Chapter 2
Dimension Subgroups

Let Z[G] be the integral group ring of a group G and let g be its augmentation ideal.
For each natural number n > 1, D,,(G) = GN (1 + g") is a normal subgroup of G
called the nth integral dimension subgroup of G. It is easy to see that the decreasing
series

G=D(G)DDy(G)D ... 2D,(G) D ...

is a central series in G, i.e., [G, D,(G)] C D,1(G) for all n > 1. Therefore,
Yn(G) C D, (G) for all n > 1, where 7, (G) is the nth term in the lower central
series of G. The identification of dimension subgroups, and, in particular, whether
Yn(G) = Dy (Q), has been a subject of intensive investigation for the last over fifty
years. It is now known that, whereas D,,(G) = v, (G) for n = 1, 2, 3 for every
group G (see [Pas79]), there exist groups G whose series {D,(G)}n>1 of dimen-
sion subgroups differs from the lower central series {v,,(G)}n>1 ([Rip72], [Tah77b],
[Tah78b], [Gup90]). The various developments in this area have been reported in
[Pas79] and [Gup87c|. In the present exposition, we will primarily concentrate on
the results that have appeared since the publication of [Gup87c]. We particularly
focus attention on the fourth and the fifth dimension subgroups. We recall the de-
scription of the fifth dimension subgroup due to Tahara (Theorem 2.29) and give a
proof of one of his theorems which states that, for every group G, D5(G)% C ~5(G)
(see Theorem 2.27). The proof here is, hopefully, shorter than the original one.

2.1 Groups Without Dimension Property

Given a group G, we call the quotient D,,(G)/7,(G), n > 1, the nth dimen-
sion quotient of G. In case all dimension quotients are trivial, we say that
the group G has the dimension property. We begin with examples of groups
which do not have the dimension property.

Example 2.1 (Rips [Rip72]).

The first example of a group without dimension property was given by
E. Rips. Following the notation from [Rip72], consider the group G with
generators
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ap, ap, az, Aas, bla b?a b37 &

and defining relations

b64,b16,b4, 256,1

[b2, b1] = [b3, bi] = [b3, ba] = [c, bi] = [c, bo] = [c, b3] =

[ ,bzz )‘ 7b2 1b32, 6,b4b31’ aé be27

la1, ag] = b1C laz, ag] = bac®, [as, ao] = bsc™,

laz, a1] = ¢, [ag, a1] = 2, [as, as] = ',

[br, ai] = ', [ba, as] = ', [bs, ag] =™,

[bl,aj]—llfz;éj, e, a,]—lforz-(] 1, 2, 3.

Then ~4(G) = 1 while the element

[a17 a2]128[a1, a3]64[a2, a3]32 — 0128

is a non-identity element in Dy(QG).

Example 2.2 (Tahara [Tah78a]).

The above example was generalized by Ken-Ichi Tahara as follows:
Let Gi,; (k > 2, 1 > 0) be a group with generators xy, xg, o3, 4 and
defining relations

x%HM — [, xs}_2k+l+4 (2, xl]_2k+l+37
m%kM - o, mg]zk [, m4]72k—1 (s, x3}3,2k’+37
x§k+2 _ ["l’l’ x2]2k [Il, 14]21672 [xj, x2]5_2k+1’
3" = [y, @ [2, @) [, 23],
[3, 2] = [x1, T2, Ta], [m2, 3])'0 = [z, T3, 23], [z3, 2] = [21, 24, 4],
(2, x3, 1] = [72, T3, T2| = [T2, T3, T3] = [T2, T3, T4] =1,
(1, T2, 1] = [71, T2, 23] = [T1, T2, 4] = 1,
(1, z3, 1] = [71, T3, T2] = [71, T3, 4] = 1,
(1, T4, 1] = [71, T4, T2] = [T1, T4, 23] = 1.
Then

w = [w2, 23] € Da(Gr1) \ 1a(Gi,1).
The case k = 2, [ = 0 is exactly the example due to Rips.

We continue the above constructions of groups without dimension prop-
erty by constructing a 4-generator and 3-relator example of a group G with
D4y(G) # ~(G) and, for each n > 5, a 5-generator 5-relator example of
a group G with D, (G) # v,(G). Our motivation for constructing these
examples is to develop a closer understanding of groups without dimension
property and also to look for simpler, and in a sense minimal, examples of
such groups.
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Example 2.3 Let G be the group defined by the presentation
<$1, T, T3, T4 ‘ 'r-/lll[x47 $3]2[$4, x?] - 17
230wy, 3] g, 1)t =1, 2§ ay, zo] Hay, 1] P =1). (2.1)

22, 2] € Dy(G) \ 1(C).

To prove the above statement, we need the following lemma:

Then w = [x7, IESQ] [z1, 5534][

Lemma 2.4 Let II be a group. If x1, s, x5 € II and there exist &; € yo(II),
j=1,...,6 andn; € y3(II), such that

32 64 32 128 16 —128 64
Ty = 617 2 - f?u 547717 Zy 6 T2, T ) = 66 Ui

then
w = [x1, 23)[x1, 2§ [we, 23] € Dy(T0).

Proof. Since y(IT) C 1+ A?(II), we have
l—w=o; +ay+a3 mod A*(II),

where a; = (1 — [z1, 23%]), a0 = (1 — [z, 2§Y]), a3 = (1 — [22, 2*]). Now,

working modulo A(II), we have
=1 —23) (1 —zy) — (1 —a)(1 — 23%)
=(1—23)(1—21) —32(1 —21)(1 — 29) + (322) (1 — 1) (1 — m9)?
=1 -2 (1—a1) — (1 —2i)(1 —39) (since ] € yo(II)).
Similarly, we have

= (1—2(1 —z1) — (1 — 28 (1 — a3),
a3 = (1—28)(1 —29) — (1 — 23%) (1 — a3).

Therefore,
s Faz=(2—a3 — 2§81 —21) + (@ — 23%)(1 — z0)+
(27" + 2y =2) (1=a5) = (1-&im) (1=21)+(1-&12) (1—22) + (1= 2) (1—3) =
(1 =m)( = 21) + (1 —m)(1 —@2) + (1 —m3)(1 — @3)+
(1-&)1-&)+ (1 =&)L - &) +(1-&)(1 - &%) =0
and hence w € Dy(IT). O



104 2 Dimension Subgroups

Proof of Example 2.3. Modulo v4(G), we have

23225 = [y, 21) (23, 24)* 2, 21]P (24, 2]t =[5, 24P [0y 1] 24, 2] =1,
with & = [z, z4]?[24, 22] € 12(G), m = [z4, 1]* € 13(G);

a?fg?x;lggs = [z, 333]16[96‘4, $2]8[$47 331]4[934, 552]8 =

(4, @3] x4, 2] 'O [m4, 21]" = €0,
with & = [z, 23] € 12(G), n2 = [24, 22]"%[z4, 21]* € 13(G);

xf64x§128 _ [1,4’ xz]lﬁ[le7 1’3]32[.24, 1’1]78[%4, .’E3]32 _

(24, @2) [, 23] [24, 1] 7% = 15 € 13(G).
By Lemma 2.4, w € Dy(G). It remains to show that w ¢ v4(G). We shall
construct a nilpotent group H of class 3, which is an epimorphic image of G
with nontrivial image of w.
The construction of H is a slight simplification of the construction of
Passi and Gupta (see [Gup87c|, Example 2.1, p.76). Let F' be a free group

with generators (21, @9, x3, 24). Define R; to be the fourth term of the lower
central series of F, i.e., Ry = 4(F). Define

Ry = (Ry, [;, xj, mx] ¢ (o, B, V)R for all 4, j, k, o*B7, Byt oY),
where a = [z4, x3, @3], B = [T4, T2, T2], ¥ = [T4, T1, 21];
Ry = (Ry, [z4, x3]"0™, [z4, 2)"°8°, [24, 11]"7,
(23, 2] 087, s, @] @™, [xa, 21]'67Y),
Ry = (R3, c1, c2, ¢3),

where
C1 = xﬂm, 333]2[3347 372]7
o = 230 [y, 3] 24, 1] 71,
c3 = zg4[x4, z2]74[x4, xl]fz.
We set H = F/R,.

Clearly, the group H is a natural epimorphic image of G. Hence it remains
to show that the element

wo = [1, 23] [21, 2§'][2s, 2]

is nontrivial in H.
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We claim that [R; 11, F] C R;, ¢ =1, 2, 3. This is obvious for ¢ = 1, 2. We
show it for ¢ = 3. Working modulo Rj3, we have:

[e1, 7] =1,

[e1, 2] = [z1, o] 4, T2, o] = [z, 22]*B = 1,

[e1, 23] = [z1, 3] 4, w3, 23] = [21, 23]*Q® = 1,

[e1, z4] = [z1, za] 1, B4, 1] = [21, 2]y 2 =1,
[e2, 1] = [22, @1]"[za, 1, 1] = B4y =1,

[co, 2o] =1,

[c2, 23] = [z9, 23]'0[2y, w3, 23]* = flat =1,

[c2, 4] = [z9, 4]'0[ma, T4, T2]® = [:UQ )38 =1,
[e3, 1] = [x3, 1] [z4, 21, 21] 72 = P2y =1,

[c3, @o] = [w3, 2] 4, 2, o] " =[5, 22]M BT =1,
[es, z3] =1,

[c3, 4] = [x3, 24]% |23, 24, 23]*? = [23, 4] = 1.

Clearly, Ry/ Ry is cyclic of order 64, generated by the element a. We claim
that the element « has order exactly 64 in H. Suppose a® € Ry, s >0 and s
is not divisible by 64. Then R;/R» has a torsion element o, since ot e Ry.
We have the following group extension:

1— Rs/RQ — R4/R2 — R4/R3 — 1.

Hence at least one of two groups: Rs/Rs or R,/R; has a torsion. Since
[Ry, F] C Rs, every element of Ry/Rs can be written as c!ch2el® for
some integers hy, ho, h3. Clearly it is a free abelian group of rank 3, since
Ry/Ry Ny (F) is free abelian, which is an epimorphic image of R;/R3. The
same argument works for the quotient R3/Rs, since all commutators which
we added to Ry to get R3 are of the form [z;, xj]hifqij7 gij € 13(F), hij € Z,
but commutators [z;, x;] are basic commutators in F, i.e., they are linearly
independent modulo v3(F'). Hence both Rs/R3 and Rj3/Ry are free abelian
and the element o has order exactly 64 in H.

Finally, note that wy = a*? is nontrivial in H; hence the element w does
not lie in 1(G). O

Example 2.5 Let G be the group defined by the presentation

(x1, T2, 3, T4 | 2] = &, 23° = &,
2228 = g1, o212 16 (1668 _ 1) (2.9)
where
€1 = |29, wd][z3, 2a]%, & = |24, 1] [23, 2],
&4 = [w3, m4)* w4, To][m4, 71], & = [24, T3]

Then w = [z1, x32|[x1, 25Y|[xa, 23**] € D4(G) \ 74(G).
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Proof. By Lemma 2.4, w € D,(G). Note that the group H occurring in the
proof of Example 2.3 is a natural epimorphic image of G. Indeed, the first
two relations of G are also among the defining relations of H (due to relators
¢1,¢2), and therefore we only need to check the other three. In H,

23?25t = [y, 21 (23, 24)* [24, 1) (24, 22]* = [, 24]P w4, 21] 24, 20)* = €
o722 = (w4, 23] 0 [mg, 2] (24, 1] 24, 20)° =

[24, 23] [24, 2, 2] P[4, 1, 21] 2 = [24, 23] O[22, 70, 11] 7 =

(24, 23]"° = &

32[ }32 _

Ty, CE1]8[9€3, Ty

5%653 = [x% x4]16[x33 xﬁd -
(24, T2, 2o)* (24, 21, 21) [0, 73, 23] = [24, 73, 23] = 1.

Thus we have an epimorphism 0 : G — H, x; — x;,1 < i < 4. It is shown
in the proof of Example 2.3, that wy = 6(w) is nontrivial in H, which is
nilpotent of class 3. Hence w ¢ 14(G). O

Example 2.6 Let

2 7
= (z1, 22, 23,41 Yos | ] = H[y2i+1a Yoivel, 2y° = H[y2i+lay2i+2]a
i=0 =3
11 4
zylay = (H[?hﬁh y2i+2]> sy ™ = [yos, yoo]'C, o My P = 1), (2.3)
i=8

Then w = [x1, 23] [x1, 2§ [0, 23%] € Dy(I1) \ 44 (11).

Proof. By Lemma 2.4, w € D,(II). Consider the group II' = II x Z, where
Z is an infinite cyclic group with generator x, say. It is easy to see that
there exists an epimorphism 6 : II' — G, where G is the group considered
in Example 2.5 and 6§ maps x; — z;,7 = 1,2,3,z — z4. Clearly, for such an
epimorphism 60, 6(w) ¢ v4(G) by Example 2.5, and therefore w ¢ ~,(II). O

Example 2.7 Forn > 5, let

G(ﬂ) = <.’171,(E2, T3, Y1s- -5 Yion | xil = 51,(n)7‘r%6 = 62,(77,)7

32,64 _ o4 —32_128 __ ¢16 —64,,—128 __ 64
Ty T3 *53,(71,),1’1 T3 = Qa1 T2 = 5,(n)>7 (2.4)
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where

istn) = [Y2i-2)nt1, Y@i-2ni2) - - - [Y2in-1,Y2in], 1 <0 <5,

Then w = [e1, 2] a1, e][ws, 23] € Dy(G(n)) \ 1(G(n)).

Proof. Observe that there exists an epimorphism G(n) — II, II being the
group considered in Example 2.6, which maps z; — z;,¢ = 1,2, 3. The asser-
tion thus follows from Lemma 2.4. [J

The same principle can be used to construct more examples of groups
without dimension property. The following example is a base for a later con-
struction in Theorem 2.14.

Example 2.8 Let k > 9, and G the group given by the following presenta-
tion:

(z1, 2, 23, 74 | T3[w4, 23] T4, 23],

a8y, 5] Oy, a1] 7 22 [, 0] O[wg, 1] Y. (25)

2k+1

Then [y, 23| [z1, 23 (22,23 ] € Da(G) \ 1(G).
Example 2.9 Let

r>t>2, k>q+r,
s>14+3, ¢g>s+r+2

and G the group with generators xi,xs, T3, x4, T5 and relators

]_Zl—T—Z [x4, 1‘3]2[71 [x47 xS]_Ql—t;

2l
xy = [z, 29

$%S = [5'347961]21472 [$4,1’3]72573 [5047%5]2\”71;
2y =l m] ™ s wo o w)
22 = [wg,21)% e, 2] g g Y
Then, for
w=loy, a3 o of oy, a3 s ad Yl af s, 3,
we have

w € Dy(G) \ 1(G).

. 1 s k
Proof. Since 27 , 23", 23", 22" € ~3(G), we have

6

1—w= Z(l — ;) mod g’
i=1
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where
o) = [xhxgﬁr], g = [ml,xgk], g = [ml,xgw 2]7
k k
Qy = [$2,.’I}§ HL Q5 = [x%x%(”t]? Qg = [x5,x§ +3}'

Clearly, we have

l—an=1—-22") 1 —21) — (1 —2) (1 — 25"
= (1—x§5”)(1—x1)—28+T(1—x1)(1—x2)+< ) )(1-:@(1 — 1y)?

9s+r

1—x25+r)(1—x1)—(1—x1 (1 — 29) mod g*;
1—23)(1—a) — (1 —ai)(1 —25) mod g*;

= (

1—as=(
l—as=(1-22" 1 —2) - (1—2¥"")1—-25) mod g

(

(

(

9k+1

1—ay= 1—372“)(1—952)—(1—352 )(1 —23) mod g

l—as=(1—22")1—2) — (1—22")(1 —25) mod g*;

l—ag=(1-22""Y1—25) — (1—22")(1 - 23) mod g
Hence

1-—w=(1- m%swm%kazgq“ﬂ)(l —z)+ (-2 3’““3:?1‘1“)(1 — x9)+

ok _ok+l _ok+3 _9q+t=2 _9q+t ok+3

(1 - " a, x (1 —x3)+ (1 —a Z, z; )(1—x5) mod g’

In the group G, we have:

I%s+7~$§k w§q+t72 _ [3347 xl}Ql—Z [3}47 x3]72s+r—3 [;C4’ xs]Zs—t—H»r
_ol-1 s-3 -5 -7
[1’4,1’1} 2 [J)4,LE2]2g [x4,$5]2q 0[14,231] [:r4,172] [%17 d] 2 =
[5174, m2]237t71+7‘ [w4’ m2]72573 [334, 1:3}7254»7'73 [:L'4, m3]72q t-7 [x xr] [334, "Br}ZsftfH»r.
_9s+r ok+l oq+t 952 _gstr—1 gstr—t
Ty 3 x5 = (T4, 2] (4, 73] (24, 5]
s—2 s—1 _zq—5+t

_9l —4 l _
(4, 21) 7% (g, o) [, 25> [0, 21)7 [0, 22) 72 4, 3] =

72q+t—5 [ 2,1,4

(24, $3]725+T l (x4, 3] T4, xs]QSM ' (x4, 5]

_ok _ok+l _ok+3 k—r-2 _gl-r—l+k=s
X

= (24, $2]2 [z4, $3]72)H [z4, fs]Qkit (24, 21]

]_zl—t+k—q+3 [ }23—t+k,—q+2 [$47 x3]2k—2 _

k— _ok—
(24, 232" e, w5) 2 s, @ T4, Ty

]72l—T+k—s [ }72l—t+k—q+3[ k-r-2 ]2s—t+k—q+2.

[$47I1 Ty, T I47I2]2 [174,552
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T e - R T N E TV R N Y
[334,531]_2%“2““78 [3547963]%“73 [24, 355]_2(171 [9647361]21+2 [554@2]28 [$47$5]2(F2 =
a2 [ ol g, )T g, P
Hence,
L—w=(L = )(L = a0) + (1= ) (1 - 2)+
(1—m3)(1 —23) + (1 —n5)(1 —25) mod g,
where
m o= ey w)® T g, ) g, )T g, )2
[9547975]2(1475 [964,%5]25%4”47
I T O e ) R 7 S
ms = [wna] " sz @ e, 22 e (G,
e = [@1’352]211“474 [934,552]23 (74, xl]Q+l+t_s_r_2[934,»Tl]zm € 13(G).
Therefore,

l-w=(1-m)(1 —x%l) +(1—m)(1—23)=0 mod g".

The proof that w ¢ ~4(G) is by the same principle as that in the proof of
Example 2.3.

Let F be a free group with generators 1, 2, x3, 24, x5. Define Ry to be the
fourth term of the lower central series of F, i.e., Ry = v4(F). Define

R2 = <R17 [xiaxjvxk] ¢ <OL,B,’Y7(5>R1 for all iaj7k7
k—q _ q—s _ s—1 .__ l
o BT B Ty T e 67,
where o = [24, 23, 23], 8 = |14, 5, T5], v = 24, T2, T2], 6 = [24, 21, 71];
25 25—I

[x47x5]2qﬂ2q7 [.734,332] Y 5
25042573

k-1
9

R3 = (R, [y, $3]2k a?

[$4, $1]2l52H,

1 - s —t— _ ol _ol- _ ol Ir
[23,21)% @ [ws5,20)2 B s, ) 2 872 [, F A2,

1'3,1'57 qa qi.lv "E3,$27
[23,25] % a®" 7, [y, 2]

b

R4 = <R3a Cy,C2,C3, C4>7



110 2 Dimension Subgroups

where
o1 = a7 [wg w) 2 gy s)? g, )2
co = 15% [z4,x1]2l " 2[174,:E3]’25 3[z4,x5} o l;
L T 7Y I PV T L FTW T8 L
cy = J;gZQ [74, x1]2H [74, xﬂﬁﬂfl [24, x3]72qf5

We set H = F/Ry.
Clearly, the group H is a natural epimorphic image of G. Hence it remains
to show that the element

s+ k t—2 k+1 t k+3

wo = [*Tlvxg . ][.%‘17.7;5 Hmhxg(ﬁ ][3727‘%% i ][x%xgﬁ ][335537;23 i ]
is nontrivial in H. We claim that [R;1,F] C R;, ¢ = 1,2,3. The proof is
straightforward. In analogy with Example 2.3, one can show that ~3(G) is
cyclic of order 2* with generator o, but wy = a2 Therefore, wy # 1 and

w ¢ v4(G). O

We next discuss examples of groups without dimension property in ar-
bitrary dimension. First examples of groups without dimension property in
higher dimensions were constructed by N. Gupta [Gup90].

Example 2.10 (Gupta [Gup90], [Gup91la]). Let n > 4 be fized and let F' be a
free group of rank 4 with basis {r, a, b, c}. Set xy = yo = zo = r, and define
commutators x; = [x;—1, a], yi = [yi-1, b], 2zi = [zi—1,¢], 1 =1,2,.... Let
&, be the quotient of F' with the following defining relations:

() ™" =1, " =gz g B =z, T =2yl
(ii) Zn—2 = Yp_9, Yn—2 = Tp_;

(i4i) xpn1 =1, yp_1 =1, 21 = 1;

() [a, b, gl =1, [b,¢c, 9] =1, [a, ¢, g] =1, forall g € F;

(v

7

N

[xia b} =1, [xia C} =1, [yiv a] =1, [yia C] =1, [Ziv a] =1, [zivb] =1,

)

vV

(’U’L) [:I:'iv xj}:]w [xh yj}:]w ['T17 Z]]:lv [ylu yj]:17 [y’u Z]]:lv [Z“ Zj] :17
i, 7> 0.

Let 2 1 2 2 2: 3
9= la, 0" [a, " b, P

Then g € Dy, (6,)\vn(6,,).
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Example 2.11 For every integer n > 0, there exist integers k > [, such that
for the group &,, defined by the presentation

l k
<$1, T2, I3, T4, T5 | x%gl = 1, ;C% 62 = 17 :L'g 63 — 1
k-1 k— k-1
HIE” an4], $1}4[[$57 n$4], T3, .133]2 - 1 52 ’ 2 . = 1>a

where

[555, n$4] %F[[%, n$4], 552][%, n+1$4}2,

1-2

[
[[#5, n4], 3}2172[[555, w4, 1) w5, n1@al?,
[[5657 nl“4] 2o) 7 [[s, na], 3] 77,

the element w, = [x1, 23 |[x1, 23 [x2, 23] € Diyn(G2) \ Yarn(S).

To prove the above assertion we need some technical lemmas. The
following lemma is a generalization of Lemma 2.4.

Lemma 2.12 Let II be a group and n > 4 an integer. If x1, x9, x3 € 11 are

such that there exist & € yn—o(I1), i =1, ..., 4, satisfying
1 1+1 k _ol+1 k+1 1 k k+1
:£l7x% :527 IQ 2 *635 2 2 - Z,I% x% =1

then

ok+1

w = [, x%”l][ml, mg l[xa, x5 ] € Dy(I1),
provided k, | are sufficiently large integers.
Proof. Since 1 —z € A" %(II) for z € v,,_2(II), we have
l—w=ao;+ay+ a3 mod A™(II),

where a; = (1 — [21, 22 ']), ag = (1 — [a1, 22°]), a3 = (1 — [0, 23"]). Now,
working modulo A™(IT), we have

1—23 A —a)— (1 —z)1—-a3")
(1—22")(1 —2y) — 2" (1 — 20) (1 — @)+

J_U(yﬂ)ﬂ—xﬁﬂ—xg?

7

3

.
[

Note that, for sufficiently large [ and ¢ < n, the integer (zl;l) is divisible
by 4™. Hence, for such an integer [, we have
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2

n-1 I+1 )
S (%) )a-ma - et e anq,
=2

i=

and o
ML — ) (1 =) = (1 —22 )(1 —axy) mod A™(II).
Therefore,
2l+1 2l+1

ap=(1—-2; Y1—z9)— (1 —2a7 )(1—xz9) mod A™(II).

Assuming k to be large enough so that (Qki“) is divisible by 2! for i < n, we
have

a=1-23)1-a)— 1 —ai)1—a3),

9ok+1

ag=(1—ad Y1 —2) — (1—22)(1 — a3).

Therefore, mod A™(II),
(6%] + a9 + (%]

=@2-23" —a )L —a) + (27—} (L - 22)+
(@ + a3 —2)(1 - )
=(1-&)(—m) + (1= )1 —z2) + (L—af ] )1 - )
=(1-8&)1-&)+0-&)0-&)
=0
and hence w € D, (II). O

Lemma 2.13 Let k > 1+ 2,1 > 4, be integers and G the group defined by
the presentation

1 k
<’J)17 X2, T3, T4, Ts | ‘Tzllgl - 17 ’I% 52 - 17 ZL'?;) 53 =1

k— k— k-1
(24, 21] (24, T3, 23)° =1, & ’ 5 T=1,

[1'4, mhxd:lv Z:L "'a4>,
where

& = [24, 3)% 34, To][74, 5]7,

& =[xy, 133}2#2 (24, 21] H[zs, 25)%,
& = [14, 2272 [ag, 2] 72

Then the element w =[xy, #3 ' |[a1, 22 |[aa, 23] does not lie in y4(G).
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Proof. We shall construct a nilpotent group of class 3 which is an epimorphic
image of the given group G and is such that the image of the element w is
nontrivial.

Let F' be a free group with basis {x1, ..., x5}. Consider the following four
types of relations:

Rl = '74(F)7

Ry = <R1 U {[xla Zj, xk] : (i’ Js k) 7£ (47 1, 1)7 (4a 2, 2)7 (47 3, 3)}7 a2k716717
521727’1, v, where a = [z4, 23, 3], B = [24, T2, 2], ¥ = [24, 71, 21]. Now

define R3 to be the product of Ry and the normal closure in I of the following
words:

[z, 23] oP* Y, w8
ENEA T m, w o,
[w3, m1]*a >, [wo, 21]*B 7,
(24, 25)? a2

[ws, @i], i # 1.

Finally, let R4 be the product of R3 and the normal closure in F' of the
following words:

a1 = 2[4, T3 [24, T2)[74, T5)%,

1 12 _
Cy = x% [1'4, ‘T3}2 z[5047 1'1] 1[:,54, SC5]2,

1-2 9

c3 = mgk (24, 7o) 2 [24, 1]

We claim that
[Ri+17 F} C Ria for i = 17 27 3.

This is obvious for ¢ = 1, and 2 and it remains only to check for i = 3.
We note that, modulo R3, we have:

[cla 1"1] - 1
[er, @a] = [z, @]t [ma, @3, @3] = [21, 2B =1,
[e1, @3] = [@1, w3] [, 3, 3]* = [0, 3]'0® = 1,
1, 1] = [21, 2] [0, 24, 21]7 = 21, 2a]'y? = 1,
[e1, ms] =1,
l -2
[c2, x1] = [22, 251]2 (x4, @1, mlrl =6 yl=1,
[co, 2o] = 1,
L -2 l -2
[eo, w3] = [wa, @3)% [ma, @3, 3)* = [@0, 23] &~ =1,
l - 1 l
[e2, @a] = w2, @l [w2, @, 22" = [ma, wa]? B =1,
[C I5] = 1
[

sy ) = (w3, 2] [, @1, 2] 2 = 2 Iyt = 1,
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k 1-2 k=2 ol

(e, @] = [@3, @2)2" [w4, @a, @) 2 " =2 B2 =1,
[Cg, IS] = 17

[es, x4] = [z, 134]2]“' [x3, @4, 933]2’671 = [z3, 14]2k a2 =1,
[63, Ig] =1.

Clearly, v3(F)/Rs is a cyclic group of order 2¥ generated by the element a.
To see that a has order exactly 2* in the group F/Ry, as in the case of the
proof of Theorem 2.5, we note that the groups R3/Rs and Ry/Rj3 are free
abelian. Hence, the relation a® € Ry, s > 0 implies that s is divisible by 2*.
As a consequence we get that a has order exactly 2% in F//R,. Hence, modulo
Ry, the word w = [z, 22 '|[xy, 22 )[as, 22 )= = B =42 £ 1.

We claim that F'/R, is a natural epimorphic image of the given group G.
The first three relations of G hold in F/R4 by construction. The relation

(24, 1]} [74, 3, :1:;;]21H = [z4, 21]*y? holds modulo R3. Now, modulo Ry, we

have

ok=2 Lok-1+1

i &

= [z, 23)* [, 22)?" [wa, 2] [y @) [, 0] g @)

-1 gk+l—4 k=2
a

= [z4, 23] 0" 24, 1] g, 29]?

ktl—d ,_ok-3 ok-l-2
=a BT =1,

The relations [x4, x;, 4], © € {1, 2, 3, 4}, clearly lie in Ry. Hence F/Ry is
a natural epimorphic image of G and the image of w is nontrivial in F/R,.
Therefore, w ¢ v4(G). O

Proof of Example 2.11. The case n = 0 is exactly Lemma 2.13. Assume
that the result holds for some n > 0, i.e., w, ¢ Y41, (®,). We shall prove it
for n + 1, i.e., that wy11 & Y500 (Bpi1)-

Consider the quotient &' = &,,/v41n(&,)N,, where N,, is the normal
subgroup in &,,, generated by all left-normed commutators [y, ..., ys],
s > 3, such that there are at least two entries with y; = z4. The auto-
morphism of the free group of rank 5, given by

Ty Ty,
I = Ta,
T3 — T3,
€Ty = Ty,

Xy = X5y

can be extended to an automorphism of & ; this follows from the fact that this
automorphism preserves all relations. This automorphism defines a semidirect
product H,, = &/ x(z), where x acts as the described automorphism. Clearly,
we have [z, x;] =1, i =1, 2, 3, 4 and [z5, 2] = x4 in H,, and H,, is nilpotent:
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Ys4n(Hy) = 1. Evidently the natural map f : &/, — H,, is a monomorphism.
However, it is easy to see that H, is an epimorphic image of &, 1, which
sends wy,+1 to f(wy,). Hence, wy,41 can not lie in v, (&,,41). O

We next make somewhat more complicated constructions, working on the
same principles as above, and show that there exists a nilpotent group of
class 4 with nontrivial sixth dimension subgroup.

Theorem 2.14 There exists a nilpotent group G of class 3 with
GN(L+AM(G)VZIG +¢°) # 1.

Proof. Let F be a free group with basis {1, x2, x3, x4, x5}. Let Ry := y4(F).

Define

R2:<R17 [xh Lj, xk] ¢ (a, B, 7, 5>R1 for all 4, j, k, 516/87 « 9, 58771778%

where 0 = [xy, x5, T5], @ = [24, T3, 23], B = [24, X2, T3], ¥ = [24, 21, 71]; Let
R3 be Ry together with the following set of words:

9k—10

Z1, T2 8[$47 €2, 3?2],

8[x4a xs3, 1'3]47

}716

8

15 3

64
z3 [3647 Z3, T3
8

s
»

)

4
T4y T1, .’Ifl] B

]
o

y T4

[:C47 €2, I2}327
2"‘[

8

2, L4
k-1
]2

8

y T4 Ly, T3, T3

)
64[$47 L5, ‘T5]167
1024[ ]512

8

2, L5

8
o

y T4 L4, T5, T

1024

)

[21, o]
[21, 5]
[2, 5]
1, @]
[ ]64
(3, 4]
(2, @s]
(5, 4]
[21, @]

Ty, Ty 8; [I'g, $5]
Let R4 be R3 together with the following set of words:

c = wff[m, $3]4[$4, zo];

Cy = $g4[$4a x3]716[x47 xl]il[zﬁla x5]16;

k —
c3 = a3 [24, 2] 0wy, 21]7*

ey = 3"y, 20]"%;

For any i =1, 2, 3, [F, R;11] € R; and k > 12. The case i = 1 is obvious.

The case ¢ = 2 easily can be checked. We shall consider the most difficult
case i = 3. Working modulo Rj, we shall show that [¢;, z;] =1 for all 4, j:

[c1, ;] =15
ler, @] = [z1, @2)8[mg, @2, @2] = 1;

ler, z3] = [z1, @3)8[my, @3, 23] = 1;
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ler, @] = [w1, @4)¥[wy, @1, 21])* =1, since 7* € Ry;

[C LE5] - [xh 56’5] - 17

[co, 1] = [2, @1]M [24, @1, 1] 7" = [24, @, 2)¥[24, 21, 2] = 15

[ca, wa] = 15

[c2, @3] = [ma, 3] [y, T3, 3] 10

[e2, 4] = [z2, 4] [y, 22, 2] = 1;

[C 1"5] = [IQ, 1"5164[1‘45 T, x5]16 - 1,

les, @] = [ws, 1" [wa, @1, @17 = [0, @5, @ g, @, @] = 1
k k—

[c3, 2] =[5, @2]* [24, @2, 22]'0 = [24, 5, 23] 77 2[$47 g, To]'0 = 1;

[es, z3] = 1;
k k—

[c3, z4] = [z3, 134]2 (x4, x3, 2133}2 = 1;

[cs, 5] = [z3, :co] =1, since k > 10;

ca, 1] = [25, 2] = 1

[ca, o] = [z5, 352]1024[3”4, T2, m?]lﬁ = [y, x5, 965]2'36[9347 T2, wg]w =1

[ca, 3] = [25, 3]0 = 1;

[ca, 4] = [5, 4]0 2y, x5, 25712 = 1;

[ca, z5] = 15

Clearly, v3(F/Ry) is a cyclic group of order 2¥ generated by element a.
To see that a has order exactly 2* in the group F/Ry, as in the case of the
proof of Theorem 2.3, we note that the groups R3/Rs and Ry/Rj3 are free
abelian. Hence, the relation a® € Ry, s > 0 implies that s divides 2%. As
a consequence we get the fact that o has order exactly 2 in F/R,. And
therefore, our element

k k
w = [wr, 23w, 23 ][wa, 23 ]

is equal to o' = 5512 =2 =t £1.

Since zf, x5, 963 € 72(G), modulo g° we have the following equivalences:

ok+1

1-w=(1- [z, 2¥) + (1~ o1, 23 ) + (1 — [, 23 ).

Since 64(1 —z1)?%, 2F(1 — 21)2, 281 (1 — 19)? € g*, 64(1 — x2) € g, modulo g°
we have

1-— [xl, xQ

y

— (1-22%)

= (1= a2 (1~ 2) — (1— 21— o)+ (2§6> (1)1 — 2’
)

=(1—2)(1 —21) — (1 — 2P (1 —29) + (1 — 272)(1 — )%

I%

(1—21) = (1 —a1)(1 - 23)
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Note that modulo g°:

(1 o 128)(1 o 1,2)2
= (1= [z, 23] %[z, 2] 1O) (1 — 22)?
=(1—a29) + (1 — i1 — z)?

1024(1 — 35)(1 — x9)?
=1
(

—25)(1 — 22) (1 — 23”)

= 25)(1 — 22) (1 — [24, 23] (24, 1] 4, 5] PP)
therefore, modulo g°,
1— [z, 22 = (1 — 229 (1 — 21) — (1 — 2P (1 — x»). (2.6)

Analogically, it is easy to show that modulo g°,
I=[or, 23 ] = (123 )(1—z1) - (1=a] )1 —wg)+ (1—a] )(1—w)*, (2.7)

T—[2g, 23 ' = (1—2d (1 —my)—(1—23 (A —a35)+(1—22 ) (1—23)%. (2.8)
Note that

ok—1 k-2 k—4 k-2

ok _ _ok—
Ly 552 = [24, 23] ’ 2

_ ke~
(4, 22) 2[4, @)% [24, 1] [, 5] 2 =

k—4 k—6 _9k-2

(24, 2] >[4, 21]*[24, 5]

Hence, for k > 13, we have x%kilxgk = 1; therefore, modulo g°, we have

(123 )(1—as)+(1—ad )(1-3)?+(1-23 )(A—a5)+ (12} )(1—a3)* =

9k 2k+

(1—22 22" 1 —a) + (1 -2 21 —23)?=0. (2.9)
Equivalences (2.6) - (2.9) imply that, modulo g°,
1—w=(1—-29)(1—2) — (1 — 2P (1 — a9)+
(1- 2“1><1—x2>+<1—x3 )1 =)
= (1- a2} )1 —2) + (1 — 27 2] ) (1 — 22)
=(1- 1><1—x1>+<1— 321 = m9),

where

G = [z, 173]4[5174a 955]74[5547 z9] x4, Ta, 5172]2,

Co =[xy, 3][@a, x5, $5]_4
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Hence, modulo g°,

1—w=16(1 —¢)(1 — 1)+ 128(1 — &) (1 — a2)

=1 =) —21") =81 = )1 —21)° + (1 = &) (1 — ™)
—64(1 — &) (1 — z)?

=(1-)(1—21") + (1 - Q)1 —zy™).

Since ¥, 2§' € 15(G), we conclude

1 —we A(%(G))*Z[G) + ¢°.
Furthermore, the detailed analysis of the above construction shows that
1 —we A([{z1), G’ ZIG] + A([(24)°, 4G)Z[G], (2.10)

since all commutators used in the words ¢;, ¢ = 1, ..., 4, have a nontrivial
entry of the generator x,. O

Theorem 2.15 There exists a nilpotent group 11 of class 4 with Dg(I1) # 1.

Proof. Consider the 5-generated group G of Theorem 2.14 which is nilpotent
of class 3. Let G; = G x (t)/v4(G = (t)), the quotient of the free product of
G with infinite cyclic group with generator ¢ modulo its fourth lower central
subgroup. Clearly (2.10) implies that, for the image in G; of the element w
(we retain the notation of elements of G when naturally viewed as elements
of Gy), we have

1—we A([<$4>Gl, Gl])QZ[Gﬂ + A([<$4>G17 4G1])Z[G1] (2.11)

Clearly, w ¢ (t)“'. Define the quotient Gy = G1/{[z4, t, 24])¢*. Let f be an
automorphism of the free group with basis {z1, x2, 23, 24, x5, t} defined by

Ty — Ty, ’L:].,,5

t— txy.

It is easy to see that f can be extended to an automorphism of the group
G5. Thus we can consider the semi-direct product II = G2 x (z). We have
the following relations in the group II:

[fi;x]:l, i:l,...,57 [t7x]:-r4-

Since, in Go, we have the relations [x4, z;, 4] = |24, t, 4] = 1 for all i, the
group II is nilpotent of class 4. The natural map G5 — II is a monomorphism;
hence the image of the element

k ki1
w = [331, x%%][xlv xg ][1‘2, x% . ]
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is nontrivial in II. However, (2.11) implies that

1—w e A([([t, «])", I)*Z{I] + A([([t, «))", JIT)ZIT] € AP(ID).
Therefore, 1 # w € Dg(I). O

Example 2.16

The reader can check that the constructions given in the proofs of Theorems
2.14 and 2.15 show that for the group I' given by the following presentation:

<CU1, X, T3, T4, T5, T¢ | 3551;[554, L, $3]4[$4, Tg, 962],
64 —16 —1 16
3':2 [x47 T6,y 'T3] [x4a TG, 1'1] [334, T6,y 1'5] 9

]743 xé024[x4, Lg, T2

]128

k 3 .
3[4, T7, 22)C[74, T6, 71 '

}20487 [

Y

16
L4, L6y T T4,y T, fUl] s [$4, Te, T2

)

[
(x4, 6, 21, 1] 24, X6, T2, 352]78,
[

— k,‘
Ty, Ty L2, 962] 8[564, ZTg, T3, 933]2 5>,

for k> 13,
Ds(I') & ~5(T).

The arguments from the proof of Theorem 2.14 imply that the relations of T’
are enough for the element

E k k+1

w = [z1, 23)[21, 23 Jfa, 2]

to lie in Dg(T"). However, the group II, constructed in Theorem 2.15 is the
natural epimorphic image of T', and consequently w ¢ ~5(T).

2.2 Sjogren’s Theorem

For every natural number k, let
b(k) = the least common multiple of 1, 2, ... |k,
and let
n—-2

c(1) =c(2) =1, en) = b)) . bn—2)0D), n>3.

The most general result known about dimension quotients is the following:

Theorem 2.17 (Sjogren [Sjo79]). For every group G,

D (G)™ C 4, (@), n> 1.
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Alternate proofs of Sjogren’s theorem have been given by Gupta [Gup87c]
and Cliff-Hartley [Cli87]. In case G is a metabelian group, Gupta [Gup87d]
has given the following sharper bound for the exponents of dimension
quotients:

Theorem 2.18 (Gupta [Gup87d]). If G is a metabelian group, then

Dn(G)Qb(l)...b(n72) C 'Yn(G)a n>3.

Let F be a free group and R a normal subgroup of F'. For k > 1, let

R(k)=|...[[R, F, F, ..., F,
k—1

and
v(k) = Z Z|Feiey .. . vy,

where R; € {R, F} and exactly one R; = R.
The following two lemmas are the key results in the proof of Sjogren’s
theorem.

Lemma 2.19 Let w € v, (F),
some k, 1 <k <n. Then wb(k)

fi € R(k).
Lemma 2.20 Forn > 1, FN (14" +t(n)) = v (F)R(n).

n > 2, be such that w — 1 € "™ + (k) for
—1=fr, —1 mod "™ +¢v(k + 1) for some

From Lemmas 2.19 and 2.20 Sjogren’s theorem follows by using a process
of descent:

Let HH D Hy D ...and K| D Ky D ... be two series, and {Ny,, ; : 1 <m <
[} a family of normal subgroups of a group G satisfying

Nm,m+1 = Hme+1,
Hy K € Ny gy (2.12)
N, 141 © Nop,p for all m < L.

Lemma 2.21 ([Gup87c], [Har82al). If n is a positive integer and there exist
positive integers a(l) such that

(Kl+nL N Nl,l+m+1)a(l) - Nl+1,l+m+1Hla I+m<n+1,

then i
N C H K,

where
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2.3 Fourth Dimension Subgroup

An identification of the fourth dimension subgroup is known.

Theorem 2.22 (see [Gup87c]|, [Tah77b]).
Let G be a nilpotent group of class 3 given by its pre-abelian presentation:

<$17 ey Iy | xtli(l)gla ey xZ(k)flw §k+1a RN ’Y4(<$1, sy xm>)>

with k <m , d(i) >0, d(k)|...|d(2)|d(1) and & € v ({x1, ..., Tm)). Then,
the group Dy(G) consists of all elements

w = H [x;‘i(i)7 2;]%9 | ai; € Z, (2.13)
1<i<j<k
such that
) o
A "y ey (L <i<j<m), (2.14)
and
Y= H m;d@a“ H x;-i(l)a” € ’YQ(G)d(l)’Y?)(G) for1 <1<k (2.15)
1<i<l 1<j<k

Theorem 2.23 (Losey [Los74], Tahara [Tah77a], Sjogren [Sjo79], Passi
([Pas68a], [Pas79])). For any group G, Dy(G)/v4(G) has exponent 2.

In may be noted that every 3-generator group G has the property that
Dy(G) = v4(G) (see [Gup8T7c]). In Example 2.3 we have a 4-generator group
G with 3 relators such that Dy(G) # v4(G). We now show that every 2-relator
group G has the property that Dy(G) = v4(G). Thus, in a sense, Example
2.3 is a minimal example of a group G with Dy(G) # (G).

Theorem 2.24 Let G = (X | r1, ro) be a 2-relator group. Then D,(G) =
74(G).

Proof. Observe that G has a pre-abelian presentation of the form

G=(x1, ..., Tn, ... | x‘f“)gl, x;(z)&, &gy o)

with & € v (xy, ...) and d(2)|d(1). Then, modulo 74(G), the group D4(G)
consists of the elements
w= [x‘li(l), xg] @12

)

such that
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and »
yr = 27" € 15(G) P ny(G).

Therefore, modulo v4(G), for some z € 72(G), we have

W= [xlli(l)au, :L‘Q] _ [y2, :I,‘Q] _ [Zd(2), 1,2] _ [Z, :L,;l(2>] -1

Theorem 2.25 [Gup92] For any group G, [Dy(G), G] = v5(G).

Proof. In view of Theorem 2.23, it suffices to prove the statement for finite
2-groups. Let G be a finite 2-group, generated by elements xi, ..., x) such
that x?m € v (@) for some d(i) = 2%, with ordering a; > g > -+ > o > 1.
Let w € Dy(G). Theorem 2.22 implies that modulo v4(G), w can be expressed
in the form (2.13), such that the conditions (2.14) and (2.15) are satisfied.
Let h be arbitrary element of G. Then we have the following equivalences
modulo v;(G):

d(i aij — di@) . plaig —
fw, b= [T &Y amn= T] &Y, 0 =
1<i<j<k 1<i<j<k
xc-l(i), h, ;] zi, h, 28 1-ais mod ¥ (G).  (2.16
2 J J 2
1<i<j<k 1<i<j<k

Condition (2.14) implies that
T &9 nagoi= T e hafP@i= T lei b2 ™) mod 45(G);
1<i<j<k 1<i<j<k 1<i<j<k

H [xj, h, xf(i)]’“iﬂ' H [z}, h, xid(i)a”] mod v5(G).

i
1<i<j<k 1<i<j<k

Therefore, by condition (2.15), we have

diai]‘ 7diaij _
[w, h] = H [mi,h,xj() ] H [xj,h,xi” |=

1<i<j<k 1<i<j<k

H [$t7 h, H m;d(s>ast H x;d(t)atr] =
1<t<k 1<s<t t<r<k

H [, by ye] =1 mod v5(G). O

1<t<k

An extensive analysis of the counter-examples to the equality of the fourth
dimension subgroup with the fourth lower central subgroup has been carried
out by M. Hartl [Har].
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Theorem 2.26 (Hartl [Har]; see also [Har98, Theorem 7.2.6, p.72]). Let A =
ZLiopy B Loy B Loy B Ligs, with By < Po < B3 < By and n > 1. Then there exists
a finite nilpotent group G of class 3 with G, ~ A, such that D4(G) # 1 and
[v,2] =1 for every v € (@), = € G, such that xv(G) is a generator of the
summand Zos, in Gap if and only if the following conditions hold:

(Z) /Blvﬂ2 - ﬁlaﬁf’) - 52 2 27
(i4) B3 > n > max{fs, B3 — Bi}-

Moreover, under conditions (i) and (ii), the group G can be chosen to be of
order 2451+352+253+51+n+1‘

2.4 Fifth Dimension Subgroup

The structure of the fifth dimension subgroup has been described by Tahara
[Tah81], and it has been further shown that D$(G) C ~5(G):

Theorem 2.27 (Tahara [Tah81]). For every group G, D5(G)® C ~5(Q).

Analysis of Tahara’s description of the fifth dimension subgroup leads us
to the following result.

Theorem 2.28 For every group G, D5(G)* C 65(G)v5(G).
Let G be a finite group of class 4. Choose the elements

{z1, € G\ %(G)}i-1,...s,
{m2i € %(G) \ 13(G) }izt,.. 1,
{xsi € v3(G) \ 74(G) izt w5
{24 € 1(G) iz, 0

to be such that {x};7,11(G)} forms a basis of v (G)/7+1(G). Let d(i) be the

order of £1;72(G) in G/¥2(G), e(i) the order of x9;v3(G) in v2(G)/v3(G), f(i)
the order of x3;74(G) in 73(G)/74(G). We then have

d(i '
x“(l) - H 'TZJ H xsj Yais Y1 € 11(G), 1 <i < s
1<5<t 1<j<u
le H sz y417 y4z € '74(G) 1 << t;
1<5<t
xsz H l'ic;j, 1 <i <
1<5<v

5511 Jmlj H 335]£c yl]7 yzg € '74(G)= 1<i<y<s.
1<k<u
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We choose the element x;; in such a way that d(i)|d(i + 1), e(i)|e(i + 1),
FOIfGE+1).

Theorem 2.29 (Tahara [Tah81]). With the above notations, the subgroup
D5(G) is equal to the subgroup generated by the elements

id v d(i
H [z17 G) , 1] H H[$2l>$2k]b”v’k H [3311'@)73?1]',33%]1””",

1<i<j<s 1<i<s, 1<k<tk<l 1<i<j<k<s
(2.17)
where
u;, 1 <i<j<s,
vig, 1 <i<s, 1<k <t
Vi, 1<i1<s,1<k<t,
Wijk, 1§Z§j§k‘§87
wij, 1<i<j<k<s,
wij, 1<i<j<k<s,
are integers satisfying the following conditions:
d@j) d(l) o
Usj d(z) 5 + wy;d(1) + w“jd( =0, 1<i<j<s; (2.19)
() o
_ uu( 9 + wij;d (i) + wij;d(j) =0, 1 <i<j<s; (2.20)
wijrd (i) + wipd(j) + wijpd(k) =0, 1 <i <j <k <s; (2.21)

> winbni — Zum ;L b + vid(i) + vle(k) =0, 1<i<s, 1<k<t
i<h

(2.22)

i ilz((Z)) (dg)) + Wiy (d(i)) =0 modd(i), 1<i<j<s; (2.23)

wiij <d(2i)> wl, (d(Qj) =0 modd(i), 1<i<j<s; (2.24)
.. J

mod d(i), 1 <i<j<s; (2.25)

; 0
wjk( (22)> Wi (d(j)>, (T (d(k)) =0 modd(i), 1<i<j<k<t
(2.26)
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d(i " :

Uik( (2)) — Z whiibhk — Z wiihbhk =0 mod (d(z), 6(]11)),
h<i i<h

1<i<s, 1<k<t; (227)

thijbhk + Z wip, ik + Zw;/jhbhk =0 mod (d(i), e(k)),
h<i i<h<j j<h

1<i<j<s 1<k<t (2.298)

di) o dli
=D uni d((h)) o™+ winen — ZUM%CM = virdu—
h<i i<h h<i 2
Z u}gihaggh) — Z wghiaggh) — Z w;gha§9h> =0 mod (d(i), f(1)),

g<i<h g<h<i i<g<h
1<i<s, 1<1<s; (2.29)
> vikbir =0 mod e(k), 1<k <t (2.30)
> vikbia + Y vabi =0 mod e(k), 1<k <I<t (2.31)

Proof of Theorem 2.28. Standard reduction argument shows that it is
enough to consider finite groups. Commutator identities (see Chapter 1, 1.1)
and condition (2.25) imply

d(]) uwd(]) Wi ) Wis dgj)).

s (AU _
, xlj] = [I’M, mlj ][IM, LEU, $1j] ”( 3 )[Ilja T4, I’M} ”( 2
e (26 )
(@13, T1j, T15, T15] ui (9 )[mlj, T14, Ty T14) wig (")

[z

da(j)

d(j s (46 s
(J)][xu, Tij, T1j] wig (Y )[l‘lj, Ti4, T14) uig (7).

[xliv x?;]
(14, 215, T1j, £C1j]7w/”"(dgj))[$1j, X145 Ty, xli]7w21j(d§‘j))~ (2.32)
Observe that

—2w’. . (Y
[$1ja T1iy Tliy xli] w7

(@1, T1is T1is xli]f?’w;“(dgﬂ) = [z1j, T1is 14, xu]igu”(dg‘j))

) (d(3)=1)(d(7)-2)
—UWU; d
= [le, Tig, T1g, T1g) Y () 2

Therefore,
(%15, 14, T1, xli]w'm( ¥ — 1.

Analogically,
/ d(j
[T1i, 15, 215, ﬂflj]wij'j( =1,
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ijd(J ijd(g wjrd(k
[Tl ™, a2 = T[T I ™, wn) [Tl 2w)) =

' gy j<k
uijd(j —ujpd(k
T2 T, )y - B, (238)
J 1<J i<k
where
—ap, (K o (A
B = H([mlj’ L1k, T1k] (% )[xm, T15, 1] e (Y )).
i<k

Also we have

wijd(j) —ujkd(k) 1
[H T4 H L1k s 15 =
1<J i<k

RURTPINCIF IS S o b TR (€) DU « U )

Ez(] Wi qisy Pil E]<k“.7k kl Zz<] Wij g7y Cia Z_7<ku1kck(1 o

[H Loy ngq » 21j] =
l

vj1d(j) +v e(
[ x2ljl xlj deq , T15] = (2.34)
1

d(] V. d( ) v’ e(l) A
—v; ;, 51 J gl aj
I |[x2la T1j, 'rlj A xgl » L | | Loj ) flj”l | T3q > ‘le]’
l l q

d
where Ag; = Zi<j “ij%Ciq - Zj<k UjkClq-
The condition (2.27) implies that

[Tz, 215, 2] () =

l

=N wiiibig =Y "
[Tlwar, w1, wyg]~ S wsba sk wisbin = (2.35)
l
— 1d ) /r d
H[xli; xlj, 551]] Wijj (74)[1-1]_, T1i, xh] iij ( j)
i<j

The condition (2.31) implies that

C:= H H x;}lﬂ7 le
H(H[@u o]0 | [lwar, waw] o) = (2.36)

g U>l U<l
H[Qle’ le/]Zj vjibyy H[Z% IQZ/]Zj vithsy
U'>1 >

[T (zar, waw]ivottie T o, wor]™ = viwbsn = T lwa, wap]?2i vitbiv.

I'>1 >0 U'>1
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The condition (2.29) implies that

e Agj v
D::H[H x;l]le ) iEleH T3, T5] = H (734, zlj]z’ﬂ;’d’ﬁA“ =
Jj ol q

1<g<u,1<j5<s

d(j hj h h h
- Y un R e ¥ wggnad— ¥ wenafM— 3w, alf™
<Jj j

H [l‘gq’ Ilj} g<i<h g<h<j i<gsh =
1<j<s,
1<g<u

d(7) —Uhj d(g) —Wgjh
H[xlh ; 1, 1] H (19 s Tin, T15] 9" (2.37)
h<j g<j<h

d(g) —Wypn; d(g) —w);

1T @37 @, el o I (257 @in, @) “5en.
g<h<j Jj<g<h

. d(i) d(i) d(i)
Since [2; ", Tk, T1j][T1K, 715, T35 |[215, T3

d(i) —wijk _ d(i)1w; d(i) —wijk
H [2%; s Tk, 1g] R = H [Tk, 215, 2y ]F H [1; 7 T, T1k] IR

i<j<k i<j<k i<j<k

, x1,] = 1, we have

We change the subscripts g, h in (2.37) by appropriate subscripts 4, j, k. The
conditions (2.20) and (2.26) then imply

—w;;d(j d(i)qw;
D = [lwsi, @iy, 20] 0?9 T lwans @y, 2]

i<j i<j<k

d(i) Cows d(i) —
[T @57 @y, w2 I 0 2, @) = (2.38)
i<j<k j<isk

d(5)1—uiy d(i)qw;;

[Tz, @y, 5770 1] o, @y, 257700
i<j i<j<k

d(i) —2w; ; d(i)w’. .,
H [2%; 7 @15, T1k] 7 H [Tk, 214, L4 ]k
i<j<k j<i<k

Hence

5 —w;d(i —w”,.d(j
¢F=B-C-D- H[xli, T1j, T1y) VD [y g, @) a0
i<j

H H[%u YR H [mfz(i)7 T, T1p) P

1<i<s, 1<k<t k<l 1<i<j<k<s
oy ((OR) L (d(k)
= H([l’lj, Tik, Tik) ugi (% )[x1k, T4, T1j] (") ))
j<k
[Tz, @1, @] 59O g, @y, @]9
1<j
d(§)1—w, - d(i dii 3
[Tl 215, zg) I =, 2, aiy i 1T [z, 21, ]
i<j i<j<k i<j<k

(2.39)
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= H([$1j7 Ty T1g) U [y Ty, 14] kA

i<k
d(@)w; ik d(7) 1w’ .
I s 2, 2310 1T g, g, 237140
i<j<k i<j<k
d(k)jw', () w5 v ()
= [T (s, man, 2150 frn, 21z, 1555 [wap, @1, 25, 1)~ ().
j<k
d(i)qw,; d(G)qw),,
H [T1k, T1j, Ty ] H [T1k, @15, Ty ] ik
1<j<k 1<j<k
_ d(k)yw’, d(3)1wi 5 d(i)w; e
= [z, 2p, @100 g, @, 2557190 T [k, @y, 25700
i<k i<j<k
().,
H [xlkvmljvxu ] gk,
i<j<k

since [z1x, ©15, 215, £C1j]2w“’“(dgj)) =1, and

‘ : g dlE) (d()
w1k, 21, 215, 2 () = (o, @y, @, 2] 7P () =1

by (2.23). Consequently, g*> € d,(G), and the proof is complete. [J

Proof of Theorem 2.27. Multiplying [x1;, 1, 21| by left hand side of
(2.28) and taking the product over all ¢ < j and k, we obtain the following:

(i) w,, (), (k)
1= H [x15, 1k, 2f; ]9 H (@15, @1k, yf ] 0w H (2105 @15, 2y, ] 0%

isi<k i<j<k i<j<k
wigjd(i W' . d(i
= ([T, 15, 2O l1i, @15, 21, "0579).
i<j
wijrd(i d(j)w’ .,
H (w1, @ig, 1] H [T1iy T1k, Ty ]k
i<j<k i<j<k
W) d()+wijrpd(i
H (215, @15, @) Wk I TR0
i<j<k
wiq;d (e w . .d(q
= ([Tlw1is 215 20 O [1i, @15, @15]"5599).
i<j

(i (i W), d(j
1T 215 2y 20”9 T g, w0 2] o T g e, 2] o4

i<j<k i<j<k i<j<k
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Therefore,
w' ., d(j
H [T 1k, T1j5, x1;) ik G)
i<j<k
’

= (H[IM, 15, $1i]w”jd<i) (214, T1j, xlj]w“jd(j)) H (@15, Tk, 5C1i]“’”"'d<i)-

<] i<j<k

ind(i
1T [, @i, @] ooe®

i<j<k

Now consider the element g* given in (2.39):

d(k ) d(j .
7 = [y, wan 201505 g, vy, )20,

i<k
H (218, 215, xf§i>]w”k H [Tk, T1j5 xii;j)]w;jk
sk i<j<k
TR d3) 1w (i) ws;
= 1_‘[([551].7 T1k, l'll(c )}’w;kk [mlk, T1j, l'lj('J)]w”k) H [l'lka L1, xlzw]w”k,
Ik i<j<k
(T Ty w15, 20l 9O [y, @15, 215]"50049).- (2.40)
i<j
H (215, 21k, w2] k4D H [215, T14, T1p]0iaw40
i<j<k i i<k
= ([Tl w1is 20a) 9O s, @y, 205?055 4) [T (215, 21, 22e] 540
i<j i<j<k

Analogously, multiplying [zok, 15, 21;] by left hand side of (2.28) and
taking the product over all i < j and k, we obtain the following:

d(i) i d(j) w' d(k) w” .,
1= H [23; s T1ks 15]"F H [931j  T1k, T14] 9k H (1) s T1js T1] ik

i<j<k i<j<k i<j<k
d(i) w; w, . d(j
= H [21; s T, T15]"* H (217, T1, 215]“iax ).
i<j<k i<j<k
wiipd(i)+w,, d(F
IT (215, @ik, @y ooe O e @
i<j<k
_ d(i) Wi wijrd(
= H[xu s T1j, 1) H (@15, @1k, 215]" (0.
i<j i<j<k

wijpd(i . d(j
H (1, T1g, 2145]"* ® H (15, T1k, @15] 0w )
i<j<k i<j<k
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130
Hence
2w .. d(j
H [xlk7 xlj, xli] ijk (J)
i<j<k
d(@) iij iikd(i iied(i
- H[xlz‘ s L1gy L] H 215, T1k, 15] 4D H (215, T1k, 22] "0,
i<y i<j<k i<j<k

Now consider the element g* obtained by squaring the element given in (2.39):
4= d(k)j2uw’, d(§)2w;
9 = H([mlja Tk, Typ |0 [Tk, 21, Ty |Fiik ).
i<k
42wy d(j)12u,
H [Ilk, T1j, xli ] Wijk H [xlka xlja ‘Tli ] Wy
i<j<k i<k
dik) 2w} (i) 4w, (i) 2,5
- H([xlj’ Tig, Ty )R [T1g, D1y, 150 ] TR) H [T1, 215, 7, ]k
I<k i<j<k
0 (i nd(i
H[wli » L1y ] H (@15, 1k, 1] H (215, T1k, 213] "D
i<j i<j<k i<j<k
dg)2w]; d(i)13w;i; sied(i
:H([xliv Tj, 2y T [T, 2, 2T H (15, @14, 21p] 09w,
< 1<j<k
(2.41)

Multiplying (2.40) and (2.41), we obtain
9’ = H([dfu‘, 155 xfg(‘j)]4w;jj [, i, @iy 0.
i<j

The condition (2.27) implies that
i W j w” d(i
H[xi( )7 T4, 215" [xil;]), Ty, 1] = H%k( (2)> [Tok, T1is T14].
1<J i,k
Conditions (2.19), (2.20), (2.22) imply that

2w;j5d(i 2w, . d(j
1= H[ili, T1j, Ilj] g d( >[g31j’ T4, xli] 7iA()

i<j
= —2wj;;d(j)~uijd(j —2w;;;d(i)+u;;d(j
- H[ZEM, 331]', xlj} 33 (J) J (])[z1j7 X1i, xli] J () J (J)
i<j
—2wj;;d(j —2w,;;d(i
= (H[l’u, 1, 1) 20D [y, @4, @] 20 d).
i<j
—uijd(j —u;,d(g
H[Scu, 215, 215]) N [y, @, )90
i<j
—2w/, . .d(j —2w;;d(2
= H[mliv x5, T15] I (J)[xljv T1q, T14) 500,
i<j

Hence ¢ =1. 0
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Problem 2.30 If G is a nilpotent group of class three, then must D5(G) be
trivial?

We illustrate the complexity of the above problem by verifying it for a
group, without dimension property, considered by Gupta-Passi ([Gup87c],
p.76). Let us recall the construction of this group.

Let F' be the free group with basis x1, x9, 3, x4 and let R be the normal
subgroup generated by

T = $g4[x47 1'3]32, To = xg4[$47 $2]74[1'4, $1]727 r3 = Z%G[:&b $3}4[$4, xl]il,

Ty = 96411[!104, 3?3]2[3?47 562], Ts = [CL‘47 963]64[334, z3, 563]32»

e = [334’ $2]16[334, Z2, 332]87 rr = [3347 331]4[304, r1, $1]2,
s = (13, 22)'O[x4, 2o, 2], vo = [23, 1) * 24, W3, 23],

_ 4 —1 _ 4 -1
TIO - [.’L‘Q, xl] [$4, ./L'Q, .’I:Q] ’ Tll - [1'47 373, xS] [$47 fL'Q, .’L'Q] b

rig = [T4, Ta, 152]4[$4, Ty, 901]71, rig = [z4, 21, $1]4,

74(F), and all commutators [z;, x;, zx](1 <4, j, k < 4) which do not belong
to

([xa, z1, x1], (24, T2, T], [24, T3, T3])7a(F).

Then the group
G:=F/R (2.42)

is a finite 2-group of class 3 with the non-identity element
wy =[5!, 2?25, 21][23°, @1]’R

in D4(G)
With the notations of Theorem 2.29, we choose

T11 = X1, T12 = T2, T13 = T3, T14 = T4,
To1 = [$1, 332], To2 = [9017 »Ts], Ta3 = [551, $4],
Ty = [T, T3], Tos = [T2, 4, T2s = [3, 4],

T3 = [1’4) x3, 1[53].
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For this group we have the following constants:

d(1) =4, d(2) = 16, d(3) = 64, d(4) = 64,

e(l) =4, e(2) =4, e(3) =4, e(4) = 16, e(5) = 16, e(6) = 64,
bis =1, big = 2, bog = —1, bys = 4,

b3z = 2, bss = —4, bys = 32, all other b;; are zero,

diy = —4, dy = =2, d31 = 32, dy1 = —4, d51 = 32, dg1 = 32,

all other d;; are zero,

agm =—4 04523) =—4 a§13) = —2, all other aﬁij) are zero,

3 )

£(1) = 64.

Theorem 2.31 For the group G defined by the presentation (2.42),

Ds(G) = 1.

Proof. With the constants d(7), e(i), f(i), d;j, described above, let
/ / iz
uija Viky Uik wijka wijk7 wijkv

be constants satisfying the conditions (2.18)-(2.31), and let g be the corre-
sponding element, defined by (2.17). Since the group G is nilpotent of class
3, the element g can be written as

i d(g
9= H [z, (])v 1;];

1<i<j<s

by Theorem 2.29, the fifth dimension subgroup D;(G) is generated by
such elements. From the defining relations of the group G, it follows that

[x?@)’ x4] =1, i =1, 2, 3; therefore,

}641“3 [ ()’4u23 .

g = w1, 2] 02wy, a3 Ta, T3]

Consider the condition (2.22) for the case i = 1, k = 6:

U19bog + U14bsg + 'Ul(;d(].) + U/we(6) = 4uys + 32u14 + 4vig + 64’[)/16 =0.
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It follows that
U2 +v16 =0 mod 4.

Next, consider the condition (2.30) for the case k = 6, we have:

2016 + 4vog + 32046 =0 mod 64,

and we have
V16 + 2v96 = 0 mod 16.

From the condition (2.31) for the case k = 3, | = 6, we have:
2013 + 4v9g + 32043 — Vo + 2036 =0  mod 4,
and thus we conclude that
v9s =0 mod 2.
The conditions (2.43), (2.44), (2.45) then imply that
ups =0 mod 4.
It is clear from the defining relations of the group G that
[21, 22]% = [y, x3, 23] = 1.
Therefore,

g = [w1, @3]%5 [y, @3] = [0t 2] =

[9547 T3, T3

Now consider the condition (2.22) for the case i = 3, k = 6. We have

32U34 - 32U13 — 16’LL23 + 641136 + 641}56 =0.

Hence,
32’(1,34 — 3ZU13 — 16UQ3 =0 mod 64.

Note that the condition (2.20) for the case i = 3, j = 4, implies that

64
u34<2> =0 mod 64;

hence
uzs =0 mod 2.

Congruences (2.47) and (2.48) imply that

32u13 + 16usg =0 mod 64.

133

(2.43)

(2.44)

(2.45)

(2.46)

] —32u13—16us _ x§132u1;;716u23 )

(2.47)

(2.48)
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Therefore, we have

g= [fE4, T3, m3]732u137161143 =1 0O

Problem 2.32 Is it true that [D5(G), G, G] = v:(G) for every group G?¢

2.5 Quasi-varieties of Groups

Our discussion in this and the next section follows [Mik06c].

Recall that a variety V of groups is a class of groups defined by a set
of identities. Let D,, (n > 2) denote the class of groups with trivial nth
dimension subgroup. The existence of groups without dimension property
shows that D,, is not a variety of groups for n > 4, since a variety of groups is
always quotient closed. The classes D,,, however, are quasi-varieties (Theorem
2.35). We recall in this section some of the basic notions about quasi-varieties.

Let F, be a free group of countable rank with basis {z;, a9, ...} and
wi, ..., Wk, v some words in F. A quasi-identity is a formal implication:
(wy=1& ... &w,=1)= (v=1). (2.49)

A quasi-identity (2.49) is said to hold in a given group G if it is a true
implication for every substitution z; = ¢;, ¢; € G.

A quasi-variety Vg is a class of groups defined by a set S of quasi-identities,
i.e., Vg is the class of all groups in which every quasi-identity from S holds.

Example 2.33

The class 7 of all torsion-free groups is a quasi-variety; it is defined by the
infinite set of quasi-identities

P =1=z=1,
where p runs over the set of all primes. Trivially, 7; is not a variety.

Recall that a non-empty class F of subsets of a given set I is called a filter
on [ if the following conditions are satisfied:

(i) 0¢rF;
(i) Ac F,BEF = ANBE€ F;
(i) Ac F, ACB = BeF.

Let {A;}ier be a family of groups indexed by the elements of a set I, and
F a filter on I. Let A be the Cartesian product
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A:HAi.

el

For a given a € A, denote by a; the ith component of a in A. Consider the
relation ~# on A defined by setting

a~gbifand only if {i | a; =b;} € F, a, b€ A.

It follows directly from the properties of a filter that this relation is, in fact,
an equivalence relation. The filtered product of the family {A;}icr of groups,
with respect to the filter F, is, by definition, the quotient group

HAz = A/ ~NFE .
]_'

The following result of A. I. Mal’cev gives a characterization of quasi-
varieties of groups.

Theorem 2.34 (Mal'cev [Mal70]). A class X of groups is a quasi-variety if
and only if it contains the trivial group and is closed under subgroups and
filtered products.

Recall that D,, (n > 2) denotes the class of groups with trivial nth dimen-
sion subgroup. For n = 2, and 3, the class D,, coincides with the variety 91,
of nilpotent groups of nilpotency class < n. On the other hand, for all n > 4,
as already mentioned, the existence of groups without dimension property
shows that the class D,, is not a variety of groups. However, there is the
following result:

Theorem 2.35 (Plotkin [Plo71]). For all n > 1, the class Dy, is a quasi-
variety of groups.

Proof. The fact that the class D,,, n > 1, is nonempty and closed under
subgroups is obvious.

Let {4;}icr be a family of groups in the class D,,, and let F be a filter
on I. Consider the Cartesian product A = [[,.; A;. Let N be the normal
subgroup of A consisting of elements (g;)icr with J:={i €I | g; =1} € F.
If [[7 Ai ¢ D, then there exists an element g € A such that

g—lea"+> (Y — Da, (2.50)

s€S
where the sum is finite, as € Z[A], and y; € N. Define

Js := {i € I | the ith component of y, is 1}.
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By definition, J; € F. Since the set .S in the sum (2.50) is finite, we have

J=(J.eF

For j € J, projecting g to the j-th component, we get g; € Dy,(A;) and hence
g; =1, j € J. Consider the set

K={iel|g=1)}.

Since J C K, we conclude that K € F. Hence g € N and therefore, [[-4i€
D,,. Consequently, the class D,, is closed under filtered products. Hence, by
Mal’cev’s criterion (Theorem 2.34), the class D,, is a quasi-variety. O

In view of Theorem 2.22 the quasi-variety D, is defined by the following
implications:

Given integers k, ¢;, di; (1 <14, j < k) and elements g1, ... , g of the
group G, if the following conditions hold

1) 2¢idy; +2%9dy; =0 (1< i, j < k),
2) if ¢; = ¢;, then d;; is even,
) gi" €m(G) (1<i<k),

) 15 977 dij € 72(G)?7 13(G) (1 < j < k),
then

(
(
(3
(4

k k )
IT 11 g g1 = 1.
i=1 j—it1

Clearly, this set of implications is equivalent to a suitable set of quasi-
identities.

A quasi-variety Q is said to be finitely based if it can be defined by a finite
number of quasi-identities.

Let Q be a quasi-variety of groups. Then the rank rk(Q) of Q is the
minimal number n (which may be infinite) such that there exists a system of
quasi-identities

(wi=1& .. &w, =1)= (v;=1),i=1,2,... (2.51)
such that all words wf , v; are from a free group F;, of rank n.

Example 2.36

(i) For the quasi-variety 7, of torsion-free groups, rk(7y) = 1.
(ii) The quasi-variety defined by the quasi-identity

([z, ¥ =1) = ([z, 9] = 1)

clearly has rank 2.
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Proposition 2.37 Let Q be a quasi-variety and G a group. Then G € Q if
and only if all rk(Q)-generated subgroups of G lie in Q.

Proof. One side is clear, due to the fact that quasi-varieties are closed under
the operation of taking subgroups.

Suppose G is a group such that all its rk(Q)-generated subgroups lie in Q.
Consider the quasi-identity system (2.51) which defines Q and the total num-
ber of variables entering in (2.51) is rk(Q), i.e., all words w, v; in (2.51) are
from a free group of rank rk(Q). Then (2.51) holds for any choice of elements
g1s -5 grk(g) from G, since it holds for any elements from the subgroup
in G generated by g1, ..., grk(o) (which is at most rk(Q)-generated. Hence
(2.51) holds for all possible substitutions of elements from G and G € Q by
definition. [

The following observation is immediate:

Proposition 2.38 If Q is finitely based, then rk(Q) is finite.

The next result provides a method for showing that a given quasi-variety
is not finitely based.

Proposition 2.39 Let Q be a quasi-variety such that there exists a sequence
of finitely-generated groups G;, i = 1,2, ..., such that the following condi-
tions are satisfied:

(1) G; ¢ Q.
(i) For any i there exists f(i) such that all f(i)-generated subgroups of G; lie in Q.

(#1) The function f(i) is not bounded, i.e., f(i) — oo for i — oo.

Then rk(Q) = oo and hence Q is not finitely based.

Proof. Suppose rk(Q) < oo. Then, by (iii), there exists an integer 7 that
f@) > rk(Q). Since every f(i)-generated subgroup of G; lies in Q, every
rk(Q)-generated subgroup also lies in Q. Therefore, G; € Q by Proposition
2.37; but this contradicts (i). Hence rk(Q) = oo, and Q is not finitely based.

O

2.6 The Quasi-variety Dy

For the study of the quasi-variety Dy, recall that the precise structure of the
fourth dimension subgroup for finitely generated nilpotent groups of class 3 is
given by Theorem 2.22. Tt has been shown by Mikhailov-Passi [Mik06c¢] that
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the quasi-variety D, is not finitely based, thus answering a problem of Plotkin
([Plo83], p. 144, Probelm 12.3.2). The proof requires a technical result about
certain finite groups of class 2.

Lemma 2.40 Let n, s be natural numbers,
G=(x1, ..., 29 | i =1(1<i<2n))
and Il = G /v3(G). If
(21, 2o)* ... [on_1, 2on] = [h1, ho]... [hor_1, hai, (2.52)

with 0 < k < s, hy, ..., hoy €11, then | > n.
In particular, if H be an m-generator subgroup of II and

[z1, $2]k o xeno, $2n]k € v (H),

then (Z’) > n.

Proof. Suppose

hi ="' oyt mod (D),

where 0 < a;,; < 5,1 <4 < 2[,1 < j < 2n. Substituting in the equation
(2.52), we have the following equation in II:

[$17 932]k S [I2n—1, Ign]k = H [%‘7 l”j]bija (2~53)
1<i<j<2n
where l
bij = Z(azrq,iaw,j — Q2r—1, jA2r, i)

r=1

Observe that vo(II) = [[,<; <o, (i, z;]) and ([z;, z;]) is a cyclic group of
order s. Therefore, from equation (2.53), comparing the exponents of the
generators [x;, x;], 1 <7 < j < 2n of the summands, we have:

bay—1,0 =k mods, 1<t<mn, (2.54)

b; ;=0 mods, 1<i<j<2n, (4,))#(2t—1,2t). (2.55)

Let M, 4(Zs) denote the set of p x ¢ matrices over the ring Z, of integers
mod s. Let A = (a;, j)1<i<at, 1<j<on € Moy, 9n(Zs) and define a matrix D €
Moy, 2(Zs) as follows:

=p=n, 1>4>~
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where
Q2q,2 —a2¢g-1,2
Dp,q = ( 9, <p 4 p) S M2’2(ZS).

—Q2q,2p—1 A2¢—1,2p—1

A straightforward verification shows that
DA = kl?n,?na

where Io, 2 € Moy, on(Zs) is the identity matrix, and it follows that [ > n.
Next let H be an m-generator subgroup of II. It is easy to see that every

element of v9(H) can be expressed as a product of at most (7;) commutators

of elements in H, since H is nilpotent of class 2. The second assertion in

Lemma thus follows from the preceding result. [

Theorem 2.41 The quasi-variety Dy is not finitely based.

Proof. For n > 5, let II = G(n)/74(G(n)) be the lower central quotient
of the group considered in Example 2.7. We assert that every m-generator
subgroup H of II, with (7}') < n, has the property that Dy(H) = 1. Clearly
then rk(Ds) = oo (by Proposition 2.39) and the assertion in Theorem 2.41
is an immediate consequence. We conitnue to denote by n z;, y; the set of
generators of II.

Let H be an m-generator subgroup of IT and hq, ..., h,, a set of generators
of H. Assume that, modulo v (H), hy, ..., hi (k < m) are of finite order and
hk+1, - .-, hy, are of infinite order.

For g € II, let g denote the image of g in II/yo(II) under the natural
projection. Observe from the structure of II that the torsion subgroup of
IT/~,(II) is equal to

(Z1) © (2) © (T3) = Zy © Zns © Zgs-

By suitably replacing hy, ..., hg, if necessary, we can assume that

Lo e hs b1 Lo 3,1
hlzfﬂl Ty Ty )\1,h2:1’1 Ty )\2, hgzl'l )\3,

hj =X (4<j<k),

where li,j €L, \; € Hﬁ'yg(H) (1 <1< k)
Let d(i) be the order of h; modulo v, (H). Then, in particular,

I5.1d(3) =0 mod 4, (2.56)

lg,gd(Q) =0 mod 16. (257)

We can assume also that

d(k)|d(k — 1)|...]d(2)|d(1).
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Therefore, by Theorem 2.22, the group D4(H) consists of the following
elements:
w = H [h(zi(l)a hj}aija
1<i<j<k
where the integers a;; satisfy the conditions (2.14) and (2.15).
We have, for j > 4, [h?(i), hj] = [h0-l<i), Aj] = 1; therefore,

7

w— [h‘f“), hy)®2 [hil“), AKE [hg(z), hg)®® =
[hy, hAMae pdMan) pd@) p qas (9 5g)
Since

y= T #"™ €@y by (2.15),
1<j<k

we have,
w = [hh yﬂ[hg(z), h3]a23 _ [hg@), hg}azx.
We claim that [hém), hs)®s = 1.
Consider the element hs = xlf’l)\g. We have

l3.1d(3)\d WUij
1,13, ())\3(3) _ H [h“ h]} iy, (259)

1<i<j<m

for some v € y3(II) and u;; € Z.
Let E be the normal subgroup in II generated by xo, 3, Y, Y3, [z1, Y;] (j €
{1, 4,5}), [Ya, Y;] (4, 5 € {1, 4, 5}, i # j) and 3(II), where
Yi = {Y@i-2n+1> -5 Y2int, i =1, ..., 5.

Let

S = <.’II1, }/17 }/47 }/5 | mzl1 = 51,(77,)7 .’171_32 = gi,ﬁ(n)a x1_64 = gjl(ny
(1, Yi]=1(ie{1,4,5}),[Y;, V5] =1 (i, g € {1, 4,5}, i # 7)), (2.60)
We note that
II/E ~ S/v3(S).

Let p : IT — S/~3(S) be the composition of the projections IT — II/E and
II/E — S/v3(S). Applying the projection p to the equation (2.59) in II, we
have the following equation in S/v3(S):

xllﬁ,ld(B)p()\l)d(S) — H[pl(hi), pr ()], (2.61)

i<j
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Note that
S/73(5) = ((x1) @ V1/73(N1) @ Va/v3(Va) @ V5/73(Vs)) /N,
where );, 1 <17 <5 is a free group with basis Y;,
N = (2} (&1 ()» &1, (i (m)> 1. ()55 (m))-
Therefore (2.61) implies that in the direct product

YV =V1/13(N) @ Vi/13(Vs) B Vs /73 (Vs).
We have
lg’ld(?)) =0 mod 4, (262)
and

l3,1d(3)
SLLPTE : uij
&1, (n) ul )(fi (&) (€18 &) = H (21, 25]"4, (2.63)

1<i<j<m

for some integers ki, ko and elements 1 € v(Y), z; € Y, 1 < i < m. Pro-
jecting (2.63) to each of the three summands of ) we have the following three
equations:

o l31d(3
il(m/ii(?) = H (23,1, 25,1]"7, in Vi /v3(QN), di = %U + 8k + 16ko,
1<i<j<m

(2.64)

St =TT s al™s, in 2/3O0), di =16k, (265)
1<i<j<m

&ty = I [z 250", in Vs/35(05), ds = 64ks, (2.66)
1<i<j<m

for some p11 4 € (Vi) /v3(Vs), zi,0 € Vi/v3(W), 1 <i<m, 1l e {1, 4,5}

Case (a): l3,1 is odd.
In view of (2.62), we have d(3) = 4s for some integer s. Let

Zi=(Yi |y =1 (i €Yi), (1)),

and p; : Vi/13()i) — Z; be the natural projection, i € {1, 4, 5}.
Projecting the equations (2.64), (2.65) and (2.66) into Z, Z,, Zs respectively,
we conclude, by an application of Lemma 2.40, that

d; =0 mod 4s (i € {1, 4, 5}).
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From (2.64) and (2.65), we therefore have

l3,18 + 8]€1 + 16]€2 =0 mod 48, (267)
16k; =0 mod 4s. (2.68)

It follows easily that s =0 mod 16, and consequently,
d(3) =0 mod 64.

Let d(3) = 64f, f € Z, and suppose d(2) = d(3)c (¢ € Z) (recall that
d(3)|d(2)). Then we have

w = [hg@)’ hg]a23 — [h27 hg(ﬂ%)]ca23 _

[hg, Ifli4l3,1f>\g4f}cazg _ [h%ﬁ, xllllrs,lf/\gf]cazs.

Since hi® € vo(I1), it follows that w = 1.

Case (b): l3,1 =2l and | is odd. We assert that in this case

d(3)=0 mod 16. (2.69)
Since xfld(?’) € 72(II), we have d(3) = 2r for some r > 0. Projecting the square
of the equation (2.64) to Z; under the map p;, we conclude, by an application
of Lemma 2.40, that 2d; =0 mod 4r.
Therefore we have

2dy; = 2lr + 16k + 32ko =0 mod 4r,

which implies that » =0 mod 8, and consequently, we have (2.69).
Now consider the element hy = 2% Ay. We have

d(2 lyy los d(2 .
h2( )= (a1 @y )d(2>)‘2( ' = H [hi, )", (2.70)

1<i<j<m

for some v € y3(II) and v;; € Z.
Let I be the normal subgroup in IT generated by z1, x3, Y1, Y4, [z2, Yj], j €
{27 37 5})7 [}/17 )/J] (Z7 .7 S {27 37 5}7 { 7& ]) and 73(1_[) Let

Q = (w2, Yo, Y, Y5 | 23° = & (n), &5 () = &3, (s &5, (n) = &b (m))-
Note that I/ ~ Q/v3(Q) and

Q/13(Q) =~ ((x2) @ Vo/v3(d2) ® V3/73(V3) ® Vs /73(V5)) /M,

where M = (x%‘}f;l(n), & (n)fgfn), & (n)£§4(n)>. Let g : IT — @ be the natural
projection. Applying ¢ to the equation (2.70), we have the following equation
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g(22)* 1P q(0)"® =TT la(ha), a(hy)]" (2.71)

1<i<j<m
in the group @/v3(Q). This equation implies that, in the direct product

V= Vo /v3(V2) @ V3/v3(V3) @ Vs /v3(Vs5),

we have (using (2.57))

ly, 2d(2)
* d(2 — m 4 mo __ Vi
€, (n) ug! )(53, (s m) ™ (3, &8y ™ = [T [vi v, (2.72)

1<i<j<m

for some integers my, my and the elements ps € % (V), v; € V, 1 < i < m.
Projecting (2.72) to the first summand of V, we have the following equation:

e d(2
2,1(71)“27(1): 1T i v,

1<i<j<m

where o (o
el = %6() + 2my + 8ma,

and po.1 € 12(V2)/13(D%), vi1 € Vo/v3(D2), 1 < i < m. Since d(3)|d(2),
therefore d(2) = 16t for some t. An application of Lemma 2.40 once again
shows that e; =0 mod 16t; consequently, I ot is even and so Iy 2d(2) = 32f
for some f. Hence

w = [h5®, gl = (" @y M) ™, af) = [ap A, 2 Y]

_ [ la,2 $l3,ld(2)]a23 _ [ I3,112,2d(2) (154lf]u,23

xo?, Xy Ta, T 1% = [29,

= [wa, §°01 = [23°, & 1 = 1.
Case (c): l3,1 =0 mod 4. In this case hy € 12(II), since z] € Y2 (II); there-
fore, w = 1.

Thus, in all cases, w = 1, and consequently, Dy(H) = 1. This completes the
proof. [J

2.7 Dimension Quotients

If G is a finite p-group, p odd, then D,(G) = v4(G) [Pas68a]. Refuting the
long standing dimension conjecture that D,,(G) = ~,(G) always, Rips [Rip72]
constructed a 2-group (Example 2.1) with D4(G) # 74(G) = 1. Extending
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these results N. Gupta has shown that odd prime power groups have the
dimension property [Gup02] and, for every n > 4, there exist 2-groups with
D, (G) # v, (G) [Gup90]. For odd prime p, the dimension property was earlier
shown to hold for metabelian p-groups by Gupta [Gup91b] and for centre-
by-metabelian p-groups by Gupta-Gupta-Passi [Gup94]. The result for odd
prime power groups is an immediate consequence of the following result.

Theorem 2.42 (N. Gupta [Gup02]). The nth dimension quotient of a finite
nilpotent group has exponent dividing 2!, where 1 is the least natural number
such that 2! > n.

Let n > 3 be an arbitrary but fized integer and let G be a finite nilpotent
group with 7, (G) = 1. Choose a non-cyclic free presentation (see [Mag66],
Theorem 3.5, p. 140)

1-R—-F—G—1,

where F' is the free group with basis {x1, ..., z,,}, m > 2, and R is the
normal closure in I’ of the set of relators {xf(l)fl, ceey xfy(lm)fm} U T such
that e(i) > 1, & € [F, F| and T is a finite subset of [F, F].

Let [ be the least positive integer such that 2! > n. Let

G =60(G) 2 6,(G) ... D61(G) 2 6(G) =1

be the derived series of G. Then §;(G) ~ 6, (F)R/R, 0 < k <1 —1, and
therefore we can have a presentation

1—-R® - F® L 5.(G)—1

where F(®) is a free subgroup of the kth derived subgroup 6x(F) of F with
ordered basis B(k) = {k,1, ---, Thymy }» Mk > 2, R™) is the normal clo-
sure in F%) of the set of relators {mz(ﬁ 1)&6’17 R xZSZ’iTk)fk’mk} U T}, with
ek, i) > 1, &.; € [F®), F®] and T}, ¢ [F*), F(®)] a finite subset. Further-
more, it is possible to define a weight function and a weight-preserving order
on the set Ui B(k). To this end, we need the following basic results.

Lemma 2.43 If S is a set of generators of a free group F which is linearly
independent modulo [F, F|, then S is a basis of F.

Proof. Let X be a set equinumerous with S and o : X — S a bijec-
tion. Let § be the free group on X. Then the map « extends to a homo-
morphism & : § — F. Since S generates F' and is linearly independent
modulo [F, F], the homomorphism @ is an epimorhism and the induced ho-
momorphism §/[§, ] — F/[F, F] is an isomorphism. By Theorem 1.76,
the induced homomorphisms §/v,(§) — F/ym(F), m > 2, are all isomor-
phisms, since, both F' and § being free, Hy(§) = H2(F') = 0. Hence ker(a) C
Y0 (§) = 1. It thus follows that & is an isomorphism, and so S is a free set of
generators of F. (I
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Lemma 2.44 Let B be an ordered basis of a free group F. Then the basic
commutators
O(t) = [y17 Y2, -y yt]a Yi € Ba t> 25

satisfying y1 > yo < y3 < ... <y are linearly independent modulo §o(F). O
Proof. Let a = Z[F]|A(6;(F)). Consider the Magnus embedding
0:01(F)/02(F) — f/fa, x62(F) — (x — 1) + fa, = € §;(F). (2.73)

Suppose we have an inclusion

m
[T57 € o), (2.74)
i=1

where yi, @ =1, 2, ..., m, are left-normed commutators [y;1, Yi2, - - -, Yit,)

satisfying yi1 > yi2 < ... < y;,. On applying 6, we then have

m

Z([yil, vio) = D(yis — 1) ... (yir, — 1) =0 mod fa. (2.75)
i=1

Since f is a free right Z[F]-module with basis B — 1, it follows that

Z’I’L(Yi)(yig —1)...(¥im —1) =0 mod a,

where the sum is taken over all ¢ for which the first entry y;; in y; is the
same. Since the elements (y; — )(y2 — 1) ... (v — 1), 11 < 92 < ...y, with
yi’s in B are linearly independent modulo a, it follows that n(y;) = 0 for all
1=1,2,....m. O

The chain
F=FO>5FW5...5F0 =1} (2.76)
can be constructed inductively as follows. Let the basis {x1, ..., 2} of
F = F be renamed as B(0) = {1,...,Z0m,} by defining my = m and
setting zo1 = @1, ... , Tom, = Tm. To each basis element z; in B(0), we
assign weight 1:
Wt(.’EU’i) =1fori= ]., ey My

Having defined, for k > 1, the subgroup F*~1 with an ordered basis
B(k — 1) = {xk,l,l, . ,:L’kfl’mkil}
satisfying xg_1,; < Tg—1,i41 and wt(zg_1,;) <nfori=1, ..., my_1, to define

the subgroup F'®) with a weight preserving ordered basis, list the finite set
B(k) of all left-normed basic commutators of the form
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C(t):[yl,y27...,yt],yiEB(kJ—l),tZQ, (277)

satisfying 4 > yo < --- <y and wt(y) + --- + wt(y;) < n. Let F*) be
the subgroup generated by B(k). By Lemmas 2.43 and 2.44 the commutators
C(t) constitute a free basis of F*). Now define

wt(C(t)) = wt(y1) + - - + wt(yy).

Define any weight-preserving order relation on the set B(k) and relabel its
elements following this order to obtain the basis

B(k> = {mk,h s awk,m(k)} (278)

of the subgroup F*).
Let k € {0,1,...,0 — 1} be arbitrary but fixed. In the free group rings
Z[F®)] set

rk) = Z[F(k)](R(’“) -1),
£k = Zospan{(yi' —1)... (yf' = 1) |t > 2} (2.79)
with y; € B(k) satisfying wt(y1) + - - - + wt(y;) > n.

Next, define the kth partial dimension subgroup by
Dy (RW) = F® (1 4 ¢k) 4 00 (2.80)

and the kth partial lower central subgroup 7y (F (k)) to be the normal closure
of the set

{[yla 7yt]7yiEB(k)7t22ayl>y2§"'§yt}7

where wt(y1) +- - - +wt(y:) > nand wt(y) +- - -+ wt(ye—1) < n. We thus have
the following subnormal chain of subgroups:
Dy (R) 2 Dy (RY) 2 -+ 2 Dy (RY) = 1 (2.81)

where clearly RU“)'y(n)(F(k)) < D(n)(R(k)).

The main result in [Gup02] is the following

Theorem 2.45 For each k € {0, 1, ...,1— 1},

Dy (R*)?2 € RF) () (FR)) Dy (RFY).

Theorem 2.42 is an immediate consequence of the above result. For, let
w e FN(l+r+f"). Then w—1 € v + £ and w € D, (RY).
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Theorem 2.45 implies that there exist elements
90 € RO, (F0), g1 € R v (FW), ..., gioy € RV, (FUY)
such that
(o ((wg0)’g1)* .. g =1
and, since R%)~y(,, (F¥)) C Ry, (F) for each k, Theorem 2.42 follows.

If G is a group whose lower central factors v, (G)/vn+1(G) are all torsion-
free, then G has the dimension property (see [Pas79], p.48). Thus, in par-
ticular, free nilpotent groups and the free poly-nilpotent groups have the
dimension property.

Theorem 2.46 (Kuz'min [Kuz96]). If G is an extension of a group whose
lower central quotients are torsion-free by an abelian group, then G has the
dimension property.

It is known [Gup73] that the lower central factors of the free centre-by-
metabelian group are, in general, not torsion-free. However, we have the
following

Theorem 2.47 (Gupta-Levin [Gup86]). Free centre-by-metabelian groups
have the dimension property.

Let f be the augmentation ideal of the free group ring Z[F]. For ¢ > 1, let
a. be the ideal Z[F](v.(F) — 1).

Theorem 2.48 (Gupta-Gupta-Levin [Gup87b]). For all n, ¢ > 1,
F O+ fac+ 57 = [re(F), ve(F) s (F).

In particular, the groups F/[v.(F), v.(F)], ¢ > 1, have the dimension
property.
For ¢ = 2, the above result was proved earlier by Gupta [Gup82].

Theorem 2.49 (Gupta-Kuz'min). For any n > 1 and a group G, the sub-
quotient group Dy, (G)/vn+1(G) is abelian.

Proof. Let G be a nilpotent of class n. We have to show that D, (G) is
abelian. Let A be a maximal abelian normal subgroup of G. It is easy
to show that A coincides with its centralizer Cg(A). We can view A as a
G-module via conjugation. Then for any k£ > 1, we have

ao(g—1) Cv1(G), g € Di(G).

In particular, any g € D,,(G) lies in Cg(A). Therefore D, (G) C Ce(A) and
hence D,,(G) is an abelian group. O
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2.8 Plotkin’s Problems

The following problems have been raised and discussed by Plotkin in [Plo73]
(see also Hartley [Har84]).

Problem 2.50 For every group G, is it true that D,(G) = v,(G).

Problem 2.51 Is it true that for every nilpotent group G, there exists an
integer n(G) such that Dyc)(G) = 172 In other words, does every nilpotent
group have finite dimension series?

Plotkin conjectures that problem 2.50 has an affirmative answer.

Theorem 2.52 (Hartley [Har82c]). If G is a nilpotent group in which the tor-
sion subgroup has finite dimension series, then G itself has finite dimension
series.

For a group G, let s(G) denote the least natural number n, if it exists,
such that D, (G) = 1, and infinity otherwise. Let 9. denote the variety of
nilpotent groups of class < c. It is easy to see that finitely generated nipotent
groups and torsion-free nilpotent groups have finite dimension series.

Let ¢ be a natural number and suppose that every group in 91, has finite
dimension series. Then there exists a natural number r = r(c) such that
D,.(G) =1 for every G € M,. For, if not, then we can find groups in N,
having arbitrarily long dimension series. Choose groups Gp, Gs, ... in I,
so that G; has dimension series of length > 4. Then the group I' = ®&°, G},
is in M., but its dimension series does not terminate with identity in a finite
number of steps. A standard reduction argument (see [Pas68a]) shows that if
s = s(c) is a number such that, for every finite p-group G € M., Ds(G) = 1,
then, for every group I' € M., D(I") = 1.

Lemma 2.53 Let H <G and suppose that

[H, wG]:=|...[H,G, Gl ...,],G] =1
terms

Let M be a right G-module such that M.g" C M.§ for some integer r > 1.
Then M.g™" C M.b™ for alln > 1.

Proof. We proceed by induction on m > 1. If m = 1, then H is a cen-
tral subgroup. Therefore, repeated use of M.g" C M.h gives the required
inclusion:

M.g"™ C M.p™.
Now suppose m > 1 and the result holds for m — 1. Let K = [H, ,,_1G]

and consider the groups H = H/K and G = G/K. Note that H <t G’ and
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[H, ., 1G] = 1. The quotient M = M /M. is a G-module under the action
induced by that of M as a G-module and

for all n > 1. This implies that
M.g™"™" C M.p™ + M.E.

Since K is a central subgroup of G, iteration gives

m

M.g™" C M.y",
and the proof is complete. [

Lemma 2.54 Let G be a group, and suppose that H <{G, G = HF for some
finite p-group F C G, [H, ,,G] = 1 for some integer m > 1. Then for every
r > 1, there exists u = u(r) such that

ZHINg" Ch".

Proof. Let D = HNF'. Then D is a finite p-group. Let » > 1 be given. Choose
s > 1 such that p*0 C 9" C h". Observe that h"Z[G]| + p*fZ[H] is a right ideal
of Z|G]. Consider the right G-module M = Z[G]/(§"Z|G] + p*HZ[H]). Since
G/H is a finite p-group, there exists n > 1 such that g" C HZ[G] + p*fZ[H].
Hence, by Lemma 2.53, we can conclude that there exists an integer u =
u(r) > 1 such that M.g* C M.h", i.e.,

g“ CH"Z[G] + p*fZ[H].
Intersecting with Z[H] we get
Z[H|Ng" C Z[H] N (h"Z[G] + p°FZ[H]). (2.82)
If T is a transversal for D in F including 1, then by the choice of s, we have
b"ZIG) + p*fZIH] = b"Z[G] + p*tZ[H],

where t is the additive subgroup of Z[G] generated by t — 1, t € T. Let
0 : Z|G] — Z[H] be the linear extension of the map G — H given by
g=th—h (t€T, h € H). Applying 6 to the inclusion (2.82) we get

ZIH] O (0" Z[G] + p*fZ[H]) = "

Hence Z[H|Ng* C h". O
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Theorem 2.55 (Kuskulei, see [Plo73]). If G is a nilpotent group having a
subgroup H of finite index whose dimension series is finite, then G has finite
dimension series.

Proof. It clearly suffices to consider the case when H < G and G/H is a
cyclic group of prime order, p say. If the torsion subgroup 7" of G lies in H,
then T has finite dimension series and therefore, by Theorem 2.52, G has
finite dimension series. If T H, then H has a supplement of p-power order
in G, and Lemma 2.54 implies that G has finite dimension series. [

Theorem 2.56 (Tokarenko and Rips [Plo73]). If a semi-direct product G =
H x K is nilpotent and both H and K have finite dimension series, then G
has finite dimension series and s(G) < max(s(H)¢, s(K)).

Proof. Regard Z[H] as a right G-module as follows. For o € Z[H]|, g = hk €
G, h€ H, k € K, define

a.g = a”h,

where o stands for the element of Z[H| obtained on conjugating by k each
element in the support of a. Then, as can be seen by induction on the class

of G,
Z[H].g™ C ™.

Since K has finite dimension series, D, (G) C H for n > s(K). Let n >
max(s(H)¢, s(K)) and 2 € D,,(G). Then z — 1 € Z[H] N g*)°. Hence

1.(z—1) € pst),

However, under the G-module action we are considering, 1.(x —1) =2z — 1
Therefore, it follows that z — 1 € h*) and consequently z = 1, showing
that G has finite dimension series with s(G) < max(s(H)¢, s(K)). O

Corollary 2.57 (Valenza [Val80]). If G is a nilpotent group and G = H x K
with K abelian, then s(G) is bounded by a function of s(H) and the class
of G.

A group G is said to satisfy the minimal condition on subgroups if each
nonempty collection of subgroups contains a minimal element; or, equiva-
lently, each descending chain of subgroups stabilizes after a finite number
of steps. A solvable group satisfies the minimum condition on subgroups if
and only if it is an extension of a direct product of finitely many quasicyclic
groups by a finite group (see [Rob95, p. 156]). Thus, in view of Theorem 2.55,
we have:
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Proposition 2.58 FEvery nilpotent group which satisfies minimum condition
on subgroups has finite dimension series.

An As-group, in the notation of Mal’cev [Mal56], is an abelian group G
whose periodic part P satisfies the minimum condition on subgroups and
the quotient G/P has finite rank. A nilpotent As-group is a nilpotent group
having a finite normal series in which the factor groups are As-groups. Clearly,
the torsion subgroup of a nilpotent Az-group satisfies the minimum condition
on subgroups and therefore, by Proposition 2.58, the torsion part, and hence
by Theorem 2.52, the group itself has finite dimension series:

Theorem 2.59 (Plotkin [Plo73]). A nilpotent As-group has finite dimension
series.

2.9 Modular Dimension Subgroups

In contrast to the case of integral dimension subgroups, definitive answer for
the identification of dimension subgroups over fields has long been known.
To state the result we need the following definitions, given a group G and a
prime p:

(1) Define the series {M,, ,(G)}n>1 by setting

My, p(G) =G, Mz ,(G) =7(G), Mpi1,p(G) =[G, Mn,p(G)]M(p%),p(G)
(2.83)
for n > 2, where (Z) denotes the least integer > .
(ii) Define the series {Gy,p}n>1 by setting
Gnp= [] (G (2.84)
ipI>n
If H is a subset of a group G, we denote by v H the radical of H:
VH = {z € G|z™ € H, for some m > 0}. (2.85)

Theorem 2.60 (Jennings, [Jen4l], [Jenb5]). Let F be a field and G a group.

(2) If char(F') = 0, then D, p(G) = /7 (G) for alln > 1.
(ii) If char(F) = p > 0, then D, p(G) = M), ,(G) = Gp,p for alln > 1.

Over general rings, it is known that the dimension subgroups of groups
depend only on the ones over the rings Z,, n > 0 (see Passi [Pas79], p. 16
for details). We mention here a few results in low dimensions.
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Theorem 2.61 (Moran [Mor70]; see also Tasi¢ [Tas93]). For every group G,
prime p and integer e > 1,

D, z,.(G) = G"" 7,(G) for 1 <n <p.

Let n be a non-negative integer; if n is even, let n = 2gm, where ¢ is a
power of 2 and m is odd. Let

Ko (G) = G"v3(G), if nis odd or 0,
(@3 (G) N (2 29 € GPya(G))y3(G), if 1 is even.

Let N/K,(G) be the subgroup of the centre of G/K,(G) consisting of the
elements of order dividing n.

Theorem 2.62 (Passi-Sharma [Pas74]).

(7)) GN(1+ A%H(G) + Az, (G)Ag, (N)) = K, (G) if n is odd or 0.
(i1) GN(L+ A} (G) + Az, (G)Az, (N)) = Kn(G){(z™ [27™ € N) if n is even.
(i) GN (14 A} (G)) = Kn(G) for all n.

2.10 Lie Dimension Subgroups

Given a multiplicative group G and a commutative ring R with identity,
define ideals A(F?)(G), n > 1, inductively by setting AS?(G) = Ag(G), the
augmentation ideal of the group ring R[G|, and

AR(G) = [A%V(G), AR(G)RIG], n > 1, (2.86)

the two-sided ideal of R[G] generated by [, f]=af—fa, o € Ag_l)(G), 8 e
AR(G). We then have a decreasing series

Ap(@)=aD@oaAY @2 ... o...AP@ o ...
of two-sided ideals in R[G]; this series has the property that

A @).AM (@) c ATYG) (2.87)

for all m, n > 1 (see [Pas79], Prop. 1.7 (iii), p.4). Let

Diny. r(G) =GN (1+AY(G)), n>1.
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We call D, r(G) the nth upper Lie dimension subgroup of G over R. In
view of (2.87), {Dn), r(G)}n>1 is a central series in G. When R = 7Z, we drop
the suffix and write simply D(,,)(G) instead of Dy, z(G).

Let L be a Lie ring. For subsets H, K of L, we denote by [H, K] the
additive subgroup of L spanned by the commutators [h, k] = hk — kh, h €
H, k € K. Recall that the lower central series {L,}n>1 of L is defined
inductively by setting Ly = L, and L, = [L, L,] for n > 1. The Lie ring L
is said to be nilpotent if L, = 0 for some n > 1.

Let A be an associative ring. We can view A as a Lie ring with the bracket
operation defined by

[avﬁ}:aﬂ_ﬂaa OL,IBGA.

Define a series of two-sided ideals {A™},~; of A by setting Al = A and
A" n > 1, to be the two-sided ideal of A generated by the nth term A,
in the lower central series of A viewed as a Lie ring. We say that A is Lie
nilpotent (resp. residually Lie nilpotent) if A" = 0 for some n > 1 (resp.
N A" = o).

Theorem 2.63 (Gupta-Levin [Gup83]). Let A be an associative ring with
identity and let U = U(A) be its group of units. Then

Alml Alnl C Alm+n=2] for all m, n > 2.

Let G be a multiplicative group and R a commutative ring with identity.
Consider the series {A[];L](G)}nzl of two-sided ideals in R[G]. Clearly

Al@) c A™(@) for all n > 1,
and, by Theorem 2.63, we have
AM@AM(@) € Al 2(@yz)a) (2.88)

for every group G. The filtration {AEQ](G)}@l of Ar(G) defines a series of
normal subgroups { D}, r(G)}n>1 in G-

D r(G) =G n (1 +AM@)). (2.89)

We call Dy, g(G), n > 1, the nth lower Lie dimension subgroup of G over R.
As usual, when the ring R is Z, we drop the suffix R and write Dy, (G) instead
of D[n],Z(G)~

From definitions, and in view of Theorems 1.6 and 2.63, it is then clear
that for any group G and integer n > 1, we have the following inclusions:

M(G) € Dpy)(G) € D) (G) € D (G). (2.90)
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In general, not only the inclusion +,(G) C D, (G) can be strict, but even the
inclusion v, (G) € Dy, (G) can be strict. To this end, we have

Theorem 2.64 Let s be an arbitrary natural number. Then there exists a
natural number n and a nilpotent group G of class n, such that Dy, 4(G) # 1.

We first prove two lemmas.

Lemma 2.65 Let I be a group, k > 1> 4. If x1, @9, x5 € v, (II) and there

exist & € v, (Il), i=1,...,5, n>2m, m > 3, such that
47 217 21{1 27@7 4 721\1 2167\17 2l 2k 2167\17 2k
vy =8, =&, v w3 =&, w0 w3y =&, 1 =&,
then

1+1 k k+1
w = ['rh 1’% ][1'13 133 Hx% ZL’?;) ] € D[n+2m76](H)'

Proof. Since 1 — 2 € AM(TT)Z[M] for = € v, (IT), we have

l1—w=o4ay+as mod APYIN)Z[II),
where a; = (1 — [y, x%lﬁ]‘), = (1—[z1, 23']), a3 = (1 — [x2, 22""']). Now,
working modulo A**2m=6/(IT)Z[TI], we have
(U (g™ = D)= 28 )1 =) = (L= an)(1 =23 7))

9l+1 ol+1

(-2 JA—w) -1 -z)(d -2 ),

g

since 7'z 2" € 4, (I) and

2l+1 oL+l

(272" = 1)1 —23 )1 —2) — (1 —2)(1 —23 ")) € A2m=o(m)z[m]
by (2.88). Modulo AM*+2m=S(TT)Z[T], we have:

9l+1

a=1—23 )1 —z) =21 —21)(1 — x9)
n—1 ) 2l+1 )
+ ) =0 (=) (1 - x9)
(%))

7

K2

Note that (22.“) is divisible by 4™ for sufficiently large | and ¢ < n. Hence, for
such a large [,

ni:(_ni <2l,+1> (1 —21)(1 — 22)" € AF2m=8l(qm)Z[11].

. i
=2
By the same principle, we get

ol+1

21 —z) (1 —2) = (1 —2? )1 —25) mod AT2m=0(11)Z[11).
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Therefore,

2l+1 2l+1

o=0—z )1 —z)— (1 —22")(1 —z) mod AP0 11)Z[11].
Choosing k to be such that (2’1.“) is divible by 2! for any i < n, we get

ar=(1—-23)1—2)— (1—2¥)(1 —25) mod AP2m=0/(I)Z[11],

9k+1

Y1 —29) — (1 —22 )1 —x3) mod APT2m=6(1T)z[m].

k+1
a3 =(1—a3

Therefore,

ol+1 ol+1 ok+1

o Fag+ag=(2—x5 —x%k)(l—xl)—ﬁ—(ml —z5 )1 —x9)+

(@ +23" —2)(1—23) = 1-€)(1-21)+(1—€ ) A—22) + (1€ )1 ~a3) =
(1-&)(1-&)+(1-&)(1-&)+(1-&)(1—&) =0 mod Al"*=6(I1)Z[11],
and hence w € Dy, 9 (I1). O

Lemma 2.66 Let W, ,, be the group given by the following presentation:

1 k
(@1, ooy w1 | (21, mr1n] 2, (22, ma12)? &, (23, mr13]® &,
k-1 k-2 k—1+1
[5647 nT14, 51010]4[5647 nL14, L3, mT13, 587]2 , % 3 . >7

where

&= [3347 nT14, 377]2[304, nT14, xﬁ] [9647 n14, 335]27
-2 _
& = [$47 nL14, 1’7]2 [354, nL14, 3710] 1[1’4, nZ14, 955}2’

_gl-2 9
&= [9547 nL14, 336] [i% nL14, 3310] .
Then the element

k

]

k
(2, mT12, [€3, ma13]> ]

Wn, m = [»Tl, mL11, [ffz, mfclz]Qm][%, mL11, [xs, mfflzﬂ2

does not lie in Yniymsa(Wn,m), n>m > 0.

Proof. Let F be a free group with basis {z1, ..., z19}. Consider four types
of relations:

Ry = 74(F)’

Ry = (Ry, [z, xj, i) & (o, 5,7, 0, €, O)Ry for all i, j, k,
o a7t By A Be,ad, 7)),
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where

o = [$4, xs3, 137], /8 = [1'47 X2, .’E()’], Y= [x47 210, xl]a 0= [x47 X7, x3]7
€ = [z4, T, 2], 0 = [T4, 21, T10;
Now define R3 to be the subgroup generated by Ry together with the
normal closure of the following words:

k l
(23, 2], 2, @)

)

s [@, 3310]4727
i1y 7’7& 17 [.’I}l, Z‘i], [an .Ti], [x?n .'L'i], 1> 4.

Let R4 be the subgroup generated by R3 and the normal closure of words

1 = 21[wa, 27 [24, 6] (24 T5)7,
1 1-2 _
Cy = 96% [554, 967]2 [3347 »Tlo} 1[9647 555]2,

k _ol-2 _
C3 = LE% [$4, 1’6] 2 [93‘47 1’10] 2.

Set H = F/R,. We claim that [R;41, F] C R;, i =1, 2, 3. This is obvious
for i = 1, 2. We show it for ¢ = 3. Working modulo R3, we have:

[Cla xl] = 17
e, o] = [m1, zo]*[z4, @6, T2] = [1, 2] B =1,
ler, @3] = [z1, @3]t @y, @7, @3]? = [11, @3]*a® = 1,
le1, z4] = [z1, Ta]* =1,
L 1-2
[ea, 21] = [ma, @1)* [m4, 210, 71] P = B v =1,
[627 x?] = 17
L 1 l -2
[ca, 3] = [ma, 23] [24, @7, 23)2 " = 29, ) 27" =1,
[e2, 4] = [22, ma?' =1,
k , k-1
[es, m1] = @3, 1]* (@4, T2, 7] 2 =a® 2 =1,
& 12 k=3 -2
e, @) = [@3, @2)2" [24, @6, 2] 2 " =2 B2 =1,
[cs, 23] =1,
k
[c3, xa] = [z3, 2] = 1.

By standard arguments, one can show that the element

1 2k+1}

1+ k
w = [‘Tlv JC% Hxh :17"2’) ][I% L3

is nontrivial in H. Note that all brackets [z;, x;, z;] are trivial in H.
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Let W be a group given by the following presentation:

L k
(21, .0y 210 | 711, 73 &, 75 &,
k-1 k-2 k—1+1
(4, 3310]4[%1, T3, 367]2 ) 12 3 . ),

where

&= [9347 5177]2[174, mﬁ] [174, 1’5]2,

1 _
& = [z4, 27)? 4, 210] V24, 5],

1-2

53 = [l‘47 736]72 [374, 1‘10]72.

It is easy to see that the group Wy is a free product of W with a free
group of rank 5. The group W naturally maps onto H, and Wy ( maps onto
Go. The image of wy, o is exactly the element w which is nontrivial, hence
wWo,0 ¢ 74(W0,0)-

We shall prove first that W, m € Yom+a(Wim, m), i-€., the case n = m. For
any m consider the quotient W, .. = Wi m/Y2m4a(Win,m)Nm, where Ny,
is the normal closure in W, ,,, of brackets [y1, ..., y:], t > 3, such that there
are at least two occurrences of y; = x; or y; = x9, Or y; = T3, Or y; = x4 In
this bracket, or at least three occurrences of elements from {x1, x9, 3, 24}
simultaneously. We see that all such brackets are trivial in H, hence wy ¢ is
nontrivial in Wy .

We assume that the element w,,, n, is nontrivial in Wy, . for a given m
and we shall prove the statement for m + 1.

Consider the following automorphism f of the free group of rank 14:

T x, 1 11,12,13, 14,
Z11 = T,
T12 = T1222,
T3 — T13T3,

T14 = T1424.

Clearly, this automorphism can be extended to get an automorphism f’ of a
group anm This automorphism defines the semi-direct product

Wi m = Wi m > (2),
where x acts as f’. Clearly, we have in W},
[, 2] = 1, i #£11, 12, 13, 14,

[x11, o] = 21, [712, 2] = X9, [713, 2] = T3, (214, 2] = 4.
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It is easy to see that W, ., is nilpotent with Yo, (W), ,,) = 1. Note that
W,’,’hm is an epimorphic image of Wy, 1, m41; thus the image of the element
Wyn+1,m+1 18 nontrivial in W,’jhm, since it is the same as the element wp,
in W7, ,,. Thus we have proved that w1, mi1 & Yom+6(Wii1 me1)- The

induction is thus complete and we have

W, m ¢ Yem-+4 (W;n, m)

for any m > 0.

Now we shall prove the needed result for general case n > m > 0. We fix m
and make an induction on t = n—m. For the case ¢t = 0 we already proved the
needed result. We consider the quotient W,’Im = W, m/Vnsmia(Wp.m)Np,.
Consider the following automorphism f’ of a free group on generators z;:

T = x4, 1 F 14,

T4 > T14T4.

Clearly, it extends to an automorphism of the group W,’L’m. Then the
corresponding semi-direct product erf,m = W,,m x x is nilpotent with
Yntm+s5(Wy ) = 1. Observe that W, ,, naturally maps onto W/ . send-
ing non-trivially the element wy, 11, . Hence wy 11, m ¢ "Yn+m+5(WylH_1,m) and
we have thus completed the induction. [

Proof of Theorem 2.64. By Lemma 2.65, for k£ > [ > 4, we have

Wn,m S D[n+27n—2] (Wn m) \ 7n+m+4(Wn, m)

Since the difference (n+2m—2)—(n+m+4) = m—6 can be taken arbitrarily,
the statement of the Theorem 2.64 follows. [

When R is a field, upper Lie dimension subgroups have been identified in
[Pas75b] (see also [Pas79]). To state the result we need the following defini-
tions, given a group G and a prime p:

(i) Define the series {M(y) ,(G)}n>1 by setting
M(l),p(G):Gv M(?),p(G):’YQ(G)v M(nJrl),p(G):[Ga M(n),p(G)]M(pm> (G)

T2),p
for n > 2, where (%) denotes the least integer > L.

(ii) Define the series {G () p}n>1 by setting

G(n),p = H ’Y'L<G)pj

(i—1)pi>n

Theorem 2.67 (Passi-Sehgal [Pas75b]). Let G be a group and F a field.
Then, for n > 2,
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VY (G) N(G), if char(F) =0,
Dy, r(G) {

Gn-1),p = My, »(G), if char(F) =p > 0.

Some very interesting properties of lower central and dimension subgroups
have been observed by A. Shalev [Sha90a]. To mention a sample, let us adopt
the following

Notation. For integers n > 1, k > 0, write

H /72+k

ipI>n

Proposition 2.68 (Shalev [Sha90a].) For integers n > 1, k >0,
[Dn,5(G), G] = Dy, 11 (G).

We next consider the lower Lie dimension subgroups in characteristic p > 0.
An identification of these subgroups is known when p # 2, 3. First note the
following

Proposition 2.69 The series { D}, (G)}n>1 is a central series of G sat-
isfying

(@) [Dim), v, (G)s Diny, 7, (G)] € Dimgn—s), v, (G), m, n > 2.

(“) (D[n],]Fp (G))P - D[p(n—2)+2],IF'p (G)7 n > 2.

Theorem 2.70 (Bhandari-Passi [Bha92b]), Riley [Ril91]). For every group G
and field F with char(F) # 2, 3,

Dy, p(G) = Dy, p(G) for alln > 1.

Theorem 2.71 (Bhandari-Passi [Bha92b]). Let G be a group. Then for all
n>0

(l) D[2"+2],]F2(G) = D(2n+2),JF2(G);

(17) Diagni2), 7, (G) = Diagni), 1, (G), 0 <a < 2.

As a result of Theorems 2.70 and 2.71, we have
Corollary 2.72 The following statements for a group algebra F[G] are
equivalent:

(¢) F[G] is residually Lie nilpotent.
(i) nn>1 Dn r(G) =1

(ét3) Either char(F) is zero and G is residually “nilpotent with derived group torsion
free”, or char(F) = p > 0 and G is residually “nilpotent with derived group a p-group
of bounded exponent”.

We end this section with a review of the results on integral Lie dimension
subgroups.
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Theorem 2.73 D(,,)(G) = 7, (G) for 1 <n < 8.

The above result for 1 < n < 6 is due to Sandling [San72a] and the cases
n =7, 8 are due to Gupta-Tahara [Gup93].

Theorem 2.74 (Gupta-Srivastava [Gup9lc]). In general,
Dy, 2(G) # m(G) for 9 <n < 13.
Theorem 2.75 (Hurley-Sehgal [Har91b]). In general,
Dip,z(G) # (G forn > 14,

and
D), 2(G) # 1 (G) forn > 9.

2.11 Lie Nilpotency Indices

Theorem 2.76 (Passi, Passman and Sehgal [Pas73]). The group algebra F|[G]
of a group G over a field F' is Lie nilpotent if and only if either the charac-
teristic of F' is zero and G is abelian, or the characteristic of F' is a prime
p, G is nilpotent and G’, the derived subgroup of G, is a finite p-group.

As a consequence of the above theorem, we have

Corollary 2.77 The following two statements are equivalent:

(i) F(G)'™ =0 for some m > 1.
(it) F(G)™ =0 for some n > 1.

For a Lie nilotent group algebra F[G], define the upper and lower Lie
nilpoency indices t*'(F[G]) and t,(F[G]) as follows:

t*(FIG]) = min{m | F[G]™ = 0},

tr(F[G]) = min{m | F[G]™ = 0}.

Clearly t (F[G]) < tY(F|[G]), and by Theorem 2.63, the unit group U(F[G])
is nilpotent of class ¢, say, with ¢+ 1 < ¢ (F[G]). In fact, in view of a result
of Du [Du,92], ¢ + 1 =t (F[G]) (see Theorems 2.79, 2.80 below).

Recall that a ring R is said to be a Jacobson radical ring if, for every
r € R, there exists s € R such that

r+s—rs=0=r+s—sr

Let R be a Jacobson radical ring. Define a binary operation on R by setting



2.11 Lie Nilpotency Indices 161
aob=a+b—ab, a,beR.

With this binary operation, R is a group, called the adjoint group of R; we

denote this group by (R, o).

Example 2.78

Let G be a finite p-group and F a field of characteristic p. Then the augmen-
tation ideal Ap(G) is nilpotent; therefore Ap(G) is a Jacobson radical ring.
Observe that the group (Ap(G), o) is isomorphic to the group U (F[G]) of
units of augmentation 1 under the map

a—l-—a, a€clAp(G).
Theorem 2.79 If G is a finite p-group, F' a field of characteristic p, then
nilpotency class of U(F[G]) = t(F[G]).
This result is an immediate consequence of the following

Theorem 2.80 (Du [Du,92]). The associated Lie ring of a Jacobson radical
ring is nilpotent of class n if and only if its adjoint group is nilpotent of
class n.

Theorem 2.81 (Bhandari-Passi [Bha92a]). Let F be a field of characteristic
p >3 and let G be a group such that F[G] is Lie nilpoent. Then

tr(FIG)) = t"(F[G]) =2+ (p = 1) Y mdm),

m>1
where, for m > 2, pm = [Dimy, £ (G) : D1y, p(G)].

The proof of the above theorem requires the following results of Sharma-
Srivastava. Following their notation, let L,(R) denote the nth term in
the lower central series of the ring R when viewed as a Lie ring under
commutation.

Theorem 2.82 (Sharma-Srivastava [Sha90b], Theorem 2.8). Let R be a ring
in which both 2, 3 are invertible. If m and n are any two positive integers
such that one of them is odd, then

Lin(R)RLy(R)R C L n-1(R)R.

Lemma 2.83 (Sharma-Srivastava [Sha90b], Lemma 2.11). Let R be a ring in
which both 2, 3 are invertible. Then for any positive integers m and n and
fOT all g1, 92, -+, gm € U(R)y

([gla g2, -- - gm+1] - l)n € Lm7z+1(R)R~
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Proof of Theorem 2.81. Since F[G] is Lie nilpotent, by Theorem 2.76, G
is nilpotent and its derived subgroup G’ is a finite p-group. If G is abelian,
then the assertion is obviously true; thus we assume that G’ # 1.

Let H; = D(i11),p(G), i > 1, and p* = [H; : H;y1] so that e; = d;1).
The series

G=H DH,D... DH;DHy =1
is a restricted N-series in G, i.e.,
[H;, H;) € H;yj, H; C Hyp, foralli, j > 1.

By Theorem 2.67, _
H,= [] ~u@".
(i-1)pizn

Now observe that H,, is generated, modulo H,, by the elements of the
type 2P, where z is a left-normed group commutator of weight i and
(i = 1)p? = n. Thus it is possible to choose a canonical basis (see [Pas79],

p' 23) {x117 l‘127 AR | x1517 x?l) l‘227 R | x2€27 AR | xd17 -’I/‘d27 AR ] l‘ded} Of G/7
where for 1 <r <d, 1 <k <e,, z, is an element of of the type ,;, where

& is a left-normed group commutator of weight ¢ and (i — 1)p? = r. It then
follows that the element

a= (1 —1)P V(- 1)P Y (2, — 1P
(zg1 — )PV . (240, — 1PV (2.91)

is a non-zero element of F[G]. For 1 < r <d, 1 <k < e, zy = ffj, by
Lemma 2.83, we have

(2, — )PV = (& —1)P’P~1 ¢ F[q] [(i—1)p? (p—1)+1] _ F[@)r=1+1],
Moreover, by Theorem 2.82
(2,1 — 1)(1771)(%2 _ 1)(1)71) o Tpe, — 1)(1)71) c F[G][rer(pfl)ﬂl,

which in turn yields that o € F|[G] (-1 5rer] Since a # 0, it follows
that

d
tL(FIG) =2+ (p—1)) re, =2+ (p—1) Y mdgmi1),
r=1 m>1
as e, = d<,.+1) for r > 1.
Since, t*(F[G]) =2+ (p— 1) 0 re, =2+ (p — 1) 3,01 Md(my1) (see
[Pas79], p.47) and t5(F[G]) > t(F[G]) always, the proof is complete. [J

Let p be a prime and R a ring of characteristic p. Consider the Lie powers
R m > 1, of R defined inductively by setting RY) = R, and, for m > 1,
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R™*1) to be the two-sided ideal of R generated by the ring commutators
zy —yz, © € R™ yeR.

Theorem 2.84 (Shalev [Sha91]). If RUF(P=DP"") = 0 for some i > 1, then
R satisfies the identity

(X +Y) =XV 4YP. (P)

Corollary 2.85 Let G be a finite group of exponent p¢, and K a field of char-
acteristic p. If K[G)UT®-0r"") = 0, then exp(Uy(K[G])) = exp(G), where
U, (K[G)) is the group of units of K[G] having augmentation 1.

Proof. Since G CU;(K[G]), it only needs to be checked that exp(U (K[G])) <
exp(G).

Let v = )" ajg; € Uh(K[G]), a; € K, g; € G. Since, by Theorem 2.84,
K|[G] satisfies the identity (P;), we have

P’ = Z(ajgj)pﬂ = Zafe.l =1 0O
In [Sha91] Shalev shows that the hypothesis of the above Corollary is
satisfied if p > 7 and exp(G)? > |G|, and thus we have

Theorem 2.86 (Shalev [Sha9l]). Let K be a field of prime characteristic p,
and G a finite p-group. Then G and U,(K[G]) have the same exponent if
p > 7 and exp(G)® > |G|.

2.12 Subgroups Dual to Dimension Subgroups

Let G be a group and R a commutative ring with identity. Define a series
{Z,(R[G]) }n>o of two-sided ideals in R[G] inductively by setting

Zo(R[G]) =0
and
Zn+1(R[G]) = {a € R[G][a(g = 1) € Zu(R[G]), (9 — V) € Zu(R[G])}
for n > 0. This ascending series {Z, (R[G])}n>0 of two-sided ideals of R[G]
is the most rapidly ascending among all ascending series stabilized by Gj it
defines an ascending series {3, r(G) }n>0 of normal subgroups of G, by setting
3n,r(G) =GN 1+ Z,(R[G])).

The series {3, r(G)}n>0 has been investigated by R. Sandling [San72b]; it is
in a sense dual to the dimension series {D,, r(G)}n>1 defined by the series of
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augmentation powers A%(G), n > 1, which is the most rapidly descending
among the descending series stabilized by G. The subgroups 3, r(G), n > 1,
are rarely non-trivial. More precisely, we have

Theorem 2.87 (Sandling [San72b]). The normal subgroup 3, r(G) is non-
trivial for some n > 1 if and only if the group G is a finite p-group and the
ring R is of characteristic p° for some e > 1.

Proof. Suppose N := 3, r(G) has a non-trivial element g, say, for some
n > 1. Then, by definition of Z,,(R[G]), (¢9—1)A’%(G) = 0. This is not possible
if G is infinite. Hence G must be finite. Now A% (N) = 0. Therefore, there
exists a prime p such that N a finite p-group and R has characteristic p¢ for
some e > 1. If 1 # h € G is a p/-element, then (¢ — 1).(h — 1)™ = 0. It then
follows that (¢ — 1)(h — 1) = 0 and hence h = 1, a contradiction. Hence G is
a finite p-group. OJ

Let R be a commutative ring with identity and G a group. Let W = R1 G,
the standard wreath product of the abelian group R and the group G. Let

Jn(R, G) = {a € R[G]| a.A%(G) = 0},

i.e., the left annihilator of A% (G). The subgroups 3, (R, G) are related to the
upper central series {¢,(W)},>o of W. More precisely, there is the following
result which is easily proved by induction.

Theorem 2.88 (Sandling [San72b]). For all natural numbers n,

Cn(W) = 5n71(R7 G)Jn<R’ G)
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