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Quantum Statistical Properties of the Light
Emission from Quantum Dots in Microcavities

C. Gies, J. Wiersig, and F. Jahnke

Summary. A microscopic theory is presented and applied to describe luminescence
and lasing from semiconductor quantum dots. Special emphasis is placed on the dif-
ferences between quantum dots and atoms. We calculate the first- and second-order
correlation functions to characterize the coherence properties and the photon statis-
tics in current state-of-the-art microcavity lasers with high spontaneous emission
coupling into the laser mode. To gain a deeper understanding of the derived laser
theory and of the differences to atomic descriptions, a discussion of quantum-optical
models is performed and placed in context to the semiconductor theory.

1.1 Introduction

Due to advances in growth and processing methods, together with ground
breaking experimental achievements, the field of semiconductor quantum-dots
is more rapidly evolving than ever. Part of this evolution is the need for ap-
propriate theoretical models that encompass the experimental developments
described in this book. The three-dimensional confinement of the carrier wave
functions on a nanometer scale leads to a discrete part of the single-particle
density of states. Semiconductor quantum dots (QDs) are therefore often
viewed as “artificial atoms,” and in the description of the emission prop-
erties of QDs models and approximations are frequently used that are well
suited for atomic systems, but which have to be reconsidered when applied
to semiconductor systems. In QDs, excitations can involve more than a single
carrier. The resulting description of the interaction with the quantized light
field is different when atomic systems with single-electron excitations and QDs
with multiple excited carriers are compared, even though the elementary in-
teraction processes remain the same. A central goal of our investigations is
to reveal the influence of multiple excited carriers on the emission properties
of QDs. In addition to the modification of the light-matter interaction itself,
it is also well-known from various semiconductor systems that the interaction
among the excited carriers leads to effects — many of them discussed through-
out this book — that can modify or even dominate the emission properties and,
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hence, should be included in semiconductor models. Pauli-blocking of states,
the Coulomb interaction of excited carriers, their interaction with phonons,
and a variety of resulting effects like energy renormalizations, contributions
of new quasi-particles, or interaction-induced dephasing have been intensively
studied also in QD systems. In atomic systems, interaction-induced effects are
typically of minor importance and the single-particle excitations are subject
to scattering and dephasing that is usually described via constant rates.

The placement of QDs in optical microcavities allows to tailor the coupling
to the electromagnetic field, as is described in Chaps. 8 and 9. Very small mode
volumes in combination with a high-quality mode enhance the spontaneous
emission rate into that mode, a phenomenon known as Purcell effect [1-3].
While the effect can be employed for various applications like single-photon
emitters (see, e.g., Chaps. 6 and 9) or LEDs with improved efficiency, we focus
in the following on laser applications.

Due to the small size of the resonator, the high quality modes are usually
spectrally well separated so that the QD ensemble can be considered to couple
mainly to a single cavity mode. Still, a continuum of leaky modes provides
dissipation channels via spontaneous emission. These modes, as well as the
more weakly-coupled cavity modes, provide the non-lasing modes. A central
parameter in lasers is the spontaneous emission coupling factor 5 that de-
termines the fraction of the total spontaneous emission (SE) coupled into the

laser mode: )
SE rate into laser mode

f= total SE rate

The Purcell effect can be used to enhance the spontaneous emission into the
laser mode and to suppress spontaneous emission into non-lasing modes. For
[ approaching unity, the intensity jump in the input/output curve gradually
disappears, which has lead to the discussion of a thresholdless laser [4,5]. Lat-
est advances in the growth and design of semiconductor-QD microcavity lasers
have now attained the regime of S-values close to unity experimentally [6-10].
To characterize these systems one needs to study the coherence properties of
the emitted light and its statistical properties as function of the pump rate.
Following Glauber, the quantum states of light can be characterized in terms
of photon correlation functions [11]. Coherence properties are reflected by the
correlation function of first order,

o Bd(t+ 7))
(b7 (£)b(t))

In the stationary regime this quantity depends only on the delay time 7 but
not on the time ¢. Its decay in 7 is determined by the coherence time of the
emitted light. Here b' and b are the creation and annihilation operators for
photons in the laser mode. Information about the statistical properties of the
emitted light can be obtained from the correlation function of second order
at zero delay time

g (r) = (1.1)
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where n = bfb is the photon number operator for the laser mode. The function
g(2)(7' = 0) reflects the possibility of the correlated emission of two photons
at the same time. For the characterization of the light field, this quantity is
of central importance throughout this book. Note that in other chapters a
and af are used for the photon operators, which is the common notation in
quantum optics. Often discussed are the limiting cases of light emission from
a thermal, coherent, and single-photon source. Thermal light is characterized
by an enhanced probability that two photons are emitted at the same time
(bunching), reflected in a value of g(®)(0) = 2. For coherent light emission
with Poisson statistics one finds g(*(0) = 1. An ideal single-photon emitter
shows antibunching with ¢(2 (0) = 0. The full photon statistics corresponding
to these limiting cases is discussed in Chap. 6.

This first chapter is concerned with the emission properties of microcavity
lasers with QDs as active material. The considered QD and atomic models are
introduced in Sect. 1.2. In Sect. 1.3 we discuss several well-established quan-
tum optical models, namely the rate equations, a master equation approach
and the Liouville/von-Neumann equation. These models are placed in relation
to each other and to the equation-of-motion approach that we use in Sects. 1.4
and 1.5 to develop a microscopic semiconductor model to describe the inter-
action of the QD emitters with the laser and non-lasing modes. This model
allows us to access the statistical properties of the light emission, described in
terms of the second-order photon correlation function (1.2). The calculation
of first-order correlation function (1.1) and the coherence time is the topic of
Sect. 1.6.

1.2 Quantum Dots and Atoms

In QDs a three-dimensional confinement of carriers leads to localized states
both for conduction- and valence-band carriers, and discrete interband tran-
sition energies between these so-called shells. In the frequently used self-
assembled QDs the discrete states appear energetically close to a quasi-
continuum of delocalized states that corresponds to the two-dimensional mo-
tion of carriers in a wetting layer (WL). A sketch of the corresponding energy
levels of conduction and valence band states in the vicinity of the optical band
gap is shown in Fig. 1.1.

The finite height of the confinement potential restricts the number of con-
fined shells. As discussed in Chap.2 one can control the number of shells
and their separation in energy by variation of the growth parameters. For
self-assembled QDs one usually finds a strong confinement in growth direc-
tion and weaker confinement in the WL plane. Because of the strong con-
finement only the energetically lowest state is important for the motion in
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Fig. 1.1. Schematic representation of energy levels in a quantum dot (QD) with
two shells for carriers in the conduction and valence band, respectively. The quasi-
continuum of the wetting layer (WL) is shown as shaded areas

the growth direction, while for the in-plane problem one finds in general sev-
eral bound states. Moreover, in the lens-shaped QDs the in-plane rotational
symmetry leads to an angular-momentum degeneracy in addition to the spin
degeneracy of the weakly confined states. In the following, we consider QDs
where the confinement leads to two shells for conduction- and valence-band
carriers. Then one s-shell and two p-shell states are available for each spin-
subsystem. The unexcited state corresponds to filled valence-band states and
empty conduction-band states.

To investigate the optical properties of QDs, the system may be off-
resonantly excited by an optical pulse. The excitation creates carriers in
the barrier-, WL-, or higher QD-states. Fast scattering (relaxation) into the
lower QD states, as illustrated in Fig. 1.1, is facilitated by carrier—carrier and
carrier—phonon interaction [12,13]. At low temperatures and at low to moder-
ate carrier densities, the carriers populate solely the QD states. Then the WL
states are mainly important for carrier-scattering processes if the excitation
involves the quasi-continuum. In the following we are interested in the recom-
bination dynamics due to carrier—photon interaction involving the localized
QD states. We study a laser system based on QDs in optical microresonators,
where we assume that the energetically lowest interband transition between
the s-shells of the conduction and valence bands is dipole allowed and in
resonance with the fundamental cavity mode.



1 Theory of Light Emission from Quantum Dots 5

[4)
\7i4

723 T3

12)
///12

1)

2K

1

Fig. 1.2. Diagram of the atomic four-level laser system. With the pump rate P an
electron is excited from the ground state |1) into the pump level |4). The rates ~ys4
and 712 determine the scattering into and from the laser levels |2) and |3), which
are coupled to the laser mode via the transition amplitude 7T>3. Emission into non-
lasing modes is described by the rate v23. The cavity mode is coupled to a reservoir
of modes outside the cavity, giving rise to cavity losses 2k

For the discussed QD system, it is tempting to exploit the similarities to
an atomic four-level system displayed in Fig.1.2." The important difference
to the semiconductor case is that the unexcited QD system contains filled
valence-band states. Inevitably more than a single electron can be excited
into the conduction-band states.

To obtain the closest possible analogy between the QD system of Fig. 1.1
and the atomic four-level system of Fig. 1.2, we assume that only two con-
fined QD shells for electrons and holes, respectively, (denoted by s and p) are
relevant and that the optical pump process is resonant with the p-shells.

The presence of more than one electron in the interacting discrete level
system complicates the direct application of well-established models from
quantum optics and requires their reformulation. At this point one might
argue, that the elementary optical excitations are excitons, which consist
of conduction-band electrons and the corresponding valence-band vacancies
bound by the Coulomb interaction. However, the exciton operators obey
bosonic commutators only in the absence of other carriers. While a formu-
lation in a pure bosonic exciton picture clearly oversimplifies the problem,
the inclusion of corrections is highly nontrivial and as such can be viewed
as a reformulation of the fermionic electron—hole picture employed below.

L At this point we would like to add a general remark about the interpretation of
the atomic model. The considered transitions take place between different con-
figurations of the system, which may involve occupations of several states, again
involving more than one carrier. However, in quantum-optical models transitions
between these configurations are treated analogously to transitions between elec-
tronic states. Therefore, we speak of an atomic system with a single electron that
can occupy any of the available levels, keeping in mind that while this is a simpli-
fied picture, formally the single-electron model is equivalent to the configuration
picture.
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To summarize this central point, the presence of multiple excited carriers and
their mutual interaction is usually not an issue in atomic quantum optics, but
it is of key importance in semiconductor optics. Other complications in the
application of well established models in quantum optics to QD systems are
of more practical nature and involve the applicability of approximations com-
monly applied to atomic systems. Examples are reabsorption of photons in
connection with incomplete inversion of the laser transition, saturation effects,
or interaction-induced dephasing.

In the following we start from standard models in quantum optics, that
describe the interaction of the quantized light field with atomic systems
characterized by “single-electron excitations” in the sense we have discussed
above. These approaches are related in a second step to our semiconduc-
tor models that account for the excitation of multiple carriers and their
interaction.

1.3 Light-Matter Interaction in Atomic Systems

1.3.1 Liouville/von-Neumann Equation

In quantum optics the most general approach to atom-photon interaction is
to solve the Liouville/von-Neumann equation for the full density matrix p of
the coupled carrier—photon system. From the density-matrix elements, arbi-
trary single-time expectation values can be obtained by calculating the trace.
However, the full solution of the von-Neumann equation is only feasible for
small systems (few atoms). Most familiar is the direct solution of the density-
matrix equations for the Jaynes—Cummings Hamiltonian, that describes the
interaction of a two-level system with the quantized light field. This model can
be extended to a one-atom laser while still permitting a direct solution of the
density-matrix equations, as discussed in [14]. For this purpose, the two-level
system for the resonant optical interaction with the laser mode is augmented
by two additional levels in order to facilitate the pump process and a rapid
depletion of the lower laser level, as shown in Fig. 1.2. The model still contains
a single electron that, if in the ground state |1), can be excited into the pump
level |4). Transition processes between the levels and the corresponding de-
phasing of the off-diagonal density matrix elements are introduced by coupling
the atom to reservoirs. The interaction with these reservoirs is treated in the
so-called Born—-Markov approximation [15] and is contained in the resulting
transition rates P and v;; indicated in Fig.1.2. Of particular importance are
fast transitions into the upper laser level |3) at the rate 34 and rapid processes
emptying the lower laser level |2) at the rate y12. For the transitions between
the laser levels |3) and |2), the spontaneous emission into non-lasing modes,
described by the rate 723, competes with the coupling to the laser mode via
the transition amplitude T53. By coupling also the laser mode to a reservoir
as discussed above, cavity losses with a rate 2k are introduced.



1 Theory of Light Emission from Quantum Dots 7

The time evolution of the full density matrix p can be obtained from its
commutator with the Jaynes—Cummings Hamiltonian Hjc and the dissipative
and pump processes are described by Lindblad terms Lp (that account for the
above discussed coupling to the reservoirs [15]) according to

d

)
=—_|H Lp . 1.3
=y lHic s+ Lp (13)

The model can be extended to N atoms interacting with the quantized
light field. Via the off-diagonal density-matrix elements coupling between
different atoms is included. This coupling is connected to superradiance/
superfluorescence. A direct numerical solution or the application of quantum
Monte-Carlo techniques, however, is presently restricted to a small numbers
of atoms.

1.3.2 Master Equations

A considerable simplification of the theory is possible if one can formu-
late closed equations for the diagonal density matrix elements, which repre-
sent probabilities. One can deduce such a treatment from the Liouville/von-
Neumann equation by adiabatically eliminating the off-diagonal density ma-
trix elements. In the adiabatic regime, the dephasing is sufficiently fast to
dominate over the dynamics, so that the off-diagonal elements simply follow
without delay their sources (incoherent regime). Furthermore, the contribu-
tions of the cavity losses to the dephasing of the off-diagonal density matrix
elements need to be small [14].

An additional, commonly used approximation consists in neglecting the
reabsorption of photons from the cavity mode. When the state |2) in Fig. 1.2
is rapidly depopulated via the scattering process 12, the reabsorption process
is suppressed and the laser transition benefits from maximal inversion for a
given pump rate P. In this case, the recombination rate is determined by
the probability of finding the electron in the upper laser level together with
a given number of photons in the cavity mode. A system containing many
atoms can then be characterized by the probabilities p,, ny of states with N
excited atoms and n photons in the laser mode.

Deriving the master equation for p, n from the Liouville/von-Neumann
equation the way we have discussed it is a stringent approach. Often a phe-
nomenological approach based on intuitive arguments is taken that leads to
the same results. By considering all relevant processes that can act on a given
state of the system, a birth/death model can be formulated where phenomeno-
logical transition rates are introduced. This is illustrated in Fig.1.3 where A
is the cavity loss rate, P the pump rate and § is the spontaneous emission
coupling factor. The arrows describe processes that can act on the state p,, n,
see the figure caption. As an example we consider the spontaneous emission
into non-lasing modes, indicated as dashed lines in the vertical direction since
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Fig. 1.3. Schematic representation of the relevant processes in the birth/death
model. On the wertical azis the number of excited emitters N is shown, on the
horizontal axis the number of photons n in the cavity. In the diagram, each dot
stands for a matrix element of the diagonal density matrix p,,~ and represents a
state with the corresponding number of excited atoms and photons. Processes acting
on a state with probability p, n are: cavity losses, keeping the number of excited
atoms unaltered and thus represented as horizontal line; pump process, keeping
the number of photons unaltered and thus represented as vertical line; spontaneous
and stimulated emission, where the number of excited emitters is reduced and the
number of photons in increased, thus represented as diagonal lines. The rates related
to each process are noted with the arrows. Figure reprinted with permission from
P.R. Rice and H.J. Carmichael [5], copyright 1994 by the American Physical Society

the number of photons in the cavity remains unaltered by this process. The
contribution to the equation of motion is read off the schematic as

Son] =T Wy~ N Dl ()

nl Tsp

The prefactor (1 — 3)/7s, describes the rate of spontaneous emission into non-
lasing modes, assuring that there is no emission at all into these modes in
the case # = 1. There are two possibilities involving a state with N excited
emitters, either a decay (“death”) of the very same state (after emission a
state with N —1 excited emitters is left), or its “birth” by the decay of a state
with N + 1 excited emitters. The full master equation with all contributions
displayed in Fig.1.3 can be found in [5].

Despite the involved approximations when going to the master equation
from the Liouville/von-Neumann equation, the possibility remains to calcu-
late the photon statistics p, = > 5 Pn,~, and hence (n), (n?),..., as well as
arbitrary photon correlation functions, where all operators have equal time
arguments.
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1.3.3 Rate Equations

From the Liouville/von-Neumann or the master equation, it is also possible
to derive equations of motion for expectation values like the mean number
of excited atoms and photons in the laser mode, (N) and (n), respectively.
These equations couple to higher-order expectation values and as such form
an infinite hierarchy of equations. The truncation of this hierarchy requires
factorization approximations.

In the most simple form of such a truncation correlations between atoms
and photons are completely neglected, i.e., (nN) = (n)(N). Since these
terms appear only in the contributions representing stimulated emission, the
treatment of these processes then corresponds to a semi-classical picture.
Spontaneous emission, on the other hand, is not influenced by this approxima-
tion. Then one obtains from the equations of motion for (n) = n and (N) = N
the well-established laser rate equations

d

"= —2Kn + TZ) [1+n] N, (1.5)
i AR U ) (1.6)
dt Tep Tsp

The photon population is determined by the interplay of the cavity loss rate 2x
and the photon generation due to spontaneous processes < N and stimulated
processes « nN. The dynamics of the number of excited emitters N follows
from the interplay of the carrier recombination and the pump rate P. The
former comprises stimulated emission into the laser mode x G/, = 1/7,
and spontaneous emission o 1/7g, into all available modes. For a detailed
discussion of the laser rate equations, see, e.g., [5,16].

In the following we discuss the stationary solution of the rate equations
for a constant pump rate P. Results for the input/output curves and various
values of the [-factor are shown in Fig.1.4. We choose parameters that are
typical for present microcavity lasers: 75, = 50ps and ~ = 20 peV. The corre-
sponding cavity lifetime is about 17 ps, yielding a Q-factor of roughly 30, 000.
At the laser threshold that differentiates the regimes of dominant spontaneous
and stimulated emission, the photon number exhibits a jump o 87!. In the
limit 8 = 1 this kink in the input/output curve disappears and the threshold
is no longer well defined in this simple picture. Note that the photon statis-
tics obtained from the master equation provides additional information about
a possible transition from thermal to coherent light emission. The discussed
behavior of the jump in Fig.1.4 is commonly used to estimate the (-factor
from measurements.

The customary form of the master equation and the rate equations have in
common that saturation effects do not appear. The reason lies in negligence
of reabsorption processes and in the fact that the total number of available
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atoms is not limited. This is important for the comparison to semiconductor-
QD systems, where reabsorption and saturation effects can strongly modify
the input/output curves.

It is by no means necessary to truncate the equations of motion at the
simplest possible level that, as we have just shown, leads to the rate equations.
The truncation can be performed on a higher level in the hierarchy. For the
additional terms separate equations of motion have to be formulated. This
way, for example, it is possible to obtain insight into the statistical properties
of the light field, represented by the photon—photon correlations (n?), via the
equation-of-motion approach in an analogous fashion to the rate equations.
A critical issue remains with the inclusion of multiple excited carriers and
their interaction. As discussed in Sect. 1.2, several carriers can be excited in
semiconductor QDs.

Before the microscopic semiconductor theory is presented in Sect. 1.5, we
give an illustrative explanation of how the emission properties are directly
influenced by this difference to atomic systems.

1.4 Multiple Excited Carriers in Semiconductor QDs

1.4.1 Electron—Hole Picture

The QD level scheme of Fig. 1.1 with optical pumping into the p-states, fast
relaxation of carriers from p to s-states, and resonant interaction with the laser
mode via the s-states is translated into the electron—hole-picture in Fig. 1.5.
Since for the unexcited system the valence-band states are filled (holes are
absent) a richer set of possible states can be realized in comparison to the
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Fig. 1.5. QD laser model with carrier generation in the p-shells and the laser
transition between the s-shells of electrons (top) and holes (bottom)
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Fig. 1.6. Schematic level diagram of possible electron and hole occupations for the
s-shell of a quantum dot. The photonic part of the states is of no relevance for the
discussion in the text and, therefore, not explicitly shown

single-electron system in Fig. 1.2. For the s-states, the possible configurations
are displayed in Fig. 1.6. In the second (third) configuration recombination is
not possible since the hole (electron) is missing.

In the one-electron systems discussed in Sect. 1.3, the second configuration
where electrons are present in both laser levels is impossible. In the third
configuration no electrons are present in the s-shell at all. In the description
based on the full density matrix in Sect. 1.3.1 this is possible if the carrier
resides in a p-shell state (corresponding either to the state |1) or |[4) in the
scheme in Fig.1.2). However, when the scattering processes 712 and 734 in
Fig. 1.2 are sufficiently fast, this configuration is unlikely and, correspondingly,
left out in the models discussed in Sects. 1.3.2 and 1.3.3.

1.4.2 Theory of QD Recombination

For the following discussion we consider the coupling of carriers in one spin
subsystem to the corresponding circular polarization component of the light
field. The four s-shell states are denoted by |ne,nn) with n, = 0,1 and
ny = 0,1. For the calculation of the recombination dynamics we focus on
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the incoherent regime. Then the elements of the density matrix traced over
the photonic and p-shell states are given by

P = P00|0,0><0,0| + P10|1,0><1,0| + })01|07 1><0, 1| + F)11|17 1><1, 1| (17)

with the probabilities 0 < P;; < 1 and the normalization condition

)= > Py=1. (18)

In the formalism of second quantization the states |ne,ny) are related to
each other by creation and annihilation operators. The fermionic operator e
(ef) annihilates (creates) an electron. The corresponding operators for holes
are h and h'. For instance, applying the creation operator ef to the ground
state |0,0) yields the one-electron state |1,0). In the same way, the creation
operator hf turns the ground state into the one-hole state |0,1). The for-
malism of second quantization allows to describe many-particle effects in an
elegant way. Relevant quantities can be expressed as expectation values of
products of creation and annihilation operators. For example, the lumines-
cence is determined by the dynamics of the photon number (bfb), where the
bosonic operator b (b7) annihilates (creates) a photon in a given optical mode.
Other relevant quantities are the occupations of electrons f¢ = (efe) and holes
f® = (hTh). The changes of the photon number (b'b) and of the s-shell occu-
pation probabilities (ee), (hTh) are determined by mixed expectation values
(bThe) as discussed in detail in Sect. 1.5. The general form of these equations
allows to describe not only the interplay of the different configurations shown
in Fig. 1.6, but also the inclusion of many-body Coulomb effects on various
levels of refinement.

In the following discussion we are only interested in the spontaneous re-
combination processes. For the purpose of uncovering essential differences be-
tween the single-electron atomic system and the many-electron QD system,
we neglect only for the following discussion the effects of Coulomb interaction
and use an adiabatic elimination of mixed expectation values (b'he) that rep-
resent interband transition amplitudes. With these approximations the decay
of carrier population is determined by

Te bt
d fleh) =— {ele h h>7 (1.9)

dt spont T

where 1/7 is the rate of spontaneous emission. Even though formula (1.9) is
based on a considerable simplification in comparison to the general theory,
it reveals the basic difference between QDs and atomic systems with single
excited carriers. To see this, we express (efe hTh) in terms of the four basis
states illustrated in Fig.1.6. We first note that e|0,n,) = 0 as one cannot
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remove an electron from a state that does not contain one. Equally, h|ne, 0) =
0. From this follows immediately efe hth|ne, ny,) # 0 only if ne = ny, = 1.
Using this relation we find

(eTe hTh) = tr(pefe hTh) = Pp;. (1.10)

The intuitive interpretation is, that the decay of carrier population described
in (1.9) is proportional to the probability P;; of finding an electron—hole pair,
since only in state |1, 1) the electron and the hole can recombine via emission
of a photon.

For the semiconductor system with multiple excited carriers, the proba-
bility of observing an electron—hole pair is in general different from the prob-
ability of finding an electron (or a hole). This can be seen by rewriting the
occupation probability of electrons as

fe=(efe) = tr(pefe) = Pyg + Piy. (1.11)
Along the same lines one obtains for the holes
/= Por + Py (1.12)

Comparing (1.11) or (1.12) with (1.10) reveals that the probability of finding
an electron—hole pair is smaller than or equal to the probability of finding an
electron or a hole, and equal to only if Pig = Fy; = 0. In this particular case
we can write (1.9) as

d flen _ _f(e-,h)'

de spont T

(1.13)

Assuming that no other mechanism contributes to the change of the popula-
tion, it follows an exponential decay with rate 1/7 for the population, which
also carries over to the photoluminescence [17]. The conditions Pjg = Py; =0
reduce the four-state system for the electron and hole to a two-state system
for the electron—hole pair with basis states |0,0) and |1,1). This situation
corresponds to fully correlated carriers: the absence (presence) of an electron
implies the absence (presence) of a hole and vice versa.

In the opposite limiting case of uncorrelated carriers, the joint probabilities
P;; factorize into the probabilities P; for the electron and P;‘ for the hole,
i.e., Pij = PfP}'. Accordingly the two-particle quantity (efe h'h) factorizes
into one-particle quantities

(eTe hTh)ur = (eTe)(hTh) = fo £ (1.14)

This is the Hartree-Fock (HF) factorization. Note that polarization-like aver-
ages of the form (efA") vanish in the incoherent regime. The product f¢f" is
the uncorrelated electron-hole population. Equations (1.10)—(1.12) show that
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one can interpret (1.14) as the factorization of the probability of finding an
electron—hole pair into the product of the individual probabilities of finding
an electron and a hole.

Replacing (efe hTh) in (1.9) by its HF-factorization (1.14) yields

df(e,h) :_fefh'

1.15
dt spont T ( )

From (1.15) it is obvious that the decay of the population f¢ is non-
exponential, unless f is held constant by some mechanism, like background
doping. Furthermore, the decay rate depends on the carrier density and is
higher for larger population.

In realistic situations the carriers in a semiconductor QD are neither fully
correlated nor uncorrelated. To quantify the deviation from the discussed
limiting cases, the correlation must explicitly be calculated.

The electron-hole correlation is defined as

s{ete hTh) = (efe hTh) — (efe hTh)ur = (efe hTh) — (eTe)(hTh).  (1.16)

The relation to classical correlation functions can be seen more clearly in the
following representation

(ete hTh) = ((efe — (efe)) (hTh — (hTh))). (1.17)

While a variance like <(eTe — <eTe))2> quantifies the fluctuations around the
expectation value of a single quantity, the correlation function (1.17) is a co-
variance that quantifies correlated fluctuations of two different quantities. It
can have positive and negative contributions depending on the relative sign
of the two brackets in (1.17). A positive correlation function here means that
on average the fluctuations of the electron and hole number around their re-
spective expectation values have the same sign. In the case of a negative cor-
relation function, the fluctuations have mostly opposite signs. We can identify
the sources of positive and negative correlations in terms of the basis states
|ne, nn) using the normalization condition (1.8)

1
5<6T6 hTh> = Z Pncﬂlh (nc - fe)(nh - fh) = PO0P11 - P10P01. (118)

Ne,np=0

The contribution from Py, and Pj; enters with positive sign: if an electron is
absent (present) the hole is absent (present). In contrast, the contribution from
Py and Py; enters with negative sign: if an electron is present (absent) the hole
is absent (present). In other words, positive §(efe hTh) implies that if we detect
an electron then it is likely to find also a hole. Negative §{efe hTh) implies that
if we detect an electron then it is unlikely to find a hole. Vanishing correlation
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§{efe hTh) means that the two events of detecting an electron and detecting
a hole are uncorrelated. In this particular case, the HF factorization (1.14)
is exact.

1.4.3 QD Luminescence Dynamics

The fundamental behavior of carrier and luminescence dynamics can be visu-
alized by considering a doped and an undoped system of semiconductor QDs.
Details of this work can be found in [18]. In the doped case we choose the
dopant density such that there is an average occupation of a single electron
or hole per dot.

Figure 1.7 shows the time-resolved photoluminescence after excitation into
the p-shell. The system is pumped with an equal electron and hole density of
N, = Ny = 0.35N for a QD density of N = 10'°cm™2. In the doped case
we assume on average one additional electron per QD, i.e., No = Ny + N
with again Ny, = 0.35N. Apart from this difference in the initial conditions
both curves are calculated with exactly the same parameters. For the two
different cases we see the following: In the situation of undoped QDs, we
observe a non-exponential decay in agreement with our discussion. Again we
would like to stress that the non-exponential decay cannot be predicted from
an atomic theory. In contrast, the doped QDs show an exponential decay,
which is faster by about a factor of two compared to the undoped case. This
is due to the fact that the temporal change of the electron population relative
to the doping level remains small. According to (1.15), a constant electron
population f¢ leads to an exponential decay of the hole population f!, and,
hence, of the photoluminescence intensity. This example nicely demonstrates
the peculiarities of QD systems if thought of as “artificial atoms.”

undoped

0.1F

Intensity (arb. units)

0.01

0 50 1000 1500
Time (ps)

Fig. 1.7. Time-resolved photoluminescence for doped and undoped QDs excited
into the p-shell



16 C. Gies et al.

1.5 Quantum-Dot Microcavity Lasers

1.5.1 Semiconductor Theory

Our starting point is a Hamiltonian that contains the free carrier spectrum
and the free electromagnetic field, as well as the light-matter interaction and
Coulomb effects. For details we refer to [19]. The fermionic operators ¢, (c,)
annihilate (create) electrons in the one-particle states |v) of energy £¢. The
corresponding operators and single-particle energies for valence-band electrons
are v, (v},) and €Y, respectively. The Bose operators bg and bz are the equiva-
lents for photons in the mode &. We use the fact that polarization-like averages
of the form (v]ec,) vanish due to the incoherent carrier generation, and so does
the expectation value of the photon operators, (be) = 0. Operator averages are
obtained by means of the equation-of-motion technique and the cluster expan-
sion method is used to truncate the inherent problem of an infinite number
of coupled equations.

Cluster Expansion

The equation of motion of an average of N operators couples to IN+2 operator
averages due to the Coulomb and light-matter interactions. This hierarchy of
equations must be truncated in an unambiguous way. One useful approach is
the cluster expansion method [20]. As in (1.16), one schematically decomposes
a four-operator average into

(aTaTaa) = (aTa)(a'a) + 6(aTataa), (1.19)

denoting the fermionic carrier operators ¢, v by a. The first term on the right-
hand side is called singlet contribution as it contains only single-particle quan-
tities. For a four-operator average, the singlet factorization corresponds to the
Hartree-Fock approximation. The second term is the correlation, which is a
doublet contribution. It describes genuine two-particle effects.

The equation of motion for the four-operator (two-particle) correlation
couples to averages of six operators, which are schematically factorized ac-
cording to

(aTata’aaa) = (aTa)(aTa)(aTa) + (aTa) §(aTaTaa) + 6(aTataaaa)  (1.20)

into singlet, singlet-doublet and triplet contributions. Note that all possible
combinations of averages and correlations must be taken, meaning that each
of the first two terms on the right-hand side may represent several terms of
the same order. The triplet contribution, the last term in (1.20), contains only
genuine three-particle effects. In this formulation, the truncation of the hier-
archy can be consistently performed on all correlation functions of a certain
order N, meaning that all correlations involving up to NV — 1 particles are
included.
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The same scheme can be applied to mixed averages of fermionic carrier and
bosonic photon operators. Considering interband transitions, it must be borne
in mind that the excitation of one electron is described as the destruction of
a valence band carrier and the creation of a conduction band carrier. For the
corresponding interaction processes, a photon operator is connected to two
carrier operators [21,22].

As an example for possible factorizations, we consider the factorization
of the operator average (bTbbTvic) into two doublets, which is obtained after
normal order is established, i.e.,

(b'vbivie) = {(b"'e) + (b'070ve)} e
doublet (121)

=0(bTvfe) [1+25(bT0)] .

In the equation-of-motion approach we pursue, the hierarchy of coupled
equations must be extended to the so-called quadruplet-level in order to calcu-
late the photon statistics. This can be seen by expressing (1.2) in terms of cor-
relation functions, §(bTb7bb) = (bTbTbb) —2(bTb)2, where the factor of two arises
from the two possible realizations for this factorization. Since (b) = (bT) = 0
for a system without coherent excitation only a factorization into doublets
is possible. Then the autocorrelation function can be written in terms of the
quadruplet correlation function d(bTbTbb):

5(btol bb)

(2) = =
g (r=0)=2+ (bTh)2

(1.22)

In experiments ¢(®) (1) can be determined, e.g., in a Hanbury—Brown Twiss
setup, which is discussed in Chaps. 6 and 11.

Equations of Motion

For the dynamical evolution of the photon number <b2b5> in the mode £ and
the carrier populations f¢ = (clc,), f* =1 — (vfv,), the contribution of the
light matter (LM) interaction in the Heisenberg equations of motion leads to

(h;it +21<;5) (bibe) 2ReZ|gg| (bvic,), (1.23)

d e,h _ T.1
hdt fs ‘LM = 2ReZ|gg| (bgvje, (1.24)

Note that we have scaled (bzv;ﬂcy) — ge (bzvlcl) with the light-matter cou-
pling strength g¢ to have its modulus appear in the above equations. The no-

tation is to be understood as follows: A new quantity <b£vyc,,> <bzv;‘,cy> /ge is
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used and the tilde is dropped in the following. In (1.23) we have introduced the
loss rate 2k¢/h. The mode index labels cavity as well as leaky modes. For the
laser mode &, the loss rate is directly connected its Q-factor, @ = hwe, /2ke,.
The dynamics of the photon number in a given mode is determined by the
photon-assisted polarization <bzvlcy> that describes the expectation value for
a correlated event, where a photon in the mode £ is created in connection
with an interband transition of an electron from the conduction to the va-
lence band. The sum over v involves all possible interband transitions from
various QDs, i.e., v = {u, R} with p being the shell index and R the QD
position. The dynamics of the carrier population in (1.24) is governed by
contributions of photon-assisted polarizations from all possible modes (both
lasing and non-lasing modes).
The time evolution of the photon-assisted polarization is given by

<h§t +re+ T+ (8 + &) - hwg)> (bivic,)

= fofl— (1= fo— 12) (olbe)
+i(1= 15— 1) Viava (blvlic,)

+ Z CX ot 5<b2b£clcy>— 5<b2b5vlvy) . (1.25)

Here, the free evolution of (bzvlcl,) is determined by the detuning of the QD
transitions from the optical modes. Hartree—Fock (singlet) contributions of
the Coulomb interaction with the Coulomb matrix element V.. lead to the
appearance of renormalized energies %" and to the interband exchange con-
tribution that couples the photon-assisted polarizations from different states
«. The source term of spontaneous emission is described by an expectation
value of four carrier operators {(clv,vic,). We have discussed the implica-
tions arising from this source term in Sect. 1.4. For uncorrelated carriers, the
Hartree-Fock factorization of this source term leads to fSf", which appears
as the first term on the right-hand side of (1.25). Correlations remaining after
the factorization are provided by the Coulomb and light-matter interaction
between the carriers and are included in C%,, ,, =6 <cL,vIcV,Ua).

The stimulated emission/absorption term in the second line appears as
the singlet-doublet factorization of the initial operator averages <bzbfc:f,c,,> -

<bzbgvlvu>. It is proportional to the photon number <bzb£) in the mode &, thus
providing feedback due to the photon population in the cavity. The correla-
tions left after the factorization are given by the last two terms in (1.25). These
are triplet-level carrier—photon correlations. These and higher order correla-
tions are required for the calculation of the photon statistics in Sect. 1.5.2.
In (1.25) there are two terms acting as a dephasing: Photon dissipation
k¢ and carrier—carrier and carrier—phonon interaction-induced dephasing. The
latter is included via a phenomenological damping constant I" in connection
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with transition amplitudes o vjc,. A more rigorous treatment of the de-
phasing in connection with the scattering rates can be provided by reservoir
interaction via Lindblad terms, as discussed in Sect. 1.3.1. The most stringent
approach would be the inclusion of the relevant physical processes, such as
interaction with phonons, on a microscopic level.

After this general introduction to the theoretical model, we now formulate
the laser equations for a coupled QD-microcavity system. We consider QDs
with two localized shells for electrons and holes. The dots are embedded in a
microcavity that provides one long-lived mode that is in resonance with the
QD s-shell emission. Higher cavity modes are assumed to be energetically well
separated from this mode, and a continuum of leaky modes and other cavity
modes constitute the background of non-lasing modes.

In the following scheme, several assumptions are included, which are jus-
tified by possible experimental conditions and which lead to a convenient
formulation of the theory. They provide no principle limitations and their
use can be circumvented at the cost of more complicated analytical and
numerical formulations. We assume that optical processes involving the laser
mode (stimulated and spontaneous emission as well as photon reabsorption)
are exclusively connected to the s-shell transitions. The carrier generation is
assumed to take place in the p-shell, from which down-scattering into the
s-shell is treated in a relaxation-time approximation. At the considered low
temperatures of around 10K, up-scattering processes are negligible. Carrier
excitation in the WL or the barrier material, in which the QDs are embedded
is often used in experiments. While it has the same effect as p-shell excita-
tion for the laser dynamics from the QD s-shells, the density of states of the
excited states strongly influences the effects of Pauli blocking.

When using QDs as the active material in microcavities, the coupling
strength is determined by the position of the dots and their resonance fre-
quencies. Inhomogeneous broadening is accounted for in the estimation of the
number of QDs in resonance with the laser mode, but is not explicitly included
in the equations of motion. The number of strongly coupled QDs can be es-
timated from the dot area density and the overlap of the cavity resonance
with the inhomogeneously broadened ensemble of QDs. For the considered
micropillar cavities with diameters of a few microns, a small number of tens
of QDs can be considered to be in perfect resonance with the cavity mode.

Regarding the influence of the Coulomb interaction, we distinguish be-
tween the single-particle renormalizations and carrier correlations on the two-
particle level. The renormalizations of the single-particle properties are indi-
rectly included by assuming QDs on resonance with the cavity mode and a
certain radiative lifetime in this mode, which is adapted from experiments.
From previous calculations for the photoluminescence of QDs in microcavi-
ties [17] and emission from QDs in unstructured samples [22] we expect that
the influence of carrier correlations on the stationary properties of the laser
light emission is small. In current calculations we have therefore neglected
these contributions.
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Under the discussed conditions we now derive the equations for the semi-
conductor laser model. It is the greatest strength of our microscopic model
that the accommodation of modifications is straightforward and follows a
well-defined manner.

For the resonant s-shell/laser-mode transition, the equation of motion
(1.25) for the photon-assisted polarization takes the form

(h(ft Rt F) (Olole,) = fofd = (A= fo—f2) (070) +-6(bTbele,) —6(bTbolv,),

(1.26)
where, from now on, the index £ = & is omitted for the laser mode. In the equa-
tion of motion for the photon-assisted polarization of the non-lasing modes,
the negligible photon population and the short lifetime of these modes allows
for the omission of the feedback term and carrier—photon correlations,

d e §
(hdt + ke + T+ (8 +eb — fLUJg)) (blvic,) .

__ rerh
#fl - fsfs : (127)

As a result, (1.27) can be solved in the adiabatic limit and the part & #
& of the sum in (1.24) can be evaluated, yielding a time constant ) for
the spontaneous emission into non-lasing modes in a fashion similar to the
Weilkopf-Wigner theory [23],

3 1
R ZKJ&—FP—FZ EC—I—Eh hwg)_Tnl' (1'28)
§#£8
In a laser theory, one typically distinguishes between the rate of spontaneous
emission into lasing and non-lasing modes, 1/7 and 1/7,, respectively. Both
rates add up to the total spontaneous emission rate 1/7s,. Then the sponta-
neous emission factor is given by

1 1
=T = n 1.29
5 1 1 + 1 ( )
Tsp T1 Tnl

and the rate of spontaneous emission into non-lasing modes can be expressed
according to
1 1-p

Tnl Tsp

(1.30)

From (1.24) one can now determine the population dynamics in the s-shell.
For the spontaneous emission into non-lasing modes, the adiabatic solution
of (1.27) is used according to (1.28) and (1.30). Furthermore, we include a
transition rate of carriers from the p- to the s-shell in an approximation where
only downwards directed scattering is considered, RS" - = (1— foh) fob/7ohb,
and g = g¢, to obtain
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2 2 e r£h
2ol g, (bTvlc,) — (1 —p) J3J | pen (1.31)
h Tsp

d fc,h —
dt S p—S*

Here the first term describes the carrier dynamics due to the interaction with
the laser mode, while the second term represents the loss of carriers into non-
lasing modes. The blocking factor 1— f&" in Rg’_}ﬂs ensures that the populations
cannot exceed unity.

The carrier dynamics for the p-shell can be written as

d e rh

AR AR fﬁi” - RSt (1.32)
where a carrier generation rate P is included together with the Pauli-blocking
factor (1 — f, — fg‘) As the carrier generation takes place in the p-shell of
each QD, P is to be understood as a “pump rate per emitter,” in contrast to
the pump rate P = Nomisror P appearing in (1.6). The second term describes
spontaneous recombination of p-shell carriers and the third contribution is the
above-discussed carrier relaxation.

Without the carrier—photon correlations & (bzbgclc,) and § <b£b£v};vy), the
resulting set of equations (1.31) and (1.32), together with (1.23) and (1.26)
constitute the basic equations of the semiconductor laser model on the doublet
level. They describe the coupled dynamics for the photon number and the
carrier population.

1.5.2 Photon Statistics

To access intensity correlations, we must go beyond the doublet level and
include all terms consistently up to the quadruplet level in the cluster expan-
sion. Regarding these higher-order correlations, it is helpful to assume that
only photons from the laser mode linger long enough to build up correlations.

The photon statistics follows from (1.22). The time evolution of the inten-
sity correlation function §(b'b7bb) is given by

d
thtop) = 4 |g| thtpyt
(hdt —|—4/€> 5(btoTob) = 41g] Rez ST vl e, (1.33)

where the sum involves all resonant laser transitions from various QDs. In
this equation enters another quadruplet function, which represents a corre-
lation between the photon-assisted polarization and the photon number. For
it and the two correlation functions in the last line of (1.26) more equations
of motion must be solved, which we do not spell out here. Within reasonable
approximations, the system of coupled equations now describing both the pho-
ton number and the second-order photon autocorrelation function closes on
the quadruplet level.

From the derived equations, it is possible to obtain approximate analytic
expressions for the second-order correlation function. Before the numerical
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results of the semiconductor model are presented, it is instructive to study
the two limiting cases of strong and weak pumping. Above the threshold the
photon number becomes large, so that the limit (b76)/N > 1 can be fulfilled.
In this case we obtain ¢(®(0) = 1, i.e., well above threshold the light is
coherent. For the limiting case of weak pumping, stimulated emission and the
higher-order correlations d(bTbc,c, ), §(bTbviv,) in (1.26) can be neglected due
to the lack of a photon population. In the “bad cavity limit” [5], where the
cavity loss rate is much larger than the total rate of spontaneous emission into
the laser mode, we obtain

2

N
This is an important result, as it provides the statistics of thermal light in
the limit of many QDs, ¢/ (0) = 2, and in the opposite limit of a single QD
it gives the statistics of a single-photon emitter, ¢g(®(0) = 0. The correlation

properties and possible realizations of single-photon sources are the topic of
Chap. 6.

9@ (0) =2 — (1.34)

1.5.3 Numerical Results

We now present numerical solutions of the extended semiconductor laser the-
ory including carrier—photon correlations based on (1.23), (1.26), (1.31)—(1.33)
and equations for higher-order correlations not explicitly given here. We con-
sider a typical parameter set: The number of emitters is N = 20. The number
used in the calculations is increased with decreasing [ in order to have the
thresholds occur at the same pump rate, i.e., N = N /8. For the spontaneous
emission time enhanced by the Purcell effect we use 75, = 50ps, and the
cavity damping is k = 20ueV. The corresponding cavity lifetime is about
17 ps, yielding a Q-factor of roughly 30, 000. The effective relaxation times for
electrons and holes are taken to be 7¢ = 1ps and 7 = 500 fs, respectively.

In Fig.1.8 the autocorrelation function ¢(®(r = 0) is shown atop the
input/output curve for various values of the spontaneous emission coupling
(. There are several striking features:

1. The jump of the intensity curve from below to above threshold is no
longer determined by 1/8, like in Fig.1.4 and many examples found in
the literature [5,24, 25] that are obtained from an atomic laser theory.
The origin of the jump lies in the transition from dominantly spontaneous
to stimulated emission in the system. As the non-lasing modes are only fed
by spontaneous emission, their effect is that a fraction 1 — 3 of the total
spontaneous emission is lost for the laser mode. Above the intermediate
threshold region, stimulated emission into the laser mode dominates, so
that losses into non-lasing modes are irrelevant. In the regime where spon-
taneous emission dominates, i.e., below the threshold, the output-power
is reduced accordingly, visible as a jump in the input/output curve. In
atomic systems operating at full inversion, like conventional four-level gas
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Fig. 1.8. Calculated input/output curve (lower panel) and autocorrelation function
9(2)(7' = 0) (upper panel) for B =1,0.1,0.01, and 0.001. The system is excited at a
constant pump rate, corresponding to continuous wave excitation

lasers, the height of the resulting jump is truly given by 1/5. The fact that
QD-based laser shows different behavior lies in the reabsorption present
in the system, i.e., the laser does not operate at full inversion.

This is of particular importance since measurements of the input/output
characteristics are often used to experimentally deduce the [-factor ac-
cording to the predictions of the two-level models. If the atomic 1/(-
behavior would be used to extract the g-factors from the curves in Fig. 1.8,
one would obtain 0.017 instead of 0.1, 0.0017 instead of 0.01, and 0.00017
instead of 0.001.

2. The usual laser threshold in conventional lasers with low spontaneous
emission coupling (3 ~ 107%) is very abrupt. We see that for larger 3
values (8 > 0.1), the s-shaped jump in the input/output curve becomes
smeared out, and also the drop of the autocorrelation function becomes

softer.
3. For small 3 values, the intensity jump is accompanied by a decrease
of the second-order coherence from the Poisson value g(*)(0) = 2 for

thermal light to ¢ (0) = 1 for coherent laser light. For higher spon-
taneous emission coupling (3, ¢® remains smaller than two below the
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threshold. Corresponding to the discussion above, this behavior can arise
either in the bad cavity regime if the number of emitters is small (com-
pare (1.34)), or if the loss rate from the cavity becomes smaller than the
rate of spontaneous emission into the cavity. In the latter case, and this is
the reason for the decrease of sub-threshold value of ¢(®(0) in Fig. 1.8, a
substantial population of photons can build up in the cavity mainly due
to spontaneous emission processes, and exhibit a deviation from the sig-
nature of incoherent thermal light. Furthermore, for the largest 8 value an
antibunching signature is observed just above the threshold region, where
g?(0) is smaller than 1.

4. At high pump intensities saturation effects due to Pauli blocking become
visible in the input/output curve, effectively limiting the maximum output
that can be achieved. The strength of the Pauli blocking depends on the
number of available states in the pump levels and the number of QDs in
resonance with the laser mode. When pumping into the barrier, where the
density of states is larger than for the localized states, saturation effects
will be less influential compared to the situation where higher localized
states are pumped.

1.6 First-Order Coherence and Two-Time Quantities

Coherence is usually associated with the occurrence of fringes in an interfer-
ence experiment. Chapter 6 gives details on experiments using a Michelson
interferometer, where a quasi-monochromatic beam is divided into two by a
beam splitter. By means of a moving mirror, a time delay 7 is introduced to
one of the beams before they are reunited. Only if this time delay is shorter
than the coherence time 7¢, interference fringes can be observed between the
two beams. The visibility of the interference fringes is directly described by
the first-order correlation function, which we have written in terms of photon
operators for the laser mode in (1.1). The loss of coherence carries over to the
second-order correlation function ¢(® (7). No matter if the light is thermal,
coherent or exhibits an antibunching signature — the correlation function con-
verges to a value of unity on a timescale of the coherence time. The coherence
time can be calculated from the first-order correlation function:

Tcz/ 19D ()2dr- (1.35)

In quantum optics two-time operator averages, like (1.1), are accessed by
invoking the quantum regression theorem [15,26]. The quantum regression
theorem in its standard formulation in quantum optics, however, requires the
equations of motion to be linear and, therefore, applies to systems where only
a single excitation is possible. Due to the unavoidable factorization of the
equations of motion in the semiconductor model, the initial linearity of the
model is spoiled. With the source-term of spontaneous emission, our equations
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are nonlinear already on the singlet level, so that the validity of approaches
that can be traced back to the quantum regression theorem rely on additional
assumptions.

A straightforward approach for the calculation of g(Y)(r) lies in the
equation-of-motion-technique itself, where the time derivative is now taken
with respect to the delay time 7 [27]. In order to obtain the dynamics of a
quantity F'(t,t + 7) with respect to the time difference 7, in a first step the
single-time problem is solved for 7 = 0. In a second step, the T-evolution is
evaluated according to its own equation of motion. The initial value is given
by the 7 = 0 result obtained in the first step.

One has to be aware that for operators with different time arguments
the commutation relations do not apply, i.e., (bT(t)bT(t + 7)b(t + 7)b(t)) #
(bT(#)bT (¢ + 7)b(t)b(t + 7)). Therefore, the number of equations in the result-
ing hierarchy that needs to be solved quickly scales with the order of the initial
two-time expectation value. This method is now demonstrated in the calcu-
lation of the first-order coherence function. We use the Hamiltonian and the
methods introduced in Sect. 1.5. In order to obtain non-rotating dynamical
equations, we introduce

G(r) = 7 (b (£)b(t + 7)). (1.36)

The quantity defined in (1.36) obeys the following equation of motion
d x
<th + H) G(r) = ;gVPy(T), (1.37)

where we have introduced the two-time photon-assisted polarization
P, (1) = e“T (b (t)v](t + 7)e, (t 4 7)). (1.38)

We now invoke the same assumptions that we have used in the definition
of the laser system in Sect.1.5.1. In the following we consider N identical
QDs that are on resonance with the laser mode. Furthermore, terms coupling
different modes are neglected. With ¢(!)(7) being a doublet quantity (two-
particle average) in the cluster expansion scheme, we truncate the hierarchy
consistently at the same level. With these approximations, we finally arrive
at the closed set of equations

(hddT + fi) G(r) = g"P(7), (1.39)
(ﬁi + F) P(r) = gN(f* = [*)G(7), (1.40)

where we have introduced P(7) = > P,(7). The solution of these equations
yields the normalized first-order correlation function

19 (7)| = B 2 L i (1.41)
T+ 7= T+~ -
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with
k4T Kk — 12
e =", i\/IQIQN(fC—f”)Jr ( 4 ”
Thus, on the doublet level the first-order coherence properties are determined
by the carrier populations in the lowest confined QD states, which are known
from the stationary solutions of the dynamic laser equations. From (1.35) and
the equations above, we find for the coherence time

(1.42)

1 1 h
Tc — + +

. 1.43
Y+ - K+ (1.43)

In Fig. 1.9 the coherence times obtained from (1.42) and (1.43) are shown
together with the input/output curves for three different values of the sponta-
neous emission coupling factor #. The parameters for the § = 0.01 curve are
chosen to meet the characteristics of a real existing micropillar: N = 500 QDs,
total spontaneous emission time 7y, = 80ps, homogeneous QD broadening
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Fig. 1.9. Theoretical i/o curves (bottom) and coherence times (top) for various
values of the 3 parameter. For 8 = 0.01, 8 = 0.1 and 8 = 1,500, 50 and 5 QDs have
been used, respectively. All other parameters remain unaltered
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I' = 200pueV, and cavity losses 2k = 30ueV. For the 8 = 0.1 (8 = 1) curve,
N =50 (5) QDs was used. As the threshold region is approached, a strong
increase in the coherence time is observed. While below threshold the value
lies between 20 and 30 ps for all three curves, the coherence time is found to
increase slower with increasing pump power in cavities with larger sponta-
neous emission coupling: At comparable points on the input/output curves,
we find that devices with a larger (3 factor display shorter coherence times. An
illustrative explanation is that fluctuations introduced by spontaneous emis-
sion processes decrease the coherence in the system, and at higher [ values
more spontaneous emission is coupled into the laser mode. At the same time,
even in the “thresholdless” case of § = 1, the slower, but nevertheless distinct
rise in the coherence time indicates the beginning of the threshold region.
The decay of the first-order correlation function is presented in Fig. 1.10.
A clear qualitative change of the decay from a Gaussian-like profile to a
more exponential behavior can be observed within the transition regime. This
qualitative change of the lineshape can be seen in the analytical solutions
of the coherence function. Expanding (1.41) into a Taylor series reveals the
Gaussian-like characteristic in the decay of [¢(*) ()], as the term linear in
7 drops out. Considering the solutions v+ at transparency, f¢ — f* = 0,
we get v+ = I' > v_ = &k, yielding a decay that is close to exponential

eV

gV

gV

0
-400 -200 0 200 400
Delay in ps

Fig. 1.10. Decay of the first-order correlation function at different excitation pow-
ers. A gradual change in the profile from Gaussian-like to a more exponential be-
havior becomes evident with increasing excitation power P
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1.7 Concluding Remarks

We have reviewed the common methods in quantum optics for the computa-
tion of laser properties and placed them in relation to each other and to the
equation-of-motion approach that our semiconductor theory is based on. As
the most fundamental method we have discussed the Liouville/von-Neumann
equation that yields the time-evolution of the full density matrix. This model
can be reduced to a master equation that describes probabilities, or to the
well-known rate equations. Two points are important to notice: Firstly, in
both approaches where the density matrix elements are calculated, informa-
tion about the statistical properties of the light are preserved, whereas in the
rate equation formulation this information is lost. And secondly, we have dis-
cussed that the rate equations are the most simple possible factorization in a
reformulation of the first two approaches in a hierarchy of coupled equations
of motion.

In this context we place our semiconductor theory: It is based on an
equation-of-motion approach. While rate equations typically describe the car-
rier system in terms of the expectation value of the number of excited two-level
systems, the semiconductor approach is based on population expectation val-
ues and transition amplitudes in a semiconductor basis. Also the hierarchy of
equations is not truncated on the semiclassical level, but higher-order corre-
lation functions are kept in a consistent manner. This enables us to calculate
the coherence properties of the emitted light in terms of the second-order
correlation function. As the equation-of-motion method does not require the
equations to be linear, Coulomb correlations and other effects specifically im-
portant in semiconductor systems can be included in a straightforward way.
To give an illustrative example for a deviation from the atomic behavior, we
have discussed the source term of the spontaneous emission, which is modi-
fied due to the possibility to have more than single excitation in a QD. As
a consequence, the carrier decay and the photoluminescence exhibits a non-
exponential signature with a density-dependent decay rate. This effect is nat-
urally included in our semiconductor approach. While it is possible to modify
existing quantum-optical models to include more than a single excitation per
emitter, it has, to the best of our knowledge, not been done so far. In this sense,
our approach can be understood as an extension to these models. However,
being based on a microscopic Hamiltonian, the full spectrum of semiconduc-
tor effects, including Coulomb effects and interaction with phonons, can be
considered on a microscopic level.

In order to calculate the first-order coherence properties we have shown
how the described model can be used to calculate two-time operator averages.
With this and the second-order correlation function, we obtain a consistent
overall picture of the laser transition in QD-based microcavity laser devices. At
the large spontaneous emission coupling factors 3 that are currently obtained
in state-of-the-art devices, the transition in the input/output characteristics
is washed-out and cannot be clearly identified anymore. At the same time,



1 Theory of Light Emission from Quantum Dots 29

around the threshold region we observe a distinct rise in the coherence time
by about two orders of magnitude, a change in the lineshape of the first-order
correlation function from Gaussian-like to exponential, and a change in the
second-order coherence properties from (close to) the signature of thermal
light (¢ (0) = 2) to that of coherent (¢(*)(0) = 1) light. These results char-
acterize clearly the physics in the threshold region even if a threshold is no
longer directly visible in the intensity of the emitted light.

From atomic models it is expected that the output intensity shows a jump
by a factor of 1/ at the threshold. For several reasons this does not apply
to semiconductor systems. The reabsorption present in the system modifies
the height of the jump. Saturation effects of the pump levels and due to
the small numbers of QDs typically present in microcavity lasers, can have
an effect at higher excitation powers. In this case the upper branch of the
input/output curve can be masked to an extent where even the threshold is not
fully developed. If in this case atomic models are used to extract parameters
from measured data, the smaller jump in the input/output characteristics may
be mistaken to be caused by a spontaneous emission coupling factor 3 larger
than it truly is. This effect is even more pronounced for pulsed excitation [28].

The close relation to the discussed atomic models allows for a direct com-
parison and a verification of the truncation scheme if the semiconductor model
is considered in the limit of a single possible excitation. We have performed
such tests for an ensemble of emitters and find that the truncation of the hier-
archy introduced by the light-matter coupling on the quadruplet level delivers
an accurate description of the laser properties including the second-order cor-
relation function for realistic parameters [19].
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