︸

=:∆

h′ + (1/β) = 0 (2.9)

Let h′1 and h′2 denote the solutions. Since (by Viète’s rule)
h′1 + h′2 = ∆ and h′1h

′
2 = 1/β, the solutions of equation (2.9)

equal the eigenvalues of the Jacobian matrix λ1 and λ2 ob-
tained in the previous paragraph. The solution is, thus, given
by h′(K∗) = λ1 and the approximate policy function coincides
with equation (2.7a). Note that we actually do not need to com-
pute the approximate policy function for consumption: given the
approximate savings function (2.7a) we obtain the solution for
consumption directly from the resource constraint (2.1a).

Observe further that this way to compute h′(K∗) is less read-
ily implemented on a computer. In order to set up (2.9) we need
software that is able to do symbolic differentiation. Our general
procedure for non-linear, deterministic DGE models therefore re-
lies on the approach considered in the previous paragraph.

The General Method. It is straightforward to generalize the
method outlined above to compute the linear approximate solu-
tion of a non-linear system of difference equations implied by a
deterministic DGE model. Suppose the map

g(xt,xt+1) = 0n×1, xt ∈ R
n

implicitly describes the model’s dynamics. Assume, further, that
n1 of the elements in xt have given initial conditions (as the capital
stock in the deterministic growth model) and that n2 = n−n1 are
jump variables (as consumption), whose initial conditions must
be chosen in order to satisfy the model’s transversality condi-
tions. Let x∗ denote the fixed point. Since the analytic compu-
tation of the Jacobian matrix is usually very cumbersome and
failure prone, it is advisable to write a procedure that returns
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the rhs of g(xt,xt+1). This procedure serves as input to a pro-
gram that performs numeric differentiation. Given the matrices
A := gxt+1(x

∗,x∗) and B := gxt(x
∗,x∗), the Jacobian matrix of

the linearized system (2.3) is given by J = A−1B. This matrix
must have n1 eigenvalues inside and n2 eigenvalues outside the
unit circle.

Let yt := T−1x̄t with J = TST−1 denote the new variables in
which the system is decoupled
[
y1t+1

y2t+1

]
=

[
S11 S12

0n2×n1 S22

] [
y1t

y2t

]
.

Since all the eigenvalues on the main diagonal of S22 are outside
the unitUnit circle circle, we must set y2t = 0n2×1 to secure con-
vergence. Thus, the second block of the matrix equation
[

y1t

0n2×1

]
=

[
T 11 T 12

T 21 T 22

] [
x̄1t

x̄2t

]

implies the policy function for the jump variables:

x̄2t = −(T 22)−1T 21x̄1t. (2.10a)

Using this result to substitute for x̄2t in the first block of equations
yields:

y1t =
(
T 11 − T 12(T 22)−1T 21

)
x̄1t.

Observe that the inverse of the matrix in parenthesis is T11 (apply
the formula for the inverse of a partitioned matrix (11.15a) to the
matrix T−1). Thus,

y1t+1 = (T11)
−1x̄1t+1 = S11y1t = S11T

−1
11 x̄1t

so that the policy function for x̄1t+1 is given by

x̄1t+1 = T11S11T
−1
11 x̄1t. (2.10b)

You will see in Section 2.4 that our procedure SolveLA that com-
putes the linear approximate solution of stochastic DGE models
provides the policy functions (2.10) as a special case.
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2.2 The Stochastic Linear Quadratic Model

This section presents the stochastic linear quadratic model and
derives some of its important properties. Since its main purpose
is to provide a framework for both linear quadratic and linear
approximation methods, we postpone detailed algorithms for the
computation of the policy function until Section 2.3 and Section
2.4, respectively.

Description. Consider an economy governed by the following
stochastic linear law of motion:

xt+1 = Axt +But + εt. (2.11)

The n-dimensional column vector xt holds those variables that
are predetermined at period t. A fictitious social planner sets the
values of the variables stacked in in the m-dimensional column
vector ut. We refer to x as the state vector and to u as the control
vector. A ∈ R

n×n and B ∈ R
n×m are matrices. Due to the presence

of shocks, the planner cannot control this economy perfectly. The
n vector of shocks ε has a multivariate normal distribution with
E(ε) = 0 and covariance matrix4 E(εε′) = Σ. The planner must
choose ut before he can realize the size of the shocks.

Given x0 the planner’s objective is to maximize

E0

∞∑

t=0

βt [x′
tQxt + u′

tRut + 2u′
tSxt] , β ∈ (0, 1), (2.12)

subject to (2.11). The current period objective function

g(xt,ut) :=
[
x′

t, u′
t

]
[
Q S ′

S R

] [
xt

ut

]
(2.13)

is quadratic and concave in (x′
t,u

′
t). This requires that both the

symmetric n × n matrix Q and the symmetric m ×m matrix R
are negative semidefinite.

Note that this specification encompasses non-stochastic state
variables and first-order (vector) autoregressive processes.

4 Remember that a prime denotes transposition, i.e., ε′ is a row vector and
ε a column vector.



2.2 The Stochastic Linear Quadratic Model 85

Derivation of the Policy Function. The Bellman equation for
the stochastic LQ problem is given by

v(x) := max
u

x′Qx + 2u′Sx + u′Ru

+ βE [v(Ax +Bu + ε)] ,
(2.14)

where we used (2.11) to replace next-period state variables in
Ev(·) and where we dropped the time indices for convenience, be-
cause all variables refer to the same date t. Expectations are taken
conditional on the information contained in the current state x.
We guess that the value function is given by v(x) := x′Px + d,
P being a n dimensional symmetric, negative semidefinite square
matrix and d ∈ R an unknown constant.5 Thus, we may write
(2.14) as follows:6

x′Px + d =

max
u

x′Qx + 2u′Sx + u′Ru

+ βE [((Ax +Bu + ε)′P (Ax +Bu + ε) + d)] .

(2.15)

Evaluating the conditional expectations on the rhs of (2.15) yields:

x′Px + d =

max
u

x′Qx + 2uSx + u′Ru

+ βx′A′PAx + 2βx′A′PBu + βu′B′PBu

+ β tr(PΣ) + βd.

(2.16)

In the next step we differentiate the rhs of (2.16) with respect to
the control vector u, set the result equal to the zero vector, and
solve for u. This provides the solution for the policy function:

5 Note, since x′
tPxt is a quadratic form, it is not restrictive to assume that

P is symmetric. Furthermore, since the value function of a well defined
dynamic programming problem is strictly concave, P must be negative
semidefinite.

6 If you are unfamiliar with matrix algebra, you may find it helpful to consult
Section 11.1. We present the details of the derivation of the policy function
in Appendix 3.
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u = − (R + βB′PB)−1(S + βB′PA)
︸ ︷︷ ︸

F

x. (2.17)

To find the solution for the matrix P and the constant d, we
eliminate u from the Bellman equation (2.16) and compare the
quadratic forms and the constant terms on both sides. It turns
out that P must satisfy the following implicit equation, known as
algebraic matrix Riccati equation:

P = Q+ βA′PA

− (S + βB′PA)′ [R + βB′PB]
−1

(S + βB′PA),
(2.18)

and that d is given by:

d =
β

1− β tr(PΣ).

The solution of (2.18) can be obtained by iterating on the matrix
Riccati difference equation

Ps+1 = Q+ βA′PsA

− (S + βB′PsA)′ [R + βB′PsB]
−1

(S + βB′PsA)

starting with some initial negative definite matrix P0.
7 Other

methods to solve (2.18) rely on matrix factorizations. Since we
will use iterations over the value function later on, we will not
explore these methods any further. Once the solution for P has
been computed, the dynamics of the model is governed by

xt+1 = Axt +But + εt+1 = (A− FB)xt + εt.

Certainty Equivalence. The solution of the stochastic LQ prob-
lem has a remarkable feature. Since the covariance matrix of the
shocks Σ appears neither in equation (2.17) nor in equation (2.18),
the optimal control is independent of the stochastic properties of
the model summarized by Σ. Had we considered a deterministic

7 For example P0 = −0.01In.
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linear quadratic problem by assuming εt = 0∀t, we would have
found the same feedback rule (2.17). You may want to verify this
claim by solving Problem 2.1. This property of the stochastic LQ
problem is called certainty equivalence principle. It is important
to note that if we use the LQ approximation to solve an arbitrary
economic model we enforce the certainty equivalence principle on
this solution. This may hide important properties of the model.
For instance, consider two economies A and B which are identical
in all respects except for the size of their productivity shocks. If
economy’s A shock has a much larger standard deviation than
economy B’s shock, it is hard to believe that the agents in both
economies use the same feed-back rules.

Derivation of the Euler Equations. As we have seen in Chap-
ter 1 an alternative way to derive the dynamic path of an opti-
mizing model is to consider the model’s Euler equations. It will
be helpful for the approach taken in Section 2.4 to separate the
state variables into two categories. Variables that have a given
initial condition but are otherwise determined endogenously are
stacked in the n dimensional vector x. Purely exogenous shocks
are summarized in the l dimensional vector z. As in the previous
subsection u is them dimensional vector of controls. The planner’s
current period return function is the following quadratic form:

g(xt,ut, zt) := x′
tAxxxt + u′

tAuuut + z′tAzzzt

+ 2u′
tAuxxt + 2u′

tAuzzt + 2x′
tAxzzt.

(2.19)

Aij , i, j ∈ {x, u, z} are given matrices. The transition law of the
endogenous state variables is

xt+1 = Bxxt +Buut +Bzzt, (2.20)

where Bx ∈ R
n×n, Bu ∈ R

n×m, and Bz ∈ R
n×l are given matrices.

The shocks follow a first-order vector autoregressive process

zt+1 = Πzt + εt+1, ε ∼ N(0,Σ). (2.21)

The eigenvalues of Π ∈ R
l×l lie inside the unit circle. The planner

maximizes
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E0

∞∑

t=0

βtg(xt,ut, zt) (2.22)

subject to (2.20) and (2.21).
Let λt denote the n vector of Lagrange multipliers. The La-

grangian of this LQ problem is

L = E0

∞∑

t=0

βt
[
g(xt,ut, zt) + 2λ′

t(Bxxt +Buut +Bzzt−xt+1)
]
.

Differentiating this expression with respect to ut and xt+1 provides
the following set of first-order conditions:

0 = Auuut + Auxxt + Auzzt +B′
uλt,

λt = βEt [Axxxt+1 + Axzzt+1 + A′
uxut+1 +B′

xλt+1] .

The first of these equations may be rewritten as:

Cuut = Cxλ

[
xt

λt

]
+ Czzt, (2.23a)

whereas the second equation and the transition law (2.20) can be
summarized in the following matrix difference equation:

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (2.23b)

+DzEtzt+1 + Fzzt.

The matrices in these equations relate to those of the original
problem as follows:

Cu:=Auu, Cxλ:=− [Aux, B
′
u] ,

Cz:=−Auz ,

Dxλ:=

[
βAxx βB′

x

In 0n×n

]
, Fxλ:=

[
0n×n −In
−Bx 0n×n

]
,

Du:=

[−βA′
ux

0n×m

]
, Fu:=

[
0n×m

Bu

]
,

Dz:=

[−βAxz

0n×l

]
, Fz:=

[
0n×l

Bz

]
,
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where In and 0n×m denote the n dimensional identity matrix and
the n×m zero matrix, respectively.

Equations (2.23) describe a system of stochastic linear differ-
ence equations in two parts. The first part (2.23a) determines the
control variables as linear functions of the model’s state variables,
xt, exogenous shocks zt, and the vector of Lagrange multipliers
λt, often referred to as the vector of costate variables. The sec-
ond part (2.23b) determines the dynamics of the vector of state
and costate variables. In Section 2.4 equations (2.23) will serve
as framework to study the approximate dynamics of non-linear
models. Before we explore this subject and discuss the solution
of (2.23), we consider the computation of the policy function via
value function iterations in the next section.

2.3 LQ Approximation

This section provides the details of an algorithm proposed by
Hansen and Prescott (1995). Their approach rests on a lin-
ear quadratic approximation of a given model and they device
a simple to program iterative procedure to compute the policy
function of the approximate model. In Section 2.3.2, we use the
deterministic Ramsey model from Example 1.2.1 to illustrate the
various steps. Section 2.3.3 outlines the general approach and its
implementation in the Gauss program SolveLQA.

2.3.1 A Warning

Before we begin, we must warn you. As has been pointed out
by Judd (1998), pp. 506-508 and, more recently, by Benigno

and Woodford (2007), the method provides a correct linear
approximation to the policy function only when the constraints
are linear. A different policy function arises from maximizing a
quadratic approximation of the objective function subject to lin-
earized constraints. To see this, consider a simple static problem.
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Maximize U(x1, x2) subject to x2 = f(x1, ε), where ε is a parame-
ter of the problem. Let x1 = h(ε) denote the policy function that
solves this problem and assume that a solution at ε = 0 exists.
This solution solves

g(ε = 0) := U1 [h(ε), f(h(ε), ε)]

+ U2 [h(ε), f(h(ε), ε)] f1(h(ε), ε) = 0.

The implicit function theorem 11.2.3 allows us to compute h′(0)
from g′(0) = 0. This provides8

h′(0) = − U12f2 + U22f1f2 + U2f12

U11 + 2U12f1 + U22f
2
1 + U2f11

. (2.24)

The quadratic approximation of U at x∗1 = h(0) and x∗2 = f(x∗1, 0)
is obtained from applying equation (11.32) to U at (x∗1, x

∗
2):

UQ = U(x∗1, x
∗
2) + U1x̄1 + U2x̄2 +

1

2

[
x̄1, x̄2

] [U11 U12

U21 U22

] [
x̄1

x̄2

]
.

Maximizing this expression with respect to x̄1 := x1 − x∗1 subject
to the linearized constraint

x̄2 = x2 − x∗2 = f1x̄1 + f2ε

provides (since U1 + U2f1 = 0)

x̄1 = − U12f2 + U22f1f2

U11 + 2U12f1 + U22f 2
1

ε. (2.25)

This solution differs from (2.24) with respect to the rightmost
terms in the numerator and the denominator in the solution for
h′(0), U2f12 and U2f11, respectively. Both terms vanish, if the
constraint is linear.

Benigno and Woodford (2007) propose to use the quadratic
approximation of the constraint to replace the linear terms in UQ.
Indeed, if we replace x̄2 by

x̄2 = f1x̄1 + f2ε+
1

2
[x̄1, ε]

[
f11 f12

f21 f22

] [
x1

ε

]

in the expression for UQ and optimize this new function, we obtain
the same linear policy function as given in equation (2.24).

8 We used U12 = U21, which holds, if U is twice continuously differentiable.
See, e.g., Theorem 1.1 on p. 372 in Lang (1997).
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2.3.2 An Illustrative Example

The Model. We know from Section 2.2 that the policy function
of the LQ problem is independent of the second moments (and, a
fortiori, of any higher moments) of the shocks. Therefore, nothing
is lost but much is gained in notational simplicity, if we use the
deterministic Ramsey model from example 1.2.1 to illustrate the
approach of Hansen and Prescott (1995). In this example the
farmer solves

max
{Ct}∞t=0

∞∑

t=0

βt lnCt, β ∈ (0, 1),

s.t. Kt+1 + Ct ≤ Kα
t , α ∈ (0, 1), t = 0, 1, . . . ,

K0 given.

Ct denotes consumption at time t, and Kt is the stock of capital.
The dynamics of this model is determined by two equations:

1 = β
Ct

Ct+1

αKα−1
t+1 , (2.26a)

Kt+1 = Kα
t − Ct. (2.26b)

The first equation is a special case of the Euler equation (1.12)
in the case of logarithmic preferences and a Cobb-Douglas pro-
duction function. The second equation is the economy’s resource
constraint.

Approximation Step. We want to approximate this model by
a linear quadratic problem. Towards this end we must look for a
linear law of motion and put all remaining nonlinear relations into
the current period return function lnCt. We achieve this by using
investment expenditures It = Kα

t − Ct instead of consumption
as a control variable. Remember, this model assumes 100 percent
depreciation (i.e., δ = 1), so that the linear transition law is:

Kt+1 = It. (2.27)

Let g(Kt, It) := ln(Kα
t − It) denote the current period utility

function. We approximate this function by a quadratic function
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in (K, I) at the point of the stationary solution of the model. This
solution derives from equations (2.26) and (2.27) for Kt+1 = Kt =
K̄ and Ct+1 = Ct = C̄. Thus,

K̄ = (αβ)(1/(1−α)), (2.28a)

Ī = K̄. (2.28b)

A second order Taylor series approximation of g yields:

g(K, I) � g(K̄, Ī) + gK(K − K̄) + gI(I − Ī)
+ (1/2)gKK(K − K̄)2 + (1/2)gII(I − Ī)2

+ (1/2)(gKI + gIK)(K − K̄)(I − Ī).
(2.29)

For latter purposes, we want to write the rhs of this equation
by using matrix notation.9 To take care of the constant and the
linear terms we define the vector (1, K, I)T and the 3× 3 matrix
Q = (qij) and equate the rhs of (2.29) to the product

[1, K, I]Q




1
K
I



 .

Comparing terms on both sides of the resulting expression and
using the symmetry of the second order mixed partial derivatives
(gKI = gIK) yields the elements of Q:

q11=g − gKK̄ − gI Ī + (1/2)gKKK̄
2 + gKIK̄Ī + (1/2)gII Ī

2,
q12=q21 = (1/2)(gK − gKKK̄ − gKI Ī),
q13=q31 = (1/2)(gI − gII Ī − gKIK̄),
q23=q32 = (1/2)gKI,
q22=(1/2)gKK,
q33=(1/2)gII .

In the next step we use Q and the even larger vector w =
[1, K, I, 1, K ′] (where K ′ denotes the next-period stock of capi-
tal) to write the rhs of the Bellman equation, g(K, I) + βv(K ′),
in matrix notation. This gives:

9 To prevent confusion, we depart from our usual notation temporarily and
let the superscript T denote the transpose operator. As usual in dynamic
programming, the prime ′ denotes next-period variables.
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[1, K, I, 1, K ′]
[
Q 03×2

02×3 βV 0
2×2

]

︸ ︷︷ ︸
R5×5








1
K
I
1
K ′







, V 0 :=

[
v0
11 v0

12

v0
21 v0

22

]
. (2.30)

We initialize V 0 with a negative definite matrix, e.g., V 0 =
−0.001I2, where I2 denotes the two-dimensional identity matrix.
Our aim is to eliminate all future variables (here it is just K ′) us-
ing the linear law of motion. Then, we perform the maximization
step that allows us to eliminate the controls (here it is just I).
After that step we have a new guess for the value function, say
V 1. We use this guess as input in a new round of iterations until
V 0 and V 1 are sufficiently close together.

Reduction Step. We begin to eliminate K ′ and the constant
from (2.30) so that the resulting quadratic form is reduced to a
function of the current state K and the current control I. Note
that K ′ = I can be written as dot product:

K ′ = [0, 0, 1, 0]







1
K
I
1





 ,

and observe that







1
K
I
1
K ′








=

[
I4

0 0 1 0

]





1
K
I
1




 .

Thus, we may express (2.30) equivalently as:

[1, K, I, 1, K ′]R5×5








1
K
I
1
K ′








= [1, K, I, 1]R4×4







1
K
I
1





 ,
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where

R4×4 =

[
I4

0 0 1 0

]T

R5×5

[
I4

0 0 1 0

]

︸ ︷︷ ︸
S5×4

.

So what was the trick? In words: use the rightmost variable in
wT = [1, K, I, 1, K ′] and write it as linear function of the remain-
ing variables. This gives a row vector with 4 elements. Append
this vector to the identity matrix of dimension 4 to get the trans-
formation matrix S5×4. The matrix of the Bellman equation with
K ′ eliminated is R4×4 = ST

5×4R5×5S5×4.
In the same way we can eliminate the second constant. The

constant in terms of the remaining variables [1, K, I] is determined
by the dot product:

1 = [1, 0, 0]




1
K
I



 .

Thus, the matrix S4×3 is now

S4×3 =

[
I3

1 0 0

]
,

and the rhs of the Bellman equation in terms of [1, K, I] is

g(K, I) + βv(I) = [1, K, I]R3×3




1
K
I



 , R3×3 = ST
4×3R4×4S4×3.

Maximization Step. In this last step we eliminate I from the
rhs of the Bellman equation to find

[1, K]R2×2

[
1
K

]
.

The matrix R2×2 will be our new guess of the value function. After
the last reduction step, the quadratic form is:



2.3 LQ Approximation 95

[1, K, I]




r11 r12 r13
r21 r22 r23
r31 r32 r33








1
K
I





= r11 + (r12 + r21)K + (r13 + r31)I + (r23 + r32)KI

+ r22K
2 + r33I

2.

Setting the derivative of this expression with respect to I equal
to zero and solving for I gives:

I = − r13 + r31
2r33︸ ︷︷ ︸

i1

− r23 + r32
2r33︸ ︷︷ ︸

i2

K = −r13
r33
− r23
r33

K,

where the last equality follows from the symmetry of R. Thus, we
can use

S =

[
I2

−i1 − i2
]

to reduce R3×3 to the new guess of the value function:

V 1 = STR3×3S.

We stop iterations, if the maximal element in |V 1−V 0| is smaller
than ε(1−β) for some small positive ε (see (11.84) in Section 11.4
on this choice).

2.3.3 The General Method

Notation. Consider the following framework: There is a n vector
of state variables x, a m vector of control variables u, a current
period return function g(x,u), and a discount factor β ∈ (0, 1).
As you will see in a moment, it will be helpful to put x1 = 1. All
non-linear relations of the model are part of the specification of
g, and the remaining linear relations define the following law of
motion:

x′ = Ax +Bu. (2.31)

Furthermore, there is a point [x∗T ,u∗T ]T . Usually, this will be the
stationary solution of the deterministic counterpart of the model
under consideration.
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Approximation Step. Let Q ∈ R
l×l, l = n + m, denote the

matrix of the linear quadratic approximation of the current period
return function g(·), and define the n + m column vector y =
[xT ,uT ]T . From a Taylor series expansion of g at y∗, we get:

yTQy = g(y∗)+
n+m∑

i=1

gi(yi−y∗i )+
1

2

n+m∑

i=1

n+m∑

j=1

gij(yi−y∗i )(yj−y∗j ),

where gi and gij are first and second partial derivatives of g at y∗,
respectively.10 Comparing terms on both sides of this expression
delivers the elements of Q = (qij):

q11=g(y
∗) +

∑n+m
i=1 giy

∗
i + 1

2

∑n+m
i=1

∑n+m
j=1 gijy

∗
i y

∗
j ,

q1i = qi1=
1
2
gi − 1

2

∑n+m
j=1 gijy

∗
j , i = 2, 3, . . . , n+m,

qij = qji=
1
2
gij, i, j = 2, 3, . . . , n+m.

Except in very rare cases, where gi and gij are given by sim-
ple analytic expressions, one will use numeric differentiation (see
Section 11.3.1). For instance, to use our program SolveLQA, the
user must supply a procedure gproc that returns the value of
g at an arbitrary point [xT ,uT ]T . Note that you must pass
(1, x2, . . . , xn, u1, . . . , un)

T to that procedure, even if the 1 is not
used in gproc. This ensures that any procedure that computes
the gradient of g returns a vector with l elements and that any
procedure that returns the Hesse matrix returns a l × l matrix.
Given this procedure, our Gauss programs CDJac and CDHesse

compute the gradient vector ∇g = [0, g2, g3, . . . , gn+m] and the
Hesse matrix H := (hij) ≡ (gij), i, j = 1, 2, . . . , n+m from which
SolveLQA builds Q using the above formulas. All of this is done
without any further intervention of the user. If higher accuracy
in the computation of the Hesse matrix is desired, the user can
supply a routine MyGrad that returns the gradient vector of g. He
must then set the flag _MyGrad=1 to let the program know that
an analytic gradient is available. SolveLQA will then use MyGrad

to compute the Hesse matrix by using the forward difference Ja-
cobian programmed in CDJac.

10 Note, since x1 = 1, we have g1 = 0 and g1i = gi1 = 0 for i = 1, 2, . . . , l.
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Reduction Steps. Let Rs denote the matrix that represents the
quadratic form on the rhs of the Bellman equation at reduction
step s, where

R1 :=

[
Qn+m×(n+m) 0(n+m)×n

0n×(n+m) βV 0
n×n

]
.

In addition, let cT
s denote the n+ 1− s-th row of the matrix

Cs =
[
A B 0n×(n−s)

]
.

Then, for s = 1, 2, . . . , n iterate on

Rs+1 =

[
I2n+m−s

cT
s

]T

Rs

[
I2n+m−s

cT
s

]
.

Maximization Steps. After the last reduction step the matrixR
is reduced to a square matrix of size n+m. There aremmaximiza-
tion steps to be taken until R is reduced further to a square matrix
of size n, which is our new guess of the value function. At step
s = 1, 2, . . . , m the optimal choice of the control variable um+1−s

as a linear function of the variables [x1, . . . , xn, u1, . . . , um−s] is
given by the row vector

dT
s =

[
−r1k

rkk

,−r2k

rkk

, . . . ,−rk−1,k

rkk

]
, k = n +m− s.

Therefore, we iterate on

Rs+1 =

[
In+m−s

dT
s

]T

Rs

[
In+m−s

dT
s

]
, s = 1, 2, . . . , m.

If R is reduced to size n, we have found a new guess of the value
function V 1 = Rm+1, and we compare its elements to those of V 0.
If they are close together,

max
ij
|v0

ij − v1
ij | < ε(1− β),

we stop iterations. Otherwise we replace V 0 with V 1 and restart.
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Computation of the Policy Function. It is a good idea to
store the vectors ds in a m × (n + m − 1) matrix D. After
convergence, we can use D = (dij) to derive the policy matrix
F ∈ R

m×n = (fij) that defines the controls as functions of the
states. This works as follows: The policy vector dm (i.e., the last
row of D) holds the coefficients that determine the first control
variable u1 as function of the n state variables:

u1 =

n∑

i=1

dmixi ⇒ f1i = dmi.

The second control is given by

u2 =

n∑

i=1

dm−1,ixi + dm−1,n+1u1

⇒ f2i = dm−1,i + dm−1,n+1f1i.

Therefore, we may compute the coefficients of F recursively from:

fji = dm+1−j,i +

j−1∑

k=1

dm+1−j,n+kfki,

j = 1, . . . , m, i = 1, . . . , n.

As a final check of the solution, we can use

|u∗ − Fx∗|.

i.e. the discrepancy between the stationary solution of the con-
trols from the original model and those computed using the linear
policy function.

2.4 Linear Approximation

In this section we return to the system of stochastic difference
equations (2.23). Remember, this system is one way to charac-
terize the solution of the linear quadratic problem. However, we
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are by no means restricted to this interpretation. More generally,
we may consider this system as an approximation of an arbitrary
non-linear model. In the next subsection we explain this approxi-
mation by means of the stochastic growth model. Our discussion
closely parallels the presentation in Section 2.1. First, we demon-
strate that both, the solution to a linearized system of stochastic
difference equations and the application of the implicit function
theorem provide the same set of equations for the coefficients of
the policy function. Second, we obtain these coefficients from the
solution of a linear system of stochastic difference equations. Sec-
tion 2.4.2 presents the solution method for the general case of
equations (2.23) and explains the use of our program SolveLA

that implements this method.

2.4.1 An Illustrative Example

There are two equations that determine the time path of the sto-
chastic Ramsey model from Section 1.3 with strictly positive con-
sumption. They are obtained from equations (1.23):

0 = Kt+1 − (1− δ)Kt − Ztf(Kt) + Ct, (2.32a)

0 = u′(Ct)− βEtu
′(Ct+1)(1− δ + Zt+1f

′(Kt+1)). (2.32b)

We assume that the productivity shock Zt follows the process

lnZt = � lnZt−1 + σεt, εt ∼ N(0, 1). (2.32c)

Since lnZt � Z̄t, Z̄t = Zt − Z∗, Z∗ ≡ 1 this equation may be
approximated by

Z̄t = �Z̄t−1 + σεt. (2.32d)

Note, that for σ = 0 and Z∗ = 1 this model reduces to the deter-
ministic growth model with the stationary equilibrium determined
from

C∗ = f(K∗)− δK∗, (2.33a)

1 = β(1− δ + f ′(K∗)). (2.33b)

More generally, equations (2.32) may be written asEtg(xt,xt+1) =
02×1, xt := [Kt, Ct, Zt]

′.
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Linear Stochastic Difference Equations. At (K∗, C∗, Z∗) the
linearized version of this system of equations is given by:

[
0
0

]
=

[
g1
1 g1

2

g2
1 g2

2

] [
K̄t

C̄t

]
+

[
g1
4 g1

5

g2
4 g2

5

]
Et

[
K̄t+1

C̄t+1

]

+

[
g1
3

g2
3

]
Z̄t +

[
g1
6

g2
6

]
EtZ̄t+1,

(2.34)

where x̄t denotes xt−x∗. Since equation (2.32d) implies EtZ̄t+1 =
�Z̄t the last term in equation (2.34) may also be written as
�[g1

6, g
2
6]

′Z̄t. We assume that the linear policy functions for K̄t+1

and C̄t are of the form

K̄t+1 = hK
KK̄t + hK

Z Z̄t, (2.35a)

C̄t = hC
KK̄t + hC

Z Z̄t, (2.35b)

where hi
j , i, j ∈ {K,C} denotes the derivative of the policy func-

tion of variable i with respect to its jth argument. Substituting
this guess in equation (2.34) yields

[
a1

a2

]
K̄t +

[
b1
b2

]
Z̄t =

[
0
0

]
,

where ai and bi, i = 1, 2 are collections of coefficients to be given
in a moment. Obviously, if (2.35) is a solution to (2.34), this re-
quires ai = bi = 0, i = 1, 2 and, thus, provides four (non-linear)
equations in the unknown coefficients hK

K , hK
Z , hC

K , hC
Z . A modest

amount of algebra reveals these relations:

a1 = g1
1 + g1

2h
C
K + (g1

4 + g1
5h

C
K)hK

K = 0, (2.36a)

a2 = g2
1 + g2

2h
C
K + (g2

4 + g2
5h

C
K)hK

K = 0, (2.36b)

b1 = (g1
3 + g1

6�) + (g1
2 + g1

5�)h
C
Z + (g1

4 + g1
5h

C
K)hK

Z = 0, (2.36c)

b2 = (g2
3 + g2

6�) + (g2
2 + g2

5�)h
C
Z + (g2

4 + g2
5h

C
K)hK

Z = 0. (2.36d)

Application of the Implicit Function Theorem. We will now
demonstrate that the same set of conditions emerges, if we apply
the implicit function theorem to the system Etg(xt,xt+1) = 02×1.
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This allows us also to show that the linear policy functions are
indeed independent of the parameter σ. We assume non-linear
policy functionsKt+1 = hK(Kt, Zt, σ) and Ct = hC(Kt, Zt, σ) with
the property K∗ = hK(K∗, Z∗, 0), C∗ = hC(K∗, Z∗, 0) so that a
solution of g(·) = 02×1 at (K∗, Z∗, 0) exists. It is not difficult to
see that differentiating g with respect to Kt and Zt provides the
same conditions on the derivatives of hC and hK at the stationary
solution as presented in equations (2.36). Just note, that gi, i =
1, 2 can be written as

gi
(
Kt, h

C(Kt, Zt, σ), Zt, h
K(Kt, Zt, σ),

hC
(
hK(Kt, Zt, σ), e
 lnZt+σεt+1, σ

)
, e
 ln Zt+σεt+1

)
,

so that, for instance,

∂g1(·)
∂Kt

= g1
1 + g1

2h
C
K + g1

4h
K
K + g1

5h
C
Kh

K
K ≡ a1.

Consider the derivatives with respect to σ. They imply:11

[
(g1

4 + g1
5h

C
K) (g1

2 + g1
5)

(g2
4 + g2

5h
C
K) (g2

2 + g2
5)

] [
hK

σ

hC
σ

]
=

[
0
0

]
.

This is a system of homogenous equations in hK
σ and hC

σ . Since
its matrix of coefficients is regular, the only possible solution is
hK

σ = hC
σ = 0.

We have, thus, seen by means of an example that the applica-
tion of perturbation methods to a stochastic DGE model allows us
to derive linear approximations of the policy functions via the so-
lution of the linearized system of stochastic difference equations.12

11 The derivative of the term Zt+1 = e� lnZt+σεt+1 with respect to σ evaluated
at Z∗ = 1 and σ = 0 is εt+1. The expectation of this term as of time t,
Etεt+1, equals zero, the mean of N(0, 1).

12 The generalization of this result is obvious but involves either intricate
formulas or the use of tensor notation so that we have decided not to
pursue it here. See Schmitt-Grohé and Uribe (2004) for a proof.
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Derivation of the Solution. Rather than solving (2.36), we de-
termine the coefficients of the policy functions via the same proce-
dure that we used in Section 2.1. From (2.32) and (2.34) we obtain
the following system of linear, stochastic difference equations:

Et

[
K̄t+1

C̄t+1

]
=

[ 1
β

−1

−u′f ′′
u′′ 1 + βu′f ′′

u′′

]

︸ ︷︷ ︸
=:W

[
K̄t

C̄t

]
+

[
f

−βu′ff ′′+
u′
u′′

]

︸ ︷︷ ︸
=:R

Z̄t.

(2.37)

The matrix W equals the Jacobian matrix of the deterministic
system (2.3), and, thus, has eigenvalues λ1 < 1 and λ2 > 1. In the
new variables13

[
K̃t

C̃t

]
:= T−1

[
K̄t

C̄t

]
⇔ T

[
K̃t

C̃t

]
:=

[
K̄t

C̄t

]
(2.38)

the system of difference equations may be written as:14

Et

[
K̃t+1

C̃t+1

]
=

[
λ1 s12

0 λ2

]

︸ ︷︷ ︸
S

[
K̃t

C̃t

]
+

[
q1
q2

]

︸︷︷︸
Q=T−1R

Ẑt. (2.39)

Consider the second equation of this system, which is a relation
in the new variable C̃t and the exogenous shock:

EtC̃t+1 = λ2C̃t + q2Z̄t. (2.40)

We can solve this equation for C̃t via repeated substitution: from
(2.40) we get

C̃t =
1

λ2
EtC̃t+1 − q2

λ2
Z̄t. (2.41)

Shifting the time index one period into the future yields:

13 Remember, T is the matrix that puts W into Schur form W = TST−1.
14 Pre-multiply (2.37) by T−1 and use the definitions in (2.38) to arrive at

this representation.
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C̃t+1 =
1

λ2

Et+1C̃t+2 − q2
λ2

Z̄t+1.

Taking expectations as of period t on both sides and noting that
(via the law of iterated expectations) Et(Et+1C̃t+2) = EtC̃t+2

yields:

EtC̃t+1 =
1

λ2
EtC̃t+2 − q2

λ2
EtZ̄t+1 =

1

λ2
EtC̃t+2 − q2

λ2
�Z̄t, (2.42)

due to (2.32d). Substitution of this solution for EtC̃t+1 into (2.41)
results in:

C̃t =
1

λ2
2

EtC̃t+2 −
[
q2
λ2

+
q2
λ2

�

λ2

]
Z̄t.

We can use (2.42) to get an expression for C̃t+3 and so on up to
period t+ τ :

C̃t =

[
1

λ2

]τ

EtC̃t+τ − q2
λ2

τ−1∑

i=0

[
�

λ2

]i

Z̄t. (2.43)

Suppose that the sequence

{
1

λτ
2

EtC̃t+τ

}∞

τ=0

converges towards zero for τ → ∞. This is not very restrictive:
since 1/λ2 < 1, it is sufficient to assume that EtC̃t+τ is bounded.
Intuitively, this assumption rules out speculative bubbles along
explosive paths and renders the solution unique. In addition, it
guarantees that the transversality condition (1.25) is met. In this
case we can compute the limit of (2.43) for τ →∞:

C̃t = − q2/λ2

1− (�/λ2)
Z̄t. (2.44)

We substitute this solution into the second equation of (2.38),15

15 We denote the elements of T−1 by (tij).
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C̃t = t21K̄t + t22C̄t,

to get the solution for C̄t in terms of K̄t and Z̄t:

C̄t = − t21

t22︸︷︷︸
=:hC

K

K̄t − q2/λ2

t22(1− (�/λ2))︸ ︷︷ ︸
=:hC

Z

Z̄t. (2.45)

From the first equation of (2.37),

K̄t+1 =
1

β
K̄t − C̄t + fZ̄t,

we can derive the solution for K̄t+1:

K̄t+1 =
1

β
K̄t − (hC

KK̄t + hC
Z Z̄t)︸ ︷︷ ︸

=C̄t

+fZ̄t

K̄t+1 =

(
1

β
− hC

K

)

︸ ︷︷ ︸
=:hK

K

K̄t +
(
f − hC

Z

)

︸ ︷︷ ︸
=:hK

Z

Z̄t.

Thus, given a sequence of shocks {εt}Tt=0 and an initial K̄0 we
may compute the entire time path of consumption and the stock
of capital by iteration over

C̄t = hC
KK̄t + hC

Z Z̄t, (2.46a)

K̄t+1 = hK
KK̄t + hK

Z Z̄t, (2.46b)

Z̄t+1 = �Z̄t + εt+1. (2.46c)

The Gauss program Ramsey3a.g computes the linear approxima-
tions of the policy function of the stochastic growth model from
Section 1.3 along the lines described above. The utility function
is parameterized as u(C) = [C1−η−1]/(1−η) and the production
function as f(K) = Kα. The program shows how to derive the
coefficients of the matrices in equation (2.34) by using numeric
differentiation. In the case with logarithmic preferences, complete
depreciation δ=1, α = 0.27, β = 0.994 � = 0.90, and σ = 0.0072
the program delivers the following policy functions:
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C̄t = 0.736K̄t + 0.450Z̄t,

K̄t+1 = 0.270K̄t + 0.165Z̄t.

In this case, the exact analytic solution is

Ct = 0.268ZtK
0.27
t ,

Kt+1 = 0.732ZtK
0.27
t

Figure 2.3 shows the histograms of the distribution for the cap-
ital stock that result from the simulation of both solutions. The
simulations use the same sequence of shocks to prevent random
differences in the results. By and large, the linear model implies
the same stationary distribution of the capital stock as does the
true, non-linear model.

Figure 2.3: Stationary Distribution of the Capital Stock from the
Analytic and the Linear Approximate Solution of the
Stochastic Infinite-Horizon Ramsey Model

In most applications we want a unit free measure of deviations
around the deterministic steady state. Given the linear approxi-
mations from above, this is easy to obtain: Just divide both sides
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of the policy function by the stationary value of the respective lhs
variable and rearrange. For instance, using (2.46a), we may write:

Ĉt :=
Ct − C∗

C∗ = hC
K

K∗

C∗
Kt −K∗

K∗
︸ ︷︷ ︸

=:K̂t

+hC
Z

Z∗

C∗
Zt − Z∗

Z∗
︸ ︷︷ ︸

=:Ẑt

.

Since ln(Xt/X
∗) � (Xt−X∗)/X∗, this is a log-linear approxima-

tion of the policy function for consumption that relates the per-
centage deviation of consumption to the percentage deviations of
the stock of capital and the productivity shock, respectively.

In the next subsection we basically use the same steps to derive
the policy functions for the general system (2.23). If you dislike
linear algebra, you may skip this section and note that the pro-
gram SolveLA performs the above explained computations for the
general case. The program requires the matrices from (2.23) as in-
put and returns matrices Li

j that relate the vectors ut, λt and xt+1

to the model’s state variables in the vectors xt and zt.

2.4.2 The General Method

In this subsection we consider the solution of a system of lin-
ear stochastic difference equations given in the form of (2.23),
which derives from the LQ problem. There are related ways to
state and solve such systems. The list of references includes the
classical paper by Blanchard and Kahn (1980), Chapter 3 of
the book by Farmer (1993), the papers of King and Watson

(1998), (2002), Klein (2000) and the approach proposed by Uh-

lig (1999). Our statement of the problem is the one proposed by
Burnside (1999), but we solve it along the lines of King and
Watson (2002).

The Problem. Consider the system of stochastic difference equa-
tions (2.47):
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Cuut = Cxλ

[
xt

λt

]
+ Czzt, (2.47a)

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut (2.47b)

+DzEtzt+1 + Fzzt.

To ease notation we use n(x) to denote the dimension (i.e., the
number of elements) of the vector x. We think of the n(u) vector
ut as the collection of variables that are determined within period
t as linear functions of the model’s state variables. We distinguish
between three kinds of state variables: those with given initial con-
ditions build the n(x) vector xt; the n(λ) vector λt collects those
variables, whose initial values may be chosen freely. In the LQ
problem these are the costate variables. In the stochastic growth
model it is just the Lagrange multiplier of the budget constraint.
Purely exogenous stochastic shocks are stacked in the n(z) vector
zt. We assume that zt is governed by a stable vector autoregres-
sive process of first-order with normally distributed innovations
εt:

zt = Πzt−1 + εt, εt ∼ N(0,Σ). (2.48)

Stability requires that the eigenvalues of the matrix Π lie within
the unit circle.

System Reduction. We assume that the first equation can be
solved for the vector ut:

ut = C−1
u Cxλ

[
xt

λt

]
+ C−1

u Czzt. (2.49)

Shifting the time index one period into the future and taking
expectations conditional on information as of period t yields:

Etut+1 = C−1
u CxλEt

[
xt+1

λt+1

]
+ C−1

u CzEtzt+1. (2.50)

The solutions (2.49) and (2.50) allow us to eliminate ut and Etut+1

from (2.47b):
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(
Dxλ −DuC

−1
u Cxλ

)
Et

[
xt+1

λt+1

]
= − (Fxλ − FuC

−1
u Cxλ

)
[
xt

λt

]

+
(
Dz +DuC

−1
u Cz

)
Etzt+1

+
(
Fz + FuC

−1
u Cz

)
zt.

Assume that this system can be solved for Et(xt+1,λt+1)
′. In other

words, the matrix Dxλ − DuC
−1
u Cxλ must be invertible. Using

Etzt+1 = Πzt, which is implied by (2.48), we get the following
reduced dynamic system:

Et

[
xt+1

λt+1

]
= W

[
xt

λt

]
+Rzt,

W = − (Dxλ −DuC
−1
u Cxλ

)−1 (
Fxλ − FuC

−1
u Cxλ

)
,

R =
(
Dxλ −DuC

−1
u Cxλ

)−1

× [(Dz +DuC
−1
u Cz

)
Π +

(
Fz + FuC

−1
u Cz

)]
.

(2.51)

Change of Variables. Consider the Schur factorization of the
matrix W :

S = T−1WT,

which gives raise to the following partitioned matrices:

S =

[
Sxx Sxλ

0 Sλλ

]

=

[
T xx T xλ

T λx T λλ

]

︸ ︷︷ ︸
T−1

[
Wxx Wxλ

Wλx Wλλ

]

︸ ︷︷ ︸
W

[
Txx Txλ

Tλx Tλλ

]

︸ ︷︷ ︸
T

.
(2.52)

We assume that the eigenvalues ofW appear in ascending order on
the main diagonal of S (see 11.1). To find a unique solution, n(x)
eigenvalues must lie inside the unit circle and n(λ) eigenvalues
must have modulus greater than one. In the new variables

[
x̃t

λ̃t

]
:=

[
T xx T xλ

T λx T λλ

] [
xt

λt

]
(2.53)
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the dynamic system (2.51) can be rewritten as

Et

[
x̃t+1

λ̃t+1

]
=

[
Sxx Sxλ

0 Sλλ

] [
x̃t

λ̃t

]
+

[
Qx

Qλ

]
zt,

Q = [Qx, Qλ]
′ = T−1R.

(2.54)

Policy Function for λt. Consider the second line of (2.54),
which is a linear system in λ̃ alone:

Etλ̃t+1 = Sλλλ̃t +Qλzt. (2.55)

Its solution is given by:

λ̃t = Φzt. (2.56)

There is a quick and a more illuminating way to compute the
matrix Φ. Here is the quick one: Substitute (2.56) into equation
(2.55) to obtain

EtΦzt+1 = ΦΠzt = SλλΦzt +Qλzt.

Thus, Φ must solve the matrix equation

ΦΠ = SλλΦ +Qλ.

Applying the vec operator to this equations yields (see the rule
(11.10b))

vec Φ =
[
Π′ ⊗ In(λ) − In(z) ⊗ Sλλ

]−1
vecQλ.

One may also compute the rows of the matrix Φ in the following
steps: The matrix Sλλ is upper triangular with all of its eigenvalues
µi on the main diagonal being larger than one in absolute value:

Sλλ =








µ1 s12 . . . s1n(λ)

0 µ2 . . . s2n(λ)
...

...
. . .

...
0 0 . . . µn(λ)







.
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Therefore, the last line of (2.55) is a stochastic difference equation
in the single variable λ̃n(λ), just like equation (2.40):

Etλ̃n(λ) t+1 = µn(λ)λ̃n(λ) t + q′
n(λ)zt, (2.57)

where q′
n(λ) denotes the last row of the matrix Qλ. Note, that

λ̃n(λ) t – as every other component of λ̃t – may be a complex
variable. Yet, since the modulus (i.e., the absolute value) of the
complex number µn(λ) is larger than one, the sequence

{
1

µτ
n(λ)

Etλ̃n(λ) t+τ

}∞

τ=0

will converge to zero if the sequence

{
Etλ̃n(λ) t+τ

}∞

τ=0

is bounded (see Section 12.1). Given this assumption, we know
from equation (2.44) that the solution to (2.57) is a linear function
of zt:

λ̃n(λ) t = (φn(λ) 1, φn(λ) 2, . . . , φn(λ),n(z))
′

︸ ︷︷ ︸
φ′

n(λ)

zt.

To determine the yet unknown coefficients of this function, i.e.,
the elements of the row vector φ′

n(λ), we proceed as follows: we
substitute this solution into equation (2.57). This yields:

φ′
n(λ)Etzt+1 = µn(λ)φ

′
n(λ)zt + q′

n(λ)zt,
(
φ′

n(λ)Π− φ′
n(λ)µn(λ)

)
zt = q′

n(λ)zt,

φ′
n(λ)

(
Π− µn(λ)In(z)

)
zt = q′

n(λ)zt,

where the second line follows from (2.48). Equating the coefficients
on both sides of the last line of the preceding expression gives the
solution for the unknown vector φn(λ):

φ′
n(λ) = q′

n(λ)

(
Π− µn(λ)In(z)

)−1
. (2.58)
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Since the eigenvalues of Π are inside the unit circle, this solution
exists.

Now, consider the next to last line of (2.55):

Etλ̃n(λ)−1 t+1 = µn(λ)−1λ̃n(λ)−1 t + sn(λ)−1,n(λ)λ̃n(λ) t + q′
n(λ)−1zt,

Etλ̃n(λ)−1 t+1 = µn(λ)−1λ̃n(λ)−1 t + sn(λ)−1,n(λ)φ
′
n(λ)zt + q′

n(λ)−1zt.

The solution to this equation is given by the row vector φ′
n(λ)−1.

Repeating the steps from above, we find:

φ′
n(λ)−1 =

(
q′

n(λ)−1 + sn(λ)−1 n(λ)φ
′
n(λ)

) (
Π− µn(λ)−1In(z)

)−1
.

(2.59)

Proceeding from line n(λ)− 1 to line n(λ)− 2 and so forth until
the first line of (2.55) we are able to compute all of the rows φ′

i

of the matrix Φ. The respective formula is:

φ′
i =



q′
i +

n(λ)∑

j=i+1

si,jφ
′
j




(
Π− µiIn(z)

)−1
,

i = n(λ), n(λ)− 1, . . . , 1.

(2.60)

Given the solution for λ̃t we can use (2.53) to find the solution
for λt in terms of xt and zt. The second part of (2.53) is:

λ̃t = T λxxt + T λλλt.

Together with (2.56) this gives:

λt = − (T λλ
)−1

T λx

︸ ︷︷ ︸
Lλ

x

xt +
(
T λλ

)−1
Φ

︸ ︷︷ ︸
Lλ

z

zt. (2.61)

Policy Function for xt+1. In obvious notation the first part of
(2.51) may be written as:

xt+1 = Wxxxt +Wxλλt +Rxzt.

Substitution for λt from (2.61) gives:



112 Chapter 2: Perturbation Methods

xt+1 =
(
Wxx −Wxλ

(
T λλ

)−1
T λx

)

︸ ︷︷ ︸
Lx

x

xt

+
(
Wxλ

(
T λλ

)−1
Φ +Rx

)

︸ ︷︷ ︸
Lx

z

zt.
(2.62)

The expression for Lx
x may be considerably simplified. In terms of

partitioned matrices the expression W = TST−1 may be written
as:

[
Wxx Wxλ

Wλx Wλλ

]
=

[
Txx Txλ

Tλx Tλλ

] [
Sxx Sxλ

0 Sλλ

] [
T xx T xλ

T λx T λλ

]
,

which implies:

Wxx = TxxSxxT
xx + TxxSxλT

λx + TxλSλλT
λx,

Wxλ = TxxSxxT
xλ + TxxSxλT

λλ + TxλSλλT
λλ.

Substituting the rhs of these equations into the expression for Lxx

from (2.62) gives:

Lx
x = TxxSxx

(
T xx − T xλ

(
T λλ

)−1
T λx

)
.

Since

[
Txx Txλ

Tλx Tλλ

]
=

[
T xx T xλ

T λx T λλ

]−1

the formula for the inverse of a partitioned matrix (11.15a) im-
plies:

(Txx)
−1 = T xx − T xλ

(
T λλ

)−1
T λx.

Putting all pieces together, we find:

Lx
x = TxxSxxT

−1
xx .
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Policy Function for ut. Using equation (2.49) the solutions for
xt and λt imply the following policy function for the vector ut:

ut = C−1
u Cxλ

[
In(x)

Lλ
x

]

︸ ︷︷ ︸
Lu

x

xt

+

(
C−1

u Cxλ

[
0n(x)×n(z)

Lλ
z

]
+ C−1

u Cz

)

︸ ︷︷ ︸
Lu

z

zt.

(2.63)

Implementation. Our Gauss program SolveLA performs the
computation of the policy matrices according to the formulas
given by equations (2.61), (2.62), and (2.63). It uses the Gauss
intrinsic command Schtoc to get the matrices S and T . However,
the eigenvalues on the main diagonal of S are not ordered. We use
the Givens rotation described in Section 11.1 to sort the eigen-
values in ascending order. The program’s input are the matrices
from (2.47), the matrix Π from (2.48), and the number of elements
n(x) of the vector xt. The program checks whether n(x) of the
eigenvalues of W are inside the unit circle. If not, it stops with an
error message. Otherwise it returns the matrices Lx

x, L
x
z , L

λ
x, L

λ
z ,

Lu
x, and Lu

z . A second version of this program, SolveLA2, uses the
Gauss foreign language interface and calls a routine (written in
Fortran) that returns S and T so that the eigenvalues of the com-
plex matrix S with modulus less than one appear in the upper left
block of S. This routine in turn calls the program ZGEES from the
Fortran LAPACK library. Our Fortran version of SolveLA also
uses ZGGES to get the Schur decomposition with sorted eigenval-
ues. The Gauss version of SolveLA (and SolveLA2) also solves
purely deterministic models. Just set the matrices Cz, Fz, Dz and
Π equal to the Gauss missing value code.

The matrices that are an input to both programs can be ob-
tained in two ways. The first and probably more cumbersome
approach is to use paper and pencil to derive the coefficients of
the matrices analytically. If the differentiation is done with re-
spect to the (natural) logs of the variables, SolveLA returns the
coefficients of the log-linear policy functions. Otherwise the coef-
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ficients refer to the linear approximation. One may, however, also
use numeric differentiation to obtain the matrices from (2.47). We
provide an example in the Gauss program Ramsey3a.g where we
show how to solve the stochastic growth model by using SolveLA.

2.5 Quadratic Approximation

In this section we consider quadratic approximations of the pol-
icy functions of DGE models. We introduce you to this topic in
the next subsection. Then, we consider two examples before we
provide the general algorithm in Subsection 2.5.4.

2.5.1 Introduction

We begin with the quadratic approximation of the solution of a
system of static equilibrium conditions. Consider the equilibrium
condition g(x, y) = 0 and suppose that a solution exists at (x∗, y∗).
Let y = h(x) be the solution in an ε neighborhood of x∗. A second-
order Taylor series approximation of h at x∗ is given by

h(x∗ + ε) � y∗ + h′(x∗)ε+
1

2
(h′′)2(x∗)ε2.

Differentiating g(x, h(x)) once provides

g1(x, h(x)) + g2(x, h(x))h
′(x). (2.64)

At (x∗, y∗) this expression must equal zero, from which we obtain
the solution

h′(x∗) = −g1(x
∗, y∗)

g2(x∗, y∗)
.

Differentiating (2.64) again and setting the result equal to zero
yields:
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h′′(x∗) = −g11 + (g12 + g21)h
′ + g22(h

′)2

g2
.

This formula still looks pretty simple. Though straight forward,
the generalization to the case of n exogenous and m endogenous
variables g(x,y) = 0m×1 produces formulas with lots of indices.
First note that in this context the quadratic approximation of the
solution hj(x), j = 1, 2, . . . , m is given by

ĥj(x) = hj(x∗) + hj
xx̄ +

1

2
x̄′Hjx̄, (2.65)

where hj
x = [hj

x1
, hj

x2
, . . . , hj

xn
]′ is the vector of linear coefficients

and Hj = (hj
il) is the n-by-n matrix of quadratic coefficients. The

vectors hj
x are determined from the matrix equation

hx = −D−1
y Dx

where Dy (Dx) is the matrix of partial derivatives of g(x,y) with
respect to the variables in the vector y (x) (see equation (11.38)).
Note, that a single element in this matrix equation is given by

0 = gj
xk

(x,h(x)) +

m∑

l=1

gj
yl
(x,h(x))hl

xk
,

j = 1, 2, . . . , m, k = 1, 2, . . . , n.

Differentiating this expression with respect to variable xi provides

0 = gj
xkxi

+

m∑

l=1

gj
xkyl

hl
xi

+

m∑

l=1

gj
yl
hl

xkxi
+

m∑

l=1

gj
ylxi

hl
xk

+

m∑

s=1

m∑

l=1

gj
ylys

hs
xi
hl

xk
, j = 1, . . . , m; i, k = 1, . . . , n.

These mn2 equations can be arranged to n2 matrix equations in
the coefficients hj

xkxj
, j = 1, 2, . . . , m. Due to the symmetry of the

Hesse matrices n(n+1)/2 of these equations are redundant. As you
will see in the next examples, since the structure of the equilibrium
conditions of DGE models is not as simple as g(x,h(x)) = 0m×1,
the respective formulas to compute the Hesse matrices Hj are
more involved.
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2.5.2 The Deterministic Growth Model

We return to the deterministic growth model considered in Sec-
tions 1.2 and 2.1. We let Kt+1 = hK(Kt) and Ct = hC(Kt) denote
the policy functions for the next-period capital stock and con-
sumption, respectively. For both functions we seek a second order
approximation at the stationary solution K∗ of the form

K̄t+1 = hK
KK̄t +

1

2
hK

KKK̄t
2
,

C̄t = hC
KK̄t +

1

2
hC

KKK̄t
2
,

where hi
K and hi

KK , i ∈ {K,C} denote the first and second deriv-
ative of the policy function of variable i with respect to the stock
of capital K. Of course, all derivatives are evaluated at the sta-
tionary solution K∗. To obtain the coefficients hi

K and hi
KK , we

use a more general exposition. Observe that the resource con-
straint g1(·) and the Euler equation for the optimal next-period
capital stock g2(·), equations (2.1a) and (2.1b), have the following
structure:

gi(K,C,K ′, C ′)

≡ gi(K, hC(K), hK(K), hC(hK(K))) = 0, i = 1, 2,

where we have omitted the time indices. To distinguish between
current period variables and next-period variables we used a prime
to denote the latter. Differentiating with respect to K yields (we
suppress the arguments of gi but not of hi)

gi
K + gi

Ch
C
K(K) + gi

K ′hK
K(K) + gi

C′hC
K(K ′)hK

K(K) = 0, (2.66)

i = 1, 2.

We have already solved these two equations in Section 2.1, so let
us assume here that we know hK

K and hC
K . To obtain equations

in hK
KK and hC

KK , we must differentiate (2.66) with respect to K.
This yields:
[
g1

K ′ + g1
C′hC

K g1
C + g1

C′
(
hK

K

)2

g2
K ′ + g2

C′hC
K g2

C + g2
C′
(
hK

K

)2

][
hK

KK

hC
KK

]
=

[
hT

KH(g1)hK

hT
KH(g2)hK

]
, (2.67)



2.5 Quadratic Approximation 117

where

hT
K =

[
1, hC

K , h
K
K , h

C
Kh

K
K

]
, H(gi) :=






gi
KK . . . gi

KC′
...

. . .
...

gi
C′K . . . gi

C′C′




 .

Since (2.67) is a system of two linear equations it is easily solved
for hK

KK and hC
KK . Usually, we will use numeric differentiation

to obtain the coefficients of equation (2.67). If u(C) := (C1−η −
1)/(1− η) and f(K) = (1− δ)K + Kα, the matrix on the lhs of
(2.67) is given by
[

1 1
[
ηhC

K + αβ(1− α)C∗(K∗)α−2
]
η
[(
hK

K

)2 − 1
]
]

and the vector on the rhs, say b, has elements

b1 := α(α− 1)(K∗)α−2

and

b2 := η(1 + η)
1

C∗

[(
hK

KK

)2 − 1
] (
hC

K

)2

+ αβ(1− α)(K∗)α−2
(
hK

K

)2
(

2ηhC
K + (2− α)

C∗

K∗

)
.

In the Gauss program Ramsey2b.g we compute the coefficients of
the quadratic policy functions using both analytic and numeric
derivatives. Figure 2.4 displays the policy function for consump-
tion from the linear, the quadratic solution and the analytic solu-
tion (α = 0.27 and β = 0.994).

To compare the accuracy of the linear with the accuracy of the
quadratic approximation this program also computes the residuals
of the Euler equation (2.1b) over a grid of 200 points in the interval
[0.9K∗, 1.1K∗]. For the parameter values α = 0.27, β = 0.994,
η = 2, and δ = 0.011 we find that the maximum absolute Euler
equation residual from the linear solution is about 13 times larger
than that obtained from the quadratic policy function which is
2.4 × 10−6, and, thus, very small. We also find that there is no
noteworthy difference in accuracy, if we use analytic instead of
numeric derivatives.
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Figure 2.4: Policy Functions of Consumption of the Deterministic
Growth Model

2.5.3 The Stochastic Growth Model

The Framework. We return to the stochastic growth model con-
sidered in Sections 1.3 and 2.4.1 assuming u(C) = [C1−η−1]/(1−
η) and f(K) = Kα. As in the previous subsection, we drop the
time indices from all variables and use a prime to designate vari-
ables that pertain to the next period. This allows us to the write
the equilibrium conditions as16

0 = Egi(K,C, z,K ′, C ′, z′), i = 1, 2, (2.68a)

C = hC(K, z, σ),

C ′ = hC(hK(K, z, σ), z′, σ),

16 You may probably wonder why we use z = lnZ as a state variable and not
Z itself. In the present context, in which we know what the equilibrium
conditions look like, we could indeed have used Z. Yet, when writing a
general purpose routine, we have no information about the structure of
the equilibrium conditions. In this case, we are bound to assume that the
shocks evolve according to a linear first-order autoregressive process.



2.5 Quadratic Approximation 119

K ′ = hK(K, z, σ),

z′ = �z + σε′, ε′ ∼ N(0, 1),

where

g1(·) = K ′ − (1− δ)K − ezKα + C, (2.68b)

g2(·) = C−η − β(C ′)−η
(
1− δ + αez′(K ′)α−1

)
. (2.68c)

The operator E denotes expectations with respect to information
available at the current period.

As in Section 2.4.1 we consider the model in a neighborhood
of σ = 0, where it reduces to the deterministic growth model
with stationary solution (K∗, C∗, z∗ = 0) determined by equations
(2.33). For i ∈ {C,K} we look for quadratic approximations of
the policy function hi given by

hi(K, z, σ) = hi(K∗, z∗, σ = 0) (2.69)

+ hi
KK̄ + hi

z z̄ + hi
σσ

+
1

2

[
K̄, z̄, σ

]



hi

KK hi
Kz hi

Kσ

hi
zK hi

zz hi
zσ

hi
σK hi

σz hi
σσ








K̄
z̄
σ



 ,

where the bar denotes deviations from the stationary solution.
Note that the Hesse matrix in (2.69) is a symmetric matrix, i.e.,
hi

jk = hi
kj, j, k ∈ {K, z, σ}. To determine the coefficients of these

functions we closely follow Schmitt-Grohé and Uribe (2004).17

As in Section 2.4.1 we differentiate (2.68a) with respect to K,
z, and σ. To represent the respective formulas we define the vector
function

h :=




hC(K, z, σ)
hK(K, z, σ)

hC(hK(K, z, σ), �z + σε′, σ)





with the vector of derivatives denoted by hK , hz , and hσ, re-
spectivley. In addition, we use gi

[i] for the (column) vector of first

17 In a recent paper Lombardo and Sutherland (2007) outline an algo-
rithm that also provides second-order accurate solutions. Their procedure
relies on methods developed for the solution of linear models.
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derivatives of gi with respect to the indices in the vector i and
gi
[i1][i2]

for the matrix of second partial derivatives with respect
to the indices in i1 (for the rows of the matrix) and i2 (for the
columns). To avoid confusion, we denote the transpose of a vector
by the superscript T .

Consider the derivatives of conditions (2.68a) with respect to
K, z, and σ:

0 = E
{[

1,hT
K

]
gi

[K,C,K ′,C′]
}
, (2.70a)

0 = E
{[

hT
z , 1, �

]
gi

[C,K ′,C′,z,z′]
}
, (2.70b)

0 = E
{[

hT
σ , ε

′] gi
[C,K ′,C′,z′]

}
. (2.70c)

Since we have already seen how we can compute the coefficients
of the linear part of (2.69) in Section 2.4.1, we proceed to the
coefficients of the quadratic part. For the following derivations we
will keep in mind that we found hi

σ = 0.

Coefficients of the Hesse Matrices. Differentiating equation
(2.70a) with respect to K provides two linear equations in the
coefficients hi

KK:

0 = hT
KKg

i
[C,K ′,C′] +

[
1,hT

K

]
gi

[K,C,K ′,C′][K,C,K ′,C′]

[
1

hK

]
, (2.71a)

where hKK is the vector of second derivatives of h with respect
to K. This equation corresponds to equation (2.67) in the deter-
ministic case.

To determine hi
Kz, we differentiate (2.70a) with respect to z,

yielding

0 = hT
Kzg

i
[C,K ′,C′] +

[
1,hT

K

]
gi

[K,C,K ′,C′][C,K ′,C′,z]

[
hZ

1

]
(2.71b)

+ �
[
1,hT

K

]
gi

[K,C,K ′,C′][z′].

The first term in this equation equals

(
gi

K ′ + gi
C′hC

K

)
hK

KZ +
(
gi

C + �gi
C′hK

K

)
hC

KZ + gi
C′hK

Kh
C
KKh

K
Z .

Thus, (2.71b) provide two linear equations in hK
KZ and hC

KZ .
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Differentiating conditions (2.70a) with respect to σ provides
conditions on hi

Kσ:

0 = E

{

hT
Kσg

i
[C,K ′C′] +

[
1,hT

K

]
gi

[K,C,K ′,C′][C,K ′,C′]hσ (2.71c)

+
[
1,hT

K

]
gi

[K,C,K ′,C′][z′]ε
′
}

.

The expectation of the first term in curly brackets is

E
{
hT

Kσg
i
[C,K ′,C′]

}
=
(
gi

K ′ + gi
C′hC

K

)
hK

Kσ +
(
gi

C + gi
C′hK

K

)
hC

Kσ,

since hK
σ = 0 and E(hK

Kh
C
KZε

′) = 0. At the stationary solution
the second term in (2.71c) is obviously zero, since hσ is a vector
with zeros. The expectation of the third term is also zero since
E(ε′) = 0. Thus, system (2.71c) is a linear homogeneous system
with solution hi

Kσ = 0.
To determine the coefficients hi

zz, we differentiate (2.70b) with
respect to z. The result is:

0 = hT
zzg

i
[C,K ′,C′]

+
[
hT

z , 1, �
]
gi

[C,K ′,C′,z,z′][C,K ′,C′,z,z′]




hz

1
�



 . (2.71d)

The first term on the rhs of this equation equals

hT
zzg

i
[C,K ′,C′] =

(
gi

K ′ + gi
C′hC

K

)
hK

ZZ +
(
gi

C + gi
C′�2

)
hC

ZZ

+ gi
C′hK

Z

(
hC

KKh
K
Z + 2�hC

KZ

)
.

Differentiating (2.70b) with respect to σ provides

0 = E

{

hT
zσg

i
[C,K ′,C′]

+
[
hT

z , 1, �
]
gi

[C,K ′,C′,z,z′][C,K ′,C′,z′]

[
hσ

ε′

]}

. (2.71e)
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As in equation (2.71c) all terms except the coefficients of hK
Zσ and

hC
Zσ are equal to zero. Therefore, hK

Zσ = hC
Zσ = 0.

Finally, we turn to the coefficients hi
σσ. They are obtained from

differentiating equations (2.70c) with respect to σ. This delivers:

0 = E
{
hT

σσg
i
[C,K ′,C′]

+
[
hT

σ , ε
′] gi

[C,K ′,C′,z′][C,K ′,C′,z′]

[
hσ

ε′

]}
, (2.71f)

hT
σσ =

[
hC

σσ, h
K
σσ, h

C
σσ + hC

Kh
K
σσ + ∆

]
,

∆ := hK
σ

(
hC

KKh
K
σ + hC

KZε
′ + hC

Kσ

)

+ ε′
(
hC

ZKh
K
σ + hC

ZZε
′ + hC

zσ

)
+ hC

σKh
K
σ + hC

σzε
′.

To evaluate this expression, observe that

1. at σ = 0 the vector of derivatives hT
σ equals [0, 0, hC

Zε], since
hi

σ = 0,
2. hi

σj = hi
jσ = 0 for i ∈ {K,C} and j ∈ {K, z},

3. E(ε′)2 = 1 and E(ε′) = 0.

Thus, equations (2.71f) reduce to

0 =
(
gi

K ′ + gi
C′hC

K

)
hK

σσ +
(
gi

C + gi
C′
)
hC

σσ

+ gi
C′C′(hC

Z)2 + 2gi
C′z′h

C
Z + gi

z′z′ + gi
C′hC

ZZ .

Our Gauss program Ramsey3b.g computes the quadratic approx-
imation of the policy function from these formulas. It employs
numeric differentiation to compute gi

[·] as well as the Hesse matri-
ces that appear in (2.71).

Table 2.1 presents the coefficients from this exercise for the
parameter values α = 0.27, β = 0.994, η = 1, and δ = 1.
The second column shows solutions obtained from using the
Gauss commands gradp and hessp that provide forward differ-
ence approximations of the first and second partial derivatives,
respectively.18 Our own procedures CDJac and CDHesse imple-

18 See Section 11.3.1 on numeric differentiation, where we explain forward dif-
ference as well as central difference formulas for the numeric computation
of derivatives.
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Table 2.1

Coefficient Forward
Differences

Central
Differences

Analytic
solution

hK
K 0.270000 0.270000 0.270000
hK

Z 0.164993 0.164993 0.164993
hK

KK −1.194628 −1.194595 −1.194595
hK

KZ 0.269781 0.270000 0.270000
hK

ZZ 0.156787 0.164995 0.164993
hK

σσ −0.023160 0.000001 0.000000
hC

K 0.736036 0.736036 0.736036
hC

Z 0.449782 0.449781 0.449781
hC

KK −3.256642 −3.256537 −3.256538
hC

KZ 0.735831 0.736036 0.736036
hC

ZZ 0.479034 0.449782 0.449781
hC

σσ 0.023160 −0.000001 0.000000

ment central difference formulas that involve a smaller approx-
imation error. The fourth column presents the coefficients com-
puted from the quadratic approximation of the analytic solutions
hK = αβezKα and hC = (1− αβ)ezKα, respectively. There is no
noteworthy difference in the linear coefficients as well as in hi

KK .
There is a small difference between the solutions for hK

KZ , but the
numeric value of hi

σσ is far from its true value of zero when we
use forward difference formulas. This imprecision can also be seen
from the residuals of the Euler equation

C−η
t = EtβC

−η
t+1

(
1− δ + α(e
zt+σεt+1)Kα−1

t+1

)
. (2.72)

We compute the residuals on a grid of 400 equally spaced points
on the square [0.9K∗, 1.2K∗] × [ln(0.95), ln(1.05)]. With respect
to the maximum absolute value of these residuals the solution
displayed in the second column of Table 2.1 is about 2.5 times
worse than the solution based on the numbers in column four.
The Euler equation residual from the linear solution is almost 37
times larger than the Euler equation residual from the quadratic
solution displayed in column four. When we use the parameter
values from Table 1.1 for α, β, η, δ, �, and σ, the linear solution
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is about 13 times less accurate than the quadratic solution, whose
maximum absolute Euler equation residual is 4.6× 10−6.

Computation of the Euler Equation Residual. Here we
briefly explain our computation of the residual in the stochastic
growth model. Given the approximate policy functions ĥK and ĥC

the term to the right of the expectations operator Et in equation
(2.72) can be written as

φ(K,Z, σ, ε) := β
(
ĥC(ĥK(K,Z, σ), e
zt+σε, σ)

)−η

×
(

1− δ + αe
zt+σε
(
ĥK(K,Z, σ)

)α−1
)
.

For given values of K, z, and σ this is a function of the stochastic
variable ε that has a standard normal distribution. Therefore, the
rhs of equation (2.72) is given by

∆ :=

∫ ∞

−∞
φ(K,Z, σ, ε)

e−
ε2

2√
2π
dε.

We use the Gauss-Hermite four point integration formula given in
equation (11.77) to compute this expectation. Given ∆, the Euler
equation residual at (K,Z) is defined as

R̃ =
∆−1/η

ĥC(K,Z, σ)
− 1.

2.5.4 Generalization

Framework. Equations (2.68a) are readily generalized. Just re-
place K by an n(x) vector x of state variables, C by a n(y) vector
y of control and costate variables, Z by an n(z) vector of shocks
z, and ε by a n(z) vector ε of N(0n(z), In(z)) distributed inno-
vations so that zt = Πzt−1 + σΩε. The n(z) by n(z) matrix Ω
allows for possible correlations between the elements of z. To see
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this, note that the conditional variance of zt given zt−1 is given
by E(σΩε)(σΩε)T = σ2ΩΩT , where the superscript T denotes the
transposition of a matrix or a vector.

The n(x) + n(y) equilibrium conditions are

0 = Egi(x,y, z,x′,y′, z′), i = 1, 2, . . . , n(x) + n(y), (2.73a)

where

y = hy(x, z, σ), (2.73b)

x′ = hx(x, z, σ), (2.73c)

y′ = hy(x′, z′, σ), (2.73d)

z′ = Πz + σΩε′ (2.73e)

The quadratic approximation of the policy function hi, i ∈
{x1, . . . , xn(x), y1, . . . , yn(y)} is an expression of the form

hi = hi(x∗, z∗, σ = 0) + (li)T

[
x̄
z̄

]

+
1

2

[
x̄T , z̄T , σ

]



H i

xx H i
xz 0

H i
zx H i

zz 0
0 0 H i

σσ





︸ ︷︷ ︸
Hi




x̄
z̄
σ



 .
(2.74)

The row vector li holds the coefficients of the linear part and
the matrices H i

xx, H
i
xz, and H i

zz contain the coefficients of the
quadratic part with respect to the state variables x and z. As
before, the bar denotes deviations from the equilibrium x∗ and
z∗, respectively. The scalar H i

σσ is the coefficient of σ2. Note that
in the general model both the linear coefficients of σ are zero and
the matrices H i

xσ and H i
zσ are zero matrices as in the example of

the previous subsection.19

Computation of the Quadratic Part. To obtain these matri-
ces we proceed as in our example. Given the vector

19 See Schmitt-Grohé and Uribe (2004) for a proof.
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h :=
















hy1(x, z, σ)
...

hyn(y)(x, z, σ)
hx1(x, z, σ)

...
hxn(x)(x, z, σ)
hy1(x′, z′, σ)

...
hyn(y)(x′, z′, σ)
















, (2.75)

we use hi to denote the vector whose elements are the derivatives
of the elements of h with respect to variable i.

We begin with the coefficients of the matrices Hxx. We dif-
ferentiate equations (2.73a) with respect to xj and evaluate the
result at the point (x∗, z∗, σ = 0):

0 =
[
1, hT

xj

]
gi

[xj ,y,x′,y′], i = 1, 2, . . . , n(x) + n(y). (2.76)

Differentiating this expression with respect to xk provides a set of
(n(x) + n(y))n(x)2 conditions in the unknown coefficients of the
matrices H i

xx:

hT
xjxk

gi
[xj ,y,x′,y′] = −

[
1,hT

xj

]
gi

[xj ,y,x′,y′][xk,y,x′,y′]

[
1

hxk

]
, (2.77a)

i = 1, . . . , n(x) + n(y), j = 1, . . . , n(x), k = 1, . . . , n(x),

where

hT
xj

=
[
hy1

xj
, . . . , h

yn(y)
xj , hx1

xj
, . . . , h

xn(x)
xj ,∆1

1, . . . ,∆
1
n(y)

]
, (2.77b)

∆1
i =

n(x)∑

l=1

hyi
xl
hxl

xj
.

and

hT
xjxk

=
[
hy1

xjxk
, . . . , h

yn(y)
xjxk , h

x1
xjxk

, . . . , h
xn(x)
xjxk ,∆

2
i , . . . ,∆

2
n(y)

]
,

(2.77c)

∆2
i =

n(x)∑

l=1

hyi
xl
hxl

xjxk
+

n(x)∑

l=1

hxl
xj

n(x)∑

r=1

hyi
xlxr

hxr
xk
.
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Different from our example in the previous subsection the system
of equations (2.77a) cannot be factored into smaller systems in
the pairs of coefficients (xj , xk), since all the unknown coefficients
hyi

xlxr
appear in each equation. The huge linear system (2.77a) may

be written as Aw = q, where

w := vec
[
Hx1

xx, . . . , H
xn(x)
xx , Hy1

xx, . . . , H
yn(y)
xx

]
.

The element hxi
xjxk

in this vector has the index ix(i, j, k) = (i −
1)n(x)2+(j−1)n(x)+k. The index of hyi

xjxk
is iy(i, j, k) = n(x)3+

ix(i, j, k). Using the functions ix and iy it is easy to loop over
j = 1, . . . , n(x), k = 1, . . . , n(x), and i = 1, . . . , n(x) + n(y) to set
up the matrix A and the vector q from (2.77a).

The elements of the matrices H i
xz solve

hT
xjzk

gi
[y,x′,y′] = −

[
1,hT

xj

]
gi

[xj ,y,x′,y′][y,x′,y′,zk,z′]









hzk

1
π1k
...

πn(z)k








,

i = 1, . . . , n(x) + n(y), j = 1, . . . , n(x), k = 1, . . . , n(z),

(2.78)

where πlk is the element in the lth row and kth column of the
matrix Π from equation (2.73e). This system is derived from dif-
ferentiating (2.76) with respect to zk. The elements of the vector
hzk

are the derivatives of (2.75) with respect to zk:

hT
zk

:=
[
hy1

zk
, . . . , h

yn(y)
zk , hx1

zk
, . . . , h

xn(x)
zk ,∆3

1, . . . ,∆
3
n(y)

]
,

∆3
i =

n(x)∑

l=1

hyi
xl
hxl

zk
+

n(z)∑

l=1

hyi
zl
πlk.

(2.79)

Differentiating the elements of (2.77b) with respect to zk provides
the vector hxjzk

:

hT
xjzk

:=
[
hy1

xjzk
, . . . , h

yn(y)
xjzk , h

x1
xjzk

, . . . , h
xn(y)
xjzk ,∆

4
1, . . . ,∆

4
n(y)

]
,

∆4
i :=

n(x)∑

l=1

hyi
xl
hxl

xjzk
+

n(x)∑

l=1

hxl
xj




n(x)∑

r=1

hyi
xlxr

hxr
zk

+

n(z)∑

r=1

hyi
xlzr

πrk



 .
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The system of equations (2.78) may also be written as Aw = q.
But note that different from (2.77a) the lhs of (2.78) not only
contains the elements of H i

xz but also terms that belong to the
vector q.

To obtain the matrices H i
zz we first differentiate (2.73a) with

respect to zj and then with respect to zk. The result is:

hT
zjzk

gi
[y,x′,y′] = −

[
hT

zj
, 1, π1j, . . . , πn(z),j

]

× gi
[y,x′,y′,zj ,z′][y,x′,y′,zk,z′]









hzk

1
π1k
...

πn(z),k








, (2.80)

hT
zjzk

=
[
hy1

zjzk
, . . . , h

yn(y)
zjzk , h

x1
zjzk

, . . . , h
xn(x)
zjzj ,∆

5
1, . . . ,∆

5
n(y)

]
,

∆5
i =

n(x)∑

l=1

hyi
xl
hxl

zjzk

+

n(x)∑

l=1

hxl
zj




n(x)∑

r=1

hyi
xlxr

hxr
zk

+

n(z)∑

r=1

hyi
xlzr

πrk





+

n(z)∑

l=1

πlj




n(x)∑

r=1

hyi
zlxr

hxr
zk

+

n(z)∑

r=1

hyi
zlzr

πrk



 .

In the last step, we determine H i
σσ. Differentiating (2.73a) twice

with respect to σ yields

0 = E
{
hT

σσg
i
[y,x′,y′]

}

+ E






[
hT

σ ,∆
6
1, . . . ,∆

6
n(z)

]
gi

[y,x′,y′,z′][y,x′,y′,z′]







hσ

∆6
1

...
∆6

n(z)












,

∆6
i :=

n(z)∑

s=1

ωisε
′
s, (2.81)
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where ωis is the element in the ith row and sth column of the
matrix Ω from equation (2.73e). At the stationary equilibrium,
the vector hσ is given by

hT
σ =



 0, . . . , 0,︸ ︷︷ ︸
n(y) elements

0, . . . , 0,︸ ︷︷ ︸
n(x) elements

∆7
1, . . . ,∆

7
n(y)



 ,

∆7
i =

n(z)∑

s=1

hyi
zs

n(z)∑

r=1

ωsrε
′
r,

since in the general model as well as in our example hyi
σ = h

xj
σ = 0.

The vector hσσ is given by

hT
σσ =

[
hy1

σσ, . . . , h
yn(y)
σσ , hx1

σσ, . . . , h
xn(x)
σσ ,∆8

1, . . . ,∆
8
n(y)

]
,

∆8
i =

n(x)∑

s=1

hyi
xs
hxs

σσ

+

n(x)∑

s=1

hxs
σ




n(x)∑

r=1

hyi
xsxr

hxr
σ +

n(z)∑

r=1

hyi
xszr

n(z)∑

t=1

ωrtε
′
t + hyi

xsσ





+

n(z)∑

s=1




n(z)∑

r=1

ωsrε
′
r








n(x)∑

t=1

hyi
zsxt

hxt
σ +

n(z)∑

t=1

hyi
zszt

n(z)∑

u=1

ωtuε
′
u





+

n(x)∑

s=1

hyi
σxs
hxs

σ +

n(z)∑

s=1

hyi
σzs

n(z)∑

r=1

ωsrε
′
r + hyi

σσ.

Consider the expectation of the first term on the rhs of (2.81) and
note that

1. the vector gi
[y,x′,y′] does not contain any stochastic variables,

2. in addition to hyi
σ = 0 and hxi

σ = 0 also hyi
σzs

= hyi
σxs

= 0,

3. E(ε′iε
′
j) = 0 for all i �= j and E(ε′iε

′
i) = 1.

Therefore, we get
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E
{
hT

σσg
i
[y,x′,y′]

}

=
[
hy1

σσ, . . . , h
yn(y)
σσ , hx1

σσ, . . . , h
xn(x)
σσ ,∆9

1, . . . ,∆
9
n(y)

]
gi

[y,x′,y′],

∆9
i =

n(x)∑

s=1

hyi
xs
hxs

σσ + hyi
σσ +

n(z)∑

s=1

n(z)∑

r=1

hyi
zszr

n(z)∑

t=1

ωstωrt.

By using a well known property of the trace operator, the expec-
tation of the second term on the rhs of (2.81) equals20

tr






gi
[y′,z′][y′,z′]E

[
∆7

1, . . . ,∆
7
n(y),∆

6
1, . . . ,∆

6
n(z)

]












∆7
1

...
∆7

n(y)

∆6
1

...
∆6

n(z)

















.

The expectation of the cross-products involved in this expression
are readily evaluated to be

E
[
∆7

i ∆
7
j

]
=

n(z)∑

q=1

n(z)∑

s=1

hyi
zq
hyj

zs

n(z)∑

r=1

ωqrωsr,

E
[
∆7

i ∆
6
j

]
=

n(z)∑

s=1

hyi
zs

n(z)∑

r=1

ωsrωjr,

E
[
∆6

i ∆
6
j

]
=

n(z)∑

r=1

ωirωjr.

Implementation. Our Gauss program SolveQA implements the
computation of the Hesse matrices H i in (2.74). It requires the
coefficients of the linear part, the matrices Π, Ω, the Jacobian
matrix of g stored in a matrix gmat, say, and the n(x) + n(y)
Hesse matrices of gi as input. The latter must be gathered in
a three-dimensional array hcube, say. The program returns two

20 The second term on the rhs of (2.81), say a, is a scalar so that a = tr(a).
Yet, for any two conformable matrices A and B, it holds that tr(AB) =
tr(BA).
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three-dimensional arrays: xcube contains the n(x) Hesse matrices
Hxi and ycube stores the n(y) Hesse matrices Hyi.

Of course, there is other software available on the world wide
web. Schmitt-Grohé and Uribe (2004) provide Matlab pro-
grams that compute the matrices of the quadratic part in our
equation (2.74). An advantage of their program is its ability to
handle symbolic differentiation if you own the respective Matlab
toolbox. Other programs that can handle quadratic approxima-
tions are Dynare21 mainly developed by Juillard and Gensys
written by Sims.22

2.6 Applications

In this section we consider three applications of the methods pre-
sented in the previous sections. First, we solve the benchmark
model introduced in Chapter 1, second, we consider a simplified
version of the time-to-build model of Kydland and Prescott

(1982), and third, we develop a monetary model with nominal
rigidities that give raise to what has been called the New Keyne-
sian Phillips curve.

2.6.1 The Benchmark Model

In Example 1.5.1, we present the benchmark model, in which a
representative agent chooses feed-back rules for consumption and
labor supply that maximize his expected live time utility over
an infinite time horizon. This section shows how we can obtain
linear and quadratic approximations of these feed-back rules by
using the methods introduced in Sections 2.2 through 2.5.

Linear and Quadratic Policy Functions. Our starting point
is the system of stochastic difference equations which we obtained

21 See the user’s guide written by Griffoli (2007).
22 See Kim, Kim, Schaumburg, and Sims (2005) on this program.
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in Section 1.5. We repeat these equations for your convenience:23

0 = c−η
t (1−Nt)

θ(1−η) − λt, (2.82a)

0 = θc1−η
t (1−Nt)

θ(1−η)−1 − (1− α)λtZtN
−α
t kα

t , (2.82b)

0 = akt+1 − (1− δ)kt + ct − ZtN
1−α
t kα

t , (2.82c)

0 = λt − βa−ηEtλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)
. (2.82d)

Equation (2.82a) states that the shadow price of an additional unit
of capital, λt, must equal the agent’s marginal utility of consump-
tion. Condition (2.82b) equates the marginal rate of substitution
between consumption and leisure with the marginal product of
labor. Equation (2.82c) is the economy’s resource constraint. Ac-
cording to equation (2.82d) the marginal utility of consumption
must equal the discounted expected utility value of the return on
investment in the future stock of capital. We complete the model
by specifying the law of motion for the natural log of the produc-
tivity shock zt := lnZt:

zt = �zt−1 + εt, εt ∼ N(0, σ2). (2.82e)

In Section 1.5 we explain the choice of the model’s parameters α,
β, δ, η, and θ. With these values at hand, we can compute the
stationary solution (k, λ, c, N) from equations (1.46). The vectors
xt, ut, and λt from equations (2.47) are then given by xt ≡ kt−k,
λt ≡ λt − λ, ut := [ct − c,Nt − N ]′, and zt ≡ lnZt. In our
Fortran program Benchmark.for we use numeric differentiation
of (2.82) at (k, λ, c, N) to obtain the Jacobian matrix gmat. From
this matrix we derive the coefficients of the matrices Cu, Cxλ, Cz,
Dxλ, Fxλ, Du, Fu, Dz, and Fz, that appear in (2.47). A call to
SolveLA returns the coefficients of the linear approximate policy
functions. To obtain the coefficients of the quadratic part, we
differentiate each equation of (2.82) twice using CDHesse. This

23 The symbols have the following meaning: Ct is consumption, Nt are work-
ing hours, Kt is the stock of capital, Λt is the shadow price of an additional
unit of capital and Zt is the level of total factor productivity. Except for
λt := Aη

t Λt, the other lower case variables are scaled by the level of labor-
augmenting technical progress At , that is, ct := Ct/At and kt := Kt/At.
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provides the three dimensional array hcube that is an input to
SolveQA. Thus, it requires four steps to compute the solutions:

Step 1: solve for (k, λ, c, n),
Step 2: write a procedure that receives the vector of 10 elements

(k, λ, c, n, z, k′, λ′, c′, n′, z′) and that returns the lhs of
(2.82),

Step 3: compute gmat and hcube by using CDJac and CDHesse,
respectively,

Step 4: set up the matrices required by SolveLA and SolveQA.

Linear Quadratic Algorithm. At first sight, it seems that the
law of motion of the productivity shock zt in equation (2.82e) is
the only linear equation of the benchmark model. Yet, if we use
investment expenditures

it = ZtN
1−α
t kα

t − ct (2.83)

instead of consumption ct, equation (2.82c) can be written as:

kt+1 =
1

a
it +

1− δ
a

kt, (2.84)

which is linear in kt+1, kt, and it. Let xt := [1, kt, zt]
′ denote the

vector of states and ut := [it, Nt]
′ the vector of controls. Then, for

our model, the transition equation (2.31) is given by:

xt+1 =




1 0 0
0 (1− δ)/a 0
0 0 �





︸ ︷︷ ︸
A

xt +




0 0

1/a 0
0 0





︸ ︷︷ ︸
B

ut +




0
0
εt



 . (2.85)

The remaining non-linearities are handled by the algorithm. The
current period return function in the scaled variables is given by:

g(x,u) :=
1

1− η
(
eztN1−α

t kα
t − it

)1−η
(1−Nt)

θ(1−η).

You must write a subroutine, say GProc, that takes the vector
ybar=[1, k, z, i, N ]′ as input and returns the value of g at this
point.
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There is a final issue that concerns the appropriate discount
factor. The value function v that solves the Bellman equation

v(k, z) = max
k′,N

u
(
ezN1−αkα + (1− δ)k − ak′, 1−N)

+ β̃E [v(k′, z′)|z]
is a function in the scaled variables. It is, thus, inappropriate to use
β which pertains to the original variables. β̃ is found by observing
that equations (2.82) solve the following scaled problem:

max
c0,N0

∞∑

t=0

β̃t

{
[c1−η

t (1−Nt)
θ(1−η)

1− η

+ λt

(
ZtN

1−α
t kα

t + (1− δ)kt − ct − akt+1

) ]
}

,

β̃ := βa1−η.

(2.86)

Other Variables of Interest. Both the program SolveLA and
SolveQA provide approximations of the policy functions for kt+1,
ct, and Nt. From these we obtain the solution for output yt, in-
vestment it, and the real wage wt, respectively, via

yt = ZtN
1−α
t kα

t , (2.87a)

it = yt − ct, (2.87b)

wt = (1− α)ZtN
−α
t kα

t . (2.87c)

The program SolveLQA provides linear approximate solutions for
it and Nt from which we derive ct via equation (2.87b). Given ct
the resource constraint (2.82c) yields the solution for kt+1.

Time series for output yt, consumption ct, investment it, hours
Nt, and the real wage wt are derived by iterations that start at the
stationary solution k1 = k. We use a random number generator to
obtain a sequence of innovations {εt}Tt=1. The sequence of capital
stocks and the sequence of productivity shocks follow from

kt+1 = ĥk(kt, zt),

zt+1 = �zt + εt+1,

}

t = 1, 2, . . . , T − 1,
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where ĥk(·) denotes the approximate policy function for the next-
period stock of capital. Once we have computed the sequences
{kt}Tt=1 and {zt}Tt=1, the sequences for the other variables of the
model are obtained from the respective approximate policy func-
tions and from (2.87).

Results. Table 2.2 summarizes the results of our simulations car-
ried out with the Fortran program Benchmark.for. We used the
parameter values from Table 1.1. The length T of our artificial
time series for output, investment, consumption, working hours,
and the real wage is 60 quarters.24 The second moments displayed
in Table 2.2 refer to HP-filtered percentage deviations from a vari-
able’s stationary solution.25 They are averages over 500 simula-
tions. We use the same sequence of shocks for all three solution
methods to prevent random differences in the results.

The first message from Table 2.2 is that except for the small dif-
ference in the standard deviation of investment of 0.01 between
the linear and the linear quadratic solution there are virtually no
differences in the second moments across our three different meth-
ods. There are, however, differences in accuracy. As explained in
Section 1.6.2, we use two measures of accuracy: the residuals of
the Euler equation (2.82d) and the DM-statistic.

The Euler equation residuals are computed over a grid of 400
equally spaced points over the square [k; k] × [z; z]. We choose
z = ln 0.95 and z = ln 1.05 because in more than ninety percent
of our simulations zt remains in this interval. The largest interval
for the stock of capital that we consider is K = [0.8; 1.2]k, where
k is the stationary solution. Yet, even the much smaller inter-
val [0.9; 1.1]k covers all simulated sequences of the capital stock.
We compute the Euler equation residual as the rate by which con-
sumption had to be raised over ĥc(k, z) so that the lhs of equation
(2.82d) matches its rhs. The numbers displayed in Table 2.2 are
the maximum absolute values over the square indicated in the
left-most column of the table.

24 See Section 1.5 on the issues of parameter choice and model evaluation.
25 See Section 12.4 on the HP-Filter.
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Table 2.2

Linear Linear Quadratic Quadratic

Second Moments

Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.44 1.00 0.64 1.44 1.00 0.64 1.44 1.00 0.64

Investment 6.11 1.00 0.64 6.12 1.00 0.64 6.11 1.00 0.64

Consumption 0.56 0.99 0.66 0.56 0.99 0.66 0.56 0.99 0.66

Hours 0.77 1.00 0.64 0.77 1.00 0.64 0.77 1.00 0.64

Real Wage 0.67 0.99 0.65 0.67 0.99 0.65 0.67 0.99 0.65

Euler Equation Residuals

[0.90; 1.10]k 1.835E-4 7.656E-4 1.456E-5

[0.85; 1.15]k 3.478E-4 9.322E-4 4.085E-5

[0.80; 1.20]k 5.670E-4 1.100E-3 8.845E-5

DM-Statistic

<3.816 2.0 1.3 2.7

>21.920 3.4 8.9 3.0

Notes: sx:=standard deviation of variable x, rxy:=cross correlation of variable x with
output, rx:=first order autocorrelation of variable x. All second moments refer to HP-
filtered percentage deviations from a variable’s stationary solution. Euler equation
residuals are computed as maximum absolute value over a grid of 400 equally spaced
points on the square K × [ln 0.95; ln 1.05], where K is defined in the respective row
of the left-most column. The 2.5 and the 97.5 percent critical values of the χ2(11)-
distribution are displayed in the last two lines of the first column. The table entries
refer to the percentage fraction out of 1,000 simulations where the DM-statistic is
below (above) its respective critical value.

First, note that all residuals are quite small. Even in the worst
case, the required change of consumption is merely 0.11 percent.
Second, and as expected from a local method, accuracy dimin-
ishes with the distance from the stationary solution. For instance,
consider the linear policy function. The Euler equation residual
over [0.85; 1.15]k ([0.8; 1.2]k) is almost two times (three times)
larger than the maximum residual over [0.9; 1.1]k. Third, the Euler
equation residuals of the linear quadratic approach are worse than
those of the linear approach. For the former, the maximum ab-
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solute Euler equation residual over [0.9; 1.1]k is more than four
times larger than the Euler equation residual of the linear solution
method. Fourth, although the quadratic policy function delivers
a more accurate solution than the linear policy function, the dif-
ference between the respective Euler equation residuals becomes
smaller as one moves further away from the stationary solution:
Over [0.9; 1.1]k the Euler equation residual of the linear solution
is more than twelve times larger than the Euler equation residual
of the quadratic solution. Yet over [0.8; 1.2]k it is only six times
larger. Fifth, there are several possible ways to compute the Euler
equation residuals. For instance, since both the linear and the
quadratic perturbation method deliver a policy function for λ, we
could use this function in the computation. We, however, used the
policy functions for consumption and hours and inferred λ from
equation (2.82a), since the linear quadratic approach delivers only
policy functions for investment and hours. The difference is con-
siderable: When we use the linear approximate policy function for
λ we find a maximum Euler equation residual over [0.9; 1.1]k that
is 26 times larger than that displayed in Table 2.2.

As explained in Section 1.6.2 (and more formally in Section
12.3), the DM-statistic aims to detect systematic forecast errors
with respect to the rhs of the Euler equation (2.82d). For this
purpose, we simulate the model and compute the ex-post forecast
error

et := βa−ηλt+1

(
1− δ + αZt+1N

1−α
t+1 k

α−1
t+1

)− λt,

where λt is given by equation (2.82a). We use simulated time series
with many periods so that the asymptotic properties of the test
statistic will apply. The simulations always start at the station-
ary solution. To prevent the influence of the model’s transitional
dynamics on our results, we discard a small fraction of the initial
observations. In effect, we use 3,000 points. We regress et on a con-
stant, five lags of consumption, and five lags of the productivity
shock and compute the Wald-statistic (which is the DM-statistic
in this context) of the null that all coefficients from this regres-
sion are equal to zero. We use White’s (1980) heteroscedasticity
robust covariance estimator. Under the null the Wald-statistic has
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a χ2-distribution with 11 degrees of freedom. We run 1,000 tests
and computed the fraction of the DM-statistic below (above) the
2.5 (97.5) percent critical value (displayed in the first column of
Table 2.2). If systematic errors are not present, about 2.5 per-
cent of our simulations should yield test statistics below (above)
the respective critical values. Both, the linear and the quadratic
policy functions provide satisfactory results. Yet, the linear pol-
icy functions obtained from the linear-quadratic approach are less
good. The null is far more often rejected than can be expected,
namely in almost 9 percent of our simulations.

Finally, note that the second moments as well as the DM-
statistic depend on the random numbers used for the productivity
shock zt. Thus, when you repeat our calculations, you will find at
least small differences to our results.

2.6.2 Time to Build

Gestation Period. In the benchmark model investment projects
require one quarter to complete. In their classic article Kydland

and Prescott (1982) use a more realistic gestation period. Based
on published studies of investment projects they assume that it
takes four quarters for an investment project to be finished. The
investment costs are spread out evenly over this period. Yet, the
business cycle in this extended model is similar to the business
cycle in their benchmark model with a one quarter lag. We in-
troduce the time-to-build assumption into the benchmark model
of the previous section. Our results confirm their findings. Nev-
ertheless, we think this venture is worth the while, since it nicely
demonstrates the ease of applying the linear quadratic solution
algorithm to a rather tricky dynamic model.

The model that we consider uses the same specification of the
household’s preferences and production technology as the model
in the previous section. The timing of investment expenditures
differs from this model in the following way. In each quarter t
the representative household launches a new investment project.
After four quarters this project is finished and adds to the cap-
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ital stock. The investment costs are spread out over the entire
gestation period. More formally, let Sit, i = 1, 2, 3, 4 denote an in-
vestment project that is finished after i periods and that requires
the household to pay the fraction ωi of its total costs. At any pe-
riod, there are four unfinished projects so that total investment
expenditures It amount to

It =

4∑

i=1

ωiSit,

4∑

i=1

ωi = 1. (2.88)

Obviously, the Sit are related to each other in the following way:

S1t+1 = S2t,

S2t+1 = S3t,

S3t+1 = S4t,

(2.89)

and the capital stock evolves according to

Kt+1 = (1− δ)Kt + S1t. (2.90)

First-Order Conditions. Since the model exhibits growth, we
transform it to a stationary problem. As in Section 2.6.1 we put
ct := Ct/At, it := It/At, kt := Kt/At, λt := ΛtA

η
t , sit = Sit/At,

and β̃ := βa1−η. In this model, the vector of states is xt =
[1, kt, s1t, s2t, s3t, lnZt]

′ and the vector of controls is u = [s4t, Nt]
′.

From (2.89) and (2.90) we derive the following law of motion of
the stationary variables:

xt+1 =










1 0 0 0 0 0
0 1−δ

a
1
a

0 0 0
0 0 0 1

a
0 0

0 0 0 0 1
a

0
0 0 0 0 0 0
0 0 0 0 0 ρ










︸ ︷︷ ︸
:=A

xt +










0 0
0 0
0 0
0 0
1
a

0
0 0










︸ ︷︷ ︸
=:B

ut +










0
0
0
0
0
εt










. (2.91)

The remaining task is to compute the stationary equilibrium.
Consider the Lagrangean of the stationary problem:
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L = E0

∞∑

t=0

β̃t

{
c1−η
t (1−Nt)

θ(1−η)

1− η

+ λt

(
ZtN

1−α
t kα

t −
4∑

i=1

ωisit − ct
)

+ γt((1− δ)kt + s1t − akt+1)

}

,

where γt is the Lagrange multiplier of the transformed constraint
(2.90). Differentiating this expression with respect to ct, Nt, s4t

and kt+4 provides the following conditions:26

λt = c−η
t (1−Nt)

θ(1−η), (2.92a)

θct
1−Nt

= (1− α)ZtN
−α
t kα

t , (2.92b)

0 = Et

[− ω4λt − (β̃/a)ω3λt+1 − (β̃/a)2ω2λt+2 (2.92c)

− (β̃/a)3ω1λt+3 + (β̃/a)3γt+3

]
,

0 = Et

[− (β̃/a)3γt+3 + (β̃/a)4(1− δ)γt+4 (2.92d)

+ (β̃/a)4λt+4αZt+4N
1−α
t+4 k

α−1
t+4

]
.

The first and the second condition are standard and need no com-
ment. The third and the fourth condition imply the following
Euler equation in the shadow price of capital:

0 = Et

{
ω4[(β̃/a)(1− δ)λt+1 − λt]

+ ω3(β̃/a)[(β̃/a)(1− δ)λt+2 − λt+1]

+ ω2(β̃/a)
2[(β̃/a)(1− δ)λt+3 − λt+2]

+ ω1(β̃/a)
3[(β̃/a)(1− δ)λt+4 − λt+3]

+ (β̃/a)4αλt+4Zt+4N
1−α
t+4 k

α−1
t+4

}
.

26 To keep track of the various terms that involve s4t and kt+4, it is helpful
to write out the sum for t = 0, 1, 2, 3, 4.
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Stationary Equilibrium. On a balanced growth path, where
Zt = 1 and λt = λt+1 for all t, this expression reduces to

y

k
=
a− β̃(1− δ)

αβ̃

[
ω1 + (a/β̃)ω2 + (a/β̃)2ω3 + (a/β̃)3ω4

]
.

(2.93)

Given a, β, δ, and η, we can solve this equation for the output-
capital ratio y/k. From (1−δ)k+s1 = ak we find s1 = (a+δ−1)k,
the stationary level of new investment projects started in each
period. Total investment per unit of capital is then given by

i

k
=

1

k

4∑

i=1

ωisi = (a + δ − 1)

4∑

i=1

ai−1ωi.

Using this, we can solve for

c

k
=
y

k
− i

k
.

Since y/c = (y/k)/(c/k), we can finally solve the stationary
version of (2.92b) for N . This solution in turn provides k =
N(y/k)1/(α−1), which allows us to solve for i and c. The final step
is to write a procedure that returns the current period utility as
a function of x and u. The latter is given by:

g(x,u) :=
1

1− η

(

eln ZtN1−α
t kα

t −
4∑

i=1

sit

)1−η

(1−Nt)
θ(1−η).

Results. The Gauss program ToB.g implements the solution. We
use the parameter values from Table 1.1 and assume ωi = 0.25, i =
1, . . . , 4. Table 2.3 displays the averages of 500 time series mo-
ments computed from the simulated model. We used the same
random numbers in both the simulations of the benchmark model
and the simulations of the time-to-build model. Thus, the differ-
ences revealed in Table 2.3 are systematic and not random.

In the time-to-build economy output, investment, and hours
are a little less volatile than in the benchmark economy. The in-
tuition behind this result is straightforward. When a positive tech-
nological shock hits the benchmark economy the household takes
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Table 2.3

Benchmark Time to Build

Variable sx rxy rx sx rxy rx

Output 1.45 1.00 0.63 1.37 1.00 0.63

Investment 6.31 0.99 0.63 5.85 0.99 0.65

Consumption 0.57 0.99 0.65 0.58 0.97 0.56

Hours 0.78 1.00 0.63 0.71 0.98 0.65

Real Wage 0.68 0.99 0.64 0.68 0.98 0.58

Notes: sx:=standard deviation of HP-filtered simulated series of variable x,
rxy:=cross correlation of variable x with output, rx:=first order autocorrela-
tion of variable x.

the chance, works more at the higher real wage and transfers part
of the increased income via capital accumulation into future peri-
ods. Since the shock is highly autocorrelated, the household can
profit from the still above average marginal product of capital in
the next quarter. Yet in the time-to-build economy intertemporal
substitution is not that easy. Income spent on additional invest-
ment projects will not pay out in terms of more capital income
until the fourth quarter after the shock. However, at this time a
substantial part of the shock has faded. This reduces the incentive
to invest and, therefore, the incentive to work more.

Lawrence Christiano and Richard Todd (1996) embed
the time-to-build structure in a model where labor augmenting
technical progress follows a random walk. They use a different
parameterization of the weights ωi. Their argument is that in-
vestment projects typically begin with a lengthy planning phase.
The overwhelming part of the project’s costs are spent in the
construction phase. As a consequence, they set ω1 = 0.01 and
ω2 = ω3 = ω4 = 0.33. This model is able to account for the pos-
itive autocorrelation in output growth, whereas the Kydland

and Prescott (1982) parameterization of the same model –
ωi = 0.25, i = 1, . . . , 4 – is not able to replicate this empirical
finding. However, the random walk assumption does not lent it-
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self to the linear quadratic approach, and, therefore we will not
pursue this matter any further.

2.6.3 New Keynesian Phillips Curve

Money in General Equilibrium. So far we have restricted our
attention to non-monetary economies. In this subsection we focus
on the interaction of real and monetary shocks to explain the
business cycle.

Introducing money into a dynamic general equilibrium model
is not an easy task. As a store of value money is dominated by
other interest bearing assets like corporate and government bonds
or stocks, and in the basically one-good Ramsey model there is
no true need for a means of exchange. So how do we guarantee a
positive value of pure fiat outside money in equilibrium?

Monetary theory has pursed three approaches (see, e.g., Walsh

(2003)). The first device is to assume that money yields direct util-
ity, the second strand of the literature imposes transaction costs,
and the third way is to guarantee an exclusive role for money as a
store of value. We will pursue the second approach in what follows
and assume transaction costs to be proportional to the volume of
trade. Moreover, a larger stock of real money balances relative to
the volume of trade reduces transaction costs (see Leeper and
Sims (1994)). Different from other approaches, as, e.g., the cash-
in-advance assumption, our particular specification implies the
neutrality of monetary shocks in the log-linear model solution.
This allows us to focus on other deviations from the standard
model that are required to explain why money has short-run real
effects.

The most prominent explanation for the real effects of money
that has been pursued in the recent literature are nominal rigidi-
ties that arise from sticky wages and/or prices.27 Among the var-

27 A non-exhaustive list of models of nominal rigidities includes Bergin

and Feenstra (2000), Chari, Kehoe, and McGrattan (2000), Cho

and Cooley (1995), Cooley and Hansen (1995, 1998), Christiano,
Eichenbaum, and Evans (1997), Hairault and Portier (1995).
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ious models probably the Calvo (1983) model has gained the
most widespread attention. For this reason we use the discrete
time version of his assumption on price setting to introduce nom-
inal frictions into the monetary economy that we consider in the
following paragraphs.

The Calvo (1983) hypothesis provides a first-order condition
for the optimal relative price of a monopolistically competitive
firm that is able to adjust its price optimally whereas a fraction
of other firms is not permitted to do so. The log-linear version of
this condition (see equation (A.4.11e) in Appendix 4) relates the
current inflation rate to the expected inflation rate and a measure
of labor market tension. It thus provides solid microfoundations
for the well-known Phillips curve that appears in many textbooks.
This curve plays the role of a short-run aggregate supply function
and relates inflation to expected inflation and cyclical unemploy-
ment.28 In the Calvo (1983) model the deviation of marginal
costs from their average level measures labor market tension. Since
this equation resembles the traditional Phillips curve it is some-
times referred to as the New Keynesian Phillips curve.

The Household Sector. The representative household has the
usual instantaneous utility function u defined over consumption
Ct and leisure 1−Nt, where Nt are working hours:

u(Ct, 1−Nt) :=
C1−η

t (1−Nt)
θ(1−η)

1− η . (2.94)

The parameters of this function are non-negative and satisfy
η > θ/(1 + θ). The household receives wages, rental income from
capital services, dividends Dt and a lump-sum transfer from the
government Tt. We use Pt to denote the aggregate price level. The
wage rate in terms of money is Wt and the rental rate in terms of
consumption goods is rt. The household allocates its income net
of transaction costs TCt to consumption, additional holdings of
physical capital Kt and real money balances Mt/Pt, where Mt is
the beginning-of-period stock of money. This produces the follow-
ing budget constraint:

28 See, e.g., Mankiw (2000), pp. 364.
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Mt+1 −Mt

Pt
+Kt+1 − (1− δ)Kt ≤ Wt

Pt
Nt + rtKt +Dt

+ Tt − TCt − Ct.

(2.95)

Transactions costs are given by the following function

TCt = γ

(
Ct

Mt+1/Pt

)κ

Ct, γ, κ > 0. (2.96)

Importantly, the assumption that the costs TCt depend upon
the ratio of consumption to real end-of-period money holdings
Mt+1/Pt is responsible for the neutrality of money in our model.
The household maximizes the expected discounted stream of fu-
ture utility

E0

∞∑

t=0

βtu(Ct, 1−Nt)

subject to (2.95) and (2.96).

Money Supply. The government sector finances the transfers to
the household sector from money creation. Thus,

Tt =
Mt+1 −Mt

Pt
. (2.97)

We assume that the monetary authority is not able to monitor
the growth rate of money supply perfectly. In particular, we posit
the following stochastic process for the growth factor of money
supply µt := Mt+1/Mt:

µ̂t+1 = ρµµ̂t + εµt , µ̂t := lnµt − lnµ, εµt ∼ N(0, σµ). (2.98)

In the stationary equilibrium money grows at the rate µ− 1.

Price Setting. To motivate price setting by individual firms we
assume that there is a final goods sector that assembles the output
of a large number Jt of intermediary producers to the single good
Yt according to

Yt =

[

J
−1/ε
t

Jt∑

j=1

Y
(ε−1)/ε
jt

]ε/(ε−1)

, ε > 1. (2.99)
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The money price of intermediary product j is Pjt and final output
sells at the price Pt. The representative firm in the final sector
takes all prices as given. Maximizing its profits PtYt−

∑Jt

j=1 PjtYj

subject to (2.99) produces the following demand for good j:

Yjt =

(
Pjt

Pt

)−ε
Yt

Jt
. (2.100)

Accordingly, ε is the price elasticity of demand for good j. It is
easy to demonstrate that the final goods producers earn no profits
if the aggregate price index Pt is given by the following function:

Pt =

[
1

Jt

Jt∑

j=1

P 1−ε
jt

]1/(1−ε)

. (2.101)

An intermediary producer j combines labor Njt and capital
services Kjt according to the following production function:

Yjt = Zt(AtNjt)
1−αKα

jt − F, α ∈ (0, 1), F > 0. (2.102)

F is a fixed cost in terms of forgone output. We will use F to
determine the number of firms on a balanced growth path from
the zero profit condition. As in all our other models At is an
exogenous, deterministic process for labor augmenting technical
progress,

At+1 = aAt, a ≥ 1,

and Zt is a stationary, stochastic process for total factor produc-
tivity that follows

Ẑt+1 = ρZẐt + εZt , Ẑt = lnZt, ε
Z
t ∼ N(0, σZ).

Note that α, F , At, and Zt are common to all intermediary pro-
ducers, who also face the same price elasticity ε.

From now on we must distinguish between two types of firms,
which we label A and N , respectively. Type A firms are allowed
to set their price PAt optimally, whereas type N firms are not. To
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prevent their relative price PNt/Pt from falling short of the aggre-
gate price level, type N firms are permitted to increase their price
according to the average inflation factor π. This is the inflation
factor on a balanced growth path without any uncertainty. Thus

PNt = πPNt−1. (2.103)

To which type an individual firm j belongs is random. At each
period (1−ϕ)Jt of firms receive the signal to choose their optimal
relative price PAt/Pt. The fraction ϕ ∈ [0, 1] must apply the rule
(2.103). Those firms that are free to adjust their price solve the
following problem:

max
PAt

Et

∞∑

τ=t

ϕτ−t�τ

[(
πτ−tPAt

Pτ

)
YAτ − gτ (YAτ + F )

]

s.t. YAτ =

(
πτ−tPAt

Pτ

)−ε
Yτ

Jτ

.

(2.104)

The sum to the right of the expectations operator Et is the dis-
counted flow of real profits earned until the firm will be able to
reset its price optimally again. Real profits are given by the value
of sales in units of the final good [(πτ−tPAt)/Pτ ]Yτ minus produc-
tion cost gτ (YAτ +F ), where gτ are the firm’s variable unit costs.29

The term ϕτ−t captures the probability that in period τ the firm
is still a type N producer. �τ is the discount factor for time τ
profits. We show in Section 6.3.4 that this factor is related to the
household’s discount factor β and marginal utility of wealth Λτ

by the following formula:

�τ = βτ−tΛτ

Λt
. (2.105)

Intermediary producers distribute their profits to the household
sector. Thus,

29 We show in Appendix 4 that gτ also equals the firm’s marginal costs.
Note further that equation (2.102) implies that the firm must produce the
amount Yjt + F in order to sell Yjt.
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Dt :=

Jt∑

j=1

Pjt

Pt
Yjt − Wt

Pt
Njt − rtKjt. (2.106)

This equation closes the model. To streamline the presentation we
restrict ourselves to the properties of the stationary equilibrium
and the simulation results. Appendix 4 provides the mathemat-
ical details of the analysis and the loglinear model used for the
simulation.

Stationary Equilibrium. The model of this section depicts a
growing economy. For this reason we must scale the variables so
that they are stationary on a balanced growth path. As previ-
ously, we use the following definitions: ct := Ct/At, yt := Yt/At,
kt := Kt/At, λt := ΛtA

η
t . In addition, we define the infla-

tion factor πt := Pt/Pt−1 and real end-of-period money balances
mt := Mt+1/(AtPt). The stationary equilibrium of the determin-
istic model has the following properties:

1. The productivity shock and the money supply shock equal their
respective means Zt = Z ≡ 1 and µt = µ for all t.

2. Inflation is constant: π = Pt

Pt−1
for all t.

3. All (scaled) variables are constant.
4. All firms in the intermediary sector earn zero profits.

There are two immediate consequences of these assumptions.
First, inflation is directly proportional to the growth rate of money
supply µ− 1:30

π =
µ

a
.

Second, the optimal relative price of type A firms satisfies

PA

P
=

ε

ε− 1
g,

i.e., it is determined as a markup on the firm’s marginal costs g.
Furthermore, the formula for the price index given in equation
(A.4.5) implies PA = P so that g = (ε− 1)/ε and PN = P . Since

30 See equation (A.4.2c) for mt = mt+1.
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all firms charge the same price, the market share of each producer
is Y/J . Therefore, working hours and capital services are equal
across firms, Nj = N/J , and Kj = K/J , and profits amount to

Dj =
Y

J
− g

(
Y

J
+ F

)
.

Imposing Dj = 0 for all j and using Y/J = (AN/J)1−α(K/J)α −
(F/J) yields

j :=
Jt

At
=
N1−αkα

εF
.

Thus, to keep profits at zero, the number of firms must increase
at the rate a− 1 on the balanced growth path.31 The production
function (2.102) thus implies

y =
ε− 1

ε
N1−αkα.

Using this in the first-order condition for cost minimization with
respect to capital services (see equation (A.4.3b)) implies

r = α(y/k).

Eliminating r from the Euler equation for capital delivers the well
known relation between the output-capital ratio and the house-
hold’s discount factor β:

y

k
=
aη − β(1− δ)

αβ
. (2.107a)

This result allows us to solve for the consumption-output ratio
via the economy’s resource constraint (see (A.4.9)):

c

y
=

(
1 +

1− a− δ
y/k

)[
1 + γ

(
C

µ(M/P )

)κ]−1

.

31 Alternatively, we could have assumed that fixed costs are given by AtF so
that the number of firms does not grow without bounds.
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The stationary version of the Euler condition for money balances
(see equation (A.4.2e)) delivers:

βa1−η

µ
= 1− κγ

(
C

µ(M/P )

)1+κ

. (2.107b)

We need a final equation to determine the stationary level of work-
ing hours. Using the results obtained so far we derive this relation
from the household’s first-order condition with respect to labor
supply (see equation (A.4.2b)):

N

1−N =
1− α
θ

(
1 +

1− a− δ
y/k

)−1

h(c/x), (2.107c)

h(c/x) :=
1 + γ(c/x)κ

1 + γ(1 + κ)(c/x)κ
,
c

x
:=

PC

µM
.

It is obvious from equation (2.107a) that the output-capital ratio
and therefore also the capital-labor ratio k/N and labor produc-
tivity y/N are independent of the money growth rate. As can be
seen from (2.107b), the velocity of end-of-period money balances
c/x ≡ C/(µ(M/P )) is an increasing function of the money growth
rate. In the benchmark model of Section 2.6.1 working hours are
determined by the first two terms on the rhs of (2.107c). The
presence of money adds the factor h(c/x). It is easy to show that
h(c/x) is an decreasing function of the velocity of money (c/x).
Since N/(1−N) increases with N , steady-state working hours are
a decreasing function of the money growth rate.

Calibration. We do not need to assign new values to the stan-
dard parameters of the model. The steady state relations pre-
sented in the previous paragraph show that the usual procedure
to calibrate β, α, a, and δ is still valid. We will also use the em-
pirical value of N to infer θ from (2.107c). This implies a slightly
smaller value of θ as compared to the value of this parameter in
the benchmark model. Nothing is really affected from this choice.

Unfortunately, there is no easy way to determine the parame-
ters of the productivity shock, since there is no simple aggregate
production function that we could use to identify Zt. The problem
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becomes apparent from the following equation, which we derive
in Appendix 4:

ŷt = ϑ(1− α)N̂t + ϑαk̂t + ϑẐt(1− ϑ)ĵt, ϑ =
ε

ε− 1
. (2.108)

This equation is the model’s analog to the log-linear aggregate
production function in the benchmark model given by

ŷt = (1− α)N̂t + αk̂t + Ẑt.

Since ϑ > 1 we overstate the size of Ẑt, when we use this latter
equation to estimate the size of the technology shock from data
on output, hours, and the capital stock. Furthermore, in as much
as the entry of new firms measured by ĵt depends upon the state
of the business cycle, the usual measure of Ẑt is further spoiled.
We do not consider this book to be the right place to develop
this matter further. Possible remedies have been suggested for
instance by Rotemberg and Woodford (1995) and Hairault

and Portier (1995). Instead, we continue to use the parameters
from the benchmark model so that we are able to compare our
results to those obtained in the Section 2.6.1 and Section 2.6.2.

What we further need are the parameters of the money supply
process, of the transaction costs function, and of the structure of
the monopolistic intermediary goods sector.

Our measure of money supply is the West-German monetary
aggregate M1 per capita. As in Section 1.5 we focus on the period
1975.i through 1989.iv. The average quarterly growth rate of this
aggregate was 1.67 percent. We fitted an AR(1) process to the
deviations of µt from this value. The autocorrelation parameter
from this estimation is not significantly different from zero and the
estimated standard deviation of the innovations is σµ = 0.0173.
We use the average velocity of M1 with respect to consumption
of 0.84 to determine γ from (2.107b). Finally, we can use the
following observation to find an appropriate value of κ: The lhs
of equation (2.107b) is equal to

1

π(1− δ + r)
.
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The term in the denominator is the nominal interest rate factor,
i.e., one plus the nominal interest rate q, say. This implies the
following long run interest rate elasticity of the demand for real
money balances:

d(M/P )/(M/P )

dq/q
=

−1

(1 + κ)π(1− δ + r)
.

The estimate of this elasticity provided by Hoffman, Rasche,
and Tieslau (1995) is about -0.2. Since 1/R ≈ 1 we use κ = 4.

Table 2.4

Preferences Production
β=0.994 a=1.005 α=0.27
η=2.0 δ=0.011 ρZ=0.90
N=0.13 σZ=0.0072

Money Supply Transactions Costs Market Structure
µ=1.0167 C/(M/P )=0.84 ϕ=0.25
ρµ=0.0 κ=4.0 ε=6.0
σµ=0.0173

The degree of nominal rigidity in our model is determined by
the parameter ϕ. According to the estimates found in Rotem-

berg (1987) it takes about four quarters to achieve full price
adjustment. Therefore, we use ϕ = 0.25. Linnemann (1999)
presents estimates of markups for Germany, which imply a price
elasticity of ε = 6. Table 2.4 summarizes this choice of parameters.

Results. The Gauss program NKPK.g implements the solution.
To understand the mechanics of the model, we consider the case
without nominal frictions first. Figure 2.5 displays the time paths
of several variables after a one-time shock to the money supply
process (2.98) in period t = 3 of size σµ. Before this shock the
economy was on its balanced growth path, after this shock the
growth factor of money follows (2.98) with εµt = 0.

The case ρµ = 0 highlights the unanticipated effect of the
shock, since after period 3 the money growth rate is back on its
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Figure 2.5: Real Effects of a Monetary Shock in the Model Without
Nominal Rigidities

stationary path. The money transfer in period 3 raises the house-
hold’s income unexpectedly. Since both consumption and leisure
are normal goods the household’s demand for consumption in-
creases and its labor supply decreases. The latter raises the real
wage so that marginal costs increase. Higher costs and excess de-
mand raise inflation. This increase just offsets the extra amount of
money so that the real stock of money does not change. Therefore,
none of the real variables really changes. Money is neutral. This
can be seen in Figure 2.5 since the impulse responses of output,
consumption, and investment coincide with the zero line.

Things are different when the shock is autocorrelated. In this
case there is also an anticipated effect. Households know that
money growth will remain above average for several periods and
expect above average inflation. This in turn increases the expected
costs of money holdings and households reduce their cash hold-
ings. As a consequence, the velocity of money with respect to
consumption increases. To offset this negative effect on transac-
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tion costs the households reduce consumption. Their desire to
smooth consumption finally entails less investment. Note however
that these effects are very small. For instance, consumption in pe-
riod 3 is 0.16 percent below its stationary value, and investment
is 0.08 percent below its steady state level.

We find very different impulse responses, if nominal rigidities
are present. This can be seen in Figure 2.6. Since inflation cannot
adjust fully, households expect above average inflation even in the
case of ρµ = 0. This creates a desire to shift consumption to the
current period so that there is excess demand. Monopolistically
competitive firms are willing to satisfy this demand since their
price exceeds their marginal costs. Thus output increases. The
household’s desire to spread the extra income over several periods
spurs investment into physical capital.

There is another noteworthy property of the model: The spike-
like shape of the impulse responses. Consumption, hours, output,
and investment are almost back on their respective growth paths

Figure 2.6: Impulse Responses to a Monetary Shock in the New
Keynesian Phillips Curve Model
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after period 3, irrespective of whether or not the monetary shock
is autocorrelated. This is in stark contrast to the findings of em-
pirical studies. For instance, according to the impulse responses
estimated by Cochrane (1998) and, more recently, by Chris-

tiano, Eichenbaum, and Evans (2005) the response of output
is hump shaped and peaks after eight quarters. The apparent fail-
ure of the model to explain the persistence of a monetary shock
has let many researches to question the usefulness of the New
Keynesian Phillips curve. In a recent paper Eichenbaum and
Fisher (2004) argue that the Calvo (1983) model is able to
explain persistent effects of monetary shocks if one abandons the
convenient but arbitrary assumption of a constant price elasticity.
Walsh (2005) argues that labor market search, habit persistence
in consumption, and monetary policy inertia together can explain
the long-lasting effects of monetary shocks. However, as Heer

and Maußner (2007) point out, this result may be due to the
assumption of prohibitively high costs of capital adjustment. In
Christiano, Eichenbaum, and Evans (2005) wage staggering
and variable capacity utilization account for the close fit between
the estimated and the model-implied impulse responses of output
and inflation.

Table 2.5 reveals the contribution of monetary shocks to the
business cycle. To fully understand the model we must disentan-
gle several mechanisms that work simultaneously. For this rea-
son, columns 2 to 4 present simulations, where neither mone-
tary shocks, nor nominal rigidities, nor monopolistic elements are
present. This requires to set ϑ = 1, ϕ = 0, and σµ = 0 in the
program NKPK.g. Obviously, this model behaves almost like the
benchmark model (see Table 2.2).

Next consider columns 5 to 7. In this model, there are no mon-
etary shocks, but there are monopolistic price setters facing nomi-
nal rigidities. The most immediate differences are: output is more
volatile and hours are less volatile than in the benchmark model.
How can this happen? Note that under monopolistic price setting
the marginal product of labor is larger than it is under perfect
competition. The same is true for the marginal product of capi-
tal. Thus, a technology shock that shifts the production function
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Table 2.5

ϑ = 1, ϕ = 0, σµ = 0 σµ = 0 σµ = 0.0173

Variable sx rxy rx sx rxy rx sx rxy rx

Output 1.43 1.00 0.63 1.55 1.00 0.68 1.69 1.00 0.56

(1.14) (1.00) (0.80) (1.14) (1.00) (0.80) (1.14) (1.00) (0.80)

Consump- 0.53 0.99 0.65 0.55 0.98 0.72 0.64 0.98 0.52

tion (1.18) (0.79) (0.84) (1.18) (0.79) (0.84) (1.18) (0.79) (0.84)

Invest- 6.16 1.00 0.63 6.87 1.00 0.67 7.31 1.00 0.58

ment (2.59) (0.75) (0.79) (2.59) (0.75) (0.79) (2.59) (0.75) (0.79)

Hours 0.76 1.00 0.63 0.59 0.99 0.75 0.97 0.86 0.23

(0.78) (0.40) (0.31) (0.78) (0.40) (0.31) (0.78) (0.40) (0.31)

Real 0.67 0.99 0.65 0.66 0.99 0.72 0.81 0.97 0.45

Wage (1.17) (0.41) (0.91) (1.17) (0.41) (0.91) (1.17) (0.41) (0.91)

Inflation 0.27 −0.53 −0.07 0.31 −0.48 −0.05 1.62 0.30 −0.06

(0.28) (0.04)(−0.03) (0.28) (0.04)(−0.03) (0.28) (0.04) (−0.03)

Notes: sx:=standard deviation of HP-filtered simulated series of variable x, rxy:=cross
correlation of variable x with output, rx:=first order autocorrelation of variable x.
Empirical magnitudes in parenthesis.

outward boosts output more than it would do in a competitive
environment. Due to the fixed costs of production, the shock also
raises profits and thus dividend payments to the household. This
in turn increases the household’s demand for leisure. Since prices
do not fully adjust, these effects are a bit smaller than they are
in a purely real model without nominal frictions.32

Columns 8 to 10 present the results from simulations where
both technology shocks and monetary shocks are present. The
most noteworthy effect concerns working hours. The standard de-
viation of this variable increases by 64 percent. The wealth effect
that we identified above now works in the opposite direction: A
monetary shock squeezes the profits of firms, since marginal costs
rise and prices cannot fully adjust. As a consequence, the house-

32 A detailed comparison between a real and a monetary model of monopo-
listic price setting appears in Maußner (1999).
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hold’s demand for leisure falls. But note, most of the shock is
absorbed by inflation, which increases substantially.
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Appendix 3: Solution of the Stochastic LQ Problem

In this Appendix we provide the details of the solution of the stochas-
tic linear quadratic (LQ) problem. If you are unfamiliar with matrix
algebra, you should consult 11.1 before proceeding.

Using matrix algebra we may write the Bellman equation (2.15) as
follows:

x′Px + d = max
u

[
x′Qx + u′Ru + 2u′Sx

+ βE
(
x′A′PAx + u′B′PAx + ε′PAx

+ x′A′PBu + u′B′PBu + ε′PBu

+ x′A′Pε+ u′B′Pε+ ε′Pε+ d
)]
.

(A.3.1)

Since E(ε) = 0 the expectation of all linear forms involving the vector
of shocks ε evaluate to zero. The expectation of the quadratic form
ε′Pε is:

E

(
n∑

i=1

n∑

i=1

pijεiεj

)

=
n∑

i=1

n∑

j=1

pijσij ,

where σij (σii) denotes the covariance (variance) between εi and εj
(of εi). It is not difficult to see that this expression equals tr(PΣ).
Furthermore, since P = P ′ and

z := u′B′PAx = z′ = (x′A′PB′u)′

we may write the Bellman equation as

x′Px + d = max
u

[
x′Qx + 2uSx + u′Ru + βx′A′PAx

+ 2βx′A′PBu + βu′B′PBu + β tr(PΣ) + βd
]
.

(A.3.2)

This is equation (2.16) in the main text. Differentiation of the rhs of
this expression with respect to u yields

2Sx + 2Ru + 2β(x′A′PB)′ + 2β(B′PB)u.

Setting this equal to the zero vector and solving for u gives
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(R+ βB′PB)
︸ ︷︷ ︸

C−1

u = − (S + βB′PA)
︸ ︷︷ ︸

D

x

⇒ u = −CDx.
(A.3.3)

If we substitute this solution back into (A.3.2), we get:

x′Px + d = x′Qx− 2(CDx)′Sx + (CDx)′RCDx + βx′A′PAx

− 2βx′A′PBCDx+β(CDx)′B′PBCDx+β tr (PΣ)+βd

= x′Qx + βx′A′PAx

− 2x′D′C ′Sx− 2βx′A′PBCDx

+ x′D′C ′RCDx + βx′D′C ′B′PBCDx

+ β tr (PΣ) + βd.

The expression on the fourth line can be simplified to

− 2x′D′C ′Sx− 2βx′A′PBCDx︸ ︷︷ ︸
=2βx′D′C′B′PAx

= −2x′D′C ′ (S + βB′PA)
︸ ︷︷ ︸

D

x = −2x′D′C ′Dx.

The terms on the fifth line add to

x′D′C ′ (R + βB′PB)C
︸ ︷︷ ︸

I

Dx = x′D′C ′D.

Therefore,

x′Px+d = x′Qx+βx′A′PAx−x′D′C ′Dx+β tr(PΣ)+βd. (A.3.4)

For this expression to hold, the coefficient matrices of the various
quadratic forms on both sides of equation (A.3.4) must satisfy the
matrix equation

P = Q+ βA′PA+D′C ′D,

and the constant d must be given by

d =
β

1− β tr(PΣ).

This finishes the derivation of the solution of LQ the problem.
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Appendix 4: Derivation of the Log-Linear Model of the New
Keynesian Phillips Curve

In this appendix we provide the details of the solution of the model
from Section 2.6.3.

The Household’s Problem. The Lagrangean of the household’s
problem is:

L = E0

∞∑

t=0

βt

{
C1−η

t (1−Nt)θ(1−η)

1− η

+ Λt

[
Wt

Pt
Nt + (rt − δ)Kt +Dt + Tt

− γ
(

Ct

Mt+1/Pt

)κ

Ct − Ct − (Kt+1 −Kt)− Mt+1 −Mt

Pt

]}

.

Differentiating this expression with respect to Ct, Nt, Kt+1 and Mt+1

provides the following first-order conditions:

0 = C−η
t (1−Nt)θ(1−η) − EtΛt

[
1 + γ(1 + κ)

(
Ct

Mt+1/Pt

)κ]
,

0 = θC1−η
t (1−Nt)θ(1−η)−1 − Λt

Wt

Pt
, (A.4.1)

0 = Λt − βEtΛt+1(1− δ + rt+1),

0 = Et

{

−Λt

Pt
+ κγ

(
Ct

Mt+1/Pt

)κ+1 Λt

Pt
+ β

Λt+1

Pt+1

}

.

As usual, we must define variables that are stationary. We choose
ct := Ct/At, kt := Kt/At, λt := ΛtA

η
t , wt := Wt/(PtAt), mt+1 :=

Mt+1/(AtPt), and jt := Jt/At. The inflation factor is πt := Pt/Pt−1.
Since the price level is determined in period t, this variable is also a
period t variable. The growth factor of money supply, also determined
in period t, is given by µt := Mt+1/Mt, where Mt is the beginning-of-
period money stock and Mt+1 the end-of-period money stock. In these
variables, we can rewrite the system (A.4.1) as follows:

c−η
t (1−Nt)θ(1−η) = λt

(
1 + γ(1 + κ)

(
ct

mt+1

)κ)
, (A.4.2a)

λtwt = θc1−η
t (1−Nt)θ(1−η)−1, (A.4.2b)
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mt+1 =
µt

aπt
mt, (A.4.2c)

λt = βa−ηEtλt+1 (1− δ + rt+1) , (A.4.2d)

βa−ηEt
λt+1

πt+1
= λt

(

1− κγ
(

ct
mt+1

)κ+1
)

. (A.4.2e)

Price Setting. To study the price setting behavior, it is convenient
to first solve the firm’s cost minimization problem

min
Njt,Kjt

Wt

Pt
Njt + rtKjt s.t. (2.102).

The first-order conditions for this problem are easy to derive. They
are:

wt = gt(1− α)ZtN
−α
jt (Kjt/At)α = gt(1− α)Zt(kt/Nt)α, (A.4.3a)

rt = gtαZtN
1−α
jt (Kjt/At)α−1 = gtαZt(kt/Nt)α−1, (A.4.3b)

where gt is the Lagrange multiplier of the constraint (2.102), and wt :=
Wt/(PtAt) is the real wage rate per unit of effective labor.33 It is well
known from elementary production theory that gt equals the marginal
costs of production. Furthermore, the constant scale assumption with
respect to Yjt + F also implies that gt are the variable unit costs of
production:

gt =
(Wt/Pt)Njt + rtKjt

Yjt + F
.

Marginal costs as well as the capital-output ratio are the same in
all intermediary firms due to the symmetry that is inherent in the
specification of the demand and production function. For later use
we note the factor demand functions that are associated with this
solution:
33 Note that gt is equal for all firms. This can be seen by using

wt

rt
=

1− α
α

Kjt

Njt
,

which implies that all firms choose the same capital-labor ratio kt/Nt ≡
Kjt/Njt, since all firms face the same real wages and rental rates. Via
equation (A.4.3b) this also implies gt = gjt for all j.
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Njt =
Yjt + F

AtZt

(
1− α
α

)α(wt

rt

)−α

, (A.4.4a)

Kjt =
Yjt + F

Zt

(
1− α
α

)α−1(wt

rt

)1−α

. (A.4.4b)

In each period (1 − ϕ)Jt firms choose their optimal money price
PAt and ϕJt firms increase their price according to average inflation,

PNt = πPNt−1.

Therefore, the aggregate price level given in equation (2.101) is:

Pt =
[
(1− ϕ)P 1−ε

At + ϕ(πPNt−1)1−ε
] 1

1−ε .

Now observe that the pool of firms that are not allowed to choose
their price optimally consists itself of firms that were able to set their
optimal price in the previous period and those unlucky ones that were
not allowed to do so. Thus, PNt−1 is in turn the following index:

PN t−1 =
[
(1− ϕ)P 1−ε

A t−1 + ϕ(πPN t−2)1−ε
] 1

1−ε .

Using this formula recursively establishes:

Pt =
[
(1− ϕ)

{
P 1−ε

A t + ϕ(πPA t−1)1−ε + ϕ2(π2PA t−2)1−ε + . . .
}] 1

1−ε ,

which implies

ϕ(πPt−1)1−ε =
[
(1− ϕ){ϕ(πPA t−1)1−ε + ϕ2(π2PA t−2)1−ε + . . . }] .

Thus, the aggregate price level can equivalently be written as

Pt =
[
(1− ϕ)P 1−ε

At + ϕ(πPt−1)1−ε
] 1

1−ε . (A.4.5)

We now turn to the first-order conditions that determine the opti-
mal price of type A firms. Maximizing the expression in (2.104) with
respect to PAt provides the following condition:

ε− 1
ε︸ ︷︷ ︸

=:1/ϑ

PAtEt

∞∑

τ=t

ϕτ−t	τ

(
πτ−t

Pτ

)(1−ε)
Yτ

Jτ

=Et

∞∑

τ=t

ϕτ−t	τ

(
πτ−t

Pτ

)−ε

gτ
Yτ

Jτ
.
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We multiply both sides by P−ε
t and replace 	τ by the rhs of equation

(2.105). The result is:

1
ϑ

(
PAt

Pt

)
Et

∞∑

τ=t

(ϕβa−η)τ−tλτ

λt
π(1−ε)(τ−t)

(
Pτ

Pt

)ε−1 Yτ

Jτ

= Et

∞∑

τ=t

(ϕβa−η)τ−tλτ

λt
π−ε(τ−t)gτ

(
Pτ

Pt

)ε Yτ

Jτ
.

(A.4.6)

Our next task is to determine aggregate output and employment. Note
from (2.100) that final goods producers use different amounts of type
A and N goods since the prices of these inputs differ. Therefore, ag-
gregate output is:

Yt = (1− ϕ)Jt
PAt

Pt
YAt + ϕJt

π

πt
YNt

= (1− ϕ)Jt

[
PAt

Pt

(
ZtAtNAt(KAt/AtNAt)1−α − F )

]

+ ϕJt

[
π

πt

(
ZtAtNNt(KNt/AtNNt)1−α − F )

]
.

Using the fact that all producers choose the same capital-labor ratio
kt/Nt provides:

Yt = At





PAt

Pt
Zt (1− ϕ)JtNAt︸ ︷︷ ︸

ntNt

(kt/Nt)1−α +
π

πt
Zt ϕJtNNt︸ ︷︷ ︸

(1−nt)Nt

(kt/Nt)1−α






− JtF

[
(1− ϕ)

PAt

Pt
+ ϕ

π

πt

]
,

where the fraction of workers employed by type A firms nt is given by:

nt :=
(1− ϕ)JtNAt

Nt
. (A.4.7)

From this we derive the following equation in terms of aggregate out-
put per efficiency unit At:

yt :=
Yt

At
= ZtN

1−α
t kα

t

[
nt
PAt

Pt
+ (1− nt)

π

πt

]

− jtF
[
(1− ϕ)

PAt

Pt
+ ϕ

π

πt

]
.

(A.4.8)
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In the log-linear version of this equation the variable nt drops out.
Thus, there is no need to derive the equation that determines this
variable.

Finally, consider the household’s budget constraint (2.95). In equi-
librium it holds with equality. Using the government’s budget con-
straint (2.97) and the definition of dividends (2.106), we end up with
the following resource constraint:

akt+1 = yt + (1− δ)kt − γ
(

ct
mt+1

)κ

ct − ct. (A.4.9)

The Log-Linear Model. The dynamic model consists of equations
(A.4.2), (A.4.3), (A.4.5),(A.4.6), (A.4.8), and (A.4.9). The stationary
equilibrium of this system is considered in the main text so that we can
focus on the derivation of the log-linear equations. First, consider the
variables that play the role of the control variables in the system (2.47).
These are the deviations of consumption, working hours, output, the
inflation factor, the real wage rate, and the rental rate of capital from
their respective steady state levels:

ut := [ĉt, N̂t, ŷt, π̂t, ŵt, r̂t]′.

The state variables with predetermined initial conditions are the stock
of capital and beginning-of-period money real money balances. Thus,
in terms of (2.47):

xt = [k̂t, m̂t]′.

Purely exogenous are the technological shock Ẑt, the monetary shock
µ̂t, and the entrance rate of firms ĵt into the intermediary goods sector.
For the latter we will assume it is independent of the state of the
business cycle so that ĵt = 0 for all t.34 Thus,

zt = [Ẑt, µ̂t]′.

The remaining variables are the shadow price of capital λt, firms’
marginal costs gt, and real end-of-period money balances mt+1. Note,
that we cannot determine the latter from equation (A.4.2c), since we

34 For instance, Rotemberg and Woodford (1995) link ĵt to the techno-
logical shock.
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need this equation to determine πt. Thus, in addition to λt and gt,
this variable is a costate. To keep to the dating convention in (2.47)
we define the auxiliary variable xt ≡ mt+1. Hence, our vector of costate
variables comprises:

λt = [λ̂t, ĝt, x̂t]′.

We first present the static equations that relate control variables
to state and costate variables. The log-linear versions of equations
(A.4.2a) through (A.4.2c) are

−(η + ξ1)ĉt − ξ2N̂t = λ̂t − ξ1x̂t, (A.4.10a)

(1− η)ĉt − ξ3N̂t − ŵt = λ̂t, (A.4.10b)
π̂t = m̂t − x̂t + µ̂t, (A.4.10c)

ξ1 :=
κγ(1 + κ)(c/x)κ

1 + γ(1 + κ)(c/x)κ
,
c

x
=

C

µ(M/P )
,

ξ2 := θ(1− η) N

1−N ,

ξ3 := [θ(1− η)− 1]
N

1−N .

The log-linear cost-minimizing conditions (A.4.3) deliver two further
equations:

αN̂t + ŵt = αk̂t + ĝt + Ẑt, (A.4.10d)

(α− 1)N̂t + r̂t = (α− 1)k̂t + ĝt + Ẑt. (A.4.10e)

To derive the sixth equation we use the formula for the price level to
write

πt =
Pt

Pt−1
=




(1− ϕ)





PAt

Pt

Pt

Pt−1︸ ︷︷ ︸
πt






1−ε

+ ϕπ1−ε






1
1−ε

.

Log-linearizing at PA/P = 1 provides:

π̂t =
1− ϕ
ϕ

P̂At/P t.

We use this relation to derive
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ŷt − ϑ(1− α)N̂t = ϑαk̂t + ϑẐt + (1− ϑ)ĵt. (A.4.10f)

from equation (A.4.8). The six equations (A.4.10a) through (A.4.10f)
determine the control variables. We now turn to the dynamic equa-
tions that determine the time paths of k̂t, m̂t, x̂t ≡ m̂t+1, λ̂t, and ĝt.
The log-linear versions of the resource constraint (A.4.9), the Euler
equations for capital and money balances (A.4.2d) and (A.4.2e), and
the definition xt := mt+1 are:

aEtk̂t+1 − (1− δ)k̂t − ξ4x̂t =
y

k
ŷt − ξ5ĉt, (A.4.11a)

−Etλ̂t+1 + λ̂t = ξ6Etr̂t+1, (A.4.11b)

Etλ̂t+1 − λ̂t − ξ7x̂t = −ξ7ĉt + Etπ̂t+1, (A.4.11c)
Etm̂t+1 − x̂t = 0, (A.4.11d)

ξ4 := κγ(c/x)κ(c/k),
ξ5 := (1 + γ(1 + κ)(c/x)κ)(c/k),
ξ6 := 1− βa−η(1− δ),

ξ7 :=
κγ(1 + κ)(c/x)1+κ

1− γκ(c/x)1+κ
.

The remaining fifth equation is the log-linear condition for the firms’
optimal price:

(1− ϕ)(1 − ϕβa−η)
ϕ

ĝt = −βa−ηEtπ̂t+1 + π̂t. (A.4.11e)

This looks nice and resembles a Phillips curve since it relates the
current inflation rate to the expected future rate of inflation and a
measure of labor market tension, which is here given by the deviation
of marginal costs from their steady state level. It requires a substantial
amount of algebra to get this relation and it is this task to which we
turn next. Considering (A.4.6) we find:

̂(PAt/Pt)
1
ϑ

y

j

(
1 + ϕβa−η + (ϕβa−η)2 + . . .

)

︸ ︷︷ ︸
(1−ϕβa−η)−1

+
1
ϑ

y

j

∞∑

τ=t

(ϕβa−η)τ−tEt

[
̂(λτ/λt) + (ε− 1) ̂(Pτ /Pt) + ̂(yτ/jτ )

]

= g
y

j

∞∑

τ=t

(ϕβa−η)τ−tEt

[
̂(λτ/λt) + ε ̂(Pτ/Pt) + ̂(yτ/jτ ) + ĝτ

]
.
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Since ϑg = 1 and P̂At/Pt = [ϕ/(1−ϕ)]π̂t (see above), we can simplify
this expression to

ϕ

(1− ϕ)(1 − ϕβa−η)
π̂t =

∞∑

τ=t

(ϕβa−η)τ−tEt

[
̂(Pτ/Pt) + ĝτ

]
.

(A.4.12)

Next, we shift the time index one period into the future, multiply
through by ϕβa−η, and compute the conditional expectation of the
ensuing expression:35

(
ϕ

1− ϕ
)(

ϕβa−η

1− ϕβa−η

)
Etπ̂t+1

= Et

[
(
ϕβa−η

)2 ̂
(
Pt+2

Pt+1

)
+
(
ϕβa−η

)3 ̂
(
Pt+3

Pt+1

)
+ · · · + ϕβa−η ĝt+1

+ (ϕβa−η)2ĝt+2 + . . .

]

.

We subtract this equation from (A.4.12) to arrive at:

ϕ

(1− ϕ)(1 − ϕβa−η)
(
π̂t − ϕβa−ηEtπ̂t+1

)

= ĝt + Et

[

ϕβa−η
̂
(
Pt+1

Pt

)
+
(
ϕβa−η

)2
{

̂
(
Pt+2

Pt

)
−

̂
(
Pt+2

Pt+1

)}

+
(
ϕβa−η

)3
{

̂
(
Pt+3

Pt

)
−

̂
(
Pt+3

Pt+1

)}

+ . . .

]

. (A.4.13)

Since

(̂
Pτ

Pt

)
=

τ∑

s=t+1

π̂s,

the terms in curly brackets reduce to π̂t+1 so that the sum in brackets
equals

35 Here we use the law of iterated expectations according to which Etxt+1 =
Et (Et+1xt+1).
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π̂t+1

[
ϕβa−η + (ϕβa−η)2 + . . .

]

︸ ︷︷ ︸
(ϕβa−η)/(1−ϕβa−η)

.

To determine the time path of investment, we start from

it = yt −
(

1 + γ

(
ct
xt

)κ)
ct, xt ≡ mt+1.

The log-linearized version of this equation is:

ît = ι1ŷt − ι2ĉt + ι3x̂t,

ι1 := (y/i) =
y/k

a+ δ − 1
, ι2 :=

(
1 + (1 + κ)γ

( c
x

)κ) c
i
,

ι3 := κγ

(
C

µ(M/P )

)κ c

i
,

c

i
=
y

i
− 1.

Substituting these results back into (A.4.13) delivers equation (A.4.11e).
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Problems

2.1 Certainty Equivalence
Consider the deterministic linear quadratic optimal control problem of
maximizing

∞∑

t=0

βt [x′
tQx + u′

tRut + 2u′
tSxt]

subject to the linear law of motion

xt+1 = Axt +But.

Adapt the steps followed in Section 2.2 and Appendix 3 to this prob-
lem and show that the optimal control as well as the matrix P are the
solutions to equations (2.17) and (2.18), respectively.

2.2 Relation Between the LQ Problems (2.12) and (2.19)
Show that the linear quadratic problem with the current period return
function

g(xt,ut, zt) := x′
tAxxxt + u′

tAuuut + ztAzzzt

+ 2u′
tAuxxt + 2u′

tAuzzt + 2xtAxzzt

and the law of motion

xt+1 = Bxxt +Buut +Bzzt

is a special case of the problem stated in equations (2.12) and (2.11).
Toward that purpose define

x̃t =
[
xt

zt

]
, ε̃t =

[
0n×1

εt

]

and show how the matrices A, B, Q, R, and S must be chosen so that
both problems coincide.

2.3 Convex Costs of Price Adjustment
Instead of the Calvo (1983) model, consider the following model of price
setting introduced in Hairault and Portier (1995). Intermediate pro-
ducers face convex costs of adjusting their price given by

PCjt := (ψ/2)
(

Pjt

Pjt−1
− π

)2

.

Thus they solve the following problem:
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max E0

∞∑

t=0

	t [(Pjt/Pt)Yjt − (Wt/Pt)Njt − rtKjt − PCjt] ,

s.t.

Yjt = (Pjt/Pt)−ε(Yt/Jt),

Yjt = Zt(AtNjt)αK1−α
jt − F.

Calibrate the parameter ψ so that a one percent deviation of the firm’s
inflation factor Pjt/Pjt−1 from average the average inflation factor en-
tails costs of 0.01 percent of the firm’s value added. Do you find more
persistence of a money supply shock with this alternative specification of
nominal rigidities? What happens, if you increase ψ?

2.4 Government Spending in a Real Business Cycle Model
In most OECD countries, wages and labor productivity are acyclic or
even negatively correlated with output and working hours, while, in the
stochastic Ramsey model, however, these correlations are positive and
close to one (please compare table 2.2). One possible remedy for this
shortcoming of the stochastic growth model is the introduction of a gov-
ernment spending shock. The following model is adapted from Baxter

and King (1993) and Ambler and Paquet (1996).
Consider the stochastic growth model where the number of agents is nor-
malized to one. Assume that utility is also a function of government
consumption, where due to our normalization per capita government
spending Gt is also equal to total government spending Gt. In partic-
ular, government consumption substitutes for private consumption Cp

t :

Ct = Cp
t + ϑGt,

with ϑ < 1 as some forms of government spending, for example military
spending, do not provide utility for private consumption. The household
maximizes her intertemporal utility:

max
Cp

0 ,N0

E0

[ ∞∑

t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

]

,

β ∈ (0, 1), η ≥ 0, θ ≥ 0, η > θ/(1 + θ),

subject to the budget constraint

Cp
t + Ip

t = (1− τ)(wtNt + rtK
p
t ) + Trt.

Both wage income wtNt and interest income rtKt are taxed at the con-
stant rate τ . The household also receives lump-sum transfers Trt from
the government. The private capital stock evolves according to:
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Kp
t+1 = (1− δ)KP

t + Ip
t ,

where δ denotes the depreciation rate. Production is described by a Cobb-
Douglas Production Function, Yt = ZtN

α
t K

1−α
t , where the productivity

Zt follows an AR(1) process, Zt+1 = Z�
t e

εt , with εt ∼ N(0, σ2) and
	 = 0.90 and σ = 0.007. Factors are rewarded by their marginal products.
Government consumption Gt = gtḠ follows a stochastic process:

ln gt = ρg ln gt−1 + εgt ,

with εgt ∼ N(0, σ2
g) and ρg = 0.95 and σg = 0.01. In the steady state,

government consumption is constant and equal to 20% of output, Ḡ =
0.2Ȳ . In equilibrium, the government budget is balanced:

τ(wtNt + rtK
p
t ) = Gt + Trt.

The model is calibrated as follows: β = 0.99, η = 2.0, ψ = 0.5, α = 0.6,
δ = 0.02. θ and τ are chosen so that the steady state labor supply N̄ and
transfers Tr are equal to 0.30 and 0, respectively.
a) Compute the steady state.
b) Compute the log-linear solution. Simulate the model and assume that

εt and εgt are uncorrelated. What happens to the correlation of labor
productivity and wages with output and employment?

c) Assume that transfers are zero, Trt = 0, and that the income tax τt
always adjusts in order to balance the budget. How are your results
affected?

d) Assume now that the government expenditures are split evenly on
government consumption Gt and government investment IG

t . Govern-
ment capital KG

t evolves accordingly

KG
t+1 = (1− δ)KG

t + IG
t ,

and production is now given by

Yt = Zt = ZtN
α
t K

1−γ
t

(
KG

t

)1−α−γ

with α = 0.6 and γ = 0.3. Recompute the model.

2.5 Government Spending and Nominal Rigidities
In the previous problem, you have learned about the ’wealth effect’ of
government demand. An increase in government expenditures results in
a reduction of transfers and, hence, wealth of the households is decreased.
Consequently, the households increase their labor supply and both em-
ployment and output increase. In this problem, you will learn about the
traditional Keynesian IS-LM effect. Expansionary fiscal policy increases
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aggregate demand and demand-constrained firms increases their output
as prices are fixed in the short run. The model follows Linnemann and
Schabert (2003).
Households maximize the expected value of a discounted stream of in-
stantaneous utility:

max
C0,N0

E0

[ ∞∑

t=0

βtC
1−η
t (1−Nt)θ(1−η)

1− η

]

,

β ∈ (0, 1), η ≥ 0, θ ≥ 0, η > θ/(1 + θ).

A role for money is introduced into the model with the help of a cash-in-
advance constraint:

PtCt ≤Mt + PtTrt,

Nominal consumption purchases PtCt are constrained by nominal be-
ginning-of period money balances Mt and nominal government transfers
PtTrt.36 The household holds two kinds of assets, nominal money Mt and
nominal bonds, Bt. Bonds yield a gross nominal return Rt. In addition,
agents receive income from labor, PtwtNt, government transfers, PtTrt,
and from firm profits,

∫ 1

0
Ωit di. The budget constraint is given by:

Mt+1 +Bt+1 + Ptct = PtwtNt + RtBt +Mt + PtTrt +
∫ 1

0

Ωitdi.

The number of firms i is one, i ∈ (0, 1). Firms are monopolistically com-
petitive and set their prices in a staggered way as in the model of Section
2.6.3. Accordingly, profit maximization of the firms implies the New Key-
nesian Phillips curve:

π̂t = ψm̂ct + βEt {π̂t+1} , ψ = (1− ϕ)(1− βϕ)ϕ−1,

where mct denotes marginal costs (compare (A.4.11e)).
Firms produce with labor only:

yit = Nit.

Cost minimization implies that the real wage is equal to marginal costs:

36 Government transfers are included in this cash-in-advance specification in
order to avoid the following: an expansionary monetary policy consisting
in a rise of Mt+1 already increases prices Pt due to the expected infla-
tion effect. Accordingly, real money balances Mt/Pt fall and so does real
consumption Ct if government transfers do not enter the cash-in-advance
constraint. This, however, contradicts empirical evidence.
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wt = mct.

The government issues money and nominal riskless one-period bonds and
spends its revenues on government spending,Gt, and lump-sum transfers:

PtTrt + PtGt +Mt +RtBt = Bt+1 +Mt+1.

Real government expenditures follow an AR(1)-process:

lnGt = ρ lnGt−1 + (1 − ρ) lnG+ εt

with εt ∼ N(0, σ2) and ρ = 0.90 and σ = 0.007.
Monetary policy is characterized by a forward-looking interest-rate rule:

R̂t+1 = ρπE − tπ̂t+1 + ρyEtŷt+1, ρpi > 1.

The restriction ρπ is imposed in order to ensure uniqueness of the equi-
librium.
a) Compute the first-order conditions of the household.
b) Compute the stationary equilibrium that is characterized by a zero-

supply of bonds, Bt = 0,37 and R > 1 (in this case, the cash-in-
advance constraint is always binding). Furthermore, in equilibrium,
the aggregate resource constraint is given by yt = ct + Gt and firms
are identical, yit = yt = Nt = Nit. Define the equilibrium with the
help of the stationary variables {πt, wt,mt ≡ Mt

Pt−1
, Rt, yt, Gt}.

c) Compute the steady-state.
d) Calibrate the model as in the previous problem. In addition, set ρπ =

1.5, ρy ∈ {0, 0.1, 0.5}, π = 1, and ϕ = 0.75.
e) Log-linearize the model and compute the dynamics. How does con-

sumption react to an expansionary fiscal policy? Does it increase (as
IS-LM implies) or decrease (due to the wealth effect)?

f) Assume now that the interest-rate rule is subject to an exogenous
autocorrelated shock with autoregressive parameter ρR ∈ {0, 0.5}.
How does a shock affect the economy?

g) Assume that monetary policy is described by a money-growth rule
that is subject to an autoregressive shock. Recompute the model for
an autoregressive parameter ρµ ∈ {0, 0.5} and compare the impulse
responses to those implied by an interest-rate rule.

37 Why can we set the nominal bonds supply equal to zero?
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