Leptonic Interactions

2.1 The Current-Current Interaction (Charged Currents)
Let us first consider only the weak interactions between leptons. Today three leptonic

hierarchies (e, i, 7) are known; the experimental data are listed in Table 2.1. To recall,
parity violation in nuclear 8 decay suggested an interaction of the form (see (1.30))

G _ _
Hine = 7 / ity () Ve (Cy + Cays)un()|[ite )y (1 = ys)uy, ()] (2.1)
where the leptonic contribution

e (X)y* (1 — ys)uy, (x) (2.2)
contains terms that resemble the electromagnetic current

J) =e¥ )y w(x) . (2.3)

Table 2.1. Experimental data for leptons

Lepton e Ve n Vi T Vr
mass (MeV) 0.511 <17 x 1070 105.66 <0.27 1784 £ 4 <35
lifetime (s) 00 00 22 x 1070 00? 3x 10713 ?

By analogy with the electromagnetic current, we therefore introduce the total weak
leptonic current by adding the currents of the three leptonic families:

I () = e (0) Ya (1 = y5)uy, () + il () Yo (1 = y5)uy, (x)
+ it () Ve (1 — p5)ty, (x)
=JOW+IP ) +IP ) . 2.4)

To describe the mutual weak interaction of leptons we generalize (2.1) by postulating
that

L G
HY = i f [ eV /e I 2.5)
The consequences of this step are non-trivial. Since Hig;) is quadratic in JOEL) , each lep-
tonic hierarchy interacts with itself as well as with each of the other two. The follow-
ing diagrams are some examples for such possible processes (see also Exercise 2.1).
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n><:,u-
e- v

Neutrino—electron scattering:

118 =i ye = ysduee] [ier™(1 = yshus,]

Muon decay:

I8 = [, 7 (1 = ys)ug][er® (1 = yshus,]

Muon production in muon-neutrino—electron scattering:

T _ _
Joge) J(O;L) = [Mveyot(l - VS)ue][’/‘uya(l - VS)MUM]
On the other hand, a process like

Vy Vl‘

e- e-

is not allowed. This means that v, and e can interact only via the creation of a muon,
which is an immediate consequence of the specific form of the currents J,Ei), allowing
for a neutrino converting into a charged lepton (or vice versa!), but prohibiting an
interaction without a conversion of particles. This property of the interaction is usually
expressed by calling the currents (2.4) charged currents (more accurate by charged
transition currents) since the charge of the particle of a particular leptonic hierarchy
changes by one unit. In the electromagnetic current (2.3) the charge of the particle
does not change, it is therefore called a neutral current. We shall later see that neutral
currents also appear in the context of the gauge theory of weak interaction.

EXERCISE |

2.1 Neutrino-Electron Exchange Current

Problem. Prove that ]“) =ity Y (1 — y5)ue

Solution. With 5™ = y5 we find

J(lé)"L = [ﬁeyﬂ(l - )’5)“%]T

=y, " (1 —ys)y il
= iy’ — sy e (1)
Using the identity
y =yl @)
that is, )/"T =—y, yOT = yY, yields the desired result:

Il =iy’ (1 = ys)y Oy ue
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=ity (14 y5)y ue
=ity Y (1 = ys)ue (3)

where we have used the fact that 5 anticommutes with all other y matrices.
|

2.2 The Decay of the Muon

Of all pure leptonic processes, muon decay was the first to be investigated with high
accuracy. Muon decay occurs because of the general hypothesis (2.5) for the weak
interaction of leptons. Its observation, therefore, is a very important check of the gen-
eralization (2.5) of the original Fermi theory of weak interactions. It is therefore ap-
propriate to begin our study with this particular process. Since the decay implies a
change in the state of the muon, and because the interaction that causes it is weak, it
can be described in the framework of time-dependent perturbation theory.

The quantum mechanical wavefunction obeys a Schrodinger equation,

ialP(x, 1)

a7 =H(x,H¥(x,t)

which — after eliminating the space coordinates x — simply reads

0w (1)
i

S =HOvo 2.6)

We now study the time development appropriate for our case (2.5) of weak interaction.
Starting at o with the initial wavefunction ¥; = W (#(), we obtain after a time step Aty

W (11) = W (to + Ato) = W (19) — iA1oH (10) ¥ (10)
= (1 —iH (o) Ato)¥ (10)
After a next time step At we get
W (1) = Wt + Ato+ Aty) =W (1) —iA H (1) W (1)
= W (1) — iAtoH (1) ¥ (1o)
—iAnHW (1)

and after N steps

) =W(ty) =W (o + Atg+ Aty + -+ Aty_1)
= W (19) — iAtoH (10)¥ (1)
— AL H ()W (1)

—iAty_ 1 H(n-1)¥ (ty—1)
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N—-1
=W(t)—iy AH@HW (W)
i=0
1t
~W(to) — i / HHWw(Hdt' 2.7
0]

where higher-order terms in H were neglected.
Now, the S-matrix element Sg for a transition from an initial state |¥;) to a final
state |Wf) # W) is defined as'

S = lim (W¢|Wi(1))
—>00

t
= lim <l1/f Wi(to) — i / Fl(ﬂ)wi(r’)dt’>
1n)—>—00 1

=8ﬁ—i/(Wfll:l(t’)l‘l’i(t’»dt’ : (2.8)

—00

Only I;Vim of H = I:IO + I:Iim contributes to the integral, because of the supposed or-
thogonality of initial and final state, (¥;|¥;) = 0.
Specializing to the case of the muon decay, the lowest-order transition amplitude is

+00
Si=—i / dt Y (™ = e hevy) (2.9)

—00

As discussed in Sect. 2.1, the relevant part of Hi(n];) contributing to this process is

i / Bx[itn, (07 (1 = )it O |[ae @y (1 =y 0] . (2.10)
V2 S " e

For this first-order approximation we may choose free wave functions to describe the
four particles with four-momenta p, p’, k, k" and spins s, s', £, ¢, respectively. Accord-
ing to the Feynman rules the (outgoing) antineutrino is represented by an (incoming)
wave function with negative energy (see Fig. 2.1). Employing the form of the plane

1 See W. Greiner: Quantum Mechanics — An Introduction, 4th ed. (Springer, Berlin, Heidelberg,
2001), and W. Greiner and J. Reinhardt: Field Quantization, 1st ed. (Springer, Berlin, Heidelberg,
1996).
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waves of Appendix A.2 we have?
U (x) = QE, V) Puy(p' s exp(—ip)x)

Uue(x) = REV) ™ ue(p, s)exp(—ipuxt)

(2.11)
s, (X) = QEy, V)~ 2u,, (k, 1) exp(+ik,x*)
iy, (x) = (2E,, V)*l/zuvu k', ") exp(—ik, x*)
where
E,=p°, Ee=p° E,. =k E,=k"° (2.12)
and u(p, s), v(p, s) denote the spinor parts (E positive!)
1
u@Jﬁ4E+mﬂ<m;X>,
b (2.13)
U(p,S) — (E _’_m)% <E+me>
Xs

with the two-component unit spinors x;. Substituting this expression into the matrix
element (2.9) yields

S(u™ — e hevy) = _iG d*x xplik, = P, put ku)x“]l
V2 [16(OV)(pOV)(pOV)(KOV)]2
x [y, k', 1)y (1 = ys)uu(p'.s")]
x [ie(p. s)y" (1 — ys)vy, (k. 1)]

.G 8 (p+k+k—p)

=—iQ2n)*—
ﬁ [16V4k’0k0p’0p0]%

x [ity, (k' 1)y (1 = ys)uu(p',sH)]
x [ie(p', )y (1 — ys)vy (k. 1)] . (2.14)

To obtain the transition probability, (2.14) must be multiplied with its Hermitian con-
jugate. This gives a factor

[B*p+k+k —pH] =s*(p+k+K — p)s*©) (2.15)
which is replaced by
VT
8 k+k —p/ 2.16
o) (p+k+k —p) (2.16)

according to the usual prescription, which can be derived heuristically (although math-
ematically oversimplified) as follows:

dty . . d*y vT
§*(0) = lim 8*(q) = i f— eq" — = . 2.17
(0= lim 6°(g) = lim | 53¢ et 2n) @.17)

2 Note that we are using the index “u” for two different purposes: it denotes the muon wave function
u, and energy E,, and it occurs as a four-vector index, such as in p,, x;, y,. Although this is
somewhat unfortunate, we must get used to this double meaning.

o kKt Vu

- p.s kt o
#—»——<we
p,s e-

Fig. 2.1. Momenta and spins
for the muon decay. The anti-
neutrino ve is represented by
an incoming wave with nega-
tive energy and negative mo-
mentum, i.e. negative four-
momentum
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V and T are understood to be macroscopic quantities so that the physical process takes
place entirely within the finite space-time volume V T. In practice, the two neutrinos
cannot be observed, that is, we need to sum or integrate over all possible final states.
Furthermore, to obtain the transition probability within a small interval of momentum,
we multiply by the density of the electron final states within an interval V d3p/(27)3.
Finally we divide by T to get the decay rate, that is, the transition probability per unit
time interval. Following these steps we find that

_1vdp &k v &>k’
T T (27)3 (2n)3 (2n)3

Z [S(u™ — e_‘_)e‘)u”z
t,t

T2 2n)52p02p0 | 2k0

G? 1 dp d3k /d3k’

Sod kK =p) Y 1M, 218)

t,t

where
M = [y, y" (1 = ys)uy |[Hey (1 — ys)vy,| - (2.192)

The expression |M |2 consists of two similar factors for the muonic and electronic
transition currents. If we write M = M*E,, with M* = (it,,,y* (1 —ys)u,) and E,, =
(eyu (1 — ys5)uy,), (2.19a) becomes

Y IMP =) (MFE)MYE) =Y (M*M")(ELE]) . (2.19b)
t,t t,t tt
Let us first focus on the muonic factor, making use of Exercise 2.1:
X" () =M"M""
=Y i, (Kt )y" (1 = ys)un(p'.s)]
o

x [it, k', 1)y (1 = ys)u(p's )]
=Y i, (K, )y (1= ys)uu (P, it (P, s')
t/

Xy (1= yshuy, (K, 1)) . (2.20)

In order to evaluate this expression we make use of some helpful formulas for Dirac
spinors and y matrices (see Appendix A.2),3

Dy, (K )it (K ) = K +m)ap =Kop 2.21)
t/

where «, 8 denote the spinor indices and m,, = 0. Since the summation is not over the
initial muon states, we have (see Appendix A.2)

1 A
up(p's s Naity(p'y s g = [(ﬁ’+mﬂ)< zm )] . (2.22)

3 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).
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with the spin four-vector

, p/ . s/ , (p/ . s/)p/
= , , 2.23
S ( m $ m(E’' +m) (2.23)

where s’ is the spin vector with respect to the rest frame. Here s’ is a unit vector so
that s/“s;’L = —1. Inserting the relations (2.21) and (2.22) into (2.20) we obtain the
following expression for the muonic contribution to the transition currents X"V (u):

1 /
XU () =Y i, K ) Vg (1= ¥5)ow [(ﬂ +mﬂ)( +2V5*‘l >]
t op

X Vf‘})g(l - )/5)01’7411M (k/s )z

1+ ys¢’
2

= V#Q(l —¥5)oa |:(15/ + mu)( )j| Vgg(l - VS)ark;n . (224
af

Summing over the first and last index w means that we have to evaluate the trace of
the (4 x 4) matrix:

1223 1% 4 1+ )/5,{/ v /
X () =Tryy (A = ys) (P +my) > vy d—-yk - (2.25)
Since y¥ys = —ysy® and Tr{AB} = Tr{B A} this yields

1
X" (u) = > Te{ (' +m) A+ ysi )y F A+ )y —ys)) . (2.26)

Now we make use of the property that any trace of a product of an odd number of y
matrices vanishes (see Appendix A.2). Since y5 = iy%y!y2y3 it consists of an even
number of y matrices. Furthermore it holds that (1 — )/5)2 =2(1 — ys5), so that (2.26)

becomes

XM () =Te{ (@ + m) (A + s )y Ky (1 —ys)}
=Te{p vy Ky A —ys) + B vsd v Ky (A — ys)
+muy Kyt (L —ys) +muysd v Ky —ys)} (2.27)

Obviously the second and the third terms are “odd”; therefore they do not contribute.
The remaining first and last terms are “even”. Taking into account that ys(1 — y5) =
—(1 — ys5), we find that

XM (w) =Telp' y 'Ky (L —ys) —mud vy 'Ky (1 — ys)}
=Te{@ —muf )y ¥ y" (1 —ys)} . (2.28)

In Appendix A.2 it is shown that successive application of y*y¥ + yVy# =2gH"
yields the general relations

Tr{y®yPyyT) = 4(g*Pg" — g% ¢ + g% ¢P?)
e (2.29)

Tr{y®y Py y T yst = —die

Using this for the trace, (2.28) gives the final result for the muonic part of the transition
currents:
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XM () = 4[(p" —mus )k — (p' — musH kg™ + (p' — myus )%
+ie®Pr(p —mys)oky] (2.30)
The electronic contribution (2.19)—(2.20) is evaluated in a similar manner, which gives
Xuw(e) = ELE]
= > [ie(p. )71 = ¥y, (k. D] [iie(p, )y (1 = ys)vy (k)]
7
=Tr{(p = meH)yukro(1 = ys5)}
=4[(p — mes)uky — (p — Mes)* kagpuv + (p — mes)vky,
— igaupv(p — mes)*kP] . (2.31)

The final result for the squared invariant matrix element (2.19b) is the product of
the two expressions (2.30) and (2.31) which, after some work, is formed to be (see
Exercise 2.3)

DM = X" () X (@) = 64(p" = myus ) a (p = mes) Pkl (232)
PG
EXERCISE |
2.2 Proof of (2.31)
Problem. Prove the first part of (2.31)

X/.LU(e) = Tf{(ﬁ - me#))’uk)/u(l - VS)}

Solution. Starting from the expression (2.31) and performing the ¢+ summation, we
arrive at

Xyuw(e) = ZEMEI
t
=3 e(p. )71 — y5)vu k. D] [ie(p. $)ys (1 — y5)vy, ke, )]
t

=Y liie(p, )7l = ys)vy (e, OBy (e, Oy (1 = y5)ue(p, 5)]
t

=ue(p,s)yu(l —ys) |:Z Uve(k’ t)ﬁve(k’ t):| w(l —ys)ue(p,s)
t

:k_mve =k
=ue(p, S)H(Vu)ﬂg(l - VS)gakaﬂ(Vv)ﬂa(l —¥5)ocle(p,s)c - (1)
With the identity (see (2.22))

1
'Ze(P,S)nue(p,s)r = [(15 +me)ﬂi|

5 )
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we obtain

1
X1(©) = Vidro (1 = v5)gakup 1) (1 = ¥)or [(p + me>< + st )}

2
1
= Tr{yu(l —vs)kn(l — 7/5)[(15 + me)( +2y5’¢>]}

=Tr{(p + me)(1 + y58)yukyn(1 — y5)} A3)

where we have used the relation

Yl = y)kyy(1 —ys5) = yuk(1 + y5) (1 — vs)
= yukyo(1 — V5)2
= Yk 2(1 —ys)

and the trace identity Tr{AB} = Tr{BA}. This expression (3) transforms to (2.27) if
we replace

r—=r .
me —> my,
-4 .
Yu—>v"
k=¥ .

vw—> "

“)

Therefore we may simply rewrite (2.28) by substituting for the muonic quantities the
corresponding electron quantities:

Xuv(©) =Te{(p — mef)yuknn (1= y5)} )
EXERCISE |
2.3 Calculation of the Averaged Decay Matrix Element

Problem. Evaluate Y |M|? in (2.32) by using the following relation for the antisym-
metric Levi-Civita tensor,

gy

apun = 26385 —8585)

and the property that any product of ¢*## with a tensor that is symmetric in the
indices u, v vanishes (see also Exercise 2.4).

Solution. Introducing the following abbreviations

(P —musHy=gq, (1)
(p— mes)u =4qun > ()

Exercise 2.2
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Exercise 2.3

quk® =(q-k) 3)

and using the relations (2.30)—(2.32) we rewrite Zt,t, |M|? as follows:

D IMPP =16[q" K" — (g - K)g" + gk —ie* Pl k)]
" X [guks — (@ - K)gw + ok + arpogk?]
=16[(¢" - k)(g-k)— (g -k)(q -k
+(q' - K - k) — ieaupug k" g kP
— (@ - K{(q k)= (q-k) -4+ (q-k)}
+ " K k)= (g k(g k) +(q kK -q)
—ieaupog k" q kP +i* P gl kg, k,
+ iea”ﬁ“qék;qvku — saﬂ”“q&kl/gs&/gwq&kg]
=16[2(¢"- k) (g - k) +2(q" - @) (K - k)
—igqupn (g K" + g k") kP +is® P (g, k, + guk)qlky

=0 -0
+ e e ik K |
=32[(q ) - k) + (¢ - ) K- k) + (6365 — 8280 )qikpa k7|
=32[(¢" - k)(g- k) +(q - q) (K -k)
+(q K& -q)— (¢ )k k)]
—64(q KK -q) . )

Returning to the original notation (3) this result is equivalent to (2.32).

EXERCISE |

2.4 A Useful Relation for the Levi-Civita Tensor
Problem. Prove the formula

o B B
PP es g, = 28385 — 856%)

that was applied in the Exercise 2.3.

Solution. The totally antisymmetric Levi-Civita tensor e*#*" is defined as

sgn(P) if (@Buv) = P(0123)

0 otherwise

8aﬂuv —

: 6]

where P denotes a permutation of the indices (0123). e*#*V vanishes if two of its
indices are equal.
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Since €555 = g&aggﬂg,mg;,vs“ﬂ”“ is non-zero if and only if (&8/iv) is a permu-
tation of (0123), we then have for example for (@ 8/iv) = (0123),

£0123 = 80a 81582 83w E P

=1- (=13 "B=1x(-1)¥P=-1 , )

and a similar relation for all other non-vanishing components of the covariant Levi-
Civita tensor, that is,

OBV — g 3)

Now consider the desired contraction with respect to the indices w, v,

T )

For fixed values of «, @, 8, E , only those terms contribute that contain tensor compo-
nents with third and fourth indices different from «, &, 3, ,3_ . Furthermore, since the
third and fourth indices are the same for both the covariant and the contravariant ten-
sor, an additional condition is that either

a=a , p=p (5a)
or

B . B=a . (5b)

o

In each of the two cases (5a) and (5b) only two possible combinations for the values
of the indices w, v remain, namely those of the two numbers (0123) that differ from «
and 8. We then have the following relations:

Case A:

™I

- — afpv, afuv
a=a , B= & Eafuy = E & Eafuv
W,V

= Z Saﬁﬂvé‘aﬁﬂy

H,v
=2.1-(=1)

=-2 . (6a)

— _ = . afuv, aBfuv
a=8 , B=a : ¢ Eafuy = E £ EBauy
w,v

«Q, %
:_§ :8 Bu Eapuv
v

=-(-2)
42 . (6b)

Exercise 2.4
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Exercise 2.4

Therefore the final result is

-2 ) a = &7 .B = :B
Eaﬂwea;}uv ={4+2 , a=B.8=a
0o , otherwise
= 246385 — 8585) (7

which was to be shown.

For calculating the decay rate dW we proceed by inserting the result of (2.32) into
the expression for dW (2.18). In order to perform the required integration, we need to
evaluate the integral

Sk [ 3K i .,
lop= | 5 | ook wkpd*(p+k+K —p . (2.33)

Iop is manifestly Lorentz covariant. This is obvious because §*(p + k + k' — p’)
and d*p/2py = /- o d*ps(p* — m%)@( po) are Lorentz invariant. The latter has been
shown in Quantum Electrodynamics.* Since the variables k and k' are integrated over
only the two second-rank tensors gug and (p’ — p)a (p’ — p)g = quqp can occur in the
result. Note that the vector g = (p’ — p) is different from that defined in Exercise 2.3!
We keep this in mind and proceed with the ansatz

lup = Aq*8up + Bqudps (2.34)

where ¢ = g%g, was split off in order to have A and B dimensionless. From (2.34)
we construct the following invariants:

¢Plyg = GA+ B)g* (2.352)

9°q g = (A+ B)g* . (2.35b)

To proceed, we now distinguish two cases:
(i) The vector ¢ = p’ — p is time-like, that is ¢> > 0. With this condition we can
always perform a proper Lorentz transformation, such that

g =a"uq" =", 0) (2.36)

defines the reference system. With respect to this reference frame we have

Bk [ Bk 3
Pl = f i f 2k/0k0,k/“63(k+k/)8(k0+k/0—qo)

&Sk [ BK , P
=/2k0/2k/0 [(°)? = (k- k) ]8° (e + KSR + K° = G°)

4 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg
2009), equation (3.72).
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d3k 0,2 0 ~0
- / 4(k0)22(k 28(2k° — %) (2.37)

since k' = —k and consequently K9 = k% = |k| = |K'|. The integral can further be
simplified by substituting x = 2k°,

o0 o0
¢ lup =21 / (k)2 ko8 (2K° — §0) = % / 2dxdx —g% . (2.38)
0 0

For positive ¢° the argument of the § function has its zero value within the integration
interval. By means of the ® function

1 for x>0

o= {0 for x<0 (2.39)

the above result can be expressed as
oL ~
¢l =7@"?0@") . (2.40)

In order to rewrite this in a Lorentz invariant form we remark that for time-like four-
vectors ¢ the sign of the zeroth component ¢° remains unchanged under proper
Lorentz transformations, that is, (H)(éo) = @(qo). Furthermore, with respect to our
chosen reference frame we have G2 = (§°)% = ¢2. Hence the result (2.40) can be
stated in the Lorentz invariant form

g% Iop = %qz@(qo) for ¢>>0 . (2.41)
Similarly we obtain
q°qP1ys = (G°)* 100
~0y2 d3k d3k/ 3 / 0 /0 ~0
1. y
=@ f Prs k" — %

— 7@ / (02 k(2K 30 = 3 @0 @)

=%q4@(q°) for ¢*>>0 . (2.42)

(ii) The vector g, is space-like, that is g? < 0. In this case the argument of the §
function, (k + k' — ¢), is non-zero everywhere. This property can be understood by
recalling that, owing to the vanishing mass of the neutrinos, it holds that

R=k*=0
(2.43)
k- -k =k% coso

where 0 is the angle between k and k’. Consequently we have

k+ k) =2k —k - k') =2k°%"°(1 — cos0) >0 (2.44)
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which implies that g#* = k* + k’* cannot be satisfied. Therefore
Iyg=0 for ¢*><0 . (2.45)
The results of (2.41), (2.42) and (2.45) may be summarized as follows:
§*lup = 707000 (2.462)
¢"9" 1y = 54'0 0@ . (2.46b)
Equating these expressions with (2.35) gives
4A+B= %@(go)@(qz) , (2.47)
A+B=20G"0@) . (2.47b)

yielding the solution

T

_ 0 2
A=20E"06) . (2.48a)
B= %G)(qo)@(qz) . (2.48b)

Substituting in (2.34) we finally obtain
b4
lop = 5 (4”8ap +2004p)O (4O G") . (2.49)

The decay rate of a muon with polarization s’ into an electron with polarization s is
given in terms of (2.18), (2.32) and (2.49); thus we find that

G2 1 d3p d3k A3 .
W= — ————— — K} k k/— / M2
2 (2n)° 2p/02p0f2k0/2k/0§; (p+k+k —p)IM|

G> 1 64d’p , ,
- - Ty _ _ B
= 2 Gy 20 B P T sV mes)
G> nad’p By
= 3 W[(P/ -p)(p - musl)a (p — mes)a
+2(p" = Pla(p —mus ) (p' — p)p(p — mes)*]
x O(p° - phep -p?H . (2.50)

Note that the effect of time dilatation, which accompanies the observation of the muon
lifetime, becomes obvious from (2.50). For a moving muon we have p’* = ym w
with the Lorentz factor y = (1 — v?/¢*)~1/2. As can be seen from the expression
for dW (2.50), dW o 1/y, implying that the decay rate decreases considerably for
fast-moving muons, that is, the life-time 7, oc y is prolonged. To proceed we switch
to the rest frame of the muon, which is characterized by p*’ — p* = (m, — P, —p).
Since

2
==2p"my +my +ml 2.51)
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the condition (p’ — p)? > 0 for a non-vanishing dW yields the restriction
PO < Plax = (m 2 +me?)/2m, (2.52)
which consequently requires p"® — p° > 0, since
/0

PO —pP=my —p>my — pla = (mt —me?)/2m, >0 . (2.53)

The condition pO < p&ax in (2.52) and (2.53) assures that the first ® ( p(’) — po) function
in (2.50) is automatically fulfilled. Therefore we may replace the product of the two
© functions in (2.50) by @ (pQ... — po). Furthermore, with respect to the rest frame
of the muon, it holds that s*' = (0, s’), so that the final result is

G? nd®p

{[omy = p%* = p*][(po — mes®) +5" - (p — med)]
+2[my, — p° =" pl[(my — PHY(P® —mes®) + p - (p — me)]}
xO(pd.. - . (2.54)

Here § =s + % is the space component of the electron spin vector (2.23).

EXERCISE |
2.5 The Endpoint of the Electron Energy Spectrum in Muon Decay

Problem. Show that the highest electron energy is given in terms of (2.52) by energy
and momentum conservation.

Solution. The highest energy of the electron corresponds to the largest value of its
momentum. The latter is obtained if both neutrinos are emitted in one direction while
the electron is scattered in the other direction (Fig. 2.2), that is,

p=—(k+k) . (D
Because k¥ = |k| and k% = |k’| it holds that
My = Ppnax + K+ K = plhy + k| + K]
= Povax + | Pinax|
= P+ [Pl —m2]" )

Inverting this relation gives

2 2
my +m
o= ’;—"’ =52.83 MeV
my,
m?% — m? ©)
% e
|pmax| = 24 s
my,

which agrees exactly with the conditions (2.52) and (2.53).
|

kK op-
z , pmax
kl

Fig. 2.2. Configuration for
which the electron reaches its
maximum value of momen-
tum
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2.3 The Lifetime of the Muon

To determine the muon lifetime 7,, we sum over the electron spin orientations s, aver-
age over the spin orientation of the muon s’, and integrate over the electron momen-
tum p:

G* =w &p 02 _ 270 0
ZZTW/F{[(’”#_[) ) —p ]P +2(m, —p°)

X [(mu - pO)pO + pz]}@(pglax - pO)

G? nd3p

ER W[—4mu(170)2 + 3P0(mi + mg) - 2mﬂm§]
x O(pds—1°) . (2.55)

In deriving (2.55) we used the fact that the averaging over s gives (s) = 0 so that also
(s = %(p -8) =0 (cf. (2.23)). If we employ the following identity:

[Pmax|

/ & pl..10 (P — P°) =4n / Ipl*dipll...] . (2.56)
0

and take into account that p% = ( pé - mg) and therefore that
dipl/dp®=p’/Ipl .
we can rewrite W, in the form

pmdx

2G?
W= 321 )3/ O\/m 4mﬂ(p0)2+3p (m +m) 2mﬂm]
G2 5
= 19;1;3 [1-8y+8y’ —y*—12y’Iny] , (2.57)

with the abbreviation y = mg / mi The contributions involving y lead only to small
corrections, namely

2m5

W, = L1—-187x107% . 2.58
" 192n3( x ) (2.58)

From (2.57) it is obvious that the decay rate would vanish if y = 1. This reflects the
fact that in this (academic) case the muon would be stable since |p,.«| =0, so that
there would be no phase space available for the final-state electron.
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The result (2.58) does not include the so-called radiative corrections, which also
need to be considered. These effects are represented by diagrams in which one of
the charged particles interacts with the electromagnetic field (see Fig. 2.3). The
bremsstrahlung diagram has to be included since, owing to the vanishing photon mass,
photons with arbitrary small energies may be emitted. On the other hand, because of
the limited experimental resolution, it is impossible to distinguish the muon decay ac-
companied by emission of an extremely “soft” photon from a decay without radiation.
This contribution exactly cancels the divergent terms in the self-energy diagrams for
very soft photons (infrared divergence).’> The calculation of these contributions leads
to a modification of the decay rate W by a factor®

1= (2B Zo90ss...
2 4

Hence, the radiative corrections are of greater importance than the influence of the
finite mass of the electron. The final result for the muon decay rate is now given by

1 G o 25 m>
W,=—= 1 =—(n2-=)—8—=< ...
" T, 19273 27 4 mi

(2.59)

(2.60)

Using this formula we may calculate the value of the Fermi coupling constant G by
taking into account the experimental value for the average life time of the muon

7, = (2.19703 +0.00004) x 1005 |

ie.

W, =1, =2.996 x 107'° MeV (2.61)
With the most accurate value for the muon mass

m,, = (105.658387 £ 0.000034) MeV (2.62)

5 See W. Greiner and J. Reinhardt: Quantum Electrodynamics, 4th ed. (Springer, Berlin, Heidelberg,
2009).

6 S.M. Berman: Phys. Rev. 112, 267 (1958); M. Roos and A. Sirling: Nucl. Phys. B 29, 296 (1971);
L.D. Landau, E.M. Lifschitz: Theoretical Physics (Pergamon, Oxford, 1974), Vol. IVb, p. 147.

Fig. 2.3. Vertex

correc-

()

tion (a), self-energy (b),
and  bremsstrahlung
contributions
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we obtain
G = (1.16637 £0.00002) x 10~ MeV™2 . (2.63)

Since G is not a dimensionless quantity, a direct comparison with the electromagnetic
coupling constant is not possible. The effective strength of the weak interaction obvi-
ously increases with growing mass of the particles. This is evident from the inverse
lifetime of the muon which, because of the uncertainty relation, corresponds to the
uncertainty of its rest mass. The ratio of its value to the rest mass itself,

oW 1

TR

my - my 19273

(Gm3)? (2.64)

manifests the role of Gmi as an effective coupling strength. For curiosity’s sake we
may now evaluate the mass M for which the effective coupling constant equals the
fine-structure constant o:

GM’=a — M=\/a/G=25GeV . (2.65)

The experimental investigation of this energy region has become possible with the
large particle accelerators of DESY (Hamburg), SLAC (Stanford), CERN (Geneva),
and Fermilab (Chicago). As we will soon see, these investigations have revealed new
information concerning the nature of the weak interaction.

EXERCISE |
2.6 Myon Decay for Finite Neutrino Masses

Problem. Generalize the relation (2.49),
&Sk [ E3K 4
Iaﬁ=/ﬁ/mkak%8 k+K —q)
b4

= ﬁ(ngaﬂ +290qp)

which is valid for qz, qo > 0, to the case of non-vanishing rest masses m, m’, of the
two decay products with the four-momenta k,,, k/’s.

Solution. As in (2.34) we make the ansatz
Iop = Aq”gup + Bquqp ey
which implies the relations (2.35),
Pl = GA+ B)g* (2a)
9°¢"lop = (A+ B)g* . (2b)

For the calculation of these two Lorentz invariants, we take the frame of reference in
which g% consists of a time-like component only,

"= (2= 0)
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Thus, with
koz[k2+m2]l/2 ’ k/o:[k/2+m/2]1/2 , 3)
and after performing the k' integration, we get
&k’ 1o o3 / 0 0 ~0
lop = 2k0 S0 kak 87 e+ KNS+ K7 = )
-1
= Z/d3k[\/(k2+m2)\/(k2+m’2)]
x [\/(k2 +m2 e+ m?) + k2]
x 5(\/(’62 +m?) + \/(k2 +m'?) — c}(’) : @)

‘We substitute the sum of the two square roots in the argument of the § function by x,

x=[K+m ) 12w )

and transform to polar coordinatesmentum space. The volume element transforms into

|k|d|k| dx

= (6)
V@ +m2) @ +m?)
and by squaring (5), we have
m?—m?—x2= —2x[k2 + m'z]l/2 ,
2 2 1242
s 2—mem®?
R0 ™
B (xz _ m2 _ m/2)2 m2m/2
N 4x2 x2
Squaring (5) also yields the relation
2 _ 2 2
K2+ [k +m2]) [k +m?]? = w . @)
Equations (5)—(8) now give
*d 1
8" lop = n/ kS (2 = m? = m )8 = §°)
0 X 2
b4 ~ 2,2 291/2
_ TP ((qo) —m_w )[((qo)z —mi_w ) —dm2m ] /
T 2 211/2
=32 —m? —m)[(g? —m® —m"*)? — am?m”?]"? ©)

where the expression in its last form again is written in a manifestly Lorentz invariant
form. In the same way we get for the second invariant

~042
“41p = L / &k / Kk + KK + KO — 3°)

Exercise 2.6
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Exercise 2.6 G°)* 2y _ &
== /d3k8(\/(k2 +m?) +\/(k2 +m'?) —qo)
- n(c}O)Z/ e+ m2] 2 ] s — (10)
X
0

Combining (7) and (8) gives

(K2 4+ m?] [k 4 m] 2

_ x2 _ m2 _ m/2 (x2 _ mZ _ m/2)2 m2m/2
- 2 4x2 x2
= @x>~! [x4 —m w4+ 4m2m/2]
_ 2
= @xH [t = m?—-m™?] a1

which facilitates the final calculation,

o T ~ /
q qﬂlaﬂ = _8(60)2 [(q0)4 _ (m2 —-m 2)2]

% [((40)2 —m?_ m/2)2 _ 4m2m/2]1/2

_ é[qzt — (m? _m/z)z]

x [(q* —m? — m'?y? — 4m2m’2]1/2 ' (12)

In addition, the 6 function of (4) tells us that the results (9) and (12) are valid only
for G = /g2 > m 4+ m’. This is expressed by the fact, that the expression under the
square root in (9) and (12) may be written as follows:

(6]2 —m2_ m/2)2 _ 4m2m/2

=[¢* — m +m"][q* — m —m")?] | (13)

which is easily checked. The radicand in (12) becomes negative for g% < (m+m")?.
With the aid of definition (2) the quantities A and B can be determined:

a,p
q
2 Iaﬁ)

=%(16[(]2—(m—i—m/)z]]/z[qz—(m—m/)z]

Azef)(fﬁa—q

2 2
x [24°(q* = m® —m"") —g* + m* —m")?]
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T 3/2 3/2
_ T [q2 _ (m+m’)2] / [q2 —(m —m’)z] /
= ﬂ[l — T 1— T , (14)
agp
B=(3¢>)"" (4%1‘1,3 - g“ﬁla,g>
4 1/2 1/2
_ T2t [qz —(m +m')2] / [qz —(m —m’)2] /
% [2q4 _2(m2 _m/2)2 _q2(q2 _m2 _m/z)]
T (m+m")27"? (m —m")27"?
-]
2 2 2 12\2
x[1+m ;rzm _plm q;" ) ] (15)
The final result is thus
T (m +m")27"/? | (m—m")27"/?
Iutﬂ = ﬂ 1— T — T
et (1 2220 (1 =27
o,
q? q?
2 2 2 1242
m-+m (m*—m'")
+ 2949 <1+ -2 >]
aqp 72 pr
X @(q2 —(m —i—m’)z) . (16)

In the limit m = m’ = 0 one again gets (2.49) as is to be expected. For later use we
note the special case m’ = 0 (that is, one of the two particles is a neutrino),

2\ 2 2
T m 2 m
o =551 ) [#2(1= 5 Jer

2
(12 o ™

2.4 Parity Violation in the Muon Decay

We now want to discuss two experiments which prove the violation of reflection in-
variance in muon decay. The first experiment observes the decay of unpolarized muons

Exercise 2.6
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and measures the average helicity of the emitted electrons. In the second experiment
one starts with polarized muons, which are produced by pion decay (see (1.32) and
the subsequent equations), and measures only the angular distribution of the electron
momenta with respect to the spin direction of the decaying muons.

Let us start with the first experiment. For unpolarized muons the expression (2.54)
has to be averaged over s’. Therefore all terms containing s vanish:

- 1 ,
AW = ZdW(s)
S

G* nd’p
=3 s 0@ Pnax = PO{[B0ms = ") = p?]
X (p" = mes?) +2am, = p*)(p* —mep - H)} (2.66)

where § is the space-like component of the spin four-vector s¢. The four-vector of the
electron spin also satisfies (2.23), and we get

mes0=p~s ,

IpP2 0 (2.67)
Tl

€

p'§=(p~s)[1+

where s is the spin vector defined in the muon rest frame. The two possible eigenstates
of the helicity operator A = ¢ - p/|p| correspond to the values

Remember that the spin vector s within relativistic quantum mechanics (2.23) is nor-
malized to 1, i.e. s - s = 1, so that s,s" = —1.7 In the first case, electron spin and
direction of motion are parallel and in the second case antiparallel; the corresponding
helicities are (41) and (—1), respectively. Because of (2.66) we obtain the following
average value of the helicity operator:

_dW(p-s=Ip) —dW(p-s=—|p)
dW(p-s=1pD) +dW(p-s=—Ip))

_ 21pl30mu = P = p? +20m, = pO)p°]
203(my = p?p° — p?p® +2(my — p°)p?

(A)

(2.69)

We demonstrate this simply for the nominator only:
[3on, — P> = 1p1P)(° = 1pD) + 20, — P*)(P* — P°|PD)
~[[Bm. = p°2 = 1pP10° + 12D+ 20m, — PO 0% + p°1 D) |
=[3(mu — p°)* = [pI*](=2IpD) + 2(my — pP°)(=2p°| D)
= —=2/p|[30m, — p°)* — |pI* + 2(m, — p°)p°]

7 See W. Greiner: Relativistic Quantum Mechanics — Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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Applying the value (2.52) for the maximum electron energy, the expression (2.69) can
be written in the form

_|P|mu(3pg1ax - 2]70 _ mg/mﬂ) =1+ 0( mg ) (2.70)

My P’ Pihax = 2P° —mg/p?) (%2
Let us quickly verify this result by inserting

pr=p"*—m

and

2 2 2

= Mu e e or my, = 2p0 e
n = max ’

2my, my

0
Pmax =

which yields for nominator N
N ==2p|(3m} — 6m, p° +3(p°)* = (p°)> + m& +2m, p° — 2(p°)?)

2
— 2pl(3m2 — 4m, p° + L
= pl\3m, my p +m my

"
2 2
m m
=—2|plmy (3 (Zpﬁm = m—“) —4p®+ m—@)
1 I

2
nme

0 0
= _4|P|mu <3pmax - 2[7 - m_M)’
and for the denominator D:
D=2 (3m2 p" = 6mu (p0% + 3% = (P + p'm

+2my, (po)2 — 2mum§ — 2(170)3 + 2p0m§)

2 2
m m
=2m, p°(3m, —4p’ +3— —2—=<
myp < my P+ - po)
0 0 0 mg
=2mﬂp <3-2pmax—4p — F)

and, therefore,

2
0 _9p0_ M
O i

0 2"
P™ 3pQax —2P° — %

The result (2.70) is most interesting. We notice that for energies p® >> m, the electron
is predicted to be in an almost completely left-handed state. For the average electron
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helicity in the kinematically allowed energy interval [m., pglax], with pglax ~ 100m.,
the experimentally observed value is®

(A)y=-1.00+0.13 . (2.71)

The fact that the electron is limited to a left-handed state follows directly from
the interaction (2.10), because the electronic transition current can be written
as UgyHt(1 — ys)U,, = %Uz(l — ys)y*U,,. Thus, the electron, like the electron
neutrino, has negative helicity. High-energy electrons are thus negatively polar-
ized.

Next we consider the experiment in which the angular distribution of the electrons
emitted in the decay of polarized muons is measured. Since the electron helicity is not
observed, we must sum over the electron spin in (2.54). The value of the muon spin is
assumed to be fixed. Let us begin with the expression (2.50), which we denote once
more

2 3
dW — G ad’p

?W[(p/ = PP = mus)* (p = mes)a

+2(p' = Pla(p’ —musH (P — p)p(p — mes)P]O(plax — P

We remember that due to the discussion following (2.51)—(2.53) the two step functions
in (2.50) can be abbreviated by © (p?.. — p°). Now the summation of the expression
in the bracket [...] over the electron spins yields

D oL d=20" = p*(p' = mus)* pa + 40 = Pla(p’ —mus)* (P’ — ppp”
+s

It is easier to continue the calculation in the rest frame of the muon, for which p"’ =
(my,0),s"” =(0,s") holds. Then

Y L d=2[0mu = p"* = p*limup® +mys’ - pl
+s

+4[(mu - Po)mu - musl : P][(mu - pO)pO + Pz]

Inserting p* = p% - mg, pgm = (mi ~|—m§)/2mﬂ, s’- p=1-|p|cosf and separating
terms proportional to cos 9 yields

2 2
m; +m
§:[...]=4mi[—‘; - —p°}[p°+s/-p1
+s My

Am2 O N o_m_g

my
2 2
21 .0 0 0 o_m m
:4mu|:p (pmax—p +my —p —_8+_e>
p my

0 0 0 mg
+|p|cos€<pmax—p —-p +—e)}

my

8 Review of Particle Properties in: Review of Modern Physics (April 1988); J. Duclos, J. Heintze,
A. de Rujula, V. Soergel: Phys. Lett. 9, 62 (1964).



2.4  Parity Violation in the Muon Decay

49

2 2
m [Pl m
=4m;21,p0|:<3pglax_2p0_ 8)+—0C059<pglax—2p0+_e)i|
p p my

Therefore, the decay rate summed over the electron spin is given by

dW = " dW(s)
N
: 070 0 0 mg
. S
= mm“pm dp sm9d9|:3pmax —2p" — F
|p| mg
+ =5 0080 phax — 20" + =< ) O (P — P°) 2.72)
p my

Here 0 denotes the angle between the muon spin s’ and the electron momentum p. The
volume element of the electron momentum space has been used according to (2.56) in
the form

d*p =27 |p|d|p|sin6de = 27| p|p°dp°sin6do . (2.73)

Equation (2.72) does not yet contain the electromagnetic corrections. If one consid-
ers the corrections of the order o = e?/hic >~ 1/137, some terms are added to dW.
But the parity-violating structure, which is expressed in the factor cos6 in (2.72), is
not changed. The agreement between the predicted angular distribution dW and the
experimentally measured one is better than 0.5%.

EXERCISE |
2.7 Average Helicity and Parity Violation

Problem. Calculate the helicity expectation value averaged over the whole energy

region and show that the result (A) = —1 is evidence for the violation of parity invari-
ance.

Solution. (a) We set |p| = p and

dW(p-s =£|p)) =dW¥(p) . (1
The probability of an electron being emitted with momentum p is

dWH(p) +dW = (p) . 2
The average of the expectation values is therefore

SHAYAWH(p)) + (A)dW~ (p))]
[IAW+(p) +dW—(p)]

_JIdAW T (p) —dW~(p)]
- v

(A) =

3
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Exercise 2.7

W, is already known from (2.57); we only need to calculate the numerator. With the
help of (2.66)—(2.68) we get

/ [dW* (p) —dW™ (p)]
2 5 &p 0 0 042 2 0y, 0
=—§G T(2m)” /F@(pmax_p )p[3(m, — p* — p* +2(my — p°)p’]
px(:lax

2
= —562n<2n)*54n p*dp°[3(m, — p°)* — p* +2(m, — p°) p°]

me
) Pihax 5
— m
= —§G2(2n) Smy, f dp°[(p")?* - mg][3mu —4p" + —e} 4)
my
ne
Performing the integral yields
[ 1) - aiv=p)]
2 -3 mg 0 3 2.0 3
= —gG (27[) mﬂ mu + 3m [(pmax) - 3mepmax + 2me]
"
- (pglax)4 + ng(pglax)z - mi}
G*m? 40 32 1
[ 3 2 5 4
- 1— —y4+2/y3=30y2 + =y, /y5 — = 5
24(2n)3( 32y YWY 3y) , )

where again y = (me/m ,L)z. Applying (2.57) we obtain in lowest order in y

_ 40
(A= ——32
1—8y
16 m?
~ =l X
my
~ —0.99988 ©6)

Fig. 2.4. Parity violation in
muon decay

u- e- €—3— y negative
= — >~ —e———3 [ helicity

P (observed)
reflection

positive (_S_ e- l

helicity { “———— —<— —9

(not observed)

u-

(b) Obviously (almost) all the electrons emitted in muon decay have negative he-

licity (A = —1). A space reflection (see Fig. 2.4) would give the electrons positive
helicity (A = +1). In the case of parity invariance of the process, one would therefore
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measure equal numbers of electrons with positive and negative helicity. This is not the
case; thus parity invariance must be broken.

EXERCISE |
2.8 Angular Distribution and Parity Violation

Problem. Show that the violation of parity is due to the appearance of cos 6 in (2.72),
describing the angular distribution.

Solution. We can write the angular distribution as

o sinf[A(p®) + B(p®) cosd] (1)
dp0do ’

where A(p®) and B(p®) are given by comparison with (2.72). The geometry is dis-
played in Fig. 2.5. If we perform a space reflection, 6 changes to 6, =m — 6, and

sinf — sinfy =sinf

(2)

cosf — cosfy = —cosf
thus the angular distribution becomes
W =sin0{A(p°) — B(p")cosb} . (3)
dpOdoy
® 5 - -8
s' inversion
k—-)— ————— i o \(\\ 3
~ \GJ s’
P

dW /dp°dd; and dW /dp°de differ from each other in the sign of the term proportional
to cos 0: the angular distribution is not parity invariant. This argument is supported by
geometrical considerations. The figure shows the intensity of the emitted electrons for
B(p®) = 0: no electrons are emitted in the direction of s’. If B(p®) > 0 and B(p°) <

Exercise 2.7

Fig. 2.5. Parity violation in an
angular distribution
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A( po), the distribution is deformed and not reflection invariant, because sin6 cos =
1sin(26).

Fig. 2.6. Angular distribution

of electrons with respect to the

muon spin: (a) without viola-

tion of parity; (b) with viola- s’
tion of parity

(a)

s’ - s’
I =D M
% reflection 8‘ (b)

EXERCISE |
2.9 Electron Helicity in Muon Decay

Problem. Show, for the limit p® >> m., that for the decay of a muon with spin s’ in
its rest system, the emission of an electron with spin s is given by dW ~ sin®(6/2),
where dW is calculated in the limit p® >> m. and 6 denotes the angle between the
electron spin s and momentum p of the electron.

Solution. We start from (2.23) inserted in (2.54) (m = m.) and neglect systematically
all terms with me. It is important to recognize that terms like mes® or mep - § do
not contain the effective electron mass. Remember, § is the space component of the
electron spin vector (2.23)! In this spirit we have

1pl= (P2 +m2~p° | (1)

SO We can write

2 7Td3p

dwW~ — ——
3 27)3pOmy,

O (Pphax — P°)

X [mu(mu—zpo)<l70—p~s+s’-p— %)
+20m, = p° = p-sH[m = PP = p o)+ PP —p~s)ﬂ

G? nd’p p-s
=— = 0% —pH[1-2=
3 mym, e )< P° >m“
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/

X |:(mM—2p0)<1 - Pp—os) +2(my, —po—p-s’)]

=— 2) - 1-==

p-s
X |:3pr0nax - 2]70 - po pglax] : @)
In the last step we have applied (2.52) for the matrix elements of the electron

2 2
m;, +m 1
0 M € ~
pmax = W = EmM . (3)
The coefficient in (2) which contains the spin s of the electron gives the desired angular
dependence:

. 0
1—M=1—@0059:25in25 . 4

p° p°
The maximum of the distribution is at 8 = 7, that is the electrons are preferentially
polarized against their momentum (negative helicity). The result (4) is in accordance
with the angular distribution in (1.12), which we calculated from the 8 decay of cobalt,
if we take & = — 6 (here the z axis points downwards!). This is another confirmation
of the heuristic consideration in relation to the experiment of Wu et al. (see Sect. 1.2).
In the limit p® — pY_ . the last factor takes the form

!/ /!
3pg}ax - 2P0 - pglax% - pg}ax<1 - P ()s ) g &)
p p

that is, the preferential emission of the electron is opposite to the polarization of the
muons. This is easy to see for the case p® = pglax in Fig. 2.2, where the two neutrinos
are emitted in the same direction while the electron goes in the opposite direction.
Because v and v, have opposite helicities, the sum of their angular momenta is equal
to zero. The result is that the electron must acquire the spin of the decaying muon.
Because of its negative helicity the electron is preferentially emitted opposite to the
muon spin.

EXERCISE |
2.10 CP Invariance in Muon Decay

Problem. The term J(Dg OE“ ) in the current—current coupling is responsible for the
decay of the positive muon, ut. Show that this leads to a change of the sign of the
spin-dependent terms in the squared transition amplitude (2.32). On the basis of these
results discuss the connection between violation of the invariance under spatial reflec-
tion and the invariance under charge conjugation.

Exercise 2.9
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Fig.2.7. Decay of a u™ parti-
cle’

*p’\s‘\e+

Solution. (a) The S-matrix element for the 1+ decay is given by’
S(ut — e, vﬂ)

/d 7 [, )y (1 = ys)uy, ()] [0, (D) 7 (1 = ys)ue(x)] o))

As now all particles are antiparticles, except the v, the spinors are given in analogy
to (2.11) by

up(x) =v,(p', s explip,x*)2p°V)~/?

ue(x) = ve(p, s) exp(ipx)2p° V)12,
y, (X) = uy, (k, 1) exp(—ik, x"*) (2k° V) ~1/2

y, (x) = vy, (K", 1) exp(ik), x*) (2k"OV)~1/?

2

The calculation proceeds exactly as before up to (2.18), (2.19), because the § function
does not change when the sign of its argument is inverted. Thus we obtain

G? 1 d3p
dW(u") = — 557050
2 2m)° 2p72p
Gk [P ’ ’ 2
x/mf%,ouwﬂk—p)?m , 3)
with
M = [0, 7" (1 = ys)vu, [y (1 = v5)ve] - )

The only difference compared to = decay is in the spinors which enter into the
transition amplitude M, where all particles are replaced by antiparticle spinors and
vice versa. Zt’ oM | separates again into two similar contributions for the muonic
and electronic particles. First we repeat the calculation from (2.20) to (2.30) for the
muonic part. Here we need the analogous relation to (2.21) (see Appendix A.2),

D v, (K )ay, (K g =K (5)
t/
and to (2.22),
B} 1+ ys¢'
U (P, 8V wvu(p',s") e = [(15/ —mu)— (6)
T
With these expressions we find that
XM () = 0u(p's S )a vy (1= ¥5) pa
[/
X Uy, (k', t/)oﬂ_)v# (K, t/)ﬁygg(l - VS)arvu(p/, s")e
1+ ys4
=Tf{V“(l—Vs)k'l/”(l—)/s)(lﬁ’—mu)< 2”{)} . (M

9 ML.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
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With a cyclical permutation we take the last two factors to the front; we also permute
¥ with (1 — ys), changing the sign in (1 — ys). We thus obtain

XHY =1Tr "—m,)(1 R V(1 — . 8
W =3 (B —m) A+ s )y (L +ys)y (1 —ys)} ®)

This result is distinct from (2.26) by the sign of m, and also by permutation of the
Lorentz indices 1 and v. Hence we can skip all subsequent calculations and write
down directly the analogue of (2.30):

XM () =4[(p" +mus k" — (p" +mpusH kg™
+(p A mus) K+ i€ (p) + myusaky] )

For the electronic part the same relation holds; compared to (2.31) it changes the sign
of me, and p and v have to be permuted:

Xuw(e) = Z’/_‘ve(kv Dyu(l —¥s5)ve(p, s)ve(p, s)yu(l — V5 Uy, (k, 1)
t

= 4[(17 +mes)vky — (p+ mes)akolguu
+ (P + mes) uky + i€aup (p + mes)*kP] . (10)

The permutation can be reversed, because by constructing |M|> we sum over the in-
dices 4 and v. What remains is just the change of the sign of m, and m in (2.32):

D IMP = X" ()X (@)
By =64(p" +mys")kq(p ~|—mes)ﬂk;3 . (1)

As the spin vectors s* and s"* enter only in the combination m s’ or mes, we can also
easily get the result (11) from (2.32) by inversion of the spin vectors: s,s” — —s, —s’.

(b) Equation (11) follows from (2.32) if we invert the sign of the charge of the
decaying muon, that is, it follows from the operation of charge conjugation. We thus
see that the B decay of the muon is not invariant against charge conjugation.

An interesting point is that (11) could also be obtained by space reflection. On being
reflected, the momentum vector p’ changes its sign, whereas the axial spin vector (in
the rest system) s’ does not change:

P = p)— O -p) (12)
/ / / U
s = (p Lt (p/o 2 P/>
my my, (p° +my)
/ / / /
N (_p O (p0 s") p/> ’ (13)
my my (p"” +my)
and

k% = (k°, k) — (k°, k)
or

ko = kY, —k) - (°, k) . (14)
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With these we obtain the following change to (2.32):

(P —mus") ke

/o /o
/0 DS 0 ’ / DS ’

= - K= (p —mys'———p') -k
<p mu) <p a P0+mup>

g g
— <p/0+ _Pm )k0+ (—p/—mus/— ps) 1/) -k
M "

= (P/ + mus/)akot (15)
and analogously
(p—mes)Pky — (p+mes)Phy (16)

We can thus conclude that the weak interaction (of the leptons) behaves under charge
conjugation C in the same way as under space reflection P. Since according to this the
simultaneous application of C and P yields the identity, that is, everything remains
invariant, it means that the weak interaction is invariant under the product CP. (We
shall see later, in Chap. 8, how the weak interaction among quarks can lead to a slight
violation of CP invariance.)

2.5 The Michel Parameters

We now ask how far the muon decay confirms the V-A theory. For this purpose we
write down the most general form of the coupling matrix element,

~ G ~
Hy e, = 7 / FEN Z[ﬁ”“ (x) Ojuy (x)]

x [ite(x) O (A; + Aliys)uy ()] (2.74)

and allow this time every type of coupling 0i = (S,V,T,A,P). It is customary to
use other constants C;, le instead of A;, A;. The two sets of constants are related to
each other through the transformation (the so-called Fierz transformation, see Supple-
ment 2.12):

C,’IZAijAj , C/iIZAijA/j )
r ,

J
4 6 4 1

1
1 -2 0 2 -1
1 .
@Mp=71 0 =2 0 1 (2.75)
1 2 0 -2 -1
1 -4 6 —4 1

With C; and C;, we can write the coupling in the form

H= %/d% > e Osup () ][ity, () O (Ci + Clys)uy ()] . (2.76)
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One easily checks that pure vector coupling minus axial vector coupling in (2.74)
results also in a vector minus axial vector coupling in (2.76) up to the minus sign,
while the other couplings in (2.74) result in complicated superpositions in (2.76). This
circumstance may seem to endow the V-A law with particular significance. However,
four other combinations have comparable properties, as can be found by diagonalizing
the matrix A;;. The possibility of using the invariance under transpositions among the
fields as a basis for singling out the correct coupling was explored extensively without
decisive results.”

The advantage of the notation (2.76) is that the wave function of the observable
particles — the electron and the muon — are connected in one matrix element, whereas
the wave functions of the two neutrinos are separated in the second spinor matrix
element. In the interaction (2.74) or (2.76) only the conservation of electron and muon
number, and Lorentz invariance, is assumed. Let us introduce the abbreviation

ai =G> +|Cl)* . (2.77)

Since the factor G stands in front of the expression (2.76), the proper coupling con-
stants are given by GC; or GC], respectively. It is obvious that a variation of the value
of G can be compensated by a multiplication of all constants C;, C; with a common
factor. If we determine G by experiment, the C;, C l’ are no longer independent, that is,
they must satisfy a normalization condition. We choose this condition to be

as +4avy + 6ar +4ap +ap =16 . (2.78)

It is necessary to calculate the muon decay once more, but now with all types of
coupling allowed. We assume that the p™ is polarized before the decay, but we do
not observe the polarizations of the three decay products (see (2.54) and also Exer-
cise 2.9, but remember that those results were valid for V-A coupling only). With the
abbreviation

0 2 0
x=b - TP (2.79)
pmax mu + me

and the emission angle 6 of the electron with respect to the muon spin

cosf = % , (2.80)

we get after a lengthy calculation the following electron spectrum:

dw Gmy . ol o o 2 0 0 1 m?
o 3 _ “olap® —3 _ T
a2dp0 ~ 12t PP { (Pmax =P+ 3”( P 2 Pmax 3mﬂ>

Mme 0 0 [p| 0 0
+3Fn(pmax iy 2 ) _gﬁcose[(pmax —PD )

2
+ 5(3(41)0 —3p0 - mg/mu):| }e(pgm - . (2.81a)

10 See many papers beginning with C. Gitchfield: Phys. Rev. 63, 417 (1943) through to E. Ca-
ianello: Nuovo Cimento 8, 749 (1952), in which references to earlier work can be found. See also
E.J. Konopinski: The Theory of Beta Radioactivity (Oxford University Press, London, 1966).

Fig.2.8. The angle of electron
emission relative to the spin s’
of the muon
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The details of this calculation are layed down in Exercise 2.11. If we neglect the mass
of the electron and make use of definition (2.79) this becomes
dw G’m u 3 5
= X
ddx 19274 l+4n$—;

2 me 1l —x
4x—1)+=-p@x —-3)+6— n
3 my X

2
—$c050|:(1 —x)+§8(4x—3):|} . (2.81b)
In this formula p, n, £, and § are the so-called Michel parameters
1 —1 ’ ’ ’
o= E(3GV+6IJT+3CZA) , &= E(4b +3a’ — 14c¢")

1 —1
= — —2 2 —_ s (S:—
n 16(as av + 2aa — ap) 162

(2.82)
3 —6c)

where
a’ =2Re{CsCp" + CsCh)
b =2Re{CyC," +C,CL} , (2.83)
¢’ =2 Re{CrC}"}

The parameters are chosen in such a way that if one integrates over x from 0 to 1
then p and § disappear. Therefore the lifetime of the muon is independent of p and §.
For a pure V-A coupling, which was assumed during the discussion in Sects. 2.2, 2.3,
and 2.4, we get

Cs=Ci=Cr=Cp=Cp=Cp=0 |,

(2.84)
Cy=Cy=—-Cr=-Cy=1
Considering Supplement 2.12, (23), one gets
M = [ﬁeyp,u,u][ﬁvﬂyu(l - VS)”Ue] + [ueVSVﬂuu][uv,LVSyu(l - VS)uve]
= [y (1 = y5)uy [, v (1 = ys)uy,| (2.85)

By inserting this value into (2.82) we obtain the prediction of the V-A theory for the
Michel parameters:

p=> , =1, n=0 , s§=2> . (2.86a)

The experimental values are derived from a careful measurement of the electron spec-
trum (or the positron spectrum in the case of the ™+ decay) and of the angular distri-
bution. Equation (2.81) tells us that p must be fitted to the whole spectrum, whereas
n is mainly sensitive to low energies (x — 0). It is not surprising, therefore, that n
is the most uncertain of the parameters. £ can be obtained by integrating the angular
distribution over the energy, whereas § can be determined by measuring the energy
dependence of this distribution. The best experimental values are

p=0.7517£0.0026 |,
n=-012+021 |,
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(2.86b)
£§=0972+£0.013 ,

8 =0.7551 £ 0.0085

These values are in very good agreement with the predictions (2.85) of the V-A theory;
see also Fig. 2.9.

0.75-('y;Al-— o T e e
60 § 70 74 80

0.50 |-

49 Michel-parameter p
0.25 -

| | |
1955 1960 1970 1980

1950

EXERCISE |

2.11 Muon Decay and the Michel Parameters

Problem. Calculate the muon decay with the general interaction (2.76) in the same
manner as in Sect. 2.2 and derive (2.81) by summing over the polarizations of the
outgoing particles.

Solution. To derive (2.81) we repeat the steps which lead us from (2.10) to (2.18).
The normalization and the phase-space factor are obtained in the same manner. The
only difference occurs in the matrix element M. With (2.76) this is given by

MZZ[ﬁeéiu/L][ﬁU# 0i(Ci —Ci/)/s)uve] . (1)

1

First we calculate the part of |M |2 which stems from the neutrinos. We sum over the
unobservable neutrino spins and get

X() =Y i, K, 1)O(C; — Clysyu,, (k. 1)]
t,t
x [ity, (K, 1) OK(Cx — Cys)un, (k, 1)]
= [ty (k.Y O'(Ci = Clys)u, (k. 1)]
t,t
x [ty (ke 1)Y0(C} — C y$) (0% T you, (K, )]
= [y, (k. 1) O'(Ci = Clys)u, (k. 1)]
t,t

X [ity, (k, 1)(CF + C} ys)(OFu, (K, 1)) )

Fig. 2.9. Experimental deter-
mination of the Michel para-
meter o since 1950. The curve
shows the improvement of the
experiments, but perhaps also
the prejudice of the experi-
mentalists
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Exercise 2.11

where we have inserted y02 = 1 in front of (ék )" and used Supplement 2.12, (3), which
yields

VOV;VO =—y5 . 3)

With (2.21) we get

X(v) =Tr[O'(Ci — Clys)K(C} + Cys) OF ) . )
Because
VsVu = —YuVs 5

and the trace is invariant under cyclic permutations, this form may be transcribed to

X () =Tr{(Ci + Cys)(C} + Cys) O*K O'k)
= Tr{{CiC} + C[C}" + (CiC* + CICys} OFF Ok}
=Tr{(Air + Bixys) O*F O'k}
= Tr{(Aix = Buys) O’k O*K'} ©)
where we have + for 0=S5 , 13, T and — for O = V, A, and the following abbrevia-
tions have been introduced:

A =CiCE+CiC"

. @)

Bj; = CiCl/c + C;C;:
Notice that X (v) is non-zero only if both O' and OF contain either an even or an
odd number of y matrices. Otherwise the trace in (6) vanishes. This property will be
useful for the evaluation of X (u,e), since we can then restrict our consideration to
the corresponding combinations of O' and O%. In determining X (i1, e) we assume
that the electron spin is not observed, and we therefore sum over the spin orientations.
Furthermore we make the approximation of neglecting the electron mass.

We then find

X(ue) =Y [ie(p.$)Oiup(p'. s [ie(p. ) Oxun(p'.5)]'

N

= [iae(p, ) Oiu(p',sH])[i (P, 5") Opte(p, 5)]

)/sﬁ'

_Tr[O @ +m o 4 . ®)

If both Oi and ék contain an even or an odd number of y matrices, X (i, ) reduces
to

1 1 N
X(n,e) = —Tr{015 Owp} + 2muTr{ Oiysf Orp} €))

All other terms in (8) do not contribute, since a trace consisting of an uneven number
of y matrices vanishes.
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Let us now consider the particular combinations of éi and ék in detail. For this
purpose we again employ the formulas listed in Appendix A.2, especially

(ys)’=1 and  ysyu=—Vus

A

e Ol = Ok =1:
1
X(n,e) = ETr{lﬁlﬁ’} =2(p-p) .
X (v) = Tr{(Ass — Bssys)kk'} =4Ass(k - k') . (10)

e O =iys, O =1:

1 . / : /
X, ) = omy Teliysysf p) = 2im(p-57)

X (v) = Tr{(Aps — Bpsys)iyskk'}
— —4iBps(k - k') . (11)

e 0 =1, 0% =iys:

1 . .
X (o) = Smy Trlyss -iysp) = =2imu(p-s') .

X (v) = Tr{(Asp — Bspys)Kiysk')
= +4iBsp(k - k') . (12)

e O =iys, Ok =iy;s:

1
X(p,0) =3 Tr{iysp’ -iysp} =2(p-p") .

X (v) = Tr{(App — Bppys)iyskiysk'}
=4App(k - k') . (13)

Collecting together (10)—(13), we obtain

3 X(u )X w) =8k -K)[(Ass + App)(p - p)
RSP + (Bps + Bsp)m, (p-5))] (14)

or, adopting the abbreviations (2.77) and (2.83),

Z X(u,e)X(v) =8(k-k)[(as +ap)(p- p')+a'mu(p-s)] . s)
ik=S.P

(Note that according to the convention (23) of Supplement 2.12 it holds that Bpg +
Bsp=—d'.)

e Ol =yk Ok =y":

1 1
X(u.e)=3 Tr{yup vop} + 5 Ty 58 vob}

= 2(p;va + P;LP:, — 8w P P/) + Zim,usavrus/apr s (16)

Exercise 2.11
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X(v) =Tr{(Avy + Byvys)y kv "K'}
= 4AV KK + KUK = " (k- k)] + 4iByve* Phokly . 17)
Evaluating the products leads to

X (u,e)X (v) =8Av[(p'- k) (p k) + (p" - K)(p-k)
—(p-pk-K)+(p-k)(p' -k
+(p-K)p' k)= (p-pHk-K)
—(p- Pk = (p-p)k-k)
+4(p-pk-K)]
—8my, vasﬂvms““"ﬂs’”pfkakk

=16Ayv[(p’ - k)(p- k) + (p"- k) (p- k)]

— 8myu Byvegur e Ps’" pThakly . (18)

The last term does not contribute, since, in the course of the further evaluation, k(,(k//6

yields the symmetric tensor I,g which is contracted with gHvB: thus there is no need
to evaluate this term further. The next three cases may be treated in just the same way.

e Ol =ysyt, OF =y":

1 1
X(u.e) =3 Trlysyup b} + S Tr{ysyuyss vob )

= —2ieugve p p° = 2mu[s, pv+ 5, pp — g’ - p)] .
X () = Tr{(Aav + Bavys)ysy" ¥y " ¥}

(19)
= —4iApve"* Pokly + 4Bav[KUK"Y + kKM — g™ (kK]
X(w,e)X(v) = —16m,Bay[(k- p)(K'-s") + (k-s") (K - p)]
— 8ANVEUGvr e p7 pTak)
o Ol =yt OF = yspV:
1 / ] /
X(n,0) =3 Tr{yup vsvop} + M Tr{yuvss vsyvp}
= 2igvour PO pT = 2mu[s; pv+ 5, pu — &u(s" - p)] .
X (v) = Tr{(Ava + Bvays)y"¥ysy "K'} o)

= —4iAVA8”ﬁ““kakl’3 + 4ByA KK + KK — g (k- K)]
X ()X () = —16myBya[(k - p)(k"-s') + (k- s) (K" p)]

+ SAVAgvoureuﬁMapmptkak;g
o 0" =ysyh, OF = ysy":
1 / 1 !
X(use) = 5 Trlysyub vsvb} + Smp Telysyuyss vsvop}

= Z[p;va +pupu—&u(p- P’)] +2imyeu0ves Pt
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X (v) = Tr{(Aaa + Baays)ysy"kysy ¥}
= dAAA[KMEY + KUK — g"V (k- K))] — 4iBane PP koky
X(u, @)X (v) = 16Aaa[ (k- p)(K" - p") + (K- p)(k- p)]

— 8muBAAe,wWe"ﬂ/“"s"’p’ko,k}j

ey

Combining the last four results, we find that

Y X(oXW)

i,k=V,A
=16(Avy + Aaa) (k- p)(K' - p) + (k- p)(K - p)]
— 16m,,(Bay + Bva)[(k - p)(k'-s) + (k- s) (K- )] + X*Phok
=16(ay +ap)[(k- p)(K' - p')+ (k- pH (k- p)]
+16m, b [(k - p)(K - s") + (k- s)(K - p)] + XPhokly . (22)

Here X*? contains all terms which are antisymmetric in the indices o and 8. In the
course of further evaluation kak;g yields the symmetric tensor Iyg and therefore the

term containing X*# will vanish. Again, with respect to the convention (23) of Sup-
plement 2.12, we have b’ = —(Bya + Bay).

e Ol =g, OF =g /V:

This case requires the evaluation of
Tr{c" % Py Py . (23)

For this purpose we first consider

Trliy y "y iy"y yP} . (24)
‘We use
ot = %(V“V” —y"r" (25)

and antisymmetrize (24) with respect to the indices p and v (that is, exchange © and
v, subtract the result from the original term, and finally divide by 2) and then with
respect to the indices & and v. Finally, by repeated application of (A.33), we obtain

—Tr{y"y"y vy’ y P}
=— (g™ Tr{y*y"y"yP} — g"* Trly "y y "y}
+ g Te(y "y y "y Py — g Tely "y v Py Py + g Tely Yy y Py )
= —4[gh" (g g™ — g¥7ghP - g giiT)
— g" (g g"F — gV g + g"P gy
+ g (g7 8" — g"" g™ + g g™")
— g"7(g" ghP — gVl g P 1 gV ool
+g"P (g g — g g™ + gV g"M)] . (26)

Exercise 2.11
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Owing to the procedure of antisymmetrization with respect to p and v, as well as to
i and v, all terms proportional to g*¥ and gV vanish, so that we are left with

—Tr{o"y*a""yP)
=4[(g"g"" — g"g" Mg — g (" g"F + g™ g"F)
+ 8"V (8" g + gMg"P) + gV (g1 g P + g™ gP)

—g"(g" g +g"ghP)] 27)
For later purposes it is worth mentioning that this term is simply the antisymmetrized
form of
8guﬂ{gm—)g(xﬂ _ 2guag|7/3 _ Zgl_)c{guﬁ}

(28)
This is easily checked by multiplying (27) or (28) by a term which itself is antisym-

metric with respect to u, v and [, v; the two corresponding results are identical.
In order to evaluate the quantity X (u, €)X (v) we need to consider

Tr{o "y * o™’y P} Tr{ouy Vo070 Vo)
— Sgﬂﬁ(gvﬁgotﬂ . zgvagf)ﬁ o ZgDagv,B)
X 4[(8uji8vi — 8un&vit)8oo
— 8ui(8vo&io + &o08&vo) + &ui(8vo&ic + 8io&vo)
+ 8jiv(8uo&io + 8i08uc) — 8w (8uo8jic + 8jio8uo)]
_ 32(gv17ga/3 gV ghh zgaaguﬁ)

x [38v5800 — 4(8vo&io + &ip&uo)

+ 8vo8io + 8io8vo + 8vo&io + &ig8ve — 28vi&es |
=32(g"" g — 28" ¢" — 28" ¢"") (81800 — 2810850 — 28508va)
=32(48*" 200 — 28*" 00 — 28°" 800 — 28*" 800

+ 48280 + 45388 — 26 g o + 46380 + 452 5F)
= 128(—g" ggo + 26380 +2525F)

(29)
The evaluation of (6), or of (9), furthermore contains terms of the form
Tr{yso™'y“o"y”) (30)
However, these can be reduced to (27) by employing the relation
ysohV = %8“”9’% , (31)
so that we obtain

Tr{yso"’y*o yP) = %8‘”9’ Tr{og:y o™y P}

= %gwf x 4[ (8767 — 887 g%F — 51 (52 g™ + 58 g™)
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+ 8,878 +80g") + 81 (85 8™ + 8 8™)
— 82(8%g"P + 58 gh)]
— 4i(8uvnﬁgaﬂ _ guvwgﬂﬁ _ gwﬁﬂgﬁa + guvﬂag/lﬂ + 8Mvﬂﬂgim) ) (32)
Another typical term that occurs in X (i, €)X (v) is
Triyso ™y o™ yP) Tr{owyeomnve) - (33)

However, it is easily verified that this contribution vanishes. The first factor is again
antisymmetric with respect to ¢ and v and also to & and v. Thus, for the second trace
we may substitute the expression (28), which leads to

Tr{yso "'y o™y P} - Tr{o, Vo0 Vo)
— 4i(8wﬁf)gaﬂ _ SMV[mgTJﬂ _ SMVﬂﬁgl'wt + Suvﬁagﬂﬂ + Suvﬁﬂgﬂa)
X881 (8vi8oc — 28ve8ic — 28vo 8io)
= —32i("" + 6"P) (83800 — 28v08t0 — 28v0870) =0 (34)
Using (28) and the relation
Euvyos™ T =2(8087 — 8387) (35)
we finally evaluate the following expression
Tr{ys0,0 Vo0uove} Triyso ™y o™ y Py

1 __
= —Zewywe“”“ Tr{o? 00570} Tr{oae v o'y P}

1 __
= 5(5%; — 8080 Tr{o? “y,075 Ve ) Trione y* o'y P}

= Tr{UwaQU;zWa}Tr{Uwa‘xU’ﬁ)/’g}

= Tr{o,Yo0is ya}Tr{o‘“’y“aﬁ‘_’yﬁ} . (36)

This result exactly coincides with the one we previously obtained in (29). Now we
have all the ingredients necessary to consider the contribution of tensor coupling 0! =
ok, Ok =7,
With respect to (6) we obtain
X () = Arr Tr{o " y o™y PYkokly — Brr Tr{yso ™ y® o™’y P Yokl
=ar Tr{a“”y“amy’g}kak/’s —c Tr{ma“”y“a‘l‘;yﬁ}kakl/g , 37)

where we have again adopted the abbreviations (2.77) and (2.83). The contribution of
the massive leptons is given by

1 1
X(u,e)= 3 Tr{ouYo0in Ve } PO p° + > Tr{ys0uYo0usyo s p’ . (38)

Exercise 2.11
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Exercise 2.11 All other terms vanish, since they contain an uneven number of y matrices. We recall
that the expression (33) does not contribute, so that we obtain

L1 v
D XWX (o) =5 [EaTkak,gp’@p“ Trlo "y o™y Py Tr(oy voops o)
T

1 -
— Emﬂc’kak;gs/gp” Tr{yso"’y*c™y P}

x Tr{yso, ygoﬁgyg}} . (39)

Here we have introduced a factor % in order to avoid double counting of o*", or ohv,
since the sum includes o as well as o"#* = —g#V!
Equation (39) may be further reduced by using (29) and (36):

D XWX (u.e)
T

= 16atkaky p" p° (—8* goo + 20380 +2525F)
— 16m,,¢'kakpys™® p7 (=g’ o0 + 206585 +2828F)
= 16at[—(k-K)(p- p') +2(k - p)K"- p') +2(k - p) (K- p)]
—16m,c'[—(k k) (s" - p)+2(k - ) K - p)+2(k - p)(k'-5))] . (40)
With the following argument we can conclude that all other combinations of O' and
O* do not contribute: if for example we identify O! with V or A, then O can neither
be S nor P nor T, since otherwise X (v) in (6) would contain an uneven number of y
matrices. On the other hand, all remaining combinations lead to an X (v) which is an-
tisymmetric with respect to the exchange of k and k’, for example, for the combination
‘SST’?’
Tr{(Ast — Bstys) - 1- ko ""¥'}
= HAsT(kK"K" — k"k"™) + 4Bsre* Poky . 41)
As we have already mentioned in connection with (18), such terms do not contribute
to the decay rate.

Combining the previous results (15), (22) and (40) as well as the terms of (41), we
find that

> XWX (e
ik
= {8¢*’[(as +ap)(p - p") —a'mu(p- )]
+ 16(ay +an)[p*p"? + p"* pP]+ 16m,b' [ p*s' + 5" pF]
+16ar[—g* (p- p') +2p*p"P +2p" p]
— 16m,,c'[—g*F (s"- p) + 25" pP +2p°sF]
+YPYkoky (42)
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where Y% is an antisymmetric tensor which contains terms like X @B of (22) as well
as the contribution corresponding to (41).
In (2.18) we now replace

> mP

t,t

by X (i, e)X (v) of (42) thereby abbreviating the last term by 7%k, kg. This results
in

G* 1 dp &k [ E
W=— — | — 8 k+k —pHz%Pkok, . 43
> o)y 2p’02p0/2k0/2k’0 (p+k+ p) akg 43)

Now, utilizing (2.51)—(2.53), we employ (2.49), according to which it holds that

&k [ B
Iup z/ /—kakg84(k+k’—q)

260 ) 2k0
= 22 (0785 +20095)© (Phax = 1°) - (44)
The quantity
G2 d3 p p

W= losZ 45
202m)5 2p2p%) )

is now easily evaluated. Neglecting the electron rest mass, the rest frame of the muon
is again characterized by

p/ozm,u ’ P/:O )

(p-py=mup® . (p-sH=0, (46)
(p-s)=—p-s' =—|p|cosd = —p°cosb

Introducing ¢ = p’ — p, from these relations we obtain

T2 T 0

5247 8ap +200ap) 8" = S 6mu(my = 2p")

T b/

25 @ 8ap +20ap)p" P = 57 (3mp0 — Am (P°)%) (47)

T T
22 @sap + 24aqp) %"’ = —5amu(my —4p")(p°) cosd
and finally

G? 1 dp w
aw = — — = _Zo(p’-p°
2 (2JT)5 2[),021)0 24 (p pmax)

x {[48(as + ap) + 96ar + 96(ay + ax)|m; p°
— [96(as + ap) + 64ar + 128(ay + an) |m, (p*)?
+ (48" — 32b' — 32¢"ym;, p° cos 6

— (96a" — 128D + 64cym, (p")*cosO} . (48)

Exercise 2.11
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Neglecting the electron mass implies that

m

pglax = TM B (49)

so that
m

p():xpg]ax:_xTM (50)

and
m3
@ p=|pPdiplds2 = (p°)* dp’d@ = —Fx*dvd2 . (51)

We collect all these expressions and substitute them into (48). The final result is

szi 5 1
= 1927_[4)( d-ngl—é[[3(aS +aP)+6aT+6(av+aA)]

—[3(as + ap) + 2ar +4(av +aa)] - x + [3a" — 2b" — 2c'] cos 6

dw

—[3a' —4b +2¢'1x cose}@a —x) . (52)

This agrees with (2.81b), as is easily verified by inserting the Michel parameters and
using (2.78).

MATHEMATICAL SUPPLEMENT |

2.12 The Fierz Transformation

Within the framework of the Fermi theory there are two different but equivalent
ways of describing a reaction | + Yo — ¥3 + ¥4, namely

WDy ) @ulyn) and  (ualy)(slyn) (1)
The properties of the Clifford algebra11 allow us to form 16 matrices

{17 )/}Lvaﬂvv VSVM’iVS}::{élv"'7016} . (23)

{Ly* o™ ysyt iysy=:{0"...., 0"} . (2b)

which form a basis for any 4 x 4 matrix. Furthermore it holds that
wO0v=0; . 3)

Hence we may expand I in terms of the O.

16
Y Civ 0y O0'yn

i=1

11 See W. Greiner: Relativistic Quantum Mechanics — Wave Equations, 3rd ed. (Springer, Berlin,
Heidelberg, 2000).
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or
ZCi/lhOAil/fl%OAil/fz . (4a)

The requirement for Lorentz invariance demands that
Cr=-=Cs , Ce=C7=---=Cy1 , Cp=--=Cs5 . (4b)

Since the two representations (4a) are equivalent, these expressions must be identical
for arbitrary values of 1, ¥ ,¥r3, and 4. In terms of the particular components this
implies that

16 16
Y Ci(01)ya (05 =) Cl(0)sa(0N)yp 5)
i=1 i=1

In the following steps we will solve this equation for C;, which requires the deter-

mination of the transformation matrix A;; connecting the two representations, that
is,

Ci=)Y AyC) . (6)
j

The transformation from the C ; to the C; (or vice versa) is called the Fierz transfor-
mation.
Multiplying (5) by (0")®¥ (0;)#? and summing over «, 8, ¥, and 8 yields

16 16
Y CiTe{0;0'}Te(0 01} = > " Te{0;0' 07 O)C; (7
i=1 j=1

We employ the following formulas (see Appendix A.2):

Tr{l} =4
Tr{o,n} = Tr{y,} = Tr{iys}
=Tr{ysy} =0 ,

Tr{)’uyv}:4guv s
Tr{y" o} = Tr{y"iys} =Tr{y ysp} =0

|
Tr{o,,07¢)} = =3 Ty Yy v — W, voly®r*

= _{guvgkg ‘i‘guggv)L - gukgvg
Lo o, A A 0O
— 88" — & 8u T & 8u
- g;wgg)L - gMAgUQ + guggvk
+ g;wgg)L + gvkgug - gvgguk}
= 4{gukgvg - gvkgug} s
Tr{owysy*) = Trlopwiys} =0,

Mathematical Supplement 2.12
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Tr{iysyudysy”} = Trlyuy'y =4g." =48
Tr{iysy,yst =0
Tr{ysys} =4

All these relations may be combined to give
Tr{O O} =481, , &= i

Inserting (8) into (7), we then have
16

C = 5 ZC} Tr{0;0' 07 O}
j=1

There remains the evaluation of

~ 1 A A7 A A -
Ajj = BTr{0j0101 O =4j

In order to solve for A j1 we consider the particular cases separately.

o j=1:

Ao—a 11

1= 8116—481 )
according to (8).
ej=2...,51=2,...5:

16

+1 -1 -1 -1

-1 +1 -1 -1

-1 -1 +1 -1 ’
-1 -1 -1 +1

- 1
(Aj) = 7

where the index j labels the rows and / the columns.
o/[=6,...,1I:

Or=invyy (W#w

Os=ipy1 . Or=iny .

Os =iyoys » Og=inyr
Ow=inys . On=ipy .

N 1 a

Aji = =3¢ Trlyj2y*v"y?! Yo V)

1 . 1 ~
= =28 Ty 2 rm) + T vy )

1 o 1 .
= __31{,2 Tr(y’ 2VvV/LVM) + §37_2 Tr(y"y’ ZVVVM)

8 J

+1 for [=1,...
—1 for [=12,...

1 s 1
Ajj=—Trlyj2y' 2y’ 2y1_2}=1{26ﬂ—1} ,

, 11
, 16

®)

€))

10)

)

12)

13)
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| -
= 1 T Y vy Y0 vu)

1 1
=—§8;,2Tr(y Vv)+8 Ty y? yvm)——Tr(y Y vy

For the first term we get
1 o 1 i 1
—gav ZTI'('}/] )/V) = —gg}{_z 481{ = —58;_2

To evaluate the last two terms we take into consideration that p % v and therefore
YuYv = —Vo¥Vu» yielding

1 i 1 i
SO T Y ) = =8 L Ty )

j—2

1 Iz
=—§8 > Tr(vy "y " v

1 .
- _gaj.‘_zTr(yf 2y0)

= —g(s;‘ 546,

1
— __sH
=58, .

in which we have used the fact that the trace is constant under cyclic permutation. For
the third term we then obtain

1 1
——Tr(y Yy = —Tr(y Yy v

1
——Tl——
6 (1) )

and, in summary, we finally have
~ 1
Aj= Z(l —28j20—28j2,)

-1 -1 -1 +1 +1 +I

- Il[—=1 41 +1 -1 -1 +1 (14)
(Aj) =~ .
41+1 -1 +1 -1 +1 -1
+1 +1 -1 +1 -1 -1
o/=12,...,15:
5 1 1-12_j-2
AjZZETr{ijN/SV v Tvsvieed
+1-1-1-1
- L —-141-1-1 (15)
Ai=gl-1-141-1] -
—1—-1-1+1
o/ =16:

- 1 1
Ajz=——Tr{yj 2ysy! V5}=Z . (16)

Mathematical Supplement 2.12
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A

Oj=iyyy, with u>v ,
O =iy,y, with A>po

_
Ay = %TI{VVVMVQVAVVVMVQVA}

1
- E[—%”M Trlyuy "y v vovat + 28" Trivuy 2y v vovi)
— 28,2 Te{y "y " yoya} + 28,  Tr{y v vova} — Tr{y 0y vora )]

1
= 12 (280 - 42805 — 1)+ 2813 - 4280 — 1) — 880 — 85,1 +4]

1
= Z[l —2(8vg + 8ur + 80 + 8pn) + 48008, +48,38,0]

+1 -1 -1 -1 -1 41
-1 +1 -1 -1 +1 -1

A-—l -1 =1 41 41 -1 -1
T=4l-1 =1 +1 +1 -1 -1
-1 41 -1 =1 +1 -1
+1 -1 -1 —1 -1 +1
o/=12,...,15:
A’“___LT -12_ v
j1= {yyuysy'™ v vRysvi-iz}

16
Together with (14) it follows that

+1 +1 -1 -1
+1 -1 +1 -1

PR EE RS B IS
T=4l-1 +1 +1 =1
1 41 -1 41
—1 =1 +1 +1

o[ =16:

From (8) it follows that
~ l A Aj 1
Aj16= —1—6T1‘(0j0 )= 7
ej=12,...,151=12,...,15:

=12 j—12
)//

~ 1
Aj = ETI’{JO?]ZV Yi—12}

F1o—1 -1 -1
RN e S B B |
4l-1 -1 41 -1

a7

(18)

19)

(20)
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e/=16:

A6 =~ Telysy; 1aysysyi~2ys) = — = 1)

16 4

e j=16;1=16:

/i]616=i . (22)

' 16 4

According to (4a) we may combine the C; , C; as follows:

Cs=C

Cyv=0=C3=C4=C5 ,

Cr=C¢=---=Cn , (23)

Ca=—-Cp=--=-C;5 ,

Cp=—-Cis

where the negative signs correspond to the convention. Similarly (6) now reads as
follows:

Ci=) CiA
j

5 11 15
= AinCi+ Z/iijc} + Z/]ijc} + Z AijC + Ai16Clg
i= =6 j=12
5 11 15
=A;1Cs + (Z Aij>CV + (Z Aij>CT - (Z Aij)CA — Ai16Cp
i= =6 j=12

Thus it follows that

Ay = Z SISJ/L']' withiin/ , (24)
jinJg
where
+1 for S,V,T
el = (25)
—1 for A,P
From (11)—(22) it follows that
1 4 6 4 1
1 1 -2 0 2 -1
Ay = Z 1 0o -2 0 1 (26)
1 2 0o -2 -1
1 -4 6 -4 1

This is the standard representation of the Fierz transformation and the one most com-
monly used. It is easily checked that A% =1, and therefore A = A™!,i.e. Aisits own
inverse.

Mathematical Supplement 2.12
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An alternative form is obtained from (22) and (23) by introducing

S(3,1;4,2) := (Y3 1y) (Yalypn)
V3, 1;4,2) == Y3y ) Way™vo)

1 - -
TG3,1:4,2) = E(Wscwl/n)(l/fw””l/fz) ; 27

A, 1;4,2) == (Y3ysyu ) (Way™ysvn)
PG, 1;4,2) i= (Y3ys¥) (Yaysyn)

and replacing (5) by
Y CIG.L4)= > CjJ4.1:3.2) . (28)
I1=S,V,T,A,P J=S,V,T,A,P

The transformation of the matrices I and J is then given by
13,1;4,2)=)"A;1J(4,1;3,2)
J

and because A is self-inversive it also follows that

J(4,1;32)=> " A;;1(3,1;42)

2.6 The Tau Lepton

In the year 1975 a further lepton was discovered at Stanford (SLAC) by Perl, which
has been named the 7 lepton.!? With a mass of 1784 & 3 MeV it is almost 20 times
heavier than the muon. Its lifetime is

T, =(G4+£05) x1073s . (2.87)

The scheme of t lepton decay is completely analogous to muon decay, which we have
discussed in detail. Since both the electron and the muon have smaller masses than the
7 lepton, both decay processes are possible:

LA o T SRV S (2.88a)
T° —>e Vet . (2.88b)
In addition, the t lepton may also decay into strongly interacting particles, especially
into three or more pions together with a T neutrino. These hadronic processes con-

tribute about 65% to the total decay probability of the 7 lepton (see Table 2.2); how-
ever, we will not consider them here but will rather focus on the leptonic processes.

12 M.L. Perl et al.: Phys. Rev. Lett. 35, 148 (1975); M.L. Perl: Ann. Rev. Nucl. Part. Science 30, 299
(1980); G.S. Abrams, M.L. Perl et al.: Phys. Rev. Lett 43, 1555 (1979).
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Table 2.2. Decay probabilities of the t lepton

Decay %

T~ —e VeVr 16.4+1.8
WV vr 16.0+ 1.7
T Ve 103+1.2
P Vg 22.1+2.4
K™ v, 1.3£0.5
7 p0%; 54+1.7

further hadronic decays 260+1.3

Besides the properties that result from its rather large mass, the t lepton behaves
just like an electron or muon. This fact is sometimes termed e—u—t universality. For
example, the t lepton is observed with large accuracy to be point-like. Its internal
extension amounts to less than 0.004 fm. Furthermore the electron and muon spectra
observed in the decay processes (2.88) may be analyzed in terms of Michel parame-

ters, in analogy to the case of muon decay, which we have already treated. The result
£ 13
is

pr =0.742£0.035 £0.020 (2.89)

which is a strong argument for V-A coupling (p = 0.75) and unambiguously excludes
V+A coupling (p = 0), as well as pure V or A coupling (p = 0.375). This behavior
also becomes obvious from Fig. 2.10, which compares the observed electron spectrum
with the predictions of the V-A and V+A theory.

80 T T T T

60~

40 |-

20~

0 02 04 06 08 10
z=E /E."

From a detailed analysis of the shape of the high-energy end of the muon spectrum,
an upper limit for the mass of the T neutrino can be inferred (see Fig. 2.11). The most
accurate value today is

m,, <70 MeV (2.90)

13 H. Albrecht et al. [ARGUS Collaboration]: Phys. Lett. B246 (1990) 278-284.

Fig. 2.10. Electron spectrum
of the 7 decay
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However, it is not unlikely that its rest mass vanishes. If we assume that the weak
current of the t particles is of the familiar form
TP ) = it () (1 = yshuy, (x) (2.91)
we immediately obtain the decay rates into the leptonic channels (2.88) by simply
adopting the formula (2.57) for the muonic decay. Again, we set me = 0, but do not
neglect the muon mass:
N,
oH G*m? me\>
200 Wr—»e—vev, = 1927 = Wu—%e—vevu m_u , (2.92a)
G2m5 m2
WT_%[,L_U v — L(1-8—24
150 wr192n3 m2
mz > mi
= Wi e, p— 1-— =) (2.92b)
100 s T
Inserting the value m;/m, = 16.86, we obtain
50 Wre = 0.620 x 10712 57! (2.93a)
Wy = 0.603 x 10712 571 (2.93b)
0 0 0.5 1.0 The ratio of these quantities is
PP 5
PmaxPc Wr_”,, m,
Fig. 2.11. The number of the Wioe = (1 a Sm_%> =0.972 (2.94)

observed electrons and muons
is depicted as a function of
the momentum.'4 Here Pe =
0.65 GeV is the lower limit
of the momentum observed in
the experiment. Each curve
stands for one value of the
mass of the 7 neutrino. The
dashed curve is for V+A cou-
pling and m,_ =0

On the other hand, the experimental determination of the relative probability for these
two decay processes, compared with the total decay rate, yields the following val-

ues: 15

Br%e = Wtae/ W‘[ = (177 + 04) y

(2.95)
Bry=Wely/We =(17.84+0.4)
These values yield the experimental ratio
By
—=09+£0.1 , (2.96)
Bre

which agrees with the theoretical prediction (2.94) within the accuracy of the ex-
periment. By inserting (2.95) in (2.92a) we can give a theoretical prediction for the
lifetime of the t lepton:

B‘L’—>C

= =(2.6+£02)x 10753 |
Wr—>e

I;

(2.97)

14 MLL. Perl: Ann. Rev. Nucl. Part. Science 30, 299 (1980).
15 Review of particle properties in M. Aguilar-Benitez et al.: Phys. Rev. D 45, Part II (June 1992).
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which at least does not contradict the experimental value (2.87). From this it follows
that the coupling constant G occurring in (2.92a) cannot differ significantly from the
coupling constant G of muon decay.

To summarize, we conclude that according to the actual data the 7 lepton fits per-
fectly into the family of leptons (e, ¢, 7). The only differences between these leptons
are their masses and a quantum number that guarantees the separate conservation of
the electronic, muonic, and 7-leptonic particle numbers. In particular, the leptons ex-
hibit a completely universal behavior in electromagnetic and weak interactions.

EXAMPLE |

2.13 The Discovery of the Tau Lepton

The 7 lepton was discovered at the SPEAR storage ring by the magnetic detector of the
SLAC-LBL collaboration (Stanford Linear Accelerator Center — Lawrence Berkeley
Laboratory).'® The principle of a storage ring is that particle and antiparticle beams
circulate within the ring in opposite directions and are forced to overlap in the region of
the detector (see Fig. 2.12). The detector was constructed in such a way that electrons,
muons, and photons, as well as hadrons, could be detected and identified within a large
solid angle. In addition, the trajectories of the charged particles in the magnetic field
allowed for a determination of their momentum.

D

D

storage ring

Through investigations of electron—positron collisions a number of events of the
form

. {e+ +u } .
e +e — 4 _ o ( + atleast 2 unobserved particles
e +u

were observed — until 1975 a total number of 105 events. These processes could not be
understood in terms of a conventional interpretation, especially since the possible un-
certainty in particle identification by the detector had already been taken into account,
that is to say, the most unfavorable assumption was made, namely that all processes
with three observed charged particles implied the production of hadrons only. Thus
every “electron” or “muon” was claimed to be a misinterpretation of the detector.
This allowed an estimate to be made of how reliable particle identification was. It was
therefore possible to evaluate, from the number of observed events in which a lepton
and a hadron, or two hadrons, occurred, the number of misinterpreted e—x events.

It followed that of the 139 events originally observed, 34 were spurious and had to

16 G.J. Feldman and M.L. Perl: Phys. Rep. 19, 233 (1975).

Fig. 2.12. Schematic picture
of the storage ring facility
SPEAR at SLAC
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Fig. 2.13. Cross section for
electron—-muon events in stor-
age ring experiments

be subtracted. The immediate conclusion was that the uncertainty in particle identi-
fication could not explain all these events. One might argue that at least one of the
observed particles was a charged particle, a photon, or a neutral pion decaying into
two photons, but one not reaching the effective region of the detector. On the other
hand, such processes would imply the occurrence of corresponding events in which
the particle is actually detected. However, this was not the case.

The sole remaining explanation was the interpretation of the e—u events in terms
of the production of hardly detectable particles such as neutrons, Kg (see Chap. 8), or
neutrinos. However, the Kg is ruled out by the reasonable assumption that the produc-
tion rates for Kg and Kg are equal. The latter could easily be identified by its decay
products 7 and 7 ~. However, up until 1976 only a single event had been observed.

} B
“ i ) L] ]

Peu

m;~1.8 GeV
1.5 |- .

9=

ol | | 1 |
03 4 5 6 7 8

E,.+E.(GeV)

A characteristic feature of the e—u events is their threshold energy of about
3.6—4 GeV, that is, they do not occur at lower energies (see Fig 2.13). Another signif-
icant property is that with increasing energy the electron and muon are preferentially
emitted collinearly in opposite directions. This strongly suggests the production of a
particle—antiparticle pair,

et+e >t 4+~

Owing to momentum conservation, the two particles should be emitted in exactly
opposite directions. Hence, a higher energy implies that the particles have a larger
momentum. Subsequently, the two particles decay into an electron (positron) or a
muon which is emitted isotropically with respect to the rest frame of the corresponding
T particle. However, the larger the velocity of the t particle, the less the direction of
emission with respect to the t particle’s rest frame contributes to the emission actually
observed within the lab system, whereby the latter is then essentially determined by
the direction of emission of the t particle.

The observed threshold energy leads to the conclusion that the mass of the T par-
ticle lies in the range 1.6-2 GeV. In order to characterize the nature of the 7 particle,
there were in practice two options: either it is a lepton that decays according to

T —>vrte +Ve , T —Sve+u +y, o,
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and similarly for the antiparticle T, or it is a boson with the following decay channels:
T —>e +Ve , T U v,

as are observed for example, in the decay of negatively charged pions. The latter in-
terpretation, however, could certainly be ruled out by the analysis of the momentum
distribution of produced electrons (positrons) and muons (the specific form of this
distribution also contradicts the interpretation of the observed particle in terms of a
neutron).

Therefore the sole explanation that remained was the classification of the t particle
as a new, heavy lepton. Figure 2.14 illustrates how the total process results in the
observed e—u events. Since 1975 the properties of the T lepton have been extensively
studied, its mass has been accurately determined to be 1784 4+ 3 MeV, its Michel
parameters were obtained'” as p = 0.73140.031, & = 1.0340.11, £§ = 0.63 £0.09,
and thus the V-A coupling of its decay has been verified in detail.

aniya
- We Ve Vu
e ¥ Vt

et ‘7‘!
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Example 2.13

Fig. 2.14. Production and de-
cay of the t lepton
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