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Summary. Many different measures have been proposed to compute similarities
and distances between diffusion tensors. These measures are commonly used for
algorithms such as segmentation, registration, and quantitative analysis of Diffusion
Tensor Imaging data sets. The results obtained from these algorithms are extremely
dependent on the chosen measure. The measures presented in literature can be
of complete different nature, and it is often difficult to predict the behavior of a
given measure for a specific application. In this chapter, we classify and summarize
the different measures that have been presented in literature. We also present a
framework to analyze and compare the behavior of the measures according to several
selected properties. We expect that this framework will help in the initial selection
of a measure for a given application and to identify when the generation of a new
measure is needed. This framework will also allow the comparison of new measures
with existing ones.

1 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance technique that mea-
sures the diffusion of water in tissue. If the tissue is fibrous, the water molecules
diffuse more in directions along the fibers than perpendicular to them. To cap-
ture the anisotropic behavior, the diffusion is often represented by a symmetric
positive definite second-order tensor. Using tractography (e.g., see Vilanova
et al. [15]) it is possible to reconstruct connections in the brain or the fibrous
structure of muscle tissue such as the heart (e.g., see Zhukov et al. [19]). In
several applications, for example, comparison between subjects, it is interest-
ing to segment structures with a higher level of meaning, for example, white
matter bundles, that is [14, 16, 20], and also to register different DTT data
sets [1, 10, 18]. It is often also necessary to derive statistical properties of
diffusion tensors (DTs) to identify differences, for example, between healthy
and pathology areas [11].
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In all the previous methods, it is often needed to define the difference be-
tween diffusion tensors, that is, to compare diffusion tensors. In segmentation
and registration, similarity measures are applied to match DTs in voxels in a
certain region, and between regions of different data sets. In quantitative anal-
ysis or DT statistics, distance or similarity measures of DTs in neighboring
voxels can be used to classify the amount of variability in a selected voxel [13]
or volume of interest. The results of these applications are highly dependent
on the choice of measure.

Alexander et al. [1] listed several measures and analyzed their results for
segmentation. However, since then, various people have introduced new mea-
sures for comparing DTs. These measures are of different nature and it is very
difficult to predict which measure will give better or similar results. There ex-
ist numerous measures, but to our best knowledge, there is no overview that
compares and classifies them in a structured way. This comparison can help
to support researchers in choosing a measure, and being able to predict the
behavior of the measures for their concrete application.

In this chapter, we provide this analysis and improve the intuition in the
behavior of the measures. The intrinsic characteristics of a measure are ana-
lyzed without having a specific application in mind. This allows an evaluation
of the nature of the measure in itself. It is out of the scope of this chapter
to make an application-oriented analysis, (e.g., finding the best measure for
DTT adult brain registration). However, this chapter aims to help make a first
selection of the possible measures that could be used for such application by
looking at the characteristics of the problem and the characteristics of the
measures. We expect that it will also help to identify when a new measure is
necessary, and compare its behavior with existing ones.

First, we present the notations used in this paper. In Sect. 3, we describe
the properties that will be used for the analysis of the measures. In Sect. 4, we
give an overview of existing measures from literature. In Sect. 5, we explain
how we evaluate the properties of the measures and show some simple results
to illustrate our methods. Section 6 presents the results of the experiments.
Finally, in Sect. 7, conclusions and summarized results are described.

2 Notation

We represent symmetric positive definite second-order tensors, S’ym?{, by cap-
ital bold letters, for example, D € Symj. The scalar components of a tensor
D are denoted by D;;:
Dy1 D12 Dy
D= [ Dy Dyy Dy3
D13 Doz D33

FEigenvalues of tensor D are )\]? > )\HQD > /\“?3’ > 0 and the corresponding eigen-
vectors are ey, &5, and &5. We denote the trace (Zle D) = (Z?:1 A2) of D
with tr(ID). The determinant of D will be denoted by det(DD).
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With measure we refer to a function m that has two tensors A, B as input,
and returns a nonnegative scalar value:

m: Sym3 x Sym3 — R, (1)

If a measure returns how similar A and B are, then we call the measure a
similarity measure. If it returns how different A and B are, we call it a distance
measure. We denote similarity measures with s and distance measures with d.

3 Properties

In this section, we present a list of properties that can be evaluated for the
different measures. Diffusion tensors can be classified by their size, orientation,
and shape. We evaluate the measures according to their sensitivity to changes
in these properties. These changes are illustrated in Fig. 1. We also include as
a property how robust the measures are to noise, and the fact that a measure
is a metric or not.

3.1 Size

We understand as the size of a DT the mean diffusivity M D = tr(ID)/3. This
is illustrated in Fig. 1(a). We consider a measure to be size-invariant if it is
uniform scaling invariant, that is, if it fulfills

m(sA,tB) = m(A,B), (2)

where s and ¢ are scalar values.

3.2 Orientation

A measure m is rotation invariant if the value of m does not change when the
input tensors are rotated:

m(RTAR, PTBP) = m(A,B), (3)

where R and P are rotation matrices. The orientation invariance can be di-
vided into two. One is whether the measure is sensitive, in general, to the
difference in orientation between tensors. Orientation changes are illustrated
in Fig. 1(b, c).

The other invariance included in the previous is invariance to image rota-
tion. If we define a DTT image as f : R? — Symd in most of the cases, we want
that our measure is invariant to rigid body transformations of f (i.e., rotation
and translation). In the case of DTI images, the image transformation also
has to be applied to the tensor. From these transformations the rotation is
the only one that affects the tensor. Being invariant to image rotation means
that we want to fulfill (3) when R = P. If the image f is transformed with
other transformation (e.g., nonuniform scaling, skewing), it is not clear how
this should affect the tensor and therefore we consider it out of the scope of
this chapter.
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3.3 Shape

The shape of a tensor can be defined as linear, planar, spherical, or as an
interpolation between these types. The shape is given by the ratio between
the different eigenvalues. A graphical representation of different tensor shapes
is shown in Fig. 1(d). A measure m is shape-invariant if the value of m(A,B)
does not change when changing the shape (i.e., the ratio between eigenvalues)
of A, B, or both.

3.4 Robustness

Measures are never completely invariant to noise. However, if small changes
in the input produce small changes in output, then we consider the measures
to be robust under noise. Therefore, we can define

Im(A + E1,B + E2) — m(A,B)| < e, (4)

where ¢ is a very small scalar value and the components E{1,2},; of E{1,2} €
Symg are also very small values.

3.5 Metric

A distance measure d is a semi-metric if, for two tensors A and B, it satisfies
the following conditions:

A=B < dA,B) =0 (5)
d(A,B) = d(B, A). (6)

Condition (5) is important because it allow us to distinguish between equal
and nonequal tensors. Condition (6) is necessary if we do not want the results
to depend on the order in which we deal with the DTs in a volume. If the
measure has to be a Riemannian metric, it also has to fulfill, for infinitesimally
close A and B,

d(A,B) < d(A,C) + d(C,B). (7)

Condition (7) is important in applications where you need to take the mean
or do interpolation between tensors [2, 12].

4 Measures

In this section, we present a classification of similarity and distance measures
for diffusion tensors (DTs) that have been used in literature. This classification
is based on the nature of the derivation of the measure: measures based on
scalar indices; measures that make use of the angles between eigenvectors;
measures based in linear algebra; measures based on imposing the preservation
of positive definiteness of the tensor, that is, Riemannian geometry; measures
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considering the DT's as a representation of a probability density function and,
finally, measures that combine different measures from the previous classes.

4.1 Scalar Indices

Given a scalar index g : .S ym?f — R(T , the simplest way to obtain a difference
between two DTs A and B is by using the absolute difference |g(A) — g(B)| of
the scalar index of the two tensors. There exist numerous scalar indices that
can be chosen for g. Two well-known examples are fractional anisotropy (FA)
and linear anisotropy (Cj). For a selection of scalar indices, see Table 1 and
refer to Westin et al. [17] and Vilanova et al. [15]. These indices reduce the
6D information in a DT to a scalar value. In the computation of the scalar
value, only the rotationally invariant eigenvalues of the tensors are used, thus
they do not depict the directional variation of the diffusion anisotropy. The
measures created from scalar indices will be denoted by ds, with the short
name of the index as subscript, for example, dspa, dsc,, dsprp. Thus

dspa(A,B) = |[FA(A) — FA(B)]. (8)

When using ds, a lot of information is lost. Each DT is represented by one
scalar value, while six scalar values are needed to represent the full DT. Thus,
the measures based on scalar indices can be very limited.

More scalar indices can be derived from tensors. For example, several DTI
literature recognized the benefit of tensor invariants as measure of the dif-
fusion tensor shape that do not require diagonalization. Kindlmann [8] used
these invariants, like the mean, variance, and skewness, which are invariant to
rotation, to measure the shape gradients in tensor fields. However, using them
for constructing a distance measure will give similar results to ds and will not
solve the problem that just one aspect is being shown. Thus, we do not treat
them separately here.

Table 1. Scalar indices for diffusion tensors [15, 17]

Name Abbrev.  Equation
Mean diffusivity MD = tr(D)/3 = (A1 + A2+ A3)/3

: ; _ V122200 2)2 H (A —Xe)?
Fractional anisotropy FA = 20T D)

: - _ V1222 + (2 -23)2+ (A1 —23)?
Relative anisotropy RA = V300 et o)
Linear anisotropy a=A1—=X2)/(M + A2+ A3)
Planar anisotropy cp = 2(A2 — A3) /(A1 + A2 + A3)
Isotropy cs = 3X3/(M + X2+ A3)

Volume Ratio VR = MAeds/MD?
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4.2 Angular Difference

Angular difference dgyg, of the main eigenvectors El? is often used as a distance

between tensors that measures change in orientation [21]:
dang: (A, B) = arccos(e - &}). (9)

Using dang, only makes sense for tensors where the diffusion is mainly linear.
If the tensors have planar shape then dgng, can be used. For tensors with
spherical shape, any dung, can be considered random and should not be used.

4.3 Linear Algebra
A class of measures deal with the diffusion tensors components as vector

elements. A typical distance measure is the L™-norm of the componentwise
difference of two vectors:

3 3
dpn(A,B) = ZZ i — Bij)™. (10)

In DTI literature, the L?-norm, dzs, is most commonly used for computing a
distance measure (see Batchelor et al. [4]); therefore, we only treat dyo in this
chapter. dro is the same as the Frobenius distance [21], which is computed
using dp(A,B) = /tr((A — B)?).

One can also compute the scalar product of two tensors by summing the
products of components of the tensors [1]. The result can be used as a simi-
larity measure sgp:

3 3
Ssp A B ZZAUBU (11)

=1 j=1

Measures ss, and dp, treat the DTs as simple vectors and ignore the
matrix or tensor nature of them. Another class of measures use the fact that
we have matrices. Pierpaoli and Basser [13] propose to use the sum of the
squared vector dot products of the eigenvectors weighted by the product of
the eigenvalues as a tensor scalar product [7]: s;sp includes the colinearity
of the orientation of the tensors weighted by its eigenvalues. The value is
maximized if the tensors are aligned.

3 3
s15p(A, B) ZZ)\A)\B (ete” (12)

This measure is also called tensor dot product [3]. It is used to construct the
lattice index, which we show in Sect. 4.6. Jonasson et al. [7] use the normalized
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tensor scalar product sy;s, in order to make it invariant to scaling of the

tensors: (A.B)
Stsp £\,
p(AB) = ————~. 13
snesn (A B) = L0 (B) (13)
Instead of applying the aforementioned measures to the tensors directly,
they can also be applied to the deviatoric of the DTs (see, e.g., [1]). The devi-
atoric D of tensor D represents the nonisotropic part of ID. It expresses just the
shape and orientation of the DT, independent of the size. It can be computed
as follows: )
D=D- gtr(]D))]L (14)
where I is the identity matrix. Note that D is not a positive definite tensor
everywhere. This means that it can have negative eigenvalues, and some of

the measures will also give negative values.

4.4 Riemannian Geometry

If we constrain the matrices to positive definite matrices, we get another class
of measures based on Riemannian geometry. Batchelor et al. [4] introduced a
geometric-based distance d, that measures the distance between two tensors
in the space of positive definite tensors:

dy(A,B) = N(A">BA™?), (15)
where

(16)

This measures the distances along geodesics in the manifold of symmetric
positive defined matrices. Additionally, it is invariant to any linear change of
coordinates. Pennec et al. [12] introduce a similar framework with the same
distance measure, and extend it with methods for filtering and regularization
of tensor fields.

Arsigny et al. [2] introduce a new Log-FEuclidian framework. It has similar
theoretical properties as Pennec et al.’s framework, but with simpler and faster
calculations. They derive the following Log-Euclidian distance measure d g:

dre(A,B) = /tr((log(A) — log(B))?). (17)

This measure is equivalent to the dys of the logarithm of the matrices. The
details of its computation and derivation can be found in Arsigny et al. [2].

4.5 Statistics

A diffusion tensor can be interpreted as the covariance matrix of a Gaussian
distribution describing the local diffusion. Thus, a natural family of dis-
similarity measures between DTs would be the statistical divergence that
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measures the overlapping of probability density functions. Given a diffusion
tensor I, the displacement r of water molecules at time ¢ is a random variable
with the following probability density function (pdf):
LA E——C e )
(2m)ndet(2tD)

where 7 is the dimensionality of the square matrix D.

Wang and Vemuri [16] proposed to use the square-root of the J-divergence
(symmetrized Kullback—Leibler) as a new definition of DT distance dg

dir(A,B) = %wrmfl]ﬂ +B1A) — 2n, (18)

where the dimensionality n is 3 for DTs.

In probability theory, class separability can be measured by the overlap
between the corresponding pdfs. Therefore, the overlap of pdfs can also be used
as a similarity measure between tensors. The calculation of the overlap cannot
be done analytically and often approximations are being used. The Chernoff
bound [6] gives us the upper bound of the probability error, P(error), of a
Bayesian classifier for two classes, w; and ws, given their pdfs P(w;) and
P(ws). For normal distributions we have

P(error) < Pﬁ(wl)Pl_ﬂ(wg)e_kﬁ7

where [ is a parameter that needs to be optimized to find the Chernoff bound.
A special case is the Bhattacharyya bound where 5 = 1/2. This bound is never
looser than the optimal Chernoff bound and can be directly calculated. For
DTs, it becomes the following similarity measure:

7lln(%)
SBhat(A7]B) —e 2 Vdet(a)det(B) ) (19)

4.6 Composed

As mentioned in Sect. 4.1, each scalar measure in itself can give very limited
information of the difference between DTs (e.g., F'A just gives information
about the anisotropy). Usually, a measure that reflects the changes of a com-
bination of these properties is necessary. Therefore, several authors have tried
to combine simple measures to obtain a more complete measure. Often, the
measures that are combined have quite different natures and therefore ad hoc
normalizations and weighting factors are needed.

Pollari et al. [10] introduced shape-dependent similarity measures, which
are used depending on the DT shape:
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A,B) = [&} - &}| = cos(dang, (A, B))
sp(A,B) = |85 - 25| = cos(dang, (A, B))

[tr(A)—tr(B)|

A B) ma‘w(tr(A)l ,tr(B),1)

_ 9°—g
b) =1- gy

where a and b are the voxels with tensors A and B. g%, ¢° are the grey-levels
in a,b in the T MRI data. Using s;, s,1,, Pollari et al. introduce a DT dis-
tance measure for registration of DTI brain datasets that looks at the overlap
between diffusion shapes and weighs this with the most reliable information
for that shape:

I(a,b) = &'¢lsi(AB) + éhipsy (A, B)+ (20)
v % A8 (s4(A,B) + s, (a, b)) /2,

where 7 is % in all of their experiments because they want to give less weight

to isotropic Voxels The anisotropy measures are defined as ¢; = ’\1/\_ A2 , Gy =

)‘QA 22 ¢, = /\1 which is a variation of the measures proposed by Westin [17]

listed in Table 1. Because we are analyzing measures for DTs only, in Sect. 6

we use a modified similarity measure s,,; that disregards the sp, term in (20):

Spni(A,B) = éfxé]lle(A B) + AAémsp(A,IB)nL (21)
v * heBs (A B).

We also use v = %, although a more precise analysis, of the robustness of this
measure to the changes of gamma, would be needed.

Pierpaoli and Basser [13] introduced the lattice index as an intervoxel
anisotropy measure that takes the DTs in neighboring voxels into account.
For the computation of the lattice index they defined a measure s;; that
gives a similarity between two tensors:

f Stap(A B) § Stsp(A,B>
\[ \/m 4 \/Stsp(Av A) \/StSP(IBv B) ’

with s;s, as defined in (12) and A, B as in (14). Because s;4p(A, B) can be
negative, sy can give negative or imaginary values, which do not fulfill the
basic description of a measure as we defined it. Therefore, we do not use sy
in further analysis.

SL[(A B)

(22)

5 Methods

For analyzing the properties of the measures, we want to show the behavior
of each measure for the different properties in a global way. So, we show the
results of each measure for sets of pairs of DTs where one property is changed.
We change each property gradually and analyze the behavior of the measures.
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Fig. 2. Size comparison plot of dsysp for tensors with planar shape. On the axes
from left to right, and from bottom to top, the size of the tensors increase while the
shape and orientation are invariant. See Fig.1(a). (a) A grey-value plot; (b) The
height field

To do this analysis, we use plots as shown in Fig. 2. The axes of the plots
have smoothly varying DTs and in the plot we show the similarity or difference
of corresponding DTs. In Fig. 2(a) the results of the measure are shown as a
grey-scale image. Figure 2(b) shows the same results as a height field, which
gives a more clear impression about the evolution of the measure.

Furthermore, we compared the different measures by means of the root
mean square difference (RMSD) of their normalized results. This allows us to
grasp the similarities between the measures.

5.1 Size

Size is simple to evaluate because it can be captured with only one scalar value
(mean diffusivity M D, see Table 1). Figure 2 shows a size comparison plot for
dsprp- From left to right and bottom to top, we increase the size of the tensor
by multiplying the eigenvalues of a base tensor with increasing values. This is
illustrated in Fig. 1(a). It can be seen from Fig. 2 that tensors with the same
size (on the diagonal of the plot) have zero distance, and tensors of which the
sizes differ have larger distances. Some measures (e.g., dsp4) are invariant to
scaling. So this plot will not be used for those measures.

5.2 Orientation

For orientation, we consider the sensitivity of the measure to rotation of the
tensors, that is, rotation around any axis. For tensors with linear shape, the
measure should be invariant to rotations around €;. For tensors with planar
shape, the measure should be invariant to rotations around €3. For tensors
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(b)

Fig. 3. (a) Comparison plot for tensor with linear shape rotated around €1, €2, and
€3 showing dang,. See Fig.1(c); (b) dspa comparison plot for tensors with shape
changing from linear (L) to planar (P) to spherical (S) to linear (L). See Fig. 1(d)

with spherical shape, the measure should be invariant to any rotation. We cre-
ated plots for multiple types (linear, planar, spherical) of tensors, where on
both axes, we gradually rotate the tensor around e; until 7. Then, on the mid-
dle part of the horizontal and vertical axes of the plots, we rotate around é»
until 7. Finally, in the top and right of the two axes we rotate around ej
until 7. The tensors on the axes of the plots are illustrated in Figs. 1(b, ¢).
Figure 3(a) shows results for dayng, . The tensor used for this image was linear.
Thus, for rotation around €;, the distance does not change. This can be seen
in the image because in the lower-left part, the distances stay zero. When
rotating the tensor around €; and €3, it can be seen that the distance between
measures gradually increases for a rotation up to 7/2 and then decreases again
until it is zero at 7.

Furthermore, we tested the rotation invariance of the measures to the sit-
uation when we rotate the volume. We did this by applying the same rotation
to every tensor in a set, and then computing the RMSD of these results to
the corresponding ones without rotation.

5.3 Shape

We consider that DTs can have linear, planar, or spherical shape or a shape
that is a combination of these shapes. To study the behavior of the measure
under changes in shape, we start with tensors that have linear shape, and
then gradually change the shape to respectively planar, spherical, and back to
linear. This is illustrated in Fig. 1(d). To make sure that we are only evaluating
shape, we do not change the size and orientation of the tensors in the same
plot. Results for dspa are shown in Fig.3(b). As can be seen from the black
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areas in the plot, which are not in the diagonal, tensors with different shapes
can have the same value for F'A. This is a known property of F'A.

5.4 Robustness

From the results of the previous methods, we can derive whether a measure is
sensitive to small changes in one of the properties. In addition, we introduce a
small variation to the set of tensors in our experiments. To each component of
the input tensors (on both axes) for making the size, shape, and orientation
plots, we add a uniformly distributed random value. Then we analyze this
robustness by computing the root mean square difference (RMSD) between
the plots with and without the added noise. We consider the measures robust
to noise if its plots do now show sharp changes or discontinuities, and the
computed RMSDs are relatively small.

5.5 Metric

The conditions that need to be fulfilled for a measure to be a Riemannian
metric can be derived from its definition. Thus, no experiments are needed
to evaluate this property. However, we summarize whether the properties in
(5)—(7) are fulfilled for each of the measures.

6 Experiments

In this section, we analyze and categorize behavior of the different measures
using the methods described in the previous section. The behavior of the
measures is summarized in Table 2.

6.1 Size

We can observe four different behaviors for the measures with respect to the
size difference of the tensors. All scalar measures listed in Table 1, except
MD, are invariant to scaling one or both input tensors with a scalar s. dang,,
Sntsp, and sp; are also invariant to scaling.

The measures dsp;p and dys show a behavior as illustrated in Fig. 2. The
relation between the differences in size (M D) and the computed difference
behaves as follows

d(A,B) =s x |MD(A) — MD(B)|, (23)
where s is a scalar value. Scaling both A and B with a scalar value will change
the outcome of dsp/p and drs, and so (24) is not valid for those measures if

A #£B:
d(sA, sB) = d(A,B). (24)

This behavior is listed as add in Table 2.



T.H.J.M. Peeters et al.

126

Vdsp se sorprodord aures o) 9ARY Pa)SI] J0U oI Jey[} SSINSeSW SP 9],

S0k QAT}ISTOS QATYISTIOS jootms 9] (61) (o100 Smlw wYygg
(F)p t

LIS OAT)ISUDG oAnIsuag  qroowrs M [97] (8T) ug — (V-G + @-v)n/ e 77p

SO QAT)ISUOG 9AT)ISUOG yjoowg mN [g] (21) (z((g)8Bo1 — Aévmocvb\/ a1p

sox SAIYISULG oamsueg  yjoowrg  ymIy  [p) (91) (z_vaz VN P
A[uo uoryey

ou -usLIo pue adeys (g) IR[IUISJ[os jou yjoows i [o1] (1) (4 V) (@'V)sR+(@v)ispl ™s
AJuo uoryejus

ou -t1o pue odeyg (1) Ie[IuIs-J[os j0N joowrg juerreau] [L] (€1) % dsyug

oN v (1) reqruusgps joN  yjoowg soseandu]  [1] (1) (Lol I TR s

ON v (1) reqrursjpes joN  ypoowug seseorou]  [1] (11) hgley SIEIR O

sox v 30 moows  ppy  [5] (01) u(fg = ) RN e

oN A[uo resury Auo resur] Auo reeur] juenreau] [1g] (6) (f2 - J2)soooxe MHurp

ON Aquo az1g JUBLIBAU]  JURLIEAU] PPV [L1] (8) (eam — (v)amw| arsp

oN Aruo adeyg poo8 joN  juerreauy juerreau] [L7] (8) (@) va — (V)va| Vdsp

OIIRIN SSOUISNqOY odeyg uoryejuaLI() oz1g 031 ubgy uorjenby

SIOSU9} UOISNYPIP JI0J Sodnseowl 20UR])SIP pue %ﬁhdﬁaﬂm 10J w@ﬂ.HQQO.HQ JO MIIAIGA() °C 9lqel,



Analysis of Distance/Similarity Measures for Diffusion Tensor Imaging 127

60 60

50 50

40 40

30 30

20 204

10 10

0.......... .......... g .o 0 Y~ S S
0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) Linear tensors with measure s¢sp. (b) Planar tensors with measure dg.

Fig. 4. Comparison plots with tensors changing size

Measures ss, and s, have behavior as shown in Fig.4(a). They return
bigger values if the M D is larger. As a consequence, the result of comparing
two tensor that are exactly the same is not constant and depends on the size
of the tensor. There is no upper limit for the similarity measure that can be
given. We call the behavior of the measures increasing in Table 2.

The remaining measures are listed as mult. This means that they behave
as shown in Fig. 4(b). The relation between the output of the measure and the
ratio M D(A)/M D(B) of the size of the two tensors is linear, and (24) is valid.

6.2 Orientation

Measure dgng, only works well for tensors with linear shape. All scalar-index-
based measures (ds) are invariant to rotation. All measures except ds and
dang;, have similar behavior under rotation. For tensors with linear shape,
they have the same behavior as dgng,, which is shown in Fig.3(a). Results
for sk, for tensors with planar shape is shown in Fig.5. The other measures
show similar behavior. It is similar to that in Fig. 3(a). Except for dgng,, all
measures are invariant to rotations if at least one of the two tensors that are
being compared has spherical shape, that is,

m(S,A) = m(S, RTAR) (25)

for spherical tensor S, and A € Sym™(3) and rotation R. For tensors whose
shape is not purely linear, planar, or spherical, the resulting plots are a
weighted average of the plots of the respective tensor types. This is shown
in Fig.6 for dpg. All measures, except dung, in the areas where its result is
random, are invariant to rotations of both tensors, thus, for any rotation R

m(A,B) = m(RTAR, RTBR) (26)
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Fig. 5. Comparison plot of planar tensors rotated around Ai, A2, and A3 for dxr.
See Fig. 1(b)
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Fig. 6. Comparison plot for tensors rotated around €i, €2, and es for drg. The
tensors do not have pure linear, planar, or spherical shape, but eigenvalues A1 =
1.0, A2 = 0.5, and A3 = 0.1

To refine the classification of these measures, we compared their results by
computing the RMSD between them. Measures drz, dg, drE, dixr, and sppa:
(since sppqt it is not a distance, we inverted the result, dgnat = 1 — $Bhat,
before the comparison) are similar to each other (RMSD ~ 0). We can define
another subgroup with the measures s,p, s¢sp, and spisp. These measures give
the same result, RMSD = 0.
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6.3 Shape

Of the measures that we analyzed, only dsy/p is invariant to shape changes.
The behavior for dsp4 is shown in Fig. 3(b). The other ds measures show sim-
ilar behavior where tensors that differ can have a distance of zero depending
on which anisotropy measure is used. dgyg4, can give random values depending
on the shape of the diffusion. The behavior of dy o is shown in Fig. 7, The di-
agonal is black, and the greatest distance occurs between linear and spherical
tensors.

Measures Sg, Stsp, and Sp.sp all behave similar to what is shown in Fig. 8.
Tensors with linear shape are very similar to themselves. However, tensors
with planar or spherical shapes are less similar to themselves. Thus, the
similarity between a tensor and itself depends on its shape. Because of this

L P S L

Fig. 7. Comparison plot of dr2 for shapes changing from linear to planar to spherical
to linear

L P S L

L P S L

Fig. 8. Comparison plot for changing shapes for Sisp
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L P S L

L P S L

Fig. 10. Comparison plot for shapes changing from linear (L) to planar (P) to
spherical (S) to linear (L). The plot shows dxr. A1/As = 100 for tensors with
“pure” linear and planar shape

behavior, we cannot convert these similarity measures to distance measures,
which fulfill metric condition (5). We list this in Table 2 as not self-similar (1).
The behavior under shape changes for s,,; is shown in Fig.9. The values
on the diagonal are brighter than the values next to it because tensors are
similar to themselves. However, the actual values on the diagonal are not all
the same. Thus, for sp,; the similarity between a tensor D and itself also
depends on the shape of D). We list this in Table 2 as not self-similar (2).
The plots for measures based on Riemannian geometry and statistics (see
Sects. 4.4 and 4.5) show steep edges in areas where at least one of the eigen-
values is very small. This is shown for d, in Fig. 10, where A /A3 = 100 for
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tensors with “pure” linear and planar shape. This behavior is listed as sensi-
tive in Table 2. In medical data, the chance to be exactly on the very steep
part is small because the fractions between eigenvalues are not that large.
However, it is always possible that two similar tensors are on opposite sides
of this edge, which will result in a large difference. Also, noise in medical data
can change the fractions of the eigenvalues in such a way that the tensors
come closer to the steep edges, that is, small variations in the shape results
in large variation in the measures.

6.4 Robustness

We repeated the experiments of the previous sections after adding noise as
described in Sect. 5.4 to the input tensors. The noise consists of uniformly dis-
tributed random values € € [—0.01,0.01], which are added to the components
of the tensors. We then compare the root mean square difference (RMSD) be-
tween the output of the normalized plots with and without noise. The results
are shown in Table 3. The more robust the measures are to noise, the lower
the values in the table.

The shape experiments were done with tensors that have varying eigen-
values but with constant mean diffusivity, % = 1. The eigenvalues are
changed from linear (A; > A2 = A3) to planar shape (A1 = A2 > A3), from
planar to spherical shape (A} = Ay = A3), and back to linear shape.

The orientation experiments were done with a linear tensor (A\; = 1.0,
A2 = A3 = 0.1) that is rotated. The size experiments use the same linear
tensor, which is enlarged by multiplying all components of the tensor with
values from 0 to 60. The noise is added to the tensors after the changes in
shape, orientation, and size were done.

In Table 2 the robustness of the measures is summarized. Some measures
prove to be robust within only one or two of the invariant properties (shape,

Table 3. Root mean square difference (RMSD) between the sets of tensors with
and without small variations

Equation Shape Orientation Size

dsra (8) 0.007 0.372 0.279
dsyp (8) 0.316 0.332 0.002
9)

0.014 0.048 0.006

SBhat

dang, ( 0409  0.006  0.338
dr> (10)  0.005 0013  0.002
Sep (11)  0.009  0.024  0.002
Stsp (12)  0.009 0024  0.002
Snisp (13)  0.003  0.024  0.246
Spni (21)  0.008  0.018  0.237
dy (15) 0012  0.044  0.007
dre (17) 0012 0042  0.007
dcr (18)  0.013  0.056  0.007
(19)
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Fig. 11. Comparison plot showing the difference between the response of dxr, to a
set with and without random noise. RMSD = 0.013

orientation, and size), that is, they have one or two relatively low values in
Table 3. We classify them as such. For example, measure dsp4 is robust to
changes in shape only. If the plots do not have steep parts, that is, high
discontinuities, thus the values in Table 3 are small, we consider the noise
robustness of the measures to be good for all.

Measure dr, proves to be the most robust measure. Measure dg,g, only
takes the main diffusion direction into account. If the shape of the tensor is
not linear, this direction can change randomly when small changes are made
to the tensors. Thus, dyng, does not behave well under noise.

From the other measures, only the shape plots for dy, dr.g, dx 1, and sppa:
show steep edges. These edges appear where the shapes of the tensors are very
linear or planar. Thus, in these areas the measures are very sensitive to noise.
Figure 11 shows this behavior for dgr,.

6.5 Metric

All metrics are symmetric, this can be also seen in the plots, since they are
symmetric by the diagonal.

Similarity measures have to be transformed into distance measures be-
fore we can evaluate if they are metrics. Similarity measures with increases
as size change behavior or not self-similar as shape change behavior have a
similarity s(A,A) that depends on the size or shape of tensor A. Thus they
cannot directly be translated into a distance measure that always fulfills met-
ric condition (5). Measures ds, dgng,, and Spesp are invariant to one or more
of the properties of Sect.3. Thus, there are many tensors A # B for which
d(A,B) = 0, which invalidates metric condition (5).

It is clear that distance measures dr2, dg, dr, di 1, fulfill metric conditions
(5) and (6). They also fulfill the triangle inequality (7) if the tensors A and B
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are infinitesimally close [2, 12, 16]. Therefore, they are Riemannian metrics.
Because this is sufficient for the applications that need the distances to be
a metric, we list them as yes for the metric property in Table 2. sgpqt is a
similarity measure, and so it cannot be a metric. However, it can be turned
into one as is shown in [5]. Thus, we list yes for the metric property in Table 2.

7 Conclusions

Depending on the application, different distance or similarity measures can be
used. Using the previous analysis of properties we can identify from a practical
point of view the differences and similarities between the different measures.

It turns out that the behavior of s, and s, is similar, even though s,
deals with the tensor as if it is a vector. The L? distance do is relatively
simple, but shows good behavior. Also, all measures listed in Sects. 4.4 and
4.5 give practically the same results.

Except for sppqt, the similarity measures S cannot easily be converted into
metrics, thus if that is a requirement for the application (e.g., for calculating
geodesics), those measures are ruled out. This also rules out the ds measures
and dgng,. Measure drp can be a good measure in that case. When using
measures dy, dg, dx 1, and Sppat, one has to be careful with the sensitivity
to small shape changes close to the degenerate cases.

Throughout a complete brain, all diffusion properties vary. To take all
properties into account when registering brains, no measure should be chosen
that is invariant to any of them. Also, if the weighting for all DTs used in the
registration must be the same, the similarity measures that list increases for
size or not self-similar for shape should not be used because even for equal
DTs, the computed similarities can vary depending on size and shape.

For interpolation of DT's the triangle inequality condition must be satisfied;
therefore, only measures that are metrics can be used. Work has been done
in the comparison of the different interpolation methods as in Arsigny et al.
[2], Pennec et al. [12], and Kindlmann et al. [9].

We created an overview of existing distance and similarity measures for
matching diffusion tensors and classified the measures. Such an overview, in-
cluding recently introduced measures, was not previously available. We evalu-
ated the properties of these measures and summed them up in Table 2. When
researchers want to use a similarity or distance measure for their concrete
application, they can define which properties their measure should have to
and then study the measures that fulfill their requirements.

When new measures are introduced, it will be beneficial to classify them
and see for which properties they differ from already existing measures, and
how they differ. So in which sense they improve existing measures.

This chapter aims to help in the first selection of these measures, the next
step is to test what measure performs better in a concrete application, for
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example, white matter segmentation. If the goal is to segment the brain using
DTs, the choice of measure depends on which properties are of importance for
a given area. For example, segmenting the thalamic nuclei requires dependency
of orientation for the measure used [21], while white and grey matter can be
distinguished using the tensor shape.

For future work, it would be necessary to study the behavior of these
measures under a more realistic model of noise. Furthermore, it would be
useful to compare the measures in a concrete practical set up and see whether
they behave according to our expectations. Also for some applications, such
as segmentation and registration, it can prove useful to compare methods
that apply the measures to the DTs directly with methods that segment or
register derived data, such as fibers (the output of a fiber tracking algorithm).
We also plan to use the measures for quantitative analysis and visualization of
differences between tensors in small areas of the heart and brain DTI datasets.
We expect that the overview of properties, that we presented in this work,
will simplify the analysis of the results for these applications. It can also give
indications for which properties a new measure for DTs might be useful. For
example, having a measure of which the result for size changes is fractional
(listed as ratio in Table 2), where the shape-dependency is not sensitive, can
prove useful.
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