Chapter 2
Problem Setting

In this chapter we introduce the notation and the preliminaries to rigor-
ously set the problem of optimal networks. The formulation in the sense of
L. Kantorovich, by using transport plans, i.e. measures on the product space
2% £2, will be presented together with a second equivalent formulation where
the main tools are the so-called transport path measures that are measures on
the family of curves in §2. This seems to be a very natural formulation that
has already been used in previous papers (see for instance [24, 65, 6, 58]) and
that allows to obtain in a rather simple way existence results and necessary
conditions of optimality.

2.1 Notation and Preliminaries

In this monograph the ambient space {2 is assumed to be a bounded, closed,
N —dimensional convex subset of RN, N > 2, equipped with the Euclidean
distance; the convexity assumption is made here only for simplicity of presen-
tation; in fact, all the results are still valid in the more general case of bounded
Lipschitz domains. For any pair of Lipschitz paths 6, 65 : [0,1] — §2, we in-
troduce the distance

do(01,02) = inf { max|61 (1) ~ 6a((1)],

(2.1)
¢ :[0,1] — [0, 1] increasing and bijective} ,

where | - | is the Euclidean norm in RY. We define then © as the set of the
equivalence classes of Lipschitz paths in {2 parametrized over [0, 1], where
two paths 6; and 6 are considered equivalent whenever dg (61, 6) = 0: it is
easily noticed that © is a separable metric space equipped with the distance
de. Moreover, simple examples show that the infimum in (2.1) might not
be attained. It will be often useful to remind that, given any sequence {6, }
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8 2 Problem Setting

of paths in @ with uniformly bounded Euclidean lengths, by Ascoli-Arzela
Theorem one can find a § € © such that (possibly up to a subsequence)
0, = 6. This implies, in particular, that the corresponding curves 6,,([0, 1])
converge in the Hausdorff distance to 0([0, 1]), while the converse implication
is not true. Notice that

do.g —  M(0((0,1))) < liminf " (6,([0,1])),

n—0o0

On

where /" denotes the one-dimensional Hausdorff measure.

In the sequel, for the sake of brevity we will abuse the notation calling
6 also the set 0([0,1]) C 2, when not misleading. We call endpoints of the
path 6 the points 6(0) and 6(1), and, given two paths 6,60 € © such that
01(1) = 62(0), the composition 6y - 05 is defined by the formula

01 - On(t) = 0:(2t)  for0<t<1/2,
PR g2t — 1) for 1/2 <t < 1.

As already introduced in Chapter 1, we let now A, B : R* — R be the costs
of moving by own means and by using the network, i.e. A(s) (resp. B(s)) is
the cost corresponding to a part of the itinerary of length s covered by own
means (resp. with the use of the network). This means that, if the urban
network is a Borel set X' C (2 of finite length, the total cost of covering a
path 6 € © is given by

55(0) :== A(S' 0\ ) + B(A' (00 Y)), (2.2)

since the length 7 (0\ X) is covered by own means and the length .7 (0N )
is covered by the use of the network. Concerning the functions A and B, we
make from now on the following assumptions:

A is nondecreasing, continuous and A(0) = 0; (2.3)

B is nondecreasing, l.s.c. and B(0) =0.

Note that these hypotheses follow the intuition: the meaning of the assump-
tions A(0) = 0, B(0) = 0 and of the monotonicity are obvious, while the
continuity of the function A means that a slightly longer path cannot have
a much higher cost, and it is a natural assumption once one moves by own
means. On the contrary, a continuity assumption on the function B would
rule out some of the most common pricing policies which occur in many real
life urban transportation networks: for instance, often such a pricing policy
is given by a fixed price (the price of a single ticket) for any positive distance,
or is a piecewise constant function.

We define now a “distance” on 2 which depends on X' and is given by the
least cost of the paths connecting two points: in short,

ds(x,y):=inf{6x(0): 0 €6,00)=x,001)=y}. (2.5)
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The infimum in the above definition is not always attained, as we will see in
Example 2.8. Moreover, it has to be pointed out that in general the function
ds is not a distance; for instance, with A(s) = B(s) = s? it is easy to see that
the triangle inequality does not hold. However, when A and B are subadditive
functions, i.e.

(s1) + A(sz) for all 51, s5 € RT,

A(sy + s9) s
(s1) + B(sg) for all s1, 55 € R,

<A
B(S1+82) <B

and they are strictly positive on (0,+00), then an easy computation shows
that dx is in fact a distance (the strict positivity is needed to ensure that
dx(z,y) = 0 implies x = y). Nevertheless, with an abuse of notation, we will
call dx a distance in any case.

Lemma 2.1. For any 0 € © and any € > 0, there is a path 0. € © such that

6-(0) = 6(0) 0-(1) = 6(1), de(6,6.) < ¢,
H(0.) < AO) + ¢, A 0.NE)=0.

Proof. Since (2 C RY and N > 2, we can take a more than countable family
{0;}icr of elements of @ such that

e 0;(0)=6(0) and 0,;(1) = 0(1) for each i € I;
o do(0, 0;) < e and S (0.) < A (0) + ¢ for each i € I;
o for all ¢, j € I with i # j, 6; N 0; consists of finitely many points.

The proof of this assertion is trivial if the curve 6 is given by a finite union
of segments, as Figure 2.1 shows. The general case is now easily achieved
approximating any path 6 by a finite union of segments as needed.

The thesis can be then proved making use of the paths 6;: since
H(X) < 00, the condition 52" (6;1%) > 0 may occur at most for a countable
set of indices i € I; one then concludes just by taking one of the remaining
paths 6;. 0O

Corollary 2.2. For any 0 € ©, ¢ > 0 and | < %1(6 N X)), there is a path
01 € © such that

0(0) 6(1)

Fig. 2.1 The path 0 and some paths 0;
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el,e(o) = 0(0) ; 91,5(1) = 0(1) 5 d@(ev ol,e) <e&,
HNO) < HO)+e, AHOr.ND)=1.

Proof. This follows easily by Lemma 2.1: let t € [0, 1] be such that
A(0(0,1])) =1,

and define 6, to be the restriction of @ to [0,¢] and 65 to be the restriction of
0 to [t,1], so that

0=06,-6,, HONE)=1.

It suffices then to apply Lemma 2.1 to 6, and to compose 6, with the resulting
path. 0O

Proposition 2.3. The function dx, : 2 x 2 — RT is continuous.

Proof. This is a consequence of (2.3): take (z,y) € 2 x 2 and a path 0
between x and y with
dx(0) < ds(z,y) +¢.

Then, given any pair (Z,7) € {2 x §2, we can define a path between # and
¥ by setting 6 := « - 6 - 8 for any choice of paths a and § connecting Z to
x and y to y respectively. Thanks to Lemma 2.1, we may choose a and [
having ¢ 1—negligible intersection with X and length less than |z — Z| + ¢
and |y — g| + € respectively. We infer thus

ds(7,5) < ds(0) <A(H O\ D) + o — &| + |y — §| +2¢) + B(A' (0N X))
=65(0) + A O\ ) + o — &+ |y — §| +26) — A(H(0\ %))
<ds(z,y) +e+ A O\ D) + |z — 3+ |y — g + 2)

— A0\ YD),

and the upper semicontinuity of dy follows since € > 0 is arbitrary and A is
continuous.

Concerning the lower semicontinuity of dy;, suppose that z, — x, y, — vy
and that dx(x,,yn) — d as n — oo. This means that there exist paths 6,
connecting x, to y, and satisfying 05 (6,) — d. Composing as before 6,
with short paths «,, and (3,, connecting x to x,, and y, to y respectively, and
having

H oy N )= (B.NE)=0,
we find the paths 6, between z and y satisfying

55(0) = S5(6) + A (6 \ ) + I (0) + H(B,) — A (6, 5)
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Since 0y (0,,) — d and since
%1(0%) +<%01(ﬂn) — 0,

the conclusion follows if J#"(6,,\ ) is uniformly bounded, because A is con-
tinuous hence uniformly continuous on compact sets. At last, if S (6, \ X)
is not uniformly bounded, then

SO0\ D) > |z —y|+1

for n arbitrarily large; in this case, we could directly take a path 6 close to
the segment connecting x to y and having negligible intersection with X', so
that

35(0) = A(A(9)) < A(le —y|+1) < A(H (0, \ X)) < 65(0n),

and hence, the thesis follows in this case too. 0O

The problem we want to study is to find the best transportation network X'
to move the population from their “homes” to their “workplaces”. To set the
problem, we consider two probability measures f*, f~ on {2 describing the
distributions of homes and workplaces respectively. The following notion is
often used in transportation theory; throughout the monograph, m; : 2x 2 —
2,i=1, 2, stands for the i—th projection, and for a Borel map g : X — Y
the push-forward gz : M*(X) — MT(Y) is defined by

gup(A) == u(g_l(A)) for any Borel set A C Y,

where M™(Z) is the space of the finite positive measures on a generic space
Z (see Appendix B.1).

Definition 2.4. A transport plan is a positive measure v € M (2 x 2), the
marginals of which are f* and f~, i.e.

Ty =17, Touy = [ .

One can intuitively think that v(z,y) is the number of people moving from
x to y, or, more precisely, that v(C x D) is the number of people living in
C C 2 and working in D C (2. To each transport plan v we associate the
total cost of transportation according to the formula

Is(y) = //Q ds(ey) dr(ey). (2.6)

The Monge-Kantorovich optimal transport problem consists in finding a
transport plan ¥ € M™(2 x ) (which is usually called optimal transport
plan) minimizing Iy.
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It is important to notice that the transport plan  gives no precise in-
formation on how the mass is moving (i.e. which trajectories are chosen for
transportation). To be able to recover such an information we will make use of
the following definition, already used in [58] (a quite similar idea was already
used elsewhere, for instance in [24, 65, 6]).

Definition 2.5. A transport path measure (shortly t.p.m. in the sequel) is a
measure 1 € M™T(0) with the property that its first and last projections are
ftand f,ie.

poyn = f* pgn =1, (2.7)
where for ¢ = 0,1 we denote by p; : © — {2 the function p,(6) := 6(t).

It is important to understand the meaning of the above definition: roughly
speaking, if n is a t.p.m., then 7n(f) indicates the amount of mass to be
moved along the path #; more precisely, n(E) is the mass following the paths
contained in ' C ©. The meaning of condition (2.7) is then clear, since py4n
and p; 41 are respectively the measure from which 7 starts and the measure
to which it is transported.

We are now able to define the total cost of transportation associated to
any t.p.m. by the formula

Cstn) = [ 85(0)an(0). (28)
Finally, we denote by M K (X) the infimum of the above costs, namely,

MK(Y) :=inf{Cx(n) : nisat.pm.}. (2.9)

The purpose of this monograph is to study the problem of finding the best
possible network X: in other words, we want to find a set X having mini-
mal total cost of usage (defined below). To do that, as already discussed in
Chapter 1, we consider a function H : Rt — E+, where H(I) represents the
maintenance cost of a network X of length ¢ I(Z ) = 1. We assume on H the
natural conditions

H is nondecreasing, l.s.c., H(0) =0 and H(l) - occasl —oo.  (2.10)
Finally, the total cost of usage of X' is defined by the formula
3(2) = MK(3) + H(A(D)). (2.11)

Our goal is to study the problem of minimizing the functional §.
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2.2 Properties of Optimal Paths and Relaxed Costs

In (2.5) we defined a distance in 2 as the infimum of the costs of the paths
connecting two given points. We show now the possibility to choose a Borel
selection of paths which have almost minimal costs in the sense of proposition
below.

Proposition 2.6. For any € > 0 there is a Borel function q. : 2 x 2 — O
such that q-(x,y) is a path connecting x to y with

6x(ge(2,y)) <ds(z,y)+¢. (2.12)

Proof. Fix a p > 0 and let {z;} be a finite set of points in 2 such that

UB(xi,p) o90n.

Let then C;; C {2 x {2 be pairwise disjoint Borel sets covering {2 x {2, each
contained in B((mi, xj), Qp). Now, given i, j, let §;; € © be a path connecting
x; to x; and having a cost minimal up to an error p, that is

(;g(eij) < dg(l’i,:rj) +p.
We claim that the conclusion follows if for every = € {2 there is a Borel map
oy B(z,2p) — O

such that «,(y) is a path between x and y with length less than 4p and
having /¢ 1fnegligible intersection with Y. Indeed, defining on each Cj; the
function ¢. by the formula

—

e (T, y) 1= g, () - 35 - vz (y)

(where A(t) := 6(1 —t)), one has that ¢. is a Borel function; moreover, if p is
sufficiently small, one gets (2.12) by the continuity of A. It suffices therefore to
prove the existence of such an a, (observe that Lemma 2.1 already provides a
map satisfying all the required conditions except for the Borel property). For
this purpose, we begin defining «,(y) as the line segment between x and y.
Since X is rectifiable, such a segment has 7 1—negligible intersection with
X unless y is contained in one of countably many radii { Ry }ren of the ball
B(xz,2p). For each k € N, choose arbitrarily a two-dimensional halfplane IT
containing Ry on its boundary; then, for y € Ry, define a,(y) as the half
circle joining z to y and lying on ITj. Arguing as before, it is clear that such
a path has 7 1—negligible intersection with X except for countably many
points y € Ry. Finally, for each of these latter y, by Lemma 2.1 we may
arbitrarily select a path «,(y) connecting = to y which is shorter than 4p and
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has S 1—negligible intersection with Y. The resulting function «, has the
required properties and so the proof is completed. 0O

Corollary 2.7. For any € > 0 there is a Borel function ¢, : 2 x 2 — ©
such that ¢.(x,y) is a path connecting x with y and satisfying

A (qe(x,y) <y — 2| +e, A (g (w,y) N X) =0.
Proof. Consider the case when
A(s) =s, B(s) = diam 2 + 2¢

for every s > 0. By Lemma 2.1 it is clear that dx(z,y) = |y — «| and that
55(0) = A" (0) whenever S (0N X) = 0. Apply now Proposition 2.6 to find
a map ¢. such that

5E(q/5(xay)) < dz(i)’],y) +e= |y71'| +e.

If
AL (z,y) N E) >0,

then
05 (¢ (z,y)) > diam 2 + 2e > |y — x| + ¢,

and this gives a contradiction. Thus,
A (g(x,y) N Z) =0
and, as a consequence,
A (g (x,y)) = 65(de(w,y)) < |y — 2| +¢;
hence the thesis follows. O

We see now an example, showing that the infimum in (2.5) may be not a
minimum, and that §5, may be not lower semicontinuous.

Ezample 2.8. Let 2 be the ball in R? centered at the origin and with radius
2,let X =1[0,1] x {0}, A(t) =t and B(t) = 2t; let moreover # and 6,, be the
paths connecting (0,0) to (1,0) given by

0(t) = (1,0), 0, (t) = (t, M) .

n

Then one has that 6,, converges to 6 in (0, dg), dx(0) = 2, while 05(6,,) — 1:
therefore, 5y is not l.s.c. Moreover, it is clear that

dx((0,0),(1,0)) =1,
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but dx (o) > 1 for each path o € © connecting (0,0) and (1,0). Hence, the
infimum in (2.5) is not a minimum.

Since dy is not, in general, l.s.c., we compute now its relaxed envelope
with fixed endpoints,

5s(0) == inf{liminfég(en) L 0,(0) = 0(0), 0,(1) = 6(1), 6, = 9} . (2.13)

n—00

Notice that 0z < dx, and that the infimum in (2.13) is a minimum. Thanks
to the standard properties of relaxed envelopes (see [16]), we are allowed to
rewrite (2.5) obtaining

ds(z,y) =inf {6x(0): 0 €6,00) =z, 0(1)=y}. (2.14)
Proposition 2.9. The function 0x : © — R* is Ls.c.

Proof. Let us take 6,, — 6 in ©: then, without loss of generality, we may
assume

0,(0) ~0(0) < = 0(1) — 001)] <

SIH

Following (2.13), we choose 0, having the same endpoints as 6,, and such
that

de(On,0n) < (2.15)

SI'—‘
(=%
—
3
~—
=gl
—
~—
|

Take now, according to Lemma 2.1, two paths «,, and (3, connecting 6(0)
with 6,,(0) and ,,(1) with 6(1) respectively, with the properties

2
n (2.16)
0

Define then 8,, := anoéw On, so that {gn}neN is a sequence of paths connecting
6(0) to 6(1) which still converges to #. For any n € N, by (2.15) and (2.16)
we have

(%ﬂl @,\2 ) +B(%1(§nm2))

A(A (Bn U en B\ 2)) + B(A (000 )

(0n) + A(A" 0.\ 2) +4/n) = A(A" 00\ )
5(00) + 1/n+ A(H 82\ Z) +4/n) = A(H* (0, %))

IA
>,

IN
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Since the paths {6,,} have uniformly bounded lengths, by the uniform conti-
nuity of A in the bounded intervals and by (2.13) we infer

§x(0) < liminf 6x(0,,) < liminf éx(6,,),

n—0o0 n—oo

so the proof is completed. 0O
Corollary 2.10. The L.s.c. envelope of §x in (O,dg) is 0.

Proof. The ls.c. envelope of dx in (6,dg) is lower than éx, as a direct
consequence of the definition (2.13). On the other hand, it is the greatest L.s.c.
function lower than dx, thus it is also greater than §yx by Proposition 2.9. O

Corollary 2.11. The infimum in (2.14) is actually a minimum.

Proof. Let us choose 2 and y and take a minimizing sequence 6, for (2.14): if
the Euclidean lengths of 0,, (possibly up to a subsequence) are bounded, then
the result immediately follows from the lower semicontinuity of éx and by
Ascoli-Arzela Theorem. Otherwise, since X' has finite length, it would follow
that

lim sup 7 (6, \ X) = 00

in this case, take a path 6 joining x to y with 7 1fnegligible intersection
with X' and with finite length: since A is nondecreasing, this path provides
the minimum in (2.14). O

More precisely, we see that one can somehow “pass to the limit” in Propo-
sition 2.6. Throughout the monograph, we will call geodesics the paths € such
that

55(0) = dx(0(0),0(1)) .

Corollary 2.12. There is a Borel function q : 2 x 2 — O such that q(z,y)
is a path connecting x to y with cost 6x(q(x,y)) = dx(z,y).

Proof. Using the classical results in [28], it is sufficient to show that the subset
G of © given by the geodesics is closed and there is at least one element of
G connecting any couple of points in {2 x §2. The second fact follows from
Corollary 2.11, while the closedness of G is a direct consequence of the lower
semicontinuity of dx and of the continuity of ds. a

Lemma 2.13. For any ¢ > 0, there is a Borel function o : © — O such
that for any 6 € © one has

(ae(6))(0) = 6(0), (ae(9))(1) =0(1), do(a:(0),0) < e,
A (0(0) < H'(0) +2, Sx(a(0) <ds(0) +e.
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Proof. Our argument is quite similar to the one in Proposition 2.6: fixed
L > 0 and fixed arbitrarily a path ¢ € © with %1(0) < L, we know by
definition of Jx the existence of a path 6 with

6(0) = 6(0) 6(1) = 0(1), do(6,0) < =,
4 an

H0) < AO) + -, 35(6) < 85:(6) +

=] M
=] m

We take now a number ¢ < /8 such that

A(s +46) — A(s) <

DO ™

for any 0 < s < L, which is possible by the continuity of A; moreover, since
the Euclidean length and the map dx are l.s.c., we can also assume that ¢ is
so small that

A o) = ANO) - <

_ _ e 4 whenever dg(0,0) <4. (2.18)
ds(o) 2 dx(0) — 7,
If we can define a Borel function a. : Bg(6,0) — © as in the claim of this
corollary, this will show the thesis: indeed, since the subset @1, of ©® made by
the paths of Euclidean length bounded by L is compact, it can be covered by
a finite number of balls Bg(0;,9;), so that we infer the existence of a Borel
function o, : @ — O as in the claim; finally, it is immediate to conclude
the thesis covering © with countably many sets Oy, for a sequence L; — oo.
Summarizing, we can restrict our attention to a ball Bg(6, ).

Define now the Borel function (3, : Bo(0,) — © as

Bi(o) = q5((0),6(0)) ,

where ¢j is as in Corollary 2.7: then (o) is a path connecting ¢(0) with
6(0) such that

A (Bio)NX)=0, A (Bi(0)) <|o(0) —0(0)|+6<25.  (2.19)

Similarly, we let 85 : Bo(0,0) — © to be a Borel function such that 82(o) is
a path connecting 6(1) with o(1) satisfying

A (Bo(0) N X) =0, AN (Ba(0)) < 26 (2.20)
We finally define a. (o) := fi(c) - 0 - fo(0): by construction, the map

Bo(0,6) 30— a.(0) €O
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is Borel; moreover,
a:(0(0)) = o(0), a:(o(1)) =o(1).
In addition, minding (2.19), (2.20) and (2.17), we get
do(0:(0),0) < do(a:(), 8) + do(0,0) + do(6,0) <26+ 5 + 5 <.
Again by (2.19), (2.20), (2.17) and (2.18) one has
A (ao(0)) < 46+ A (0) < 46 + Z L AN0) < A (0) + e
Finally, by (2.19) and (2.20) we know that
A (o (0)NX) =N X)
so that again (2.19) and (2.20), together with (2.17) and (2.18), yield
dx(oc(0)) < A(H 0\ X) +40) + B(A (00 X))
<6u(0) + A(H O\ ) +40) — A B\ D))
<6n(0)+ 5 <0n(0) + %g <Fs(o) +e:

hence, the proof is complete. 0

Now, generalizing (2.8), set

Coln) = | 5(6)dn(o). (2.21)
e
Proposition 2.14. The following equalities hold

inf {Cx(n): nisatpm}=min{lx(y) : v is a transport plan}

=min {Cx(n): nisatpm.} (=MK(X)). (2.22)

Before giving the proof, we point out the following remark.

Remark 2.15. The equality (2.22) ensures the existence of at least one optimal
transport plan ¢ and one t.p.m. 7., optimal with respect to C'5;, which
satisfy the equality I (Yopt) = 62(770pt). On the other hand, the infimum
in (2.22) needs not to be achieved: for instance, just consider the situation of
Example 2.8 with f* := () and f~ := d(,0).

Concerning the equality between the two minima in (2.22), in particu-
lar, if v,¢ is an optimal transport plan then g7, is an optimal t.p.m.,
where ¢ is defined in Corollary 2.12. Conversely, if 7o is an optimal t.p.m.
then (po,p1)4nops is an optimal transport plan, where py and p; are as in
Definition 2.5.
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Proof (of Proposition 2.14). First of all, note that the set of all transport
plans is a bounded and weakly* closed subset of M™ (2 x 2); hence, it is
weakly® compact by tightness (see Appendix B.1). Moreover, Iy is a contin-
uous function on M({2 x §2) with respect to the weak* topology thanks to
Proposition 2.3. Therefore, the existence of some optimal transport plan is
straightforward.

Given now a t.p.m. 7, one can construct the associated transport plan
v = (po,p1)gn, and from (2.5) we get Is(y) < Cx(n). On the other hand,
given any transport plan v and € > 0, we can define 1 := ¢, where ¢. is
as in Proposition 2.6; we obtain Cx(n) < Is(7v) + €, thus the first equality
in (2.22) is established.

Concerning the second one, using (2.14) in place of (2.5) in the previous
argument one gets

min{/x(y)} < inf{Cx(n)}.

But since C'x; < Cyx (because dx < ), it is also true that

inf{Cx(n)} <inf{Cx(n)}.

We derive min{Is(y)} = inf{Cx(n)}, so to conclude we need only to prove
that the last inf is a minimum. To this aim, it suffices to take an optimal
transport plan 7opy and to define 1 := gu Yot Where ¢ is as in Corollary 2.12:
by definition of ¢, one has Cx(n) = Is(Yept), S0 7 minimizes C's; and the
proof is achieved. O

From now on we will often say that a set A C © is bounded in © by L
if for any § € A we have " (0) < L; we will also say that A is a bounded
subset of @ if it is bounded in © by some constant L. Notice that this last
definition does not coincide with the usual boundedness in @ with respect
to the distance dg, which we will never consider; in fact, this last notion of
boundedness would be useless, since the whole set © is clearly bounded with
respect to do by the diameter of (2. We recall that, as already mentioned
at the beginning of Section 2.1, the bounded subsets of © are sequentially
compact with respect to dg; this becomes particularly helpful once we know
that a t.p.m. is concentrated on a bounded subset of ©, which is the argument
of Corollary 2.17 below.

Lemma 2.16. If A(s) is not constant for large s (for instance, if A(s) — oo
as s — 00), then there is a constant L € R such that the Euclidean length
%”1(9) of any geodesic 0 is bounded by L. Otherwise, if A(s) is constant for
large s, it is still true that for any pair (z,y) of points in 2 there exists some
geodesic of length bounded by L. In both cases, the constant L depends only
on A, 2 and ' (2) (but not on X).

Proof. Suppose first that A(s) is not constant for large s, and let L be a
sufficiently large number such that

A(L -1 (8)) > A(diam 2 + 1) .
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Take now a path 6 € © with 7" (f) > L and let 8, according to Lemma 2.1,
be a path with length less than

16(1) —0(0)] +1 < diam 2 +1
connecting 6(0) to (1) and having .7#" —negligible intersection with . Since
O\ X) > HN0) - A (D) > L - (%),

we immediately get 05 (6) > dx(0), so that 0 is not a geodesic and the first
part of the proof is achieved.
Consider now the case when A(s) is constant for large s, and let

L:="(%) + diam 2 + 1.

Arguing exactly as in the first part of the proof, we see that for any path 6
there is a path 6 with 7" (A) < diam 2+ 1 and with 55 (f) < 65(6) (the only
difference is that this time the strict inequality 0 g(é) < 0x(f) in the case
I (0) > L may be false). Hence, it is not true that all the geodesics have
Euclidean length less than L, but that for any pair (x,y) € 2 x {2 there is
at least one geodesic between = and y of Euclidean length less than L. O

Corollary 2.17. If A(s) is not constant for large s then the support of any
t.p.m. 1 which is optimal with respect to C's is bounded in © by L, where
L is as in the previous Lemma. Otherwise, if A(s) is constant for large s, it
is still true that there exists some optimal t.p.m. n the support of which is
bounded in @ by L.

Proof. Recall that, thanks to (2.22), any t.p.m. optimal with respect to C's
is concentrated in the set of all geodesics; this set is closed, as already noticed
in Corollary 2.12, hence the whole support of any optimal t.p.m. is made by
geodesics and the first part of the proof is trivial.

Concerning the second claim, we recall that Corollary 2.12 implies that
the set G of all geodesics is a closed subset of © containing at least one path
which connects any given pair of points in {2 x §2. The same property is true
for the set

Gp=Gn{oeco: 20 <L},

by the above lemma and since the Fuclidean length is l.s.c. with respect to
the distance in ©. Therefore, arguing as in Corollary 2.12, we find a Borel
map ¢ : §2x 2 — O such that ¢(z,y) is a geodesic between = and y of
Euclidean length less than L. This easily gives also the second part of the
thesis: arguing as in Proposition 2.14, taken any optimal transport plan -,
one has that the t.p.m. guv is as required. 0O

We present now a useful exact formula for Jy.
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Proposition 2.18. The following equality holds:
5x(0) = J (A 0\ %), (0NY)), (2.23)
where the function J: RT™ x Rt — R is given by
J(a,b) :=inf {A(a+1) +B(b—1): 0<1<b}. (2.24)

Before giving the proof, we shortly discuss the above formula.

Remark 2.19. The meaning of (2.23), as one can understand comparing
with (2.2), is that, roughly speaking, one can “walk on the railway”: in other
words, the cost 05 of some path € is not necessarily given by the cost of mov-
ing by own means out of the network and by train along it, but moving by
own means out of the network and possibly in some part of it, and by train
along the remaining part. The basic idea of the proof is then easily imagined:
instead of walking on the network, one can just walk very close to it, which
is possible since the dimension N is larger than 1.

Proof (of Proposition 2.18). Set a := " (0\ X) and b := " (6 N %), then
take an arbitrary sequence 6,, of paths having the same endpoints as 6 and
converging to 6. It is known that

A (9) < liminf 7 (0,,) , (2.25)
A0\ ) <liminf S (0, \ X); (2.26)

the first inequality is the classical lower semicontinuity of the length, the sec-
ond is a recent generalization of the Golab theorem that we state in Theorem
3.6 (see also for instance [14] and [30]).

For a given n € N, assume that

A0, ND) > ONY) :
then, taking I = 0 in (2.24), we obtain

J(a,b) < A0\ ) + B(A (00 X))
< A0\ D))+ B(A(0,n)) (2.27)
< 85(0) + A(H(O\ D)) — A(H (0, Y)) -

On the other hand, if
H0,N2) <A ONX)

then, taking
l:=2"0Nn%) - 0,n%)
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in (2.24), we obtain

J(a,b) < A(SN0) — A (0,0 ) + B(HA (0,0 )
< 05(0n) + A(S(0) — A (0.0 Y)) (2.28)
— A((0n) — A (0,N5)).

Recalling now that A is nondecreasing and continuous, combining (2.27)
with (2.26) and (2.28) with (2.25) gives J(a,b) < liminf d5(6,,), and therefore
J(av b) < 52(0)

To prove the opposite inequality take 0 < [ < 7 1(9 N X)) and let {6, }
be, according to Corollary 2.2, a sequence of paths connecting (0) and 6(1)
such that

0, — 0, A0, — A0, H'U,NE)="0N%)—1VnecN.
Hence, making use of the continuity of A, one gets

55:(0n) = A(S (0,) — (A (OND)—1) +B(b—1) —— Ala+1)+B(b—1).

n—o0

Thus for every 0 <[ < b one has

Ox(0) <A(a+1)+B(b-1),
so the inequality J(a,b) > dx(6) follows taking the infimum on . O

It is also convenient to introduce an auxiliary function, namely
D(a,b) == J(a,b—a); (2.29)
indeed, the above proposition tells us that
05(0) = J(A 6\ %), 2 (00 X)),

or equivalently that

3x(0) = D((0\ 2), A" (9)). (2.30)

In other words, we can express 05 (6) in terms of the length 77" (0\ X) outside
of the network and of the length 7" (#N %) inside the network if we make use
of .J, or in terms of the length .7 (\ X) out of the network and of the total
length 27 1(9) if we make use of D. The advantage of the second possibility,
i.e. the advantage of (2.30) with respect to (2.23), is that the variables 7" (6\
¥) and 7" () satisfy the useful liminf inequalities (2.25)(2.26), while the
same is not true for S (0 N X); on the contrary, for " (N %) the lim sup
inequality is true, as one can immediately deduce by Lemma 4.1. Another
easy interesting property of both D and J is the following one.
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Proposition 2.20. The functions J and D are nondecreasing in each of their
variables.

Proof. Consider first J: take b > 0 and o’ > a > 0; for 0 < [ < b one has
A(a+1) < A(d' +1), so by (2.24) one gets J(a',b) > J(a,b) and thus J is
nondecreasing in its first variable. Concerning the second one, take a > 0 and
b > b > 0: one has

Ala+1)+ Bl —1) > Ala+ 1)+ B(b—1)> J(a,b) VY0<I<b;
on the other hand, one has
Ala+1)+ Bl —1) > A(a+b) + B(0) > J(a,b) Vh<I<V.

It follows that J(a,b') > J(a,b), so J is nondecreasing also in its second
variable.

Consider now D: first of all, we rewrite (2.29) in a more convenient way
as

D(a,b) =inf{A(a+1)+Blb—a—-1): 0<I<b—a}

=inf {A() +B(b~1): a<1<b}. (2:31)

Then, take b > 0 and @’ > a > 0: if @’ <1 < b then a fortiori a < 1 < b,
hence one gets D(a,b) < D(d’,b) directly by (2.31), and consequently D is
nondecreasing in its first variable. Finally, concerning the second one, take
a>0and b >0b>0:if a <1 <b then
A(l)+ B —1) > A(l) + B(b—1) > D(a,b);
on the other hand, if b < <V then
A(l)+ BV —1) > A(b) + B(0) > D(a,b).

It follows that D(a,b’) > D(a,b), so D is nondecreasing also in its second
variable and the proof is completed. 0O
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