
Leptonic Interactions 2

2.1 The Current–Current Interaction (Charged Currents)

Let us first consider only the weak interactions between leptons. Today three leptonic
hierarchies (e, μ, τ ) are known; the experimental data are listed in Table 2.1. To recall,
parity violation in nuclear β decay suggested an interaction of the form (see (1.30))

Hint = G√
2

∫
d3x

[
ūp(x)γα(CV + CAγ5)un(x)

][
ūe(x)γ α(1 − γ5)uνe(x)

]
(2.1)

where the leptonic contribution

ūe(x)γ α(1 − γ5)uνe(x) (2.2)

contains terms that resemble the electromagnetic current

jα(x) = eΨ̄ (x)γ αΨ (x) . (2.3)

Table 2.1. Experimental data for leptons

Lepton e νe μ νμ τ ντ

mass (MeV) 0.511 <17 × 10−6 105.66 <0.27 1784 ± 4 <35
lifetime (s) ∞ ∞ 2.2 × 10−6 ∞? 3 × 10−13 ?

By analogy with the electromagnetic current, we therefore introduce the total weak
leptonic current by adding the currents of the three leptonic families:

J (L)
α (x) = ūe(x)γα(1 − γ5)uνe(x) + ūμ(x)γα(1 − γ5)uνμ(x)

+ ūτ (x)γα(1 − γ5)uντ (x)

= J (e)
α (x) + J (μ)

α (x) + J (τ)
α (x) . (2.4)

To describe the mutual weak interaction of leptons we generalize (2.1) by postulating
that

H
(L)
int = G√

2

∫
d3xJ (L)†

α (x)J α
(L)(x) . (2.5)

The consequences of this step are non-trivial. Since H
(L)
int is quadratic in J

(L)
α , each lep-

tonic hierarchy interacts with itself as well as with each of the other two. The follow-
ing diagrams are some examples for such possible processes (see also Exercise 2.1).
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Neutrino–electron scattering:

J (e)
α

†
Jα

(e) = [
ūνeγα(1 − γ5)ue

][
ūeγ

α(1 − γ5)uνe

]
.

Muon decay:

J (μ)
α

†
Jα

(e) = [
ūνμγα(1 − γ5)uμ

][
ūeγ

α(1 − γ5)uνe

]
.

Muon production in muon-neutrino–electron scattering:

J (e)
α

†
Jα

(μ) = [
ūνeγα(1 − γ5)ue

][
ūμγ α(1 − γ5)uνμ

]
.

On the other hand, a process like

is not allowed. This means that νμ and e can interact only via the creation of a muon,

which is an immediate consequence of the specific form of the currents J
(i)
μ , allowing

for a neutrino converting into a charged lepton (or vice versa!), but prohibiting an
interaction without a conversion of particles. This property of the interaction is usually
expressed by calling the currents (2.4) charged currents (more accurate by charged
transition currents) since the charge of the particle of a particular leptonic hierarchy
changes by one unit. In the electromagnetic current (2.3) the charge of the particle
does not change, it is therefore called a neutral current. We shall later see that neutral
currents also appear in the context of the gauge theory of weak interaction.

EXERCISE

2.1 Neutrino–Electron Exchange Current

Problem. Prove that J
μ

(e)
† = ūνeγμ(1 − γ5)ue .

Solution. With γ5
† = γ5 we find

J
μ

(e)
† = [

ūeγ
μ(1 − γ5)uνe

]†

= uνe
†(1 − γ5)γ

μ†
ū†

e

= ūνeγ
0(1 − γ5)γ

μ†
γ 0†

ue . (1)

Using the identity

γ μ† = γ 0γ μγ 0 , (2)

that is, γ i† = −γ i , γ 0† = γ 0, yields the desired result:

J
μ

(e)
† = ūνeγ

0(1 − γ5)γ
0γ μue
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= ūνe(1 + γ5)γ
μue

= ūνeγ
μ(1 − γ5)ue , (3)

where we have used the fact that γ5 anticommutes with all other γ matrices.

2.2 The Decay of the Muon

Of all pure leptonic processes, muon decay was the first to be investigated with high
accuracy. Muon decay occurs because of the general hypothesis (2.5) for the weak
interaction of leptons. Its observation, therefore, is a very important check of the gen-
eralization (2.5) of the original Fermi theory of weak interactions. It is therefore ap-
propriate to begin our study with this particular process. Since the decay implies a
change in the state of the muon, and because the interaction that causes it is weak, it
can be described in the framework of time-dependent perturbation theory.

The quantum mechanical wavefunction obeys a Schrödinger equation,

i
∂Ψ (x, t)

∂t
= Ĥ (x, t)Ψ (x, t)

which – after eliminating the space coordinates x – simply reads

i
∂Ψ (t)

∂t
= Ĥ (t)Ψ (t) . (2.6)

We now study the time development appropriate for our case (2.5) of weak interaction.
Starting at t0 with the initial wavefunction Ψi = Ψ (t0), we obtain after a time step 	t0

Ψ (t1) = Ψ (t0 + 	t0) = Ψ (t0) − i	t0Ĥ (t0)Ψ (t0)

= (1 − iĤ (t0)	t0)Ψ (t0) .

After a next time step 	t1 we get

Ψ (t2) = Ψ (t0 + 	t0 + 	t1) = Ψ (t1) − i	t1Ĥ (t1)Ψ (t1)

= Ψ (t0) − i	t0Ĥ (t0)Ψ (t0)

− i	t1Ĥ (t1)Ψ (t1) ,

and after N steps

Ψ (t) = Ψ (tN) = Ψ (t0 + 	t0 + 	t1 + · · · + 	tN−1)

= Ψ (t0) − i	t0Ĥ (t0)Ψ (t0)

− i	t1Ĥ (t1)Ψ (t1)

...

− i	tN−1Ĥ (tN−1)Ψ (tN−1)
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= Ψ (t0) − i
N−1∑
i=0

	tiĤ (ti)Ψ (ti)

≈ Ψ (t0) − i

t∫

t0

Ĥ (t ′)Ψ (t ′)dt ′ , (2.7)

where higher-order terms in Ĥ were neglected.

Now, the S-matrix element Sfi for a transition from an initial state |Ψi〉 to a final

state |Ψf〉 �= |Ψi〉 is defined as1

Sfi = lim
t→∞〈Ψf|Ψi(t)〉

= lim
t→∞

t0→−∞

〈
Ψf

∣∣∣∣Ψi(t0) − i

t∫

t0

Ĥ (t ′)Ψi(t
′)dt ′

〉

= δfi − i

∞∫

−∞
〈Ψf|Ĥ (t ′)|Ψi(t

′)〉dt ′ . (2.8)

Only Ĥint of Ĥ = Ĥ0 + Ĥint contributes to the integral, because of the supposed or-

thogonality of initial and final state, 〈Ψf|Ψi〉 = 0.

Specializing to the case of the muon decay, the lowest-order transition amplitude is

Sfi = −i

+∞∫

−∞
dt H

(L)
int (μ− → e−ν̄eνμ) . (2.9)

As discussed in Sect. 2.1, the relevant part of H
(L)
int contributing to this process is

−i
G√

2

∫
d3x

[
ūνμ(x)γμ(1 − γ5)uμ(x)

][
ūe(x)γ μ(1 − γ5)uνe(x)

]
. (2.10)

For this first-order approximation we may choose free wave functions to describe the

four particles with four-momenta p,p′, k, k′ and spins s, s′, t, t ′, respectively. Accord-

ing to the Feynman rules the (outgoing) antineutrino is represented by an (incoming)

wave function with negative energy (see Fig. 2.1). Employing the form of the plane

1 See W. Greiner: Quantum Mechanics – An Introduction, 4th ed. (Springer, Berlin, Heidelberg,
2001), and W. Greiner and J. Reinhardt: Field Quantization, 1st ed. (Springer, Berlin, Heidelberg,
1996).
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waves of Appendix A.2 we have2

Fig. 2.1. Momenta and spins
for the muon decay. The anti-
neutrino ν̄e is represented by
an incoming wave with nega-
tive energy and negative mo-
mentum, i.e. negative four-
momentum

uμ(x) = (2EμV )−1/2uμ(p′, s′) exp(−ip′
μxμ) ,

ue(x) = (2EeV )−1/2ue(p, s) exp(−ipμxμ) ,
(2.11)

uν̄e(x) = (2EνeV )−1/2vνe(k, t) exp(+ikμxμ) ,

uνμ(x) = (2EνμV )−1/2uνμ(k′, t ′) exp(−ik′
μxμ) ,

where

Eμ = p′0, Ee = p0, Eνe = k0, Eνμ = k′0 (2.12)

and u(p, s), v(p, s) denote the spinor parts (E positive!)

u(p, s) = (E + m)
1
2

(
χs

σ ·p
E+m

χs

)
,

(2.13)

v(p, s) = (E + m)
1
2

( σ ·p
E+m

χs

χs

)

with the two-component unit spinors χs . Substituting this expression into the matrix
element (2.9) yields

S(μ− → e−ν̄eνμ) = − iG√
2

∫
d4x

exp[i(k′
μ − p′

μ + pμ + kμ)xμ]
[16(k′0V )(p′0V )(p0V )(k0V )] 1

2

× [
ūνμ(k′, t ′)γμ(1 − γ5)uμ(p′, s′)

]
× [

ūe(p, s)γ μ(1 − γ5)vνe(k, t)
]

= −i(2π)4 G√
2

δ4(p + k + k′ − p′)
[16V 4k′0k0p′0p0] 1

2

× [
ūνμ(k′, t ′)γμ(1 − γ5)uμ(p′, s′)

]
× [

ūe(p
′, s)γ μ(1 − γ5)vνe(k, t)

]
. (2.14)

To obtain the transition probability, (2.14) must be multiplied with its Hermitian con-
jugate. This gives a factor

[
δ4(p + k + k′ − p′)

]2 = δ4(p + k + k′ − p′)δ4(0) , (2.15)

which is replaced by

V T

(2π)4
δ4(p + k + k′ − p′) (2.16)

according to the usual prescription, which can be derived heuristically (although math-
ematically oversimplified) as follows:

δ4(0) = lim
q→0

δ4(q) = lim
q→0

∫
d4y

(2π)4
eiyμqμ =

∫
d4y

(2π)4
= V T

(2π)4
. (2.17)

2 Note that we are using the index “μ” for two different purposes: it denotes the muon wave function
uμ and energy Eμ, and it occurs as a four-vector index, such as in pμ,xμ, γμ. Although this is
somewhat unfortunate, we must get used to this double meaning.
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V and T are understood to be macroscopic quantities so that the physical process takes
place entirely within the finite space-time volume V T . In practice, the two neutrinos
cannot be observed, that is, we need to sum or integrate over all possible final states.
Furthermore, to obtain the transition probability within a small interval of momentum,
we multiply by the density of the electron final states within an interval V d3p/(2π)3.
Finally we divide by T to get the decay rate, that is, the transition probability per unit
time interval. Following these steps we find that

dW = 1

T

V d3p

(2π)3
V

∫
d3k

(2π)3
V

∫
d3k′

(2π)3

∑
t,t ′

|S(μ− → e−ν̄eνμ)|2

= G2

2

1

(2π)5

d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0 δ4(p + k + k′ − p′)
∑
t,t ′

|M|2 , (2.18)

where

M = [
ūνμγ μ(1 − γ5)uμ

][
ūeγμ(1 − γ5)vνe

]
. (2.19a)

The expression |M|2 consists of two similar factors for the muonic and electronic
transition currents. If we write M = MμEμ with Mμ = (ūνμγ μ(1−γ5)uμ) and Eμ =
(ūeγμ(1 − γ5)uνe), (2.19a) becomes

∑
t,t ′

|M|2 =
∑
t,t ′

(MμEμ)(MνEν)
† =

∑
t,t ′

(MμMν†
)(EμE†

ν ) . (2.19b)

Let us first focus on the muonic factor, making use of Exercise 2.1:

Xμν(μ) = MμMν†

=
∑
t ′

[
ūνμ(k′, t ′)γ μ(1 − γ5)uμ(p′, s′)

]

× [
ūνμ(k′, t ′)γ ν(1 − γ5)uμ(p′, s′)

]†

=
∑
t ′

ūνμ(k′, t ′)γ μ(1 − γ5)uμ(p′, s′)ūμ(p′, s′)

× γ ν(1 − γ5)uνμ(k′, t ′) . (2.20)

In order to evaluate this expression we make use of some helpful formulas for Dirac
spinors and γ matrices (see Appendix A.2),3

∑
t ′

uνμ(k′, t ′)αūνμ(k′, t ′)β = (/k′ + mν)αβ = /k′
αβ , (2.21)

where α,β denote the spinor indices and mν = 0. Since the summation is not over the
initial muon states, we have (see Appendix A.2)

uμ(p′, s′)αūμ(p′, s′)β =
[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]
αβ

, (2.22)

3 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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with the spin four-vector

s′
μ =

(
p′ · s′

m
, s′ + (p′ · s′)p′

m(E′ + m)

)
, (2.23)

where s′ is the spin vector with respect to the rest frame. Here s′ is a unit vector so
that s′μs′

μ = −1. Inserting the relations (2.21) and (2.22) into (2.20) we obtain the
following expression for the muonic contribution to the transition currents Xμν(μ):

Xμν(μ) =
∑
t ′

ūνμ(k′, t ′)πγ μ
π
(1 − γ5)
α

[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]
αβ

× γ ν
βσ (1 − γ5)στ uνμ(k′, t ′)τ

= γ μ
π
(1 − γ5)
α

[
(/p′ + mμ)

(
1 + γ5/s

′

2

)]
αβ

γ ν
βσ (1 − γ5)στ /k

′
τπ . (2.24)

Summing over the first and last index π means that we have to evaluate the trace of
the (4 × 4) matrix:

Xμν(μ) = Tr

{
γ μ(1 − γ5)(/p

′ + mμ)

(
1 + γ5/s

′

2

)
γ ν(1 − γ5)/k

′
}

. (2.25)

Since γ αγ5 = −γ5γ
α and Tr{AB} = Tr{BA} this yields

Xμν(μ) = 1

2
Tr
{
(/p′ + mμ)(1 + γ5/s

′)γ ν/k′(1 + γ5)γ
μ(1 − γ5)

}
. (2.26)

Now we make use of the property that any trace of a product of an odd number of γ

matrices vanishes (see Appendix A.2). Since γ5 = iγ 0γ 1γ 2γ 3 it consists of an even
number of γ matrices. Furthermore it holds that (1 − γ5)

2 = 2(1 − γ5), so that (2.26)
becomes

Xμν(μ) = Tr
{
(/p′ + mμ)(1 + γ5/s

′)γ ν/k′γ μ(1 − γ5)
}

= Tr
{
/p′γ ν/k′γ μ(1 − γ5) + /p′γ5/s

′γ ν/k′γ μ(1 − γ5)

+ mμγ ν/k′γ μ(1 − γ5) + mμγ5/s
′γ ν/k′γ μ(1 − γ5)

}
. (2.27)

Obviously the second and the third terms are “odd”; therefore they do not contribute.
The remaining first and last terms are “even”. Taking into account that γ5(1 − γ5) =
−(1 − γ5), we find that

Xμν(μ) = Tr
{
/p′γ ν/k′γ μ(1 − γ5) − mμ/s′γ ν/k′γ μ(1 − γ5)

}
= Tr

{
(/p′ − mμ/s′)γ ν/k′γ μ(1 − γ5)

}
. (2.28)

In Appendix A.2 it is shown that successive application of γ μγ ν + γ νγ μ = 2gμν

yields the general relations

Tr{γ αγ βγ σ γ τ } = 4(gαβgστ − gασ gβτ + gατ gβσ )
(2.29)

Tr{γ αγ βγ σ γ τ γ5} = −4iεαβστ .

Using this for the trace, (2.28) gives the final result for the muonic part of the transition
currents:
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Xμν(μ) = 4
[
(p′ − mμs′)νk′μ − (p′ − mμs′)αk′

αgμν + (p′ − mμs′)μk′ν

+ iεανβμ(p′ − mμs′)αk′
β

]
. (2.30)

The electronic contribution (2.19)–(2.20) is evaluated in a similar manner, which gives

Xμν(e) = EμE†
ν

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)

][
ūe(p, s)γν(1 − γ5)vνe(k, t)

]†

= Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}
= 4

[
(p − mes)μkν − (p − mes)

α kαgμν + (p − mes)νkμ

− iεαμβν(p − mes)
αkβ

]
. (2.31)

The final result for the squared invariant matrix element (2.19b) is the product of
the two expressions (2.30) and (2.31) which, after some work, is formed to be (see
Exercise 2.3)

∑
t,t ′

|M|2 = Xμν(μ)Xμν(e) = 64(p′ − mμs′)αkα(p − mes)
βk′

β . (2.32)

EXERCISE

2.2 Proof of (2.31)

Problem. Prove the first part of (2.31)

Xμν(e) = Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}
.

Solution. Starting from the expression (2.31) and performing the t summation, we
arrive at

Xμν(e) =
∑

t

EμE†
ν

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)

][
ūe(p, s)γν(1 − γ5)vνe(k, t)

]†

=
∑

t

[
ūe(p, s)γμ(1 − γ5)vνe(k, t)v̄νe(k, t)γν(1 − γ5)ue(p, s)

]

= ūe(p, s)γμ(1 − γ5)

[∑
t

vνe(k, t)v̄νe(k, t)

]

︸ ︷︷ ︸
=/k−mνe=/k

γν(1 − γ5)ue(p, s)

= ūe(p, s)π (γμ)π
(1 − γ5)
α/kαβ(γν)βσ (1 − γ5)στ ue(p, s)τ . (1)

With the identity (see (2.22))

ūe(p, s)πue(p, s)τ =
[
(/p + me)

(1 + γ5/s)

2

]
τπ

(2)
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we obtain

Xμν(e) = (γμ)π
(1 − γ5)
α/kαβ(γν)βσ (1 − γ5)στ

[
(/p + me)

(
1 + γ5/s

2

)]
τπ

= Tr

{
γμ(1 − γ5)/kγν(1 − γ5)

[
(/p + me)

(
1 + γ5/s

2

)]}

= Tr
{
(/p + me)(1 + γ5s)γμ/kγν(1 − γ5)

}
(3)

where we have used the relation

γμ(1 − γ5)/kγν(1 − γ5) = γμ/k(1 + γ5)γν(1 − γ5)

= γμ/kγν(1 − γ5)
2

= γμ/kγν2(1 − γ5)

and the trace identity Tr{AB} = Tr{BA}. This expression (3) transforms to (2.27) if
we replace

/p → /p′ ,

me → mμ ,

/s → /s′ ,
(4)

γμ → γ ν ,

/k → /k′ ,

γν → γ μ .

Therefore we may simply rewrite (2.28) by substituting for the muonic quantities the
corresponding electron quantities:

Xμν(e) = Tr
{
(/p − me/s)γμ/kγν(1 − γ5)

}
. (5)

EXERCISE

2.3 Calculation of the Averaged Decay Matrix Element

Problem. Evaluate
∑ |M|2 in (2.32) by using the following relation for the antisym-

metric Levi-Civita tensor,

εαβμνεᾱβ̄μν = 2(δα

β̄
δ
β
ᾱ − δα

ᾱ δ
β

β̄
) ,

and the property that any product of εαβμν with a tensor that is symmetric in the
indices μ, ν vanishes (see also Exercise 2.4).

Solution. Introducing the following abbreviations

(p′ − mμs′)ν ≡ q ′
ν , (1)

(p − mes)μ ≡ qμ , (2)
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qαkα ≡ (q · k) , (3)

and using the relations (2.30)–(2.32) we rewrite
∑

t,t ′ |M|2 as follows:

∑
t,t ′

|M|2 = 16
[
q ′νk′μ − (q ′ · k′)gμν + q ′μk′ν − iεανβμq ′

αk′
β

]

× [
qμkν − (q · k)gμν + qνkμ + iεαμβνq

αkβ
]

= 16
[
(q ′ · k)(q · k′) − (q · k)(q ′ · k′)

+ (q ′ · q)(k′ · k) − iεαμβνq
′νk′μqαkβ

− (q ′ · k′){(q · k) − (q · k) · 4 + (q · k)}
+ (q ′ · q)(k′ · k) − (q · k)(q ′ · k′) + (q ′ · k)(k′ · q)

− iεαμβνq
′μk′νqαkβ + iεανβμq ′

αk′
βqμkν

+ iεανβμq ′
αk′

βqνkμ − εαβνμq ′
αk′

βεᾱβ̄μνq
ᾱkβ̄

]

= 16
[
2(q ′ · k)(q · k′) + 2(q ′ · q)(k′ · k)

−iεαμβν(q
′μk′ν + q ′νk′μ)qαkβ

︸ ︷︷ ︸
=0

+iεανβμ(qμkν + qνkμ)q ′
αk′

β︸ ︷︷ ︸
=0

+ εαβμνεᾱβ̄μνq
′
αk′

βqᾱkβ̄
]

= 32
[
(q ′ · k)(q · k′) + (q ′ · q)(k′ · k) + (δα

β̄
δ
β
ᾱ − δα

ᾱ δ
β

β̄
)q ′

αk′
βqᾱkβ̄

]

= 32
[
(q ′ · k)(q · k′) + (q ′ · q)(k′ · k)

+ (q ′ · k)(k′ · q) − (q ′ · q)(k′ · k)
]

= 64(q ′ · k)(k′ · q) . (4)

Returning to the original notation (3) this result is equivalent to (2.32).

EXERCISE

2.4 A Useful Relation for the Levi-Civita Tensor

Problem. Prove the formula

εαβμνεᾱβ̄μν = 2(δα

β̄
δ
β
ᾱ − δα

ᾱ δ
β

β̄
)

that was applied in the Exercise 2.3.

Solution. The totally antisymmetric Levi-Civita tensor εαβμν is defined as

εαβμν =
{

sgn(P̂ ) if (αβμν) = P̂ (0123)

0 otherwise
, (1)

where P̂ denotes a permutation of the indices (0123). εαβμν vanishes if two of its
indices are equal.
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Since εᾱβ̄μ̄ν̄ = gᾱαgβ̄βgμ̄μgν̄νε
αβμν is non-zero if and only if (ᾱβ̄μ̄ν̄) is a permu-

tation of (0123), we then have for example for (ᾱβ̄μ̄ν̄) = (0123),

ε0123 = g0αg1βg2μg3νε
αβμν

= 1 · (−1)3ε0123 = 1 × (−1)3 = −1 , (2)

and a similar relation for all other non-vanishing components of the covariant Levi-
Civita tensor, that is,

εαβμν = −εαβμν . (3)

Now consider the desired contraction with respect to the indices μ,ν,

εαβμνεᾱβ̄μν . (4)

For fixed values of α, ᾱ, β, β̄ , only those terms contribute that contain tensor compo-
nents with third and fourth indices different from α, ᾱ, β, β̄ . Furthermore, since the
third and fourth indices are the same for both the covariant and the contravariant ten-
sor, an additional condition is that either

α = ᾱ , β = β̄ (5a)

or

α = β̄ , β = ᾱ . (5b)

In each of the two cases (5a) and (5b) only two possible combinations for the values
of the indices μ,ν remain, namely those of the two numbers (0123) that differ from α

and β . We then have the following relations:

Case A:

α = ᾱ , β = β̄ : εαβμνεᾱβ̄μν =
∑
μ,ν

εαβμνεᾱβ̄μν

=
∑
μ,ν

εαβμνεαβμν

= 2 · 1 · (−1)

= −2 . (6a)

Case B:

α = β̄ , β = ᾱ : εαβμνεᾱβ̄μν =
∑
μ,ν

εαβμνεβαμν

= −
∑
μν

εαβμνεαβμν

= −(−2)

= +2 . (6b)
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Therefore the final result is

εαβμνεᾱβ̄μν =

⎧⎪⎨
⎪⎩

−2 , α = ᾱ, β = β̄

+2 , α = β̄, β = ᾱ

0 , otherwise

= 2{δα

β̄
δ
β
ᾱ − δα

ᾱ δ
β

β̄
} , (7)

which was to be shown.

For calculating the decay rate dW we proceed by inserting the result of (2.32) into
the expression for dW (2.18). In order to perform the required integration, we need to
evaluate the integral

Iαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk′
βδ4(p + k + k′ − p′) . (2.33)

Iαβ is manifestly Lorentz covariant. This is obvious because δ4(p + k + k′ − p′)
and d3p/2p0 = ∫

−∞ d4pδ(p2 − m2
0)θ(p0) are Lorentz invariant. The latter has been

shown in Quantum Electrodynamics.4 Since the variables k and k′ are integrated over
only the two second-rank tensors gαβ and (p′ −p)α(p′ −p)β = qαqβ can occur in the
result. Note that the vector q = (p′ − p) is different from that defined in Exercise 2.3!
We keep this in mind and proceed with the ansatz

Iαβ = Aq2gαβ + Bqαqβ , (2.34)

where q2 = qαqα was split off in order to have A and B dimensionless. From (2.34)
we construct the following invariants:

gαβIαβ = (4A + B)q2 , (2.35a)

qαqβIαβ = (A + B)q4 . (2.35b)

To proceed, we now distinguish two cases:
(i) The vector q = p′ − p is time-like, that is q2 > 0. With this condition we can

always perform a proper Lorentz transformation, such that

q̃ν := aν
μqμ = (q̃0,0) (2.36)

defines the reference system. With respect to this reference frame we have

gαβIαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk′αδ3(k + k′)δ(k0 + k′0 − q̃0)

=
∫

d3k

2k0

∫
d3k′

2k′0
[
(k0)2 − (k′ · k)

]
δ3(k + k′)δ(k0 + k′0 − q̃0)

4 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg
2009), equation (3.72).
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=
∫

d3k

4(k0)2
2(k0)2δ(2k0 − q̃0) , (2.37)

since k′ = −k and consequently k′0 = k0 = |k| = |k′|. The integral can further be
simplified by substituting x = 2k0,

gαβIαβ = 2π

∞∫

0

(k0)2 dk0δ(2k0 − q̃0) = π

4

∞∫

0

x2 dxδ(x − q̃0) . (2.38)

For positive q̃0 the argument of the δ function has its zero value within the integration
interval. By means of the Θ function

Θ(x) =
{

1 for x > 0

0 for x < 0
, (2.39)

the above result can be expressed as

gαβIαβ = π

4
(q̃0)2Θ(q̃0) . (2.40)

In order to rewrite this in a Lorentz invariant form we remark that for time-like four-
vectors qμ the sign of the zeroth component q0 remains unchanged under proper
Lorentz transformations, that is, Θ(q̃0) = Θ(q0). Furthermore, with respect to our
chosen reference frame we have q̃2 = (q̃0)2 = q2. Hence the result (2.40) can be
stated in the Lorentz invariant form

gαβIαβ = π

4
q2Θ(q0) for q2 > 0 . (2.41)

Similarly we obtain

qαqβIαβ = (q̃0)2I00

= (q̃0)2
∫

d3k

2

∫
d3k′

2
δ3(k + k′)δ(k0 + k′0 − q̃0)

= 1

4
(q̃0)2

∫
d3kδ(2k0 − q̃0)

= π(q̃0)2
∫

(k0)2 dk0δ(2k0 − q̃0) = π

8
(q̃0)4Θ(q̃0)

= π

8
q4Θ(q0) for q2 > 0 . (2.42)

(ii) The vector qμ is space-like, that is q2 < 0. In this case the argument of the δ

function, (k + k′ − q), is non-zero everywhere. This property can be understood by
recalling that, owing to the vanishing mass of the neutrinos, it holds that

k2 = k′2 = 0 ,
(2.43)

k · k′ = k0k′0 cos θ ,

where θ is the angle between k and k′. Consequently we have

(k + k′)2 = 2(k0k′0 − k · k′) = 2k0k′0(1 − cos θ) ≥ 0 , (2.44)
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which implies that qμ = kμ + k′μ cannot be satisfied. Therefore

Iαβ = 0 for q2 < 0 . (2.45)

The results of (2.41), (2.42) and (2.45) may be summarized as follows:

gαβIαβ = π

4
q2Θ(q0)Θ(q2) (2.46a)

qαqβIαβ = π

8
q4Θ(q0)Θ(q2) . (2.46b)

Equating these expressions with (2.35) gives

4A + B = π

4
Θ(q0)Θ(q2) , (2.47a)

A + B = π

8
Θ(q0)Θ(q2) , (2.47b)

yielding the solution

A = π

24
Θ(q0)Θ(q2) , (2.48a)

B = π

12
Θ(q0)Θ(q2) . (2.48b)

Substituting in (2.34) we finally obtain

Iαβ = π

24
(q2gαβ + 2qαqβ)Θ(q0)Θ(q2) . (2.49)

The decay rate of a muon with polarization s′ into an electron with polarization s is
given in terms of (2.18), (2.32) and (2.49); thus we find that

dW = G2

2

1

(2π)5

d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0
∑
t,t ′

δ4(p + k + k′ − p′)|M|2

= G2

2

1

(2π)5

64d3p

2p′02p0
Iαβ(p′ − mμs′)α(p − mes)

β

= G2

3

πd3p

(2π)5p′0p0

[
(p′ − p)2(p′ − mμs′)α(p − mes)α

+ 2(p′ − p)α(p′ − mμs′)α(p′ − p)β(p − mes)
β
]

× Θ(p′0 − p0)Θ((p′ − p)2) . (2.50)

Note that the effect of time dilatation, which accompanies the observation of the muon
lifetime, becomes obvious from (2.50). For a moving muon we have p′0 = γmμ

with the Lorentz factor γ = (1 − v2/c2)−1/2. As can be seen from the expression
for dW (2.50), dW ∝ 1/γ , implying that the decay rate decreases considerably for
fast-moving muons, that is, the life-time τμ ∝ γ is prolonged. To proceed we switch
to the rest frame of the muon, which is characterized by pα ′ − pα = (mμ − p0,−p).
Since

(p′ − p)2 = (mμ − p0)2 − p2 = (mμ − p0)2 − (p02 − m2
e)

= −2p0mμ + m2
μ + m2

e , (2.51)



2.2 The Decay of the Muon 39

the condition (p′ − p)2 > 0 for a non-vanishing dW yields the restriction

p0 < p0
max = (mμ

2 + me
2)/2mμ , (2.52)

which consequently requires p′0 − p0 > 0, since

p′0 − p0 = mμ − p0 > mμ − p0
max = (mμ

2 − me
2)/2mμ > 0 . (2.53)

The condition p0 < p0
max in (2.52) and (2.53) assures that the first Θ(p′

0 −p0) function
in (2.50) is automatically fulfilled. Therefore we may replace the product of the two
Θ functions in (2.50) by Θ(p0

max − p0). Furthermore, with respect to the rest frame
of the muon, it holds that sμ′ = (0, s′), so that the final result is

dW(s′) = G2

3

π d3p

(2π)5p0

{[
(mμ − p0)2 − p2][(p0 − mes

0) + s′ · (p − mes̃)
]

+ 2[mμ − p0 − s′ · p][(mμ − p0)(p0 − mes
0) + p · (p − mes̃)

]}

× Θ(p0
max − p0) . (2.54)

Here s̃ = s + (ps)p

me(p0+me)
is the space component of the electron spin vector (2.23).

EXERCISE

2.5 The Endpoint of the Electron Energy Spectrum in Muon Decay

Problem. Show that the highest electron energy is given in terms of (2.52) by energy
and momentum conservation.

Solution. The highest energy of the electron corresponds to the largest value of its
momentum. The latter is obtained if both neutrinos are emitted in one direction while
the electron is scattered in the other direction (Fig. 2.2), that is,

Fig. 2.2. Configuration for
which the electron reaches its
maximum value of momen-
tum

p = −(k + k′) . (1)

Because k0 = |k| and k′0 = |k′| it holds that

mμ = p0
max + k0 + k′0 = p0

max + |k| + |k′|
= p0

max + |pmax|
= p0

max + [
(p0

max)
2 − m2

e

] 1
2 . (2)

Inverting this relation gives

p0
max = m2

μ + m2
e

2mμ

= 52.83 MeV ,

(3)

|pmax| =
m2

μ − m2
e

2mμ

,

which agrees exactly with the conditions (2.52) and (2.53).
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2.3 The Lifetime of the Muon

To determine the muon lifetime τμ we sum over the electron spin orientations s, aver-
age over the spin orientation of the muon s′, and integrate over the electron momen-
tum p:

1

τμ

= Wμ = 1

2

∑
s,s′

∫
dW

= 2
G2

3

π

(2π)5

∫
d3p

p0

{[
(mμ − p0)2 − p2]p0 + 2(mμ − p0)

× [
(mμ − p0)p0 + p2]}Θ(p0

max − p0)

= 2
G2

3

∫
πd3p

(2π)5p0
[−4mμ(p0)2 + 3p0(m2

μ + m2
e) − 2mμm2

e]

× Θ(p0
max − p0) . (2.55)

In deriving (2.55) we used the fact that the averaging over s gives 〈s〉 = 0 so that also
〈s0〉 = 1

m
〈p · s〉 = 0 (cf. (2.23)). If we employ the following identity:

∫
d3p[...]Θ(p0

max − p0) = 4π

|pmax|∫

0

|p|2 d|p|[...] , (2.56)

and take into account that p2 = (p2
0 − m2

e) and therefore that

d|p|/dp0 = p0/|p| ,

we can rewrite Wμ in the form

Wμ = 2G2

3(2π)3

p0
max∫

me

dp0
√

(p0)2 − m2
e

[−4mμ(p0)2 + 3p0(m2
μ + m2

e) − 2mμm2
e

]

= G2mμ
5

192π3
[1 − 8y + 8y3 − y4 − 12y2 lny] , (2.57)

with the abbreviation y ≡ m2
e/m2

μ. The contributions involving y lead only to small
corrections, namely

Wμ = G2m5
μ

192π3
(1 − 1.87 × 10−4) . (2.58)

From (2.57) it is obvious that the decay rate would vanish if y = 1. This reflects the
fact that in this (academic) case the muon would be stable since |pmax| = 0, so that
there would be no phase space available for the final-state electron.
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Fig. 2.3. Vertex correc-
tion (a), self-energy (b),
and bremsstrahlung (c)
contributions

The result (2.58) does not include the so-called radiative corrections, which also
need to be considered. These effects are represented by diagrams in which one of
the charged particles interacts with the electromagnetic field (see Fig. 2.3). The
bremsstrahlung diagram has to be included since, owing to the vanishing photon mass,
photons with arbitrary small energies may be emitted. On the other hand, because of
the limited experimental resolution, it is impossible to distinguish the muon decay ac-
companied by emission of an extremely “soft” photon from a decay without radiation.
This contribution exactly cancels the divergent terms in the self-energy diagrams for
very soft photons (infrared divergence).5 The calculation of these contributions leads
to a modification of the decay rate W by a factor6

1 − α

2π

(
π2 − 25

4

)
= 0.9958 . . . . (2.59)

Hence, the radiative corrections are of greater importance than the influence of the
finite mass of the electron. The final result for the muon decay rate is now given by

Wμ = 1

τμ

= G2m5
μ

192π3

(
1 − α

2π

(
π2 − 25

4

)
− 8

m2
e

m2
μ

. . .

)
. (2.60)

Using this formula we may calculate the value of the Fermi coupling constant G by
taking into account the experimental value for the average life time of the muon

τμ = (2.19703 ± 0.00004) × 10−6 s ,

i.e.

Wμ = τ−1
μ = 2.996 × 10−16 MeV . (2.61)

With the most accurate value for the muon mass

mμ = (105.658387 ± 0.000034) MeV (2.62)

5 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
6 S.M. Berman: Phys. Rev. 112, 267 (1958); M. Roos and A. Sirling: Nucl. Phys. B 29, 296 (1971);
L.D. Landau, E.M. Lifschitz: Theoretical Physics (Pergamon, Oxford, 1974), Vol. IVb, p. 147.
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we obtain

G = (1.166 37 ± 0.000 02) × 10−11 MeV−2 . (2.63)

Since G is not a dimensionless quantity, a direct comparison with the electromagnetic
coupling constant is not possible. The effective strength of the weak interaction obvi-
ously increases with growing mass of the particles. This is evident from the inverse
lifetime of the muon which, because of the uncertainty relation, corresponds to the
uncertainty of its rest mass. The ratio of its value to the rest mass itself,

τ−1
μ

mμ

= Wμ

mμ

≈ 1

192π3
(Gm2

μ)2 (2.64)

manifests the role of Gm2
μ as an effective coupling strength. For curiosity’s sake we

may now evaluate the mass M for which the effective coupling constant equals the
fine-structure constant α:

GM2 = α → M =√
α/G = 25 GeV . (2.65)

The experimental investigation of this energy region has become possible with the
large particle accelerators of DESY (Hamburg), SLAC (Stanford), CERN (Geneva),
and Fermilab (Chicago). As we will soon see, these investigations have revealed new
information concerning the nature of the weak interaction.

EXERCISE

2.6 Myon Decay for Finite Neutrino Masses

Problem. Generalize the relation (2.49),

Iαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk′
βδ4(k + k′ − q)

= π

24

(
q2gαβ + 2qαqβ

)
,

which is valid for q2, q0 > 0, to the case of non-vanishing rest masses m,m′, of the
two decay products with the four-momenta kα, k′

β .

Solution. As in (2.34) we make the ansatz

Iαβ = Aq2gαβ + Bqαqβ , (1)

which implies the relations (2.35),

gαβIαβ = (4A + B)q2 , (2a)

qαqβIαβ = (A + B)q4 . (2b)

For the calculation of these two Lorentz invariants, we take the frame of reference in
which qα consists of a time-like component only,

q̃α =
(
q̃0 =

√
q2,O

)
.
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Thus, with

k0 = [
k2 + m2]1/2

, k′0 = [
k′2 + m′2]1/2

, (3)

and after performing the k′ integration, we get

gαβIαβ =
∫

d3k

2k0

∫
d3k′

2k′0 kαk′αδ3(k + k′)δ(k0 + k′0 − q̃0)

= 1

4

∫
d3k

[√
(k2 + m2)

√
(k2 + m′2)

]−1

×
[√

(k2 + m2)

√
(k2 + m′2) + k2

]

× δ
(√

(k2 + m2) +
√

(k2 + m′2) − q̃0
)

. (4)

We substitute the sum of the two square roots in the argument of the δ function by x,

x = [
k2 + m2]1/2 + [

k2 + m′2]1/2
, (5)

and transform to polar coordinatesmentum space. The volume element transforms into

|k | d|k |√
(k2 + m2)

√
(k2 + m′2)

= dx

x
, (6)

and by squaring (5), we have

m2 − m′2 − x2 = −2x
[
k2 + m′2]1/2

,

k2 = (x2 − m2 + m′2)2

4x2
− m′2 (7)

= (x2 − m2 − m′2)2

4x2
− m2m′2

x2
.

Squaring (5) also yields the relation

k2 + [
k2 + m2]1/2[

k2 + m′2]1/2 = (x2 − m2 − m′2)
2

. (8)

Equations (5)–(8) now give

gαβIαβ = π

∫ ∞

0

dx

x
|k|1

2
(x2 − m2 − m′2)δ(x − q̃0)

= π

4(q̃0)2

(
(q̃0)2 − m2 − m′2)[((q̃0)2 − m2 − m′2)2 − 4m2m′2]1/2

= π

4q2
(q2 − m2 − m′2)

[
(q2 − m2 − m′2)2 − 4m2m′2]1/2

, (9)

where the expression in its last form again is written in a manifestly Lorentz invariant
form. In the same way we get for the second invariant

qαqβIαβ = (q̃0)2

4

∫
d3k

∫
d3k′δ(k + k′)δ(k0 + k′0 − q̃0)
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= (q̃0)2

4

∫
d3kδ

(√
(k2 + m2) +

√
(k2 + m′2) − q̃0

)

= π(q̃0)2

∞∫

0

dx

x
|k|[k2 + m2]1/2[

k2 + m′2]1/2
δ(x − q̃0) . (10)

Combining (7) and (8) gives

[
k2 + m2]1/2[

k2 + m′2]1/2

= x2 − m2 − m′2

2
− (x2 − m2 − m′2)2

4x2
+ m2m′2

x2

= (4x2)−1[x4 − (m2 + m′2)2 + 4m2m′2]

= (4x2)−1[x4 − (m2 − m′2)2] , (11)

which facilitates the final calculation,

qαqβIαβ = π

8(q̃0)2

[
(q̃0)4 − (m2 − m′2)2]

× [(
(q̃0)2 − m2 − m′2)2 − 4m2m′2]1/2

= π

8q2

[
q4 − (m2 − m′2)2]

× [
(q2 − m2 − m′2)2 − 4m2m′2]1/2

. (12)

In addition, the δ function of (4) tells us that the results (9) and (12) are valid only
for q̃0 = √

q2 > m + m′. This is expressed by the fact, that the expression under the
square root in (9) and (12) may be written as follows:

(q2 − m2 − m′2)2 − 4m2m′2

= [
q2 − (m + m′)2][q2 − (m − m′)2] , (13)

which is easily checked. The radicand in (12) becomes negative for q2 < (m + m′)2.
With the aid of definition (2) the quantities A and B can be determined:

A = (3q2)−1
(

gαβIαβ − qαqβ

q2
Iαβ

)

= π

24q6

[
q2 − (m + m′)2]1/2[

q2 − (m − m′)2]1/2

× [
2q2(q2 − m2 − m′2) − q4 + (m2 − m′2)2]
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= π

24q6

[
q2 − (m + m′)2]3/2[

q2 − (m − m′)2]3/2

= π

24

[
1 − (m + m′)2

q2

]3/2[
1 − (m − m′)2

q2

]3/2

, (14)

B = (3q2)−1
(

4
qαqβ

q2
Iαβ − gαβIαβ

)

= π

12q6

[
q2 − (m + m′)2]1/2[

q2 − (m − m′)2]1/2

× [
2q4 − 2(m2 − m′2)2 − q2(q2 − m2 − m′2)

]

= π

12

[
1 − (m + m′)2

q2

]1/2[
1 − (m − m′)2

q2

]1/2

×
[

1 + m2 + m′2

q2
− 2

(m2 − m′2)2

q4

]
. (15)

The final result is thus

Iαβ = π

24

[
1 − (m + m′)2

q2

]1/2[
1 − (m − m′)2

q2

]1/2

×
[
gαβq2

(
1 − (m + m′)2

q2

)(
1 − (m − m′)2

q2

)

+ 2qαqβ

(
1 + m2 + m′2

q2
− 2

(m2 − m′2)2

q4

)]

× Θ
(
q2 − (m + m′)2) . (16)

In the limit m = m′ = 0 one again gets (2.49) as is to be expected. For later use we
note the special case m′ = 0 (that is, one of the two particles is a neutrino),

Iαβ(m) = π

24

(
1 − m2

q2

)2[
q2
(

1 − m2

q2

)
gαβ

+ 2

(
1 + 2m2

q2

)
qαqβ

]
Θ(q2 − m2) . (17)

2.4 Parity Violation in the Muon Decay

We now want to discuss two experiments which prove the violation of reflection in-
variance in muon decay. The first experiment observes the decay of unpolarized muons
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and measures the average helicity of the emitted electrons. In the second experiment
one starts with polarized muons, which are produced by pion decay (see (1.32) and
the subsequent equations), and measures only the angular distribution of the electron
momenta with respect to the spin direction of the decaying muons.

Let us start with the first experiment. For unpolarized muons the expression (2.54)
has to be averaged over s′. Therefore all terms containing s′ vanish:

dW̃ = 1

2

∑
s′

dW(s′)

= G2

3

πd3p

(2π)5p0
Θ(p0

max − p0)
{[

3(mμ − p0)2 − p2]

× (p0 − mes
0) + 2(mμ − p0)(p2 − mep · s̃)} , (2.66)

where s̃ is the space-like component of the spin four-vector sα . The four-vector of the
electron spin also satisfies (2.23), and we get

mes
0 = p · s ,

(2.67)
p · s̃ = (p · s)

[
1 + |p|2

me(p0 + me)

]
= p0

me
(p · s) ,

where s is the spin vector defined in the muon rest frame. The two possible eigenstates
of the helicity operator Λ̂ = σ · p/|p| correspond to the values

p · s = ±|p| . (2.68)

Remember that the spin vector s within relativistic quantum mechanics (2.23) is nor-
malized to 1, i.e. s · s = 1, so that sμsμ = −1.7 In the first case, electron spin and
direction of motion are parallel and in the second case antiparallel; the corresponding
helicities are (+1) and (−1), respectively. Because of (2.66) we obtain the following
average value of the helicity operator:

〈Λ〉 = dW̃ (p · s = |p|) − dW̃ (p · s = −|p|)
dW̃ (p · s = |p|) + dW̃ (p · s = −|p|)

= −2|p|[3(mμ − p0)2 − p2 + 2(mμ − p0)p0]
2[3(mμ − p0)2p0 − p2p0 + 2(mμ − p0)p2] . (2.69)

We demonstrate this simply for the nominator only:

[
3(mμ − p0)2 − |p|2](p0 − |p|) + 2(mμ − p0)(p2 − p0|p|)

−
[[

3(mμ − p0)2 − |p|2](p0 + |p|) + 2(mμ − p0)(p2 + p0|p|)
]

= [
3(mμ − p0)2 − |p|2](−2|p|) + 2(mμ − p0)(−2p0|p|)

= −2|p|[3(mμ − p0)2 − |p|2 + 2(mμ − p0)p0] .

7 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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Applying the value (2.52) for the maximum electron energy, the expression (2.69) can
be written in the form

−|p|mμ(3p0
max − 2p0 − m2

e/mμ)

mμp0(3p0
max − 2p0 − m2

e/p
0)

= −1 + O

(
m2

e

(p0)2

)
. (2.70)

Let us quickly verify this result by inserting

p2 = (p0)2 − m2
e

and

p0
max = m2

μ + m2
e

2mμ

or mμ = 2p0
max − m2

e

mμ

,

which yields for nominator N :

N = −2|p|(3m2
μ − 6mμp0 + 3(p0)2 − (p0)2 + m2

e + 2mμp0 − 2(p0)2)

= −2|p|
(

3m2
μ − 4mμp0 + m2

e

mμ

mμ

)

= −2|p|mμ

(
3

(
2p0

max − m2
e

mμ

)
− 4p0 + m2

e

mμ

)

= −4|p|mμ

(
3p0

max − 2p0 − m2
e

mμ

)
,

and for the denominator D:

D = 2
(

3m2
μp0 − 6mμ(p0)2 + 3(p0)3 − (p0)3 + p0m2

e

+ 2mμ(p0)2 − 2mμm2
e − 2(p0)3 + 2p0m2

e

)

= 2mμp0
(

3mμ − 4p0 + 3
m2

e

mμ

− 2
m2

e

p0

)

= 2mμp0
(

3 · 2p0
max − 4p0 − 2

m2
e

p0

)

= 4mμp0
(

3p0
max − 2p0 − m2

e

p0

)

and, therefore,

〈Λ〉 = −|p|
p0

3p0
max − 2p0 − m2

e
mμ

3p0
max − 2p0 − m2

e
p0

.

The result (2.70) is most interesting. We notice that for energies p0 
 me the electron
is predicted to be in an almost completely left-handed state. For the average electron
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helicity in the kinematically allowed energy interval [me,p
0
max], with p0

max ≈ 100me,
the experimentally observed value is8

〈Λ〉 = −1.00 ± 0.13 . (2.71)

The fact that the electron is limited to a left-handed state follows directly from
the interaction (2.10), because the electronic transition current can be written
as Ūeγ

μ(1 − γ5)Uνe = 1
2U2(1 − γ5)γ

μUνe . Thus, the electron, like the electron
neutrino, has negative helicity. High-energy electrons are thus negatively polar-
ized.

Next we consider the experiment in which the angular distribution of the electrons
emitted in the decay of polarized muons is measured. Since the electron helicity is not
observed, we must sum over the electron spin in (2.54). The value of the muon spin is
assumed to be fixed. Let us begin with the expression (2.50), which we denote once
more

dW = G2

3

πd3p

(2π)5p′0p0

[
(p′ − p)2(p′ − mμs′)α(p − mes)α

+ 2(p′ − p)α(p′ − mμs′)α(p′ − p)β(p − mes)
β
]
Θ(p0

max − p0) .

We remember that due to the discussion following (2.51)–(2.53) the two step functions
in (2.50) can be abbreviated by Θ(p0

max − p0). Now the summation of the expression
in the bracket [. . .] over the electron spins yields
∑
±s

[. . .] = 2(p′ − p)2(p′ − mμs′)αpα + 4(p′ − p)α(p′ − mμs′)α(p′ − p)βpβ .

It is easier to continue the calculation in the rest frame of the muon, for which p′ν =
(mμ,0), s′ν = (0, s′) holds. Then

∑
±s

[. . .] = 2
[
(mμ − p0)2 − p2][mμp0 + mμs′ · p]

+ 4
[
(mμ − p0)mμ − mμs′ · p][(mμ − p0)p0 + p2] .

Inserting p2 = p2
0 − m2

e , p0
max = (m2

μ + m2
e)/2mμ, s′ · p = 1 · |p| cos θ and separating

terms proportional to cos θ yields

∑
±s

[. . .] = 4m2
μ

[
m2

μ + m2
e

2mμ

− p0
]
[p0 + s′ · p]

+ 4m2
μ

[
(mμ − p0) − s′ · p]

[
p0 − m2

e

mμ

]

= 4m2
μ

[
p0
(

p0
max − p0 + mμ − p0 − m2

e

p0
+ m2

e

mμ

)

+ |p| cos θ

(
p0

max − p0 − p0 + m2
e

mμ

)]

8 Review of Particle Properties in: Review of Modern Physics (April 1988); J. Duclos, J. Heintze,
A. de Rujula, V. Soergel: Phys. Lett. 9, 62 (1964).
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= 4m2
μp0

[(
3p0

max − 2p0 − m2
e

p0

)
+ |p|

p0
cos θ

(
p0

max − 2p0 + m2
e

mμ

)]
.

Therefore, the decay rate summed over the electron spin is given by

dW̄ =
∑

s

dW(s)

= 2G2

3(2π)3
mμ|p|p0dp0 sin θdθ

[
3p0

max − 2p0 − m2
e

p0

+ |p|
p0

cos θ

(
p0

max − 2p0 + m2
e

mμ

)]
Θ(p0

max − p0) . (2.72)

Here θ denotes the angle between the muon spin s′ and the electron momentum p. The
volume element of the electron momentum space has been used according to (2.56) in
the form

d3p = 2π |p|2d|p| sin θdθ = 2π |p|p0dp0 sin θdθ . (2.73)

Equation (2.72) does not yet contain the electromagnetic corrections. If one consid-
ers the corrections of the order α = e2/�c � 1/137, some terms are added to dW̄ .
But the parity-violating structure, which is expressed in the factor cos θ in (2.72), is
not changed. The agreement between the predicted angular distribution dW̄ and the
experimentally measured one is better than 0.5%.

EXERCISE

2.7 Average Helicity and Parity Violation

Problem. Calculate the helicity expectation value averaged over the whole energy
region and show that the result 〈Λ〉 = −1 is evidence for the violation of parity invari-
ance.

Solution. (a) We set |p| = p and

dW̃ (p · s = ±|p|) = dW̃±(p) . (1)

The probability of an electron being emitted with momentum p is

dW̃+(p) + dW̃−(p) . (2)

The average of the expectation values is therefore

〈Λ〉 =
∫ [〈Λ〉(dW̃+(p)) + 〈Λ〉(dW̃−(p))]∫ [dW̃+(p) + dW̃−(p)]

=
∫ [dW̃+(p) − dW̃−(p)]

Wμ

. (3)
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Wμ is already known from (2.57); we only need to calculate the numerator. With the
help of (2.66)–(2.68) we get

∫ [
dW̃+(p) − dW̃−(p)

]

= −2

3
G2π(2π)−5

∫
d3p

p0
Θ(p0

max − p0)p
[
3(mμ − p0)2 − p2 + 2(mμ − p0)p0]

= −2

3
G2π(2π)−54π

p0
max∫

me

p2dp0[3(mμ − p0)2 − p2 + 2(mμ − p0)p0]

= −2

3
G2(2π)−3mμ

p0
max∫

me

dp0[(p0)2 − m2
e

][
3mμ − 4p0 + m2

e

mμ

]
. (4)

Performing the integral yields

∫ [
dW̃+(p) − dW̃−(p)

]

= −2

3
G2(2π)−3mμ

{(
mμ + m2

e

3mμ

)[
(p0

max)
3 − 3m2

ep
0
max + 2m3

e

]

− (p0
max)

4 + 2m2
e(p

0
max)

2 − m4
e

}

= − G2m5
μ

24(2π)3

(
1 − 40

3
y + 2

√
y3 − 30y2 + 32

3
y

√
y5 − 1

3
y4
)

, (5)

where again y = (me/mμ)2. Applying (2.57) we obtain in lowest order in y

〈Λ〉 � −1 − 40
3 y

1 − 8y

� −1 + 16

3
× m2

e

m2
μ

+ · · ·

� −0.999 88 . (6)

Fig. 2.4. Parity violation in
muon decay

(b) Obviously (almost) all the electrons emitted in muon decay have negative he-
licity (λ = −1). A space reflection (see Fig. 2.4) would give the electrons positive
helicity (λ = +1). In the case of parity invariance of the process, one would therefore
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measure equal numbers of electrons with positive and negative helicity. This is not the
case; thus parity invariance must be broken.

EXERCISE

2.8 Angular Distribution and Parity Violation

Problem. Show that the violation of parity is due to the appearance of cos θ in (2.72),
describing the angular distribution.

Solution. We can write the angular distribution as

dW̄

dp0dθ
= sin θ

[
A(p0) + B(p0) cos θ

]
, (1)

where A(p0) and B(p0) are given by comparison with (2.72). The geometry is dis-
played in Fig. 2.5. If we perform a space reflection, θ changes to θs = π − θ , and

sin θ → sin θs = sin θ ,
(2)

cos θ → cos θs = − cos θ

thus the angular distribution becomes

dW̄

dp0dθs

= sin θ{A(p0) − B(p0) cos θ} . (3)

Fig. 2.5. Parity violation in an
angular distribution

dW̄/dp0dθs and dW̄/dp0dθ differ from each other in the sign of the term proportional
to cos θ : the angular distribution is not parity invariant. This argument is supported by
geometrical considerations. The figure shows the intensity of the emitted electrons for
B(p0) = 0: no electrons are emitted in the direction of s′. If B(p0) > 0 and B(p0) <
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A(p0), the distribution is deformed and not reflection invariant, because sin θ cos θ =
1
2 sin(2θ).

Fig. 2.6. Angular distribution
of electrons with respect to the
muon spin: (a) without viola-
tion of parity; (b) with viola-
tion of parity

EXERCISE

2.9 Electron Helicity in Muon Decay

Problem. Show, for the limit p0 
 me, that for the decay of a muon with spin s′ in
its rest system, the emission of an electron with spin s is given by dW ∼ sin2(θ/2),
where dW is calculated in the limit p0 
 me and θ denotes the angle between the
electron spin s and momentum p of the electron.

Solution. We start from (2.23) inserted in (2.54) (m = me) and neglect systematically
all terms with me. It is important to recognize that terms like mes

0 or mep · s̃ do
not contain the effective electron mass. Remember, s̃ is the space component of the
electron spin vector (2.23)! In this spirit we have

|p| =
√

(p0)2 + m2
e ≈ p0 , (1)

so we can write

dW ≈ G2

3

πd3p

(2π)5p0mμ

Θ(p0
max − p0)

×
[
mμ(mμ − 2p0)

(
p0 − p · s + s′ · p − (p · s)(p · s′)

p0

)

+ 2(mμ − p0 − p · s′)
[
(mμ − p0)(p0 − p · s) + p0(p0 − p · s)]

]

= G2

3

πd3p

(2π)5mμ

Θ(p0
max − p0)

(
1 − p · s

p0

)
mμ
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×
[
(mμ − 2p0)

(
1 − p · s′

p0

)
+ 2(mμ − p0 − p · s′)

]

= G2

3

d3p

(2π)5
Θ(p0

max − p0)

(
1 − p · s

p0

)

×
[

3p0
max − 2p0 − p · s′

p0
p0

max

]
. (2)

In the last step we have applied (2.52) for the matrix elements of the electron

p0
max = m2

μ + m2
e

2mμ

� 1

2
mμ . (3)

The coefficient in (2) which contains the spin s of the electron gives the desired angular
dependence:

1 − p · s
p0

= 1 − |p|
p0

cos θ � 2 sin2 θ

2
. (4)

The maximum of the distribution is at θ = π , that is the electrons are preferentially
polarized against their momentum (negative helicity). The result (4) is in accordance
with the angular distribution in (1.12), which we calculated from the β decay of cobalt,
if we take θ = π −θ (here the z axis points downwards!). This is another confirmation
of the heuristic consideration in relation to the experiment of Wu et al. (see Sect. 1.2).

In the limit p0 → p0
max the last factor takes the form

3p0
max − 2p0 − p0

max
p · s′

p0
→ p0

max

(
1 − p · s′

p0

)
, (5)

that is, the preferential emission of the electron is opposite to the polarization of the
muons. This is easy to see for the case p0 = p0

max in Fig. 2.2, where the two neutrinos
are emitted in the same direction while the electron goes in the opposite direction.
Because ν̄e and νμ have opposite helicities, the sum of their angular momenta is equal
to zero. The result is that the electron must acquire the spin of the decaying muon.
Because of its negative helicity the electron is preferentially emitted opposite to the
muon spin.

EXERCISE

2.10 CP Invariance in Muon Decay

Problem. The term J
α†
(e) J

(μ)
α in the current–current coupling is responsible for the

decay of the positive muon, μ+. Show that this leads to a change of the sign of the
spin-dependent terms in the squared transition amplitude (2.32). On the basis of these
results discuss the connection between violation of the invariance under spatial reflec-
tion and the invariance under charge conjugation.
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Fig. 2.7. Decay of a μ+ parti-
cle7

Solution. (a) The S-matrix element for the μ+ decay is given by9

S(μ+ → e+νeν̄μ)

= −i
∫

d4x
G√

2

[
ūμ(x)γ μ(1 − γ5)uνμ(x)

][
ūνe(x)γμ(1 − γ5)ue(x)

]
. (1)

As now all particles are antiparticles, except the νe, the spinors are given in analogy
to (2.11) by

uμ(x) = vμ(p′, s′) exp(ip′
μxμ)(2p′0V )−1/2 ,

ue(x) = ve(p, s) exp(ipμxμ)(2p0V )−1/2 ,
(2)

uνe(x) = uνe(k, t) exp(−ikμxμ)(2k0V )−1/2 ,

uνμ(x) = vνμ(k′, t ′) exp(ik′
μxμ)(2k′0V )−1/2 .

The calculation proceeds exactly as before up to (2.18), (2.19), because the δ function
does not change when the sign of its argument is inverted. Thus we obtain

dW(μ+) = G2

2

1

(2π)5

d3p

2p′02p0

×
∫

d3k

2k0

∫
d3k′

2k′0 δ4(p + k + k′ − p′)
∑
t,t ′

|M2| , (3)

with

M = [
v̄μγ μ(1 − γ5)vνμ

][
ūνeγμ(1 − γ5)ve

]
. (4)

The only difference compared to μ− decay is in the spinors which enter into the
transition amplitude M , where all particles are replaced by antiparticle spinors and
vice versa.

∑
t,t ′ |M|2 separates again into two similar contributions for the muonic

and electronic particles. First we repeat the calculation from (2.20) to (2.30) for the
muonic part. Here we need the analogous relation to (2.21) (see Appendix A.2),∑

t ′
vνμ(k′, t ′)αv̄νμ(k′, t ′)β = /k′

αβ , (5)

and to (2.22),

v̄μ(p′, s′)πvμ(p′, s′)τ =
[
(/p′ − mμ)

1 + γ5/s
′

2

]
τπ

. (6)

With these expressions we find that

Xμν(μ) =
∑
t ′

v̄μ(p′, s′)πγ μ
πρ(1 − γ5)ρα

× vνμ(k′, t ′)αv̄νμ(k′, t ′)βγ ν
βσ (1 − γ5)στ vμ(p′, s′)τ

= Tr

{
γ μ(1 − γ5)/k

′γ ν(1 − γ5)(/p
′ − mμ)

(
1 + γ5/s

′

2

)}
. (7)

9 M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
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With a cyclical permutation we take the last two factors to the front; we also permute
/k′ with (1 − γ5), changing the sign in (1 − γ5). We thus obtain

Xμν(μ) = 1

2
Tr
{
(/p′ − mμ)(1 + γ5/s

′)γ μ/k′(1 + γ5)γ
ν(1 − γ5)

}
. (8)

This result is distinct from (2.26) by the sign of mμ and also by permutation of the
Lorentz indices μ and ν. Hence we can skip all subsequent calculations and write
down directly the analogue of (2.30):

Xμν(μ) = 4
[
(p′ + mμs′)μk′ν − (p′ + mμs′)αk′

αgνμ

+ (p′ + mμs′)νk′μ + iεαμβν(p′ + mμs′)αk′
β

]
. (9)

For the electronic part the same relation holds; compared to (2.31) it changes the sign
of me, and μ and ν have to be permuted:

Xμν(e) =
∑

t

ūνe(k, t)γμ(1 − γ5)ve(p, s)v̄e(p, s)γν(1 − γ5)uνe(k, t)

= 4
[
(p + mes)νkμ − (p + mes)

αkαgνμ

+ (p + mes)μkν + iεανβμ(p + mes)
αkβ

]
. (10)

The permutation can be reversed, because by constructing |M|2 we sum over the in-
dices μ and ν. What remains is just the change of the sign of mμ and me in (2.32):

∑
t,t ′

|M|2 = Xμν(μ)Xμν(e)

= 64(p′ + mμs′)αkα(p + mes)
βk′

β . (11)

As the spin vectors sμ and s′μ enter only in the combination mμs′ or mes, we can also
easily get the result (11) from (2.32) by inversion of the spin vectors: s, s′ → −s,−s′.

(b) Equation (11) follows from (2.32) if we invert the sign of the charge of the
decaying muon, that is, it follows from the operation of charge conjugation. We thus
see that the β decay of the muon is not invariant against charge conjugation.

An interesting point is that (11) could also be obtained by space reflection. On being
reflected, the momentum vector p′ changes its sign, whereas the axial spin vector (in
the rest system) s′ does not change:

p′α = (p′0,p′) → (p′0,−p′) , (12)

s′α =
(

p′ · s′

mμ

, s′ + (p′ · s′)
mμ(p′0 + mμ)

p′
)

→
(

−p′ · s′

mμ

, s′ + (p′ · s′)
mμ(p′0 + mμ)

p′
)

, (13)

and

kα = (k0,k) → (k0,−k)

or

kα = (k0,−k) → (k0,k) . (14)
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With these we obtain the following change to (2.32):

(p′ − mμs′)αkα

=
(

p′0 − p′ · s′

mμ

)
k0 −

(
p′ − mμs′ − p′ · s′

p0 + mμ

p′
)

· k

→
(

p′0 + p′ · s′

mμ

)
k0 +

(
−p′ − mμs′ − (p′ · s′)

p′0 + mμ

p′
)

· k

= (p′ + mμs′)αkα (15)

and analogously

(p − mes)
βk′

β → (p + mes)
βk′

β . (16)

We can thus conclude that the weak interaction (of the leptons) behaves under charge
conjugation Ĉ in the same way as under space reflection P̂ . Since according to this the
simultaneous application of Ĉ and P̂ yields the identity, that is, everything remains
invariant, it means that the weak interaction is invariant under the product ĈP̂ . (We
shall see later, in Chap. 8, how the weak interaction among quarks can lead to a slight
violation of CP invariance.)

2.5 The Michel Parameters

We now ask how far the muon decay confirms the V–A theory. For this purpose we
write down the most general form of the coupling matrix element,

H̃μ−→e−ν̄eνμ
= G√

2

∫
d3x

∑
i

[
ūνμ(x)Ôiuμ(x)

]

× [
ūe(x)Ôi(Ai + A′

iγ5)uνe(x)
]

, (2.74)

and allow this time every type of coupling Ôi = (S,V,T,A,P). It is customary to
use other constants Ci,C

′
i instead of Ai,A

′
i . The two sets of constants are related to

each other through the transformation (the so-called Fierz transformation, see Supple-
ment 2.12):

Ci =
∑
j

ΛijAj , C′
i =

∑
j

ΛijA
′
j ,

(2.75)
(Λij ) = 1

4

⎛
⎜⎜⎜⎜⎝

1 4 6 4 1
1 −2 0 2 −1
1 0 −2 0 1
1 2 0 −2 −1
1 −4 6 −4 1

⎞
⎟⎟⎟⎟⎠ .

With Ci and C′
i , we can write the coupling in the form

H̃ = G√
2

∫
d3x

∑
i

[
ūe(x)Ôiuμ(x)

][
ūνμ(x)Ôi(Ci + C′

iγ5)uνe(x)
]

. (2.76)
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One easily checks that pure vector coupling minus axial vector coupling in (2.74)
results also in a vector minus axial vector coupling in (2.76) up to the minus sign,
while the other couplings in (2.74) result in complicated superpositions in (2.76). This
circumstance may seem to endow the V–A law with particular significance. However,
four other combinations have comparable properties, as can be found by diagonalizing
the matrix Λij . The possibility of using the invariance under transpositions among the
fields as a basis for singling out the correct coupling was explored extensively without
decisive results.10

The advantage of the notation (2.76) is that the wave function of the observable
particles – the electron and the muon – are connected in one matrix element, whereas
the wave functions of the two neutrinos are separated in the second spinor matrix
element. In the interaction (2.74) or (2.76) only the conservation of electron and muon
number, and Lorentz invariance, is assumed. Let us introduce the abbreviation

ai = |Ci |2 + |C′
i |2 . (2.77)

Since the factor G stands in front of the expression (2.76), the proper coupling con-
stants are given by GCi or GC′

i , respectively. It is obvious that a variation of the value
of G can be compensated by a multiplication of all constants Ci,C

′
i with a common

factor. If we determine G by experiment, the Ci,C
′
i are no longer independent, that is,

they must satisfy a normalization condition. We choose this condition to be

aS + 4aV + 6aT + 4aA + aP = 16 . (2.78)

It is necessary to calculate the muon decay once more, but now with all types of
coupling allowed. We assume that the μ− is polarized before the decay, but we do
not observe the polarizations of the three decay products (see (2.54) and also Exer-
cise 2.9, but remember that those results were valid for V–A coupling only). With the
abbreviation

x = p0

p0
max

= 2mμp0

m2
μ + m2

e
(2.79)

and the emission angle θ of the electron with respect to the muon spin

cos θ = p · s
|p| , (2.80)

we get after a lengthy calculation the following electron spectrum:

Fig. 2.8. The angle of electron
emission relative to the spin s′
of the muon

dW

dΩdp0
= G2mμ

12π4
|p|p0

{
3(p0

max − p0) + 2

3
ρ

(
4p0 − 3p0

max − 1

3

m2
e

mμ

)

+ 3
me

p0
η(p0

max − p0) − ξ
|p|
p0

cos θ

[
(p0

max − p0)

+ 2

3
δ(4p0 − 3p0

max − m2
e/mμ)

]}
θ(p0

max − p0) . (2.81a)

10 See many papers beginning with C. Gitchfield: Phys. Rev. 63, 417 (1943) through to E. Ca-
ianello: Nuovo Cimento 8, 749 (1952), in which references to earlier work can be found. See also
E.J. Konopinski: The Theory of Beta Radioactivity (Oxford University Press, London, 1966).
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The details of this calculation are layed down in Exercise 2.11. If we neglect the mass
of the electron and make use of definition (2.79) this becomes

dW

dΩ dx
= G2mμ

5

192π4
x2
{

1

1 + 4η me
mμ

[
4(x − 1) + 2

3
ρ(4x − 3) + 6

me

mμ

1 − x

x
η

]

− ξ cos θ

[
(1 − x) + 2

3
δ(4x − 3)

]}
. (2.81b)

In this formula ρ, η, ξ , and δ are the so-called Michel parameters

ρ = 1

16
(3aV + 6aT + 3aA) , ξ = −1

16
(4b′ + 3a′ − 14c′) ,

(2.82)
η = 1

16
(aS − 2aV + 2aA − aP) , δ = −1

16ξ
(3b′ − 6c′) ,

where

a′ = 2 Re{CSC′
P
∗ + C′

SC∗
P} ,

b′ = 2 Re{CVC′
A

∗ + C′
VC∗

A} , (2.83)

c′ = 2 Re{CTC′
T

∗} .

The parameters are chosen in such a way that if one integrates over x from 0 to 1
then ρ and δ disappear. Therefore the lifetime of the muon is independent of ρ and δ.
For a pure V–A coupling, which was assumed during the discussion in Sects. 2.2, 2.3,
and 2.4, we get

CS = C′
S = CT = C′

T = CP = C′
P = 0 ,

(2.84)
CV = C′

V = −CA = −C′
A = 1 .

Considering Supplement 2.12, (23), one gets

M = [ūeγμuμ][ūνμγ μ(1 − γ5)uνe

]+ [ueγ5γμuμ][uνμγ5γ
μ(1 − γ5)uνe

]
= [

ūeγμ(1 − γ5)uμ

][
ūνμγ μ(1 − γ5)uνe

]
. (2.85)

By inserting this value into (2.82) we obtain the prediction of the V–A theory for the
Michel parameters:

ρ = 3

4
, ξ = 1 , η = 0 , δ = 3

4
. (2.86a)

The experimental values are derived from a careful measurement of the electron spec-
trum (or the positron spectrum in the case of the μ+ decay) and of the angular distri-
bution. Equation (2.81) tells us that ρ must be fitted to the whole spectrum, whereas
η is mainly sensitive to low energies (x → 0). It is not surprising, therefore, that η

is the most uncertain of the parameters. ξ can be obtained by integrating the angular
distribution over the energy, whereas δ can be determined by measuring the energy
dependence of this distribution. The best experimental values are

ρ = 0.7517 ± 0.0026 ,

η = −0.12 ± 0.21 ,
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(2.86b)
ξ = 0.972 ± 0.013 ,

δ = 0.7551 ± 0.0085 .

These values are in very good agreement with the predictions (2.85) of the V–A theory;
see also Fig. 2.9.

Fig. 2.9. Experimental deter-
mination of the Michel para-
meter 
 since 1950. The curve
shows the improvement of the
experiments, but perhaps also
the prejudice of the experi-
mentalists

EXERCISE

2.11 Muon Decay and the Michel Parameters

Problem. Calculate the muon decay with the general interaction (2.76) in the same
manner as in Sect. 2.2 and derive (2.81) by summing over the polarizations of the
outgoing particles.

Solution. To derive (2.81) we repeat the steps which lead us from (2.10) to (2.18).
The normalization and the phase-space factor are obtained in the same manner. The
only difference occurs in the matrix element M . With (2.76) this is given by

M =
∑

i

[ūeÔiuμ][ūνμÔi(Ci − C′
iγ5)uνe

]
. (1)

First we calculate the part of |M|2 which stems from the neutrinos. We sum over the
unobservable neutrino spins and get

X(ν) =
∑
t,t ′

[
ūνμ(k′, t ′)Ôi(Ci − C′

iγ5)uνe(k, t)
]

× [
ūνμ(k′, t ′)Ôk(Ck − C′

kγ5)uνe(k, t)
]

=
∑
t,t ′

[
ūνμ(k′, t ′)Ôi(Ci − C′

iγ5)uνe(k, t)
]

× [
ūνe(k, t)γ0(C

∗
k − C′

k
∗
γ

†
5 )(Ôk)†γ0uνμ(k′, t ′)

]
=
∑
t,t ′

[
ūνμ(k′, t ′)Ôi(Ci − C′

iγ5)uνe(k, t)
]

× [
ūνe(k, t)(C∗

k + C′
k
∗
γ5)(Ô

k)uνμ(k′, t ′)
]

(2)
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where we have inserted γ 2
0 = 1 in front of (Ôk)† and used Supplement 2.12, (3), which

yields

γ0γ
†
5 γ0 = −γ5 . (3)

With (2.21) we get

X(ν) = Tr
{
Ôi(Ci − C′

iγ5)/k(C∗
k + C′

k
∗
γ5)Ô

k/k′} . (4)

Because

γ5γμ = −γμγ5 (5)

and the trace is invariant under cyclic permutations, this form may be transcribed to

X(ν) = Tr
{
(Ci + C′

iγ5)(C
∗
k + C′

k
∗
γ5)Ô

k/k′Ôi/k
}

= Tr
{{CiC

∗
k + C′

iC
′
k
∗ + (CiC

′
k
∗ + C′

iC
∗
k )γ5}Ôk/k′Ôi/k

}

= Tr
{
(Aik + Bikγ5)Ô

k/k′Ôi/k
}

= Tr
{
(Aik ± Bikγ5)Ô

i/kÔk/k′} , (6)

where we have + for Ô = Ŝ, P̂ , T̂ and − for Ô = V,A, and the following abbrevia-
tions have been introduced:

Aik = CiC
∗
k + C′

iC
′
k
∗

,
(7)

Bik = CiC
′
k
∗ + C′

iC
∗
k .

Notice that X(ν) is non-zero only if both Ôi and Ôk contain either an even or an
odd number of γ matrices. Otherwise the trace in (6) vanishes. This property will be
useful for the evaluation of X(μ, e), since we can then restrict our consideration to
the corresponding combinations of Ôi and Ôk . In determining X(μ, e) we assume
that the electron spin is not observed, and we therefore sum over the spin orientations.
Furthermore we make the approximation of neglecting the electron mass.

We then find

X(μ, e) =
∑

s

[
ūe(p, s)Ôiuμ(p′, s′)

][
ūe(p, s)Ôkuμ(p′, s′)

]†

=
∑

s

[
ūe(p, s)Ôiuμ(p′, s′)

][
ūμ(p′, s′)Ôkue(p, s)

]

= Tr

[
Ôi(/p

′ + mμ)
1 + γ5/s

′

2
Ôk/p

]
. (8)

If both Ôi and Ôk contain an even or an odd number of γ matrices, X(μ, e) reduces
to

X(μ, e) = 1

2
Tr
{
Ôi/p

′Ôk/p
}+ 1

2
mμ Tr

{
Ôiγ5/s

′Ôk/p
}

. (9)

All other terms in (8) do not contribute, since a trace consisting of an uneven number
of γ matrices vanishes.
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Let us now consider the particular combinations of Ôi and Ôk in detail. For this
purpose we again employ the formulas listed in Appendix A.2, especially

(γ5)
2 = 1 and γ5γμ = −γμγ5 .

• Ôi = Ôk = 1:

X(μ, e) = 1

2
Tr{/p/p′} = 2(p · p′) ,

X(ν) = Tr{(ASS − BSSγ5)/k/k′} = 4ASS(k · k′) . (10)

• Ôi = iγ5, Ôk = 1:

X(μ, e) = 1

2
mμ Tr{iγ5γ5/s

′/p} = 2imμ(p · s′) ,

X(ν) = Tr{(APS − BPSγ5)iγ5/k/k′}
= −4iBPS(k · k′) . (11)

• Ôi = 1, Ôk = iγ5:

X(μ, e) = 1

2
mμ Tr{γ5/s

′ · iγ5/p} = −2imμ(p · s′) ,

X(ν) = Tr{(ASP − BSPγ5)/kiγ5/k
′}

= +4iBSP(k · k′) . (12)

• Ôi = iγ5, Ôk = iγ5:

X(μ, e) = 1

2
Tr{iγ5/p

′ · iγ5/p} = 2(p · p′) ,

X(ν) = Tr{(APP − BPPγ5)iγ5/kiγ5/k
′}

= 4APP(k · k′) . (13)

Collecting together (10)–(13), we obtain
∑

i,k=S,P

X(μ, e)X(ν) = 8(k · k′)
[
(ASS + APP)(p · p′)

+ (BPS + BSP)mμ(p · s′)
]

, (14)

or, adopting the abbreviations (2.77) and (2.83),

∑
i,k=S,P

X(μ, e)X(ν) = 8(k · k′)
[
(aS + aP)(p · p′) + a′mμ(p · s′)

]
. (15)

(Note that according to the convention (23) of Supplement 2.12 it holds that BPS +
BSP = −a′.)

• Ôi = γ μ, Ôk = γ ν :

X(μ, e) = 1

2
Tr{γμ/p′γν/p} + 1

2
mμ Tr{γμγ5/s

′γν/p}
= 2(p′

μpν + pμp′
ν − gμνp · p′) + 2imμεσντμs′σ pτ , (16)
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X(ν) = Tr{(AVV + BVVγ5)γ
μ/kγ ν/k′}

= 4AVV
[
kμk′ν + kνk′μ − gμν(k · k′)

]+ 4iBVVεμανβkαk′
β . (17)

Evaluating the products leads to

X(μ, e)X(ν) = 8AVV
[
(p′ · k)(p · k′) + (p′ · k′)(p · k)

− (p · p′)(k · k′) + (p · k)(p′ · k′)

+ (p · k′)(p′ · k) − (p · p′)(k · k′)

− (p · p′)(k · k′) − (p · p′)(k · k′)

+ 4(p · p′)(k · k′)
]

− 8mμBVVεσντμεμανβs′σ pτ kαk′
β

= 16AVV
[
(p′ · k)(p · k′) + (p′ · k′)(p · k)

]
− 8mμBVVεσντμεμανβs′σ pτ kαk′

β . (18)

The last term does not contribute, since, in the course of the further evaluation, kαk′
β

yields the symmetric tensor Iαβ which is contracted with εμανβ ; thus there is no need
to evaluate this term further. The next three cases may be treated in just the same way.

• Ôi = γ5γ
μ, Ôk = γ ν :

X(μ, e) = 1

2
Tr
{
γ5γμ/p′γν/p

}+ 1

2
mμ Tr

{
γ5γμγ5/s

′γν/p
}

= −2iεμσντp
′σ pτ − 2mμ

[
s′
μpν + s′

νpμ − gμν(s
′ · p)

]
,

X(ν) = Tr
{
(AAV + BAVγ5)γ5γ

μ/kγ ν/k′}
(19)

= −4iAAVεμανβkαk′
β + 4BAV

[
kμk′ν + kνk′μ − gμν(k · k′)

]
,

X(μ, e)X(ν) = −16mμBAV
[
(k · p)(k′ · s′) + (k · s′)(k′ · p)

]
− 8AAVεμσντ ε

μανβp′σ pτ kαk′
β .

• Ôi = γ μ, Ôk = γ5γ
ν :

X(μ, e) = 1

2
Tr
{
γμ/p′γ5γν/p

}+ 1

2
mμ Tr

{
γμγ5/s

′γ5γν/p
}

= 2iενσμτp
′σ pτ − 2mμ

[
s′
μpν + s′

νpμ − gμν(s
′ · p)

]
,

X(ν) = Tr
{
(AVA + BVAγ5)γ

μ/kγ5γ
ν/k′}

(20)
= −4iAVAενβμαkαk′

β + 4BVA
[
kμk′ν + kνk′μ − gμν(k · k′)

]
,

X(μ, e)X(ν) = −16mμBVA
[
(k · p)(k′ · s′) + (k · s′)(k′ · p)

]
+ 8AVAενσμτ ε

νβμαp′σ pτ kαk′
β .

• Ôi = γ5γ
μ, Ôk = γ5γ

ν :

X(μ, e) = 1

2
Tr
{
γ5γμ/p′γ5γν/p

}+ 1

2
mμ Tr

{
γ5γμγ5/s

′γ5γν/p
}

= 2
[
p′

μpν + p′
νpμ − gμν(p · p′)

]+ 2imμεμσντ s
′σ pτ ,
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X(ν) = Tr
{
(AAA + BAAγ5)γ5γ

μ/kγ5γ
ν/k′}

(21)
= 4AAA

[
kμk′ν + kνk′μ − gμν(k · k′)

]− 4iBAAενβμαkαk′
β ,

X(μ, e)X(ν) = 16AAA
[
(k · p)(k′ · p′) + (k′ · p)(k · p′)

]
− 8mμBAAεμσντ ε

νβμαs′σ pτ kαk′
β .

Combining the last four results, we find that
∑

i,k=V,A

X(μ, e)X(ν)

= 16(AVV + AAA)
[
(k · p)(k′ · p′) + (k · p′)(k′ · p)

]
− 16mμ(BAV + BVA)

[
(k · p)(k′ · s′) + (k · s′)(k′ · p)

]+ Xαβkαk′
β

= 16(aV + aA)
[
(k · p)(k′ · p′) + (k · p′)(k′ · p)

]
+ 16mμb′[(k · p)(k′ · s′) + (k · s′)(k′ · p)

]+ Xαβkαk′
β . (22)

Here Xαβ contains all terms which are antisymmetric in the indices α and β . In the
course of further evaluation kαk′

β yields the symmetric tensor Iαβ and therefore the

term containing Xαβ will vanish. Again, with respect to the convention (23) of Sup-
plement 2.12, we have b′ = −(BVA + BAV).

• Ôi = σμν , Ôk = σ μ̄ν̄ :
This case requires the evaluation of

Tr{σμνγ ασ μ̄ν̄γ β} . (23)

For this purpose we first consider

Tr{iγ μγ νγ αiγ μ̄γ ν̄γ β} . (24)

We use

σμν = i

2
(γ μγ ν − γ νγ μ) (25)

and antisymmetrize (24) with respect to the indices μ and ν (that is, exchange μ and
ν, subtract the result from the original term, and finally divide by 2) and then with
respect to the indices μ̄ and ν̄. Finally, by repeated application of (A.33), we obtain

−Tr{γ μγ νγ αγ μ̄γ ν̄γ β}
= −(

gμν Tr{γ αγ μ̄γ ν̄γ β} − gμα Tr{γ νγ μ̄γ ν̄γ β}
+ gμμ̄ Tr{γ νγ αγ ν̄γ β} − gμν̄ Tr{γ νγ αγ μ̄γ β} + gμβ Tr{γ νγ αγ μ̄γ ν̄})

= −4
[
gμν(gαμ̄gν̄β − gαν̄gμβ̄ + gαβgμ̄ν̄)

− gμα(gνμ̄gν̄β − gνν̄gμ̄β + gνβgμ̄ν̄)

+ gμμ̄(gναgν̄β − gνν̄gαβ + gνβgαν̄)

− gμν̄(gναgμ̄β − gνμ̄gαβ + gνβgαμ̄)

+ gμβ(gναgμ̄β − gνμ̄gαν̄ + gνν̄gαμ̄)
]

. (26)
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Owing to the procedure of antisymmetrization with respect to μ and ν, as well as to
μ̄ and ν̄, all terms proportional to gμν and gμ̄ν̄ vanish, so that we are left with

−Tr{σμνγ ασ μ̄ν̄γ β}
= 4

[
(gμμ̄gνν̄ − gμν̄gνμ̄)gαβ − gμμ̄(gναgν̄β + gν̄αgμβ)

+ gμν̄(gναgμ̄β + gμ̄αgνβ) + gμ̄ν(gμαgν̄β + gν̄αgμβ)

− gν̄ν(gμαgμ̄β + gμ̄αgμβ)
]

. (27)

For later purposes it is worth mentioning that this term is simply the antisymmetrized
form of

8gμμ̄{gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ} . (28)

This is easily checked by multiplying (27) or (28) by a term which itself is antisym-
metric with respect to μ, ν and μ̄, ν̄; the two corresponding results are identical.

In order to evaluate the quantity X(μ, e)X(ν) we need to consider

Tr{σμνγ ασ μ̄ν̄γ β}Tr{σμνγ
σμ̄ν̄γσ }
= 8gμ̄μ̄(gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ)

× 4
[
(gμμ̄gνν̄ − gμν̄gνμ̄)g
σ

− gμμ̄(gν
gν̄σ + gν̄
gνσ ) + gμν̄(gν
gμ̄σ + gμ̄
gνσ )

+ gμ̄ν(gμ
gν̄σ + gν̄
gμσ ) − gν̄ν(gμ
gμ̄σ + gμ̄
gμσ )
]

= 32
(
gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ

)
× [

3gνν̄g
σ − 4(gν
gν̄σ + gν̄
gνσ )

+ gν
gν̄σ + gν̄
gνσ + gν
gν̄σ + gν̄
gνσ − 2gνν̄g
σ

]
= 32(gνν̄gαβ − 2gναgν̄β − 2gν̄αgνβ)(gνν̄g
σ − 2gν
gν̄σ − 2gν̄
gνσ )

= 32
(
4gαβg
σ − 2gαβg
σ − 2gαβg
σ − 2gαβg
σ

+ 4δα

 δβ

σ + 4δα
σ δβ


 − 2gαβg
σ + 4δα
σ δβ


 + 4δα

 δβ

σ

)

= 128
(−gαβg
σ + 2δα


 δβ
σ + 2δα


 δβ
σ

)
. (29)

The evaluation of (6), or of (9), furthermore contains terms of the form

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} . (30)

However, these can be reduced to (27) by employing the relation

γ5σ
μν = i

2
εμν
τ σ
τ , (31)

so that we obtain

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} = i

2
εμν
τ Tr{σ
τ γ

ασ μ̄ν̄γ β}

= i

2
εμν
τ × 4

[
(δμ̄


 δν̄
τ − δμ̄

τ δν̄

)gαβ − δμ̄


 (δα
τ gν̄β + δβ

τ gν̄α)
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+ δν̄

(δα

τ gμ̄β + δβ
τ gμ̄α) + δμ̄

τ (δα

gν̄β + δβ


 gν̄α)

− δν̄
τ (δα

σ gμ̄β + δβ
σ gμ̄α)

]

= 4i(εμνμ̄ν̄gαβ − εμνμ̄αgν̄β − εμνμ̄βgν̄α + εμνν̄αgμ̄β + εμνν̄βgμ̄α) . (32)

Another typical term that occurs in X(μ, e)X(ν) is

Tr{γ5σ
μνγ ασ μ̄ν̄γ β}Tr{σμνγ
σμ̄ν̄γσ } . (33)

However, it is easily verified that this contribution vanishes. The first factor is again
antisymmetric with respect to μ and ν and also to μ̄ and ν̄. Thus, for the second trace
we may substitute the expression (28), which leads to

Tr{γ5σ
μνγ ασ μ̄ν̄γ β} · Tr{σμνγ
σμ̄ν̄γσ }

= 4i(εμνμ̄ν̄gαβ − εμνμ̄αgν̄β − εμνμ̄βgν̄α + εμνν̄αgμ̄β + εμνν̄βgμ̄α)

×8gμμ̄(gνν̄g
σ − 2gν
gν̄σ − 2gνσ gν̄
)

= −32i(εβνν̄α + εανν̄β)(gνν̄g
σ − 2gν
gν̄σ − 2gνσ gν̄
) = 0 , (34)

Using (28) and the relation

εμνγωεμνλτ = 2(δλ
ωδτ

γ − δλ
γ δτ

ω) , (35)

we finally evaluate the following expression

Tr{γ5σμνγ
σμ̄ν̄γσ }Tr{γ5σ
μνγ ασ μ̄ν̄γ β}

= −1

4
εμνγωεμνλτ Tr{σγωγ
σμ̄ν̄γ
}Tr{σλτ γ

ασ μ̄ν̄γ β}

= 1

2
(δλ

γ δτ
ω − δλ

ωδτ
γ )Tr{σγωγ
σμ̄ν̄γσ }Tr{σλτ γ

ασ μ̄ν̄γ β}

= Tr{σγωγ
σμ̄ν̄γσ }Tr{σγωγ ασ μ̄ν̄γ β}
= Tr{σμνγ
σμ̄ν̄γσ }Tr{σμνγ ασ μ̄ν̄γ β} . (36)

This result exactly coincides with the one we previously obtained in (29). Now we
have all the ingredients necessary to consider the contribution of tensor coupling Ôi =
σμν , Ôk = σ μ̄ν̄ .
With respect to (6) we obtain

X(ν) = ATT Tr{σμνγ ασ μ̄ν̄γ β}kαk′
β − BTT Tr{γ5σ

μνγ ασ μ̄ν̄γ β}kαk′
β

= aT Tr{σμνγ ασ μ̄ν̄γ β}kαk′
β − c′ Tr{γ5σ

μνγ ασ μ̄ν̄γ β}kαk′
β , (37)

where we have again adopted the abbreviations (2.77) and (2.83). The contribution of
the massive leptons is given by

X(μ, e) = 1

2
Tr{σμνγ
σμ̄ν̄γσ }p′
pσ + 1

2
mμ Tr{γ5σμνγ
σμ̄ν̄γσ }s′
pσ . (38)
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All other terms vanish, since they contain an uneven number of γ matrices. We recall
that the expression (33) does not contribute, so that we obtain

∑
T

X(ν)X(μ, e) = 1

4

[
1

2
aTkαk′

βp′
pσ Tr{σμνγ ασ μ̄ν̄γ β}Tr{σμνγ
σμ̄ν̄γσ }

− 1

2
mμc′kαk′

βs′
pσ Tr{γ5σ
μνγ ασ μ̄ν̄γ β}

× Tr{γ5σμνγ
σμ̄ν̄γσ }
]

. (39)

Here we have introduced a factor 1
4 in order to avoid double counting of σμν , or σ μ̄ν̄ ,

since the sum includes σμν as well as σνμ = −σμν !
Equation (39) may be further reduced by using (29) and (36):

∑
T

X(ν)X(μ, e)

= 16aTkαk′
βp′
pσ (−gαβg
σ + 2δα


 δβ
σ + 2δα

σ δβ

 )

− 16mμc′kαk′
βs′
pσ (−gαβg
σ + 2δα


 δβ
σ + 2δα

σ δβ

 )

= 16aT
[−(k · k′)(p · p′) + 2(k · p)(k′ · p′) + 2(k · p′)(k′ · p)

]
− 16mμc′[−(k · k′)(s′ · p′) + 2(k · s′)(k′ · p) + 2(k · p)(k′ · s′)

]
. (40)

With the following argument we can conclude that all other combinations of Ôi and
Ôk do not contribute: if for example we identify Ôi with V or A, then Ôk can neither
be S nor P nor T, since otherwise X(ν) in (6) would contain an uneven number of γ

matrices. On the other hand, all remaining combinations lead to an X(ν) which is an-
tisymmetric with respect to the exchange of k and k′, for example, for the combination
“ST”,

Tr
{
(AST − BSTγ5) · 1 · /kσμν/k′}

= 4iAST(kμk′ν − kνk′μ) + 4BSTεαμνβkαk′
β . (41)

As we have already mentioned in connection with (18), such terms do not contribute
to the decay rate.

Combining the previous results (15), (22) and (40) as well as the terms of (41), we
find that

∑
i,k

X(ν)X(μ, e)

= {
8gαβ

[
(aS + aP)(p · p′) − a′mμ(p · s′)

]
+ 16(aV + aA)

[
pαp′β + p′αpβ

]+ 16mμb′[pαs′β + s′αpβ
]

+ 16aT
[−gαβ(p · p′) + 2pαp′β + 2p′αpβ

]
− 16mμc′[−gαβ(s′ · p) + 2s′αpβ + 2pαs′β]
+ Yαβ

}
kαk′

β , (42)
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where Yαβ is an antisymmetric tensor which contains terms like Xαβ of (22) as well
as the contribution corresponding to (41).

In (2.18) we now replace

∑
t,t ′

|M|2

by X(μ, e)X(ν) of (42) thereby abbreviating the last term by Zαβkαkβ ′ . This results
in

dW = G2

2

1

(2π)5

d3p

2p′02p0

∫
d3k

2k0

∫
d3k′

2k′0 δ4(p + k + k′ − p′)Zαβkαk′
β . (43)

Now, utilizing (2.51)–(2.53), we employ (2.49), according to which it holds that

Iαβ ≡
∫

d3k

2k0

∫
d3k′

2k′0 kαk′
βδ4(k + k′ − q)

= π

24

(
q2gαβ + 2qαqβ

)
Θ
(
p0

max − p0) . (44)

The quantity

dW = G2

2(2π)5

d3p

(2p′02p0)
IαβZαβ (45)

is now easily evaluated. Neglecting the electron rest mass, the rest frame of the muon
is again characterized by

p′0 = mμ , p′ = 0 ,

(p · p′) = mμp0 , (p′ · s′) = 0 , (46)

(p · s′) = −p · s′ = −|p| cos θ = −p0 cos θ .

Introducing q = p′ − p, from these relations we obtain

π

24
(q2gαβ + 2qαqβ

)
gαβ = π

24
6mμ

(
mμ − 2p0) ,

π

24
(q2gαβ + 2qαqβ)pαp′β = π

24

(
3m3

μp0 − 4m2
μ(p0)2) , (47)

π

24
(q2gαβ + 2qαqβ)pαs′β = − π

24
mμ(mμ − 4p0)(p0) cos θ

and finally

dW = G2

2

1

(2π)5

d3p

2p′02p0

π

24
Θ
(
p0 − p0

max

)

× {[
48(aS + aP) + 96aT + 96(aV + aA)

]
m3

μp0

− [
96(aS + aP) + 64aT + 128(aV + aA)

]
m2

μ(p0)2

+ (48a′ − 32b′ − 32c′)m3
μp0 cos θ

− (96a′ − 128b′ + 64c′)m2
μ(p0)2 cos θ

}
. (48)
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Neglecting the electron mass implies that

p0
max = mμ

2
, (49)

so that

p0 = xp0
max = x

mμ

2
(50)

and

d3p = |p|2d|p|dΩ = (p0)2 dp0dΩ = m3
μ

8
x2dx dΩ . (51)

We collect all these expressions and substitute them into (48). The final result is

dW = G2m5
μ

192π4
x2dx dΩ

1

16

{[
3(aS + aP) + 6aT + 6(aV + aA)

]

− [
3(aS + aP) + 2aT + 4(aV + aA)

] · x + [3a′ − 2b′ − 2c′] cos θ

− [3a′ − 4b′ + 2c′]x cos θ
}
Θ(1 − x) . (52)

This agrees with (2.81b), as is easily verified by inserting the Michel parameters and
using (2.78).

MATHEMATICAL SUPPLEMENT

2.12 The Fierz Transformation

Within the framework of the Fermi theory there are two different but equivalent
ways of describing a reaction ψ1 + ψ2 → ψ3 + ψ4, namely

(ψ̄3�̂ψ1)(ψ̄4�̂ψ2) and (ψ̄4�̂ψ1)(ψ̄3�̂ψ2) . (1)

The properties of the Clifford algebra11 allow us to form 16 matrices

{1, γμ,σμν, γ5γμ, iγ5} =: {Ô1, . . . , Ô16} . (2a)

{1, γ μ,σμν, γ5γ
μ, iγ5} =: {Ô1, . . . , Ô16} . (2b)

which form a basis for any 4 × 4 matrix. Furthermore it holds that

γ0Ô
†
i γ0 = Ôi . (3)

Hence we may expand �̂ in terms of the Ôi .

16∑
i=1

Ciψ̄3Ôiψ1ψ̄4Ô
iψ2

11 See W. Greiner: Relativistic Quantum Mechanics – Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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or

16∑
i=1

C′
i ψ̄4Ôiψ1ψ̄3Ô

iψ2 . (4a)

The requirement for Lorentz invariance demands that

C2 = · · · = C5 , C6 = C7 = · · · = C11 , C12 = · · · = C15 . (4b)

Since the two representations (4a) are equivalent, these expressions must be identical
for arbitrary values of ψ1, ψ2 ,ψ3, and ψ4. In terms of the particular components this
implies that

16∑
i=1

Ci(Ôi)γ α(Ôi)δβ =
16∑
i=1

C′
i (Ôi)δα(Ôi)γβ . (5)

In the following steps we will solve this equation for Ci , which requires the deter-
mination of the transformation matrix Λij connecting the two representations, that
is,

Ci =
∑
j

ΛijC
′
j . (6)

The transformation from the C′
j to the Ci (or vice versa) is called the Fierz transfor-

mation.
Multiplying (5) by (Ol)αγ (Ol)

βδ and summing over α, β , γ , and δ yields

16∑
i=1

Ci Tr{ÔiÔ
l}Tr{ÔiÔl} =

16∑
j=1

Tr{Ôj Ô
lÔj Ôl}C′

j . (7)

We employ the following formulas (see Appendix A.2):

Tr{1} = 4 ,

Tr{σμν} = Tr{γμ} = Tr{iγ5}
= Tr{γ5γν} = 0 ,

Tr{γμγ ν} = 4gμ
ν ,

Tr{γ μσμν} = Tr{γ μiγ5} = Tr{γ μγ5γν} = 0 ,

Tr{σμνσ
λ
} = −1

4
Tr{[γμ, γν]γ λγ 
 − [γμ, γν]γ 
γ λ}

= −{gμνg
λ
 + gμ


gν
λ − gμ

λgν



− gμνg
λ
 − gν


gμ
λ + gν

λgμ



− gμνg

λ − gμ

λgν

 + gμ


gν
λ

+ gμνg

λ + gν

λgμ

 − gν


gμ
λ}

= 4{gμ
λgν


 − gν
λgμ


} ,

Tr{σμνγ5γ
λ} = Tr{σμν iγ5} = 0 ,
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Tr{iγ5γμiγ5γ
ν} = Tr{γμγ ν} = 4gμ

ν = 4δμν ,

Tr{iγ5γμγ5} = 0 ,

Tr{γ5γ5} = 4 .

All these relations may be combined to give

Tr{ÔiÔl} = 4δi
lεl , εl =

{
+1 for l = 1, . . . ,11

−1 for l = 12, . . . ,16
. (8)

Inserting (8) into (7), we then have

Cl = 1

16

16∑
j=1

C′
j Tr{Ôj Ô

lÔj Ôl} . (9)

There remains the evaluation of

Λ̃lj = 1

16
Tr{Ôj Ô

lÔj Ôl} = Λ̃jl . (10)

In order to solve for Λ̃jl we consider the particular cases separately.
• j = 1:

Λ̃1l = 4εl

1

16
= 1

4
εl , (11)

according to (8).
• j = 2, . . . ,5; l = 2, . . . ,5:

Λ̃jl = 1

16
Tr{γj−2γ

l−2γ j−2γl−2} = 1

4
{2δjl − 1} ,

(12)
(Λ̃jl) = 1

4

⎛
⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞
⎟⎟⎠ ,

where the index j labels the rows and l the columns.
• l = 6, . . . ,11:

Ôl = iγνγμ (ν �= μ) ,

Ô6 = iγ0γ1 , Ô7 = iγ0γ2 ,

Ô8 = iγ0γ3 , Ô9 = iγ1γ2 ,

Ô10 = iγ1γ3 , Ô11 = iγ2γ3 ,

Λ̃jl = − 1

16
Tr{γj−2γ

νγ μγ j−2γνγμ} (13)

= −1

8
δν
j−2 Tr(γ μγ j−2γνγμ) + 1

16
Tr(γ νγj−2γ

μγ j−2γνγμ)

= −1

8
δν
j−2 Tr(γ j−2γνγμγ μ) + 1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ)
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− 1

16
Tr(γ νγ μγj−2γ

j−2γνγμ)

= −1

8
δν
j−2 Tr(γ j−2γν) + 1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ) − 1

16
Tr(γ νγ μγνγμ) .

For the first term we get

−1

8
δν
j−2 Tr

(
γ j−2γν

)= −1

8
δν
j−2 · 4δj−2

ν = −1

2
δν
j−2 .

To evaluate the last two terms we take into consideration that μ �= ν and therefore
γμγν = −γνγμ, yielding

1

8
δ
μ
j−2 Tr(γ νγ j−2γνγμ) = −1

8
δ
μ
j−2 Tr(γ νγ j−2γμγν)

= −1

8
δ
μ
j−2 Tr(γνγ

νγ j−2γμ)

= −1

8
δ
μ
j−2 Tr(γ j−2γμ)

= −1

8
δ
μ
j−2 · 4δj−2

μ

= −1

2
δ
μ
j−2 ,

in which we have used the fact that the trace is constant under cyclic permutation. For
the third term we then obtain

− 1

16
Tr(γ νγ μγνγμ) = 1

16
Tr(γ νγνγ

μγμ)

= 1

16
Tr(1) = 1

4
,

and, in summary, we finally have

Λ̃jl = 1

4
(1 − 2δj−2,ν − 2δj−2,μ) ,

(14)
(Λ̃jl) = 1

4

⎛
⎜⎜⎝

−1 −1 −1 +1 +1 +1
−1 +1 +1 −1 −1 +1
+1 −1 +1 −1 +1 −1
+1 +1 −1 +1 −1 −1

⎞
⎟⎟⎠ .

• l = 12, . . . ,15:

Λ̃jl = 1

16
Tr{γj−2γ5γ

l−12γ j−2γ5γl−12} ,

(15)
(Λ̃jl) = 1

4

⎛
⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞
⎟⎟⎠ .

• l = 16:

Λ̃jl = − 1

16
Tr{γj−2γ5γ

j−2γ5} = 1

4
. (16)
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• j = 6, . . . ,11; l = 6, . . . ,11:

Ôj = iγνγμ with μ > ν ,

Ol = iγ
γλ with λ > 
 ,

Λ̃jl = 1

16
Tr{γνγμγ 
γ λγ νγ μγ
γλ}

= 1

16

[−2δν
μ Tr{γμγ λγ νγ μγ
γλ} + 2δλ

ν Tr{γμγ 
γ νγ μγ
γλ}

− 2δμ

 Tr{γ λγ μγ
γλ} + 2δμ

λ Tr{γ 
γ μγ
γλ} − Tr{γ 
γ λγ
γλ}
]

(17)
= 1

16

[+2δμ
 · 4(2δνλ − 1) + 2δνλ · 4(2δμ
 − 1) − 8δμ
 − 8δμλ + 4
]

= 1

4

[
1 − 2(δν
 + δνλ + δμ
 + δμλ) + 4δν
δμλ + 4δνλδμ


]
,

Λ̃jl = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

+1 −1 −1 −1 −1 +1
−1 +1 −1 −1 +1 −1
−1 −1 +1 +1 −1 −1
−1 −1 +1 +1 −1 −1
−1 +1 −1 −1 +1 −1
+1 −1 −1 −1 −1 +1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

• l = 12, . . . ,15:

Λ̃jl = − 1

16
Tr{γνγμγ5γ

l−12γ νγ μγ5γl−12} .

Together with (14) it follows that

Λ̃jl = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎝

+1 +1 −1 −1
+1 −1 +1 −1
+1 −1 −1 +1
−1 +1 +1 −1
−1 +1 −1 +1
−1 −1 +1 +1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (18)

• l = 16:
From (8) it follows that

Λ̃j,16 = − 1

16
Tr(Ôj Ô

j ) = −1

4
. (19)

• j = 12, . . . ,15; l = 12, . . . ,15:

Λ̃jl = 1

16
Tr{γj−12γ

l−12γ j−12γl−12}

= 1

4
{2δjl − 1} ,

(20)

Λ̃jl = 1

4

⎛
⎜⎜⎝

+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

⎞
⎟⎟⎠ .
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• l = 16:

Λ̃j,16 = − 1

16
Tr{γ5γj−12γ5γ5γ

j−12γ5} = −1

4
. (21)

• j = 16; l = 16:

Λ̃16,16 = 1

16
4 = 1

4
. (22)

According to (4a) we may combine the Ci , Cj as follows:

CS = C1 ,

CV = C2 = C3 = C4 = C5 ,

CT = C6 = · · · = C11 , (23)

CA = −C12 = · · · = −C15 ,

CP = −C16 ,

where the negative signs correspond to the convention. Similarly (6) now reads as
follows:

Ci =
∑
j

C′
j Λ̃ij

= Λ̃i1C
′
1 +

5∑
j=2

Λ̃ijC
′
j +

11∑
j=6

Λ̃ijC
′
j +

15∑
j=12

Λ̃ijC
′
j + Λ̃i,16C

′
16

= Λ̃i1CS +
(

5∑
j=2

Λ̃ij

)
CV +

(
11∑

j=6

Λ̃ij

)
CT −

(
15∑

j=12

Λ̃ij

)
CA − Λ̃i,16CP .

Thus it follows that

ΛIJ =
∑

j in J

εI εJ Λ̃ij with i in I , (24)

where

εI =
{

+1 for S,V,T

−1 for A,P
. (25)

From (11)–(22) it follows that

ΛIJ = 1

4

⎛
⎜⎜⎜⎜⎝

1 4 6 4 1
1 −2 0 2 −1
1 0 −2 0 1
1 2 0 −2 −1
1 −4 6 −4 1

⎞
⎟⎟⎟⎟⎠ . (26)

This is the standard representation of the Fierz transformation and the one most com-
monly used. It is easily checked that Λ2 = 1, and therefore Λ = Λ−1, i.e. Λ is its own
inverse.
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An alternative form is obtained from (22) and (23) by introducing

S(3,1;4,2) := (ψ̄31ψ1)(ψ̄41ψ2) ,

V(3,1;4,2) := (ψ̄3γμψ1)(ψ̄4γ
μψ2) ,

T(3,1;4,2) := 1

2
(ψ̄3σμνψ1)(ψ̄4σ

μνψ2) , (27)

A(3,1;4,2) := (ψ̄3γ5γμψ1)(ψ̄4γ
μγ5ψ2) ,

P(3,1;4,2) := (ψ̄3γ5ψ1)(ψ̄4γ5ψ2) ,

and replacing (5) by
∑

I=S,V,T,A,P

CI I (3,1;4,2) =
∑

J=S,V,T,A,P

C′
J J (4,1;3,2) . (28)

The transformation of the matrices I and J is then given by

I (3,1;4,2) =
∑
J

ΛJI J (4,1;3,2) ,

and because Λ is self-inversive it also follows that

J (4,1;32) =
∑

ΛIJ I (3,1;42) .

2.6 The Tau Lepton

In the year 1975 a further lepton was discovered at Stanford (SLAC) by Perl, which
has been named the τ lepton.12 With a mass of 1784 ± 3 MeV it is almost 20 times
heavier than the muon. Its lifetime is

Tτ = (3.4 ± 0.5) × 10−13 s . (2.87)

The scheme of τ lepton decay is completely analogous to muon decay, which we have
discussed in detail. Since both the electron and the muon have smaller masses than the
τ lepton, both decay processes are possible:

τ− → μ− + ν̄μ + ντ , (2.88a)

τ− → e− + ν̄e + ντ . (2.88b)

In addition, the τ lepton may also decay into strongly interacting particles, especially
into three or more pions together with a τ neutrino. These hadronic processes con-
tribute about 65% to the total decay probability of the τ lepton (see Table 2.2); how-
ever, we will not consider them here but will rather focus on the leptonic processes.

12 M.L. Perl et al.: Phys. Rev. Lett. 35, 148 (1975); M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299
(1980); G.S. Abrams, M.L. Perl et al.: Phys. Rev. Lett 43, 1555 (1979).
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Table 2.2. Decay probabilities of the τ lepton

Decay %

τ− →e−ν̄eντ 16.4 ± 1.8
μ−ν̄μντ 16.0 ± 1.7
π−ντ 10.3 ± 1.2
ρ−ντ 22.1 ± 2.4
K−ντ 1.3 ± 0.5
π−ρ0ντ 5.4 ± 1.7

further hadronic decays 26.0 ± 1.3

Besides the properties that result from its rather large mass, the τ lepton behaves
just like an electron or muon. This fact is sometimes termed e–μ–τ universality. For
example, the τ lepton is observed with large accuracy to be point-like. Its internal
extension amounts to less than 0.004 fm. Furthermore the electron and muon spectra
observed in the decay processes (2.88) may be analyzed in terms of Michel parame-
ters, in analogy to the case of muon decay, which we have already treated. The result
is13

ρτ = 0.742 ± 0.035 ± 0.020 , (2.89)

which is a strong argument for V–A coupling (ρ = 0.75) and unambiguously excludes
V+A coupling (ρ = 0), as well as pure V or A coupling (ρ = 0.375). This behavior
also becomes obvious from Fig. 2.10, which compares the observed electron spectrum
with the predictions of the V–A and V+A theory.

Fig. 2.10. Electron spectrum
of the τ decay

From a detailed analysis of the shape of the high-energy end of the muon spectrum,
an upper limit for the mass of the τ neutrino can be inferred (see Fig. 2.11). The most
accurate value today is

mντ ≤ 70 MeV (2.90)

13 H. Albrecht et al. [ARGUS Collaboration]: Phys. Lett. B246 (1990) 278–284.
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However, it is not unlikely that its rest mass vanishes. If we assume that the weak
current of the τ particles is of the familiar form

J (τ)
μ (x) = ūτ (x)γμ(1 − γ5)uντ (x) , (2.91)

we immediately obtain the decay rates into the leptonic channels (2.88) by simply
adopting the formula (2.57) for the muonic decay. Again, we set me = 0, but do not
neglect the muon mass:

Fig. 2.11. The number of the
observed electrons and muons
is depicted as a function of
the momentum.14 Here pc =
0.65 GeV is the lower limit
of the momentum observed in
the experiment. Each curve
stands for one value of the
mass of the τ neutrino. The
dashed curve is for V+A cou-
pling and mντ = 0
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Inserting the value mτ/mμ = 16.86, we obtain

Wτ→e = 0.620 × 10+12 s−1 , (2.93a)

Wτ→μ = 0.603 × 10+12 s−1 . (2.93b)

The ratio of these quantities is

Wτ→μ

Wτ→e
=
(

1 − 8
m2

μ

m2
τ

)
= 0.972 . (2.94)

On the other hand, the experimental determination of the relative probability for these
two decay processes, compared with the total decay rate, yields the following val-
ues:15

Bτ→e = Wτ→e/Wτ = (17.7 ± 0.4) ,
(2.95)

Bτ→μ = Wτ→μ/Wτ = (17.8 ± 0.4) .

These values yield the experimental ratio

Bτ→μ

Bτ→e
= 0.9 ± 0.1 , (2.96)

which agrees with the theoretical prediction (2.94) within the accuracy of the ex-
periment. By inserting (2.95) in (2.92a) we can give a theoretical prediction for the
lifetime of the τ lepton:

Tτ = Bτ→e

Wτ→e
= (2.6 ± 0.2) × 10−13s , (2.97)

14 M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
15 Review of particle properties in M. Aguilar-Benitez et al.: Phys. Rev. D 45, Part II (June 1992).
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which at least does not contradict the experimental value (2.87). From this it follows
that the coupling constant G occurring in (2.92a) cannot differ significantly from the
coupling constant G of muon decay.

To summarize, we conclude that according to the actual data the τ lepton fits per-
fectly into the family of leptons (e, μ, τ ). The only differences between these leptons
are their masses and a quantum number that guarantees the separate conservation of
the electronic, muonic, and τ -leptonic particle numbers. In particular, the leptons ex-
hibit a completely universal behavior in electromagnetic and weak interactions.

EXAMPLE

2.13 The Discovery of the Tau Lepton

The τ lepton was discovered at the SPEAR storage ring by the magnetic detector of the
SLAC–LBL collaboration (Stanford Linear Accelerator Center – Lawrence Berkeley
Laboratory).16 The principle of a storage ring is that particle and antiparticle beams
circulate within the ring in opposite directions and are forced to overlap in the region of
the detector (see Fig. 2.12). The detector was constructed in such a way that electrons,
muons, and photons, as well as hadrons, could be detected and identified within a large
solid angle. In addition, the trajectories of the charged particles in the magnetic field
allowed for a determination of their momentum.

Fig. 2.12. Schematic picture
of the storage ring facility
SPEAR at SLAC

Through investigations of electron–positron collisions a number of events of the
form

e+ + e− →
{

e+ + μ−
e− + μ+

}
+ at least 2 unobserved particles

were observed – until 1975 a total number of 105 events. These processes could not be
understood in terms of a conventional interpretation, especially since the possible un-
certainty in particle identification by the detector had already been taken into account,
that is to say, the most unfavorable assumption was made, namely that all processes
with three observed charged particles implied the production of hadrons only. Thus
every “electron” or “muon” was claimed to be a misinterpretation of the detector.
This allowed an estimate to be made of how reliable particle identification was. It was
therefore possible to evaluate, from the number of observed events in which a lepton
and a hadron, or two hadrons, occurred, the number of misinterpreted e–μ events.
It followed that of the 139 events originally observed, 34 were spurious and had to

16 G.J. Feldman and M.L. Perl: Phys. Rep. 19, 233 (1975).
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be subtracted. The immediate conclusion was that the uncertainty in particle identi-
fication could not explain all these events. One might argue that at least one of the
observed particles was a charged particle, a photon, or a neutral pion decaying into
two photons, but one not reaching the effective region of the detector. On the other
hand, such processes would imply the occurrence of corresponding events in which
the particle is actually detected. However, this was not the case.

The sole remaining explanation was the interpretation of the e–μ events in terms
of the production of hardly detectable particles such as neutrons, K0

L (see Chap. 8), or
neutrinos. However, the K0

L is ruled out by the reasonable assumption that the produc-
tion rates for K0

L and K0
S are equal. The latter could easily be identified by its decay

products π+ and π−. However, up until 1976 only a single event had been observed.

Fig. 2.13. Cross section for
electron–muon events in stor-
age ring experiments

A characteristic feature of the e–μ events is their threshold energy of about
3.6–4 GeV, that is, they do not occur at lower energies (see Fig 2.13). Another signif-
icant property is that with increasing energy the electron and muon are preferentially
emitted collinearly in opposite directions. This strongly suggests the production of a
particle–antiparticle pair,

e+ + e− → τ+ + τ− .

Owing to momentum conservation, the two particles should be emitted in exactly
opposite directions. Hence, a higher energy implies that the particles have a larger
momentum. Subsequently, the two particles decay into an electron (positron) or a
muon which is emitted isotropically with respect to the rest frame of the corresponding
τ particle. However, the larger the velocity of the τ particle, the less the direction of
emission with respect to the τ particle’s rest frame contributes to the emission actually
observed within the lab system, whereby the latter is then essentially determined by
the direction of emission of the τ particle.

The observed threshold energy leads to the conclusion that the mass of the τ par-
ticle lies in the range 1.6–2 GeV. In order to characterize the nature of the τ particle,
there were in practice two options: either it is a lepton that decays according to

τ− → ντ + e− + ν̄e , τ− → ντ + μ− + ν̄μ ,
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and similarly for the antiparticle τ+, or it is a boson with the following decay channels:

τ− → e− + ν̄e , τ− → μ− + ν̄μ ,

as are observed for example, in the decay of negatively charged pions. The latter in-
terpretation, however, could certainly be ruled out by the analysis of the momentum
distribution of produced electrons (positrons) and muons (the specific form of this
distribution also contradicts the interpretation of the observed particle in terms of a
neutron).

Therefore the sole explanation that remained was the classification of the τ particle
as a new, heavy lepton. Figure 2.14 illustrates how the total process results in the
observed e–μ events. Since 1975 the properties of the τ lepton have been extensively
studied, its mass has been accurately determined to be 1784 ± 3 MeV, its Michel
parameters were obtained17 as ρ = 0.731±0.031, ξ = 1.03±0.11, ξδ = 0.63±0.09,
and thus the V–A coupling of its decay has been verified in detail.

Fig. 2.14. Production and de-
cay of the τ lepton

2.7 Biographical Notes

FIERZ, Markus, ∗20.6.1912 in Basel (Switzerland), †20.6.2006 in Küsnacht (Switzerland),
professor at the University of Basel 1944–1960, since 1960 successor of W. Pauli at the ETH
Zürich, in 1969 appointed director of the Theoretical Division at CERN, Geneva.

LEVI-CIVITA, Tullio, mathematician, ∗29.3.1873 in Padua (Italy), †29.12.1941 in Rome. In
1898 he became professor of mechanics in Padua, since 1918 at the University of Rome. He
developed differential and tensor calculus, which laid the basis for Einstein’s general theory
of relativity. He introduced the idea of parallel transport and developed the theory of curved
spaces.

MICHEL, Louis, ∗4.5.1923 in Roanne (France), †30.12.1999 in Bures-sur-Yvette (France),
professor at the Ecole Polytechnique in Paris, since 1962.

PERL, Martin, L. ∗1927 in New York. Attended New York city schools. After military services
in World War II, he received a Bachelor in Chemical Engineering degree from the Polytechnic
Institute of Brooklyn in 1948. After several years working for the General Electric Co. as a
chemical engineer, he went to graduate school in physics at Columbia University, studied under

17 H. Albrecht et al. (51 authors): The ARGUS Collaboration, DESY-preprint 97-194.
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I. I. Rabi, and received his Ph.D. in 1955. From 1955 to 1963 he did research and taught at the
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Stanford University where he is a Professor of Physics and Group Leader. In 1990–1992 he was
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