
Chapter 2
Deterministic and Statistical Approaches
for Studying Rogue Waves

Depending on the objective in mind, two main approaches can be used for the water
wave description, based on deterministic or statistical methods. Deterministic equa-
tions are very useful and powerful in understanding and describing the underlying
physics of water waves; namely, they may be used in practice to estimate in detail
wave impact upon structures and ships. Statistical equations are usually used to es-
timate typical wave motion and probability of this or that wave situation. When the
sea surface elevation is such a complicated function of space and time, a statisti-
cal description is easier than a detailed description, but still may provide sufficient
information about the waves.

In this chapter, we introduce first the basic equations governing the dynamics of
water waves. The scales of the wavelength considered are long enough to neglect
surface tension. Hence, the waves are called gravity waves since their main restor-
ing force is gravity. Within the framework of water waves, we discuss and justify
the different assumptions used to derive from the most complete system, the Navier-
Stokes equations—a simplified set of equations describing realistic wave dynamics.
In this way, the assumptions of incompressible and perfect fluid and irrotational
motion are introduced successively to derive the simplified model. The simplified
equations fall within the scope of the potential theory. Nevertheless, some of these
assumptions may become questionable—for instance,, in shallow water where bot-
tom friction can be important. Near the bottom a boundary layer of thickness of
O(2ν/Ω) develops, where ν and Ω are the molecular viscosity and the free surface
wave frequency. So, for swells of 10 s, the boundary layer thickness is 0.17 cm with
ν = 0.01 cm2 s−1. The role of molecular viscosity in the formation of rogue waves
can be considered as negligible. For turbulent boundary layers, the turbulent viscos-
ity is much larger than the molecular viscosity ν and bottom friction may influence
rogue wave dynamics. This aspect is discussed in Sect. 4.1.2. In the presence of
breaking waves, the motion cannot be considered as irrotational and the dissipation
of the waves is mainly due to turbulence (and not to molecular viscosity). Sec-
tion 2.3 introduces concepts that will be used in subsequent chapters. Therefore,
we focus attention on various physical mechanisms that contribute to the formation
of extreme water wave events. Despite the complexity of the sea surface, we are
aimed at describing quite simple realistic models that capture the essential features
of rogue-wave phenomena.
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2.1 Deterministic Equations

2.1.1 Mass and Momentum Conservation Equations

An Eulerian description of the fluid motion is adopted. The motion is described by
the velocity field U = (U,V,W )t as a function of time T , horizontal coordinates
(X ,Y ) and vertical coordinate Z. The illustration of the problem geometry is pro-
vided in Fig. 2.1. The unperturbed surface coincides with the plane OXY at Z = 0,
and the horizontal bed is situated at Z = −D. Typically, the waves are supposedly
propagating along the OX direction.

The mass conservation or continuity equation is

∂ρ
∂T

+∇ · (ρU) = 0, (2.1)

or
Dρ
DT

+ρ∇ ·U = 0, (2.2)

where ρ is the water density, ∇· is the divergence operator, and D / DT is the material
derivative given by

D
DT

=
∂
∂T

+(U ·∇) , (2.3)

∇ = (∂/∂X ,∂/∂Y,∂/∂Z)t is the gradient operator and (•)t indicates
transposition.
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Fig. 2.1 Configuration of the problem
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The incompressibility condition of water reads Dρ/DT = 0, hence from the con-
tinuity equation we have

∇ ·U = 0. (2.4)

The momentum-conservation equation, based on Newton’s second law, reduces
to the Navier-Stokes equation when considering water as an incompressible Newto-
nian fluid. The vector form of this equation is

ρ
DU
DT

= −∇P+ρF+μΔU (2.5)

where P is the pressure, μ is the dynamic viscosity of the fluid, and Δ is the Lapla-
cian operator Δ = ∇ ·∇. The first and last terms on the Right Hand Side (RHS) of
this equation correspond to pressure forces and viscous forces, respectively, while
F is the body force due to the gravitational acceleration: F = g.

The corresponding X–, Y – and Z– momentum equations are given by

ρ
DU
DT

= − ∂P
∂X

+ρFX +μΔU, (2.6)

ρ
DV
DT

= −∂P
∂Y

+ρFY +μΔV, (2.7)

ρ
DW
DT

= −∂P
∂Z

+ρFZ +μΔW, (2.8)

where FX , FY and FZ are the components of the body forces F experienced by the
fluid. Hence Eq. (2.5) is rewritten as follows:

DU
DT

= − 1
ρ
∇P+g+νΔU, (2.9)

where ν = μ/ρ is the kinematic viscosity.
Equation (2.9) may be written as follows:

∂U
∂T

+
1
2
∇
(
U2)= U×ω− 1

ρ
∇P+g+νΔU, (2.10)

where ω = ∇×U is the vorticity. The operator ∇× is the curl operator. By taking
the curl of Eq. (2.9) and using Eq. (2.4), we obtain the vorticity equation

Dω
DT

= (ω ·∇)U+νΔω. (2.11)

For 3D motions, the nonlinear term on the RHS of Eq. (2.11) is responsible for
the vortex stretching and tilting while the linear term corresponds to the diffusion of
vorticity due to viscosity.

Generally, water is considered as a weakly viscous fluid. In the vicinity of free
surfaces and solid boundaries (the sea bottom), the thickness of the vortical layer is

O(ν 1/2). Hence, it will be assumed that the vortical part of the flow is confined to
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a thin boundary layer of thickness that is small compared to the other scales of the
problem, so viscous effects are dropped from the equations.

We can consider that water waves have been generated from a fluid that was ini-
tially at rest—that is, from an irrotational motion. When the fluid is incompressible
and inviscid, and external forces derive from a potential, the Kelvin-Lagrange the-
orem states that the motion remains irrotational. Hence, |ω| = 0 and the velocity U
derives from a potential φ(X ,Y,Z,T ) such that

U = ∇φ . (2.12)

Under the hypotheses of irrotational motion and inviscid fluid, Eqs. (2.4) and
(2.10) become, respectively

Δφ = 0 (2.13)

and
∂U
∂T

+
1
2
∇
(
U2)= − 1

ρ
∇P+g. (2.14)

Substituting ∇φ for U in Eq. (2.14) gives

∇
(
∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

)
−g = 0 (2.15)

Noting that g = (0,0,−g)t so that g = ∇(−gZ), the previous equation takes the
following form

∇
(
∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ

)
= 0. (2.16)

Integration with respect to space variables yields the Bernoulli equation

∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ = C (T ) . (2.17)

The time dependent function C(T ) can be incorporated into the potential φ by
the following transformation

φ → φ +
T∫

0

C (ξ )dξ . (2.18)

Thus, Eq. (2.17) is rewritten as follows:

∂φ
∂T

+
1
2
∇φ ·∇φ +

P
ρ

+gZ = 0. (2.19)

To solve the Laplace equation (2.13), conditions on boundaries are needed.
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2.1.2 Boundary Conditions

The fluid domain that is considered is bounded by two kinds of boundaries: the
interface, which separates the air from the water; and the wetted surface of an im-
penetrable solid (the sea bottom, for instance). The air-sea interface is assumed to
be a free surface whose equation is given by

S (X ,Y,Z,T ) = 0. (2.20)

The kinematic boundary condition states that the normal velocity of the surface
is equal to the normal velocity of the fluid at the surface. The normal velocity of the
surface is

Vn = − 1
|∇S|

∂S
∂T

, (2.21)

and the normal velocity of the fluid is

Un = n ·U. (2.22)

where n = ∇S/|∇S| is the unit vector normal to the surface.
The mathematical expression of the kinematic boundary condition is therefore

Vn = Un. (2.23)

Hence,
∂S
∂T

+U ·∇S = 0, (2.24)

DS
DT

= 0. (2.25)

Equation (2.25) means that a fluid particle located on the free surface will remain
on it.

An alternative form of the surface equation is

S (X ,Y,Z,T ) = η (X ,Y,T )−Z = 0, (2.26)

where η(X ,Y,T ) represents the free surface elevation measured from Z = 0. Thus,
Eq. (2.25) takes the form

∂η
∂T

+U
∂η
∂X

+V
∂η
∂Y

−W = 0 on Z = η (2.27)

or, equivalently

∂η
∂T

+
∂φ
∂X

∂η
∂X

+
∂φ
∂Y

∂η
∂Y

− ∂φ
∂Z

= 0 on Z = η . (2.28)

Equations (2.23), (2.25) and (2.28) correspond to different forms of the kinematic
boundary condition.
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Since η and φ are both unknown on the free surface, a second boundary condi-
tion is needed: the dynamic boundary condition. This condition is derived from the
Bernoulli equation (2.19). When surface tension is neglected, the pressure P in the
fluid on the free surface is equal to the atmospheric pressure Pa. Hence, the Bernoulli
equation (2.19) on the free surface takes the form

∂φ
∂T

+
1
2
∇φ ·∇φ +

Pa

ρ
+gZ = 0 on Z = η . (2.29)

The atmospheric pressure Pa is chosen as reference and we can set Pa equal to
zero without loss of generality. Hence,

∂φ
∂T

+
1
2
∇φ ·∇φ +gZ = 0 on Z = η . (2.30)

For the rigid boundary, we have S(X ,Y,Z) = Z+D(X ,Y ) = 0, thus Z =−D(X ,Y )
is the equation of the sea bottom and Eq. (2.28) takes the form

∂φ
∂X

∂D
∂X

+
∂φ
∂Y

∂D
∂Y

+
∂φ
∂Z

= 0 on Z = −D(X ,Y ) . (2.31)

Although the Laplace equation is a linear partial differential equation, the dif-
ficulty in solving water wave problems arises from the nonlinearity of kinematic
and dynamic boundary conditions. Furthermore, these equations apply on a surface
that is unknown a priori. To summarize, the water wave problem reduces to solve
the system of equations consisting of the Laplace equation (2.13), kinematic bound-
ary condition (2.28), dynamic boundary condition (2.30) and sea bottom condition
(2.31), with initial and boundary values for φ and η .

2.1.3 Linearization: Equations for Small Amplitude Waves

As emphasized in the previous section, we need values of the partial derivatives of
the potential φ on a surface η that is unknown a priori. To solve the water wave
equations, a free surface known a priori will be introduced through the linearization
of the problem, which corresponds to an approximation of the nonlinear problem.

The nonlinearity of Eq. (2.30) is due to the presence of the convective term of
the momentum equation, namely (U ·∇)U. Let us consider the simple example of
a two-dimensional (2D) fluid motion. For waves propagating along the X direction,
we consider the X–momentum equation and thus the corresponding nonlinear term
is U∂U/∂X +V∂U/∂Y. Let us compare the first term to the linear term ∂U/∂T
of the momentum equation. Let A, Tp and λ be the characteristic amplitude, period
and wavelength of waves on the free surface, respectively. During a specific period,
the fluid particles suffer displacements of order A. The corresponding fluid velocity
and horizontal velocity gradient are then approximately A/Tp and A/Tpλ . Hence,
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U
∂U
∂X

= O

(
A2

λT 2
p

)

and
∂U
∂T

= O

(
A
T 2

p

)

.

The linearization condition can, therefore, be written as
∣
∣
∣
∣U

∂U
∂X

∣
∣
∣
∣<<

∣
∣
∣
∣
∂U
∂T

∣
∣
∣
∣→→→ A << λ .

The condition for linearization of the equations is that the amplitude is small
against the wavelength. Using λ = 2π/K, where K is the wavenumber, the previous
equation yields to the condition

ε = AK << 1, (2.32)

where ε is the linearization parameter. Physically, this parameter is the wave steep-
ness.

The water wave equations, which are nonlinear, can be transformed into a se-
quence of linear problems by using a perturbation procedure. Let us assume the
following perturbation expansions in the parameter ε for the unknowns φ and η
(i.e., Mei 1983 or Johnson 1997)

φ (X ,Y,Z,T ) =
∞

∑
n=1

εnφn (X ,Y,Z,T ), (2.33)

η (X ,Y,T ) =
∞

∑
n=1

εnηn (X ,Y,T ). (2.34)

The temporal and spatial derivatives of the velocity potential φ , which occur in
the free surface conditions (2.28) and (2.30), are expanded in the Taylor series about
the still water level Z = 0:

∂φ
∂ r

(X ,Y,Z = η ,T ) =∑ηn

n!
∂ n

∂Zn

(
∂φ
∂ r

)
(X ,Y,Z = 0,T ), (2.35)

where r may represent temporal or spatial variables.
Substituting expansions (2.33), (2.34) and (2.35) into Eqs. (2.13), (2.28), (2.30),

(2.31), and collecting the coefficients of the first power of ε , one finds

Δφ1 = 0,−D < Z < 0, (2.36)

∂η1

∂T
− ∂φ1

∂Z
= 0 on Z = 0, (2.37)
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∂φ1

∂T
+gη1 = 0 on Z = 0, (2.38)

∂φ1

∂X
∂D
∂X

+
∂φ1

∂Y
∂D
∂Y

+
∂φ1

∂Z
= 0 on Z = −D. (2.39)

For small amplitude water waves ε << 1, we can ignore the terms of order O(εn)
with n > 1 in the expansions of (2.33), (2.34). Hence, the velocity potential and free
surface elevation are approximated as

φ (X ,Y,Z,T ) = εφ1, (2.40)

η (X ,Y,T ) = εη1. (2.41)

The corresponding linear system of equations to be solved is

Δφ = 0,−D < Z < 0, (2.42)

∂η
∂T

− ∂φ
∂Z

= 0 on Z = 0, (2.43)

∂φ
∂T

+gη = 0 on Z = 0, (2.44)

∂φ
∂X

∂D
∂X

+
∂φ
∂Y

∂D
∂Y

+
∂φ
∂Z

= 0 on Z = −D. (2.45)

2.1.4 Dispersion Relation

For the sake of simplicity, the bottom elevation, D, is considered to be constant.
Hence, Eq. (2.45) becomes:

∂φ
∂Z

= 0 on Z = −D. (2.46)

We look for a 2D periodic solution of the linear system of Eqs. (2.42), (2.43),
(2.44) and (2.46) that admits the following velocity potential:

φ (X ,Z,T ) = Bcosh [K (Z +D)]sin(KX −ΩT ) , (2.47)

where B is a constant and Ω and K are the cyclic frequency and wave number,
respectively. This form automatically satisfies the Laplace equation (2.42) and the
bottom condition (2.46). Substituting (2.47) into the dynamical condition (2.44),
one obtains

η (X ,T ) =
BΩ
g

cosh(KD)cos(KX −ΩT ) . (2.48)

Let

A =
BΩ
g

cosh(KD) . (2.49)
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Hence,
η (X ,T ) = Acos(KX −ΩT ) , (2.50)

and the potential can be rewritten as follows:

φ (X ,Z,T ) =
Ag
Ω

cosh [K (Z +D)]
cosh(KD)

sin(KX −ΩT ) . (2.51)

The linear dispersion relation is obtained by stating that the velocity potential
(2.51) and the free surface elevation (2.50) correspond to nontrivial solutions satis-
fying the kinematic boundary condition (2.43),

Ω2 = gK tanh(KD) . (2.52)

The frequency Ω is given as a function of K in Fig. 2.2. Equations (2.50) and
(2.51) represent 2D gravity waves of permanent form propagating with a constant
phase velocity on water of uniform depth.

Equation (2.52) links the frequency Ω to the wave number, K. The phase velocity
is given by

Cph =
Ω
K

=
√

g
K

tanh(KD). (2.53)

Since Cph
′(K) �= 0,∀K �= 0, the gravity water waves are dispersive. This is an im-

portant property of water waves, which means that waves of different wave numbers
propagate at different phase velocities. Nevertheless, a stronger condition introduced
by Whitham (1974) to define dispersive waves is ∀K : Ω′′(K) �= 0.
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Fig. 2.2 Water wave dispersion relation curve as normalized frequency versus dimensionless water
depth. The long wave velocity is defined as CLW = (gD)1/2
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Fig. 2.3 Phase (dotted line) and group (solid line) velocity dependencies (Cph and Cgr are normal-
ized by CLW ) versus the dimensionless depth. Note logarithmic scale of the abscissa

The group velocity is defined as

Cgr =
∂Ω
∂K

=
g

2Ω
[
tanh(KD)+KD

(
1− tanh2 KD

)]
. (2.54)

In the shallow water limit KD → 0, the group and phase velocities become equal
and Cph ≈ Cgr → CLW ,CLW = (gD)1/2; this means that the waves become nondis-
persive. The velocities Cph and Cgr are given in Fig. 2.3 as functions of the dimen-
sionless depth KD.

The 3D plane wave solution is given by the following formulas:

η (X,T ) = Acos(K ·X−ΩT ) (2.55)

and

φ (X,Z,T ) =
Ag
Ω

cosh [|K|(Z +D)]
cosh(|K|D)

sin(K ·X−ΩT ) , (2.56)

where K is the wave vector and X = (X ,Y )t . The corresponding linear dispersion
relation is

Ω2 = g |K| tanh(|K|D) . (2.57)

Once the velocity potential φ is known, it is easy to calculate the velocity field
U = ∇φ(X,Z,T ). The velocity components are

U =
AgKX

Ω
cosh [|K|(Z +D)]

cosh(|K|D)
cos(K ·X−ΩT ) , (2.58)
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V =
AgKY

Ω
cosh [|K|(Z +D)]

cosh(|K|D)
cos(K ·X−ΩT ) , (2.59)

W =
Ag |K|
Ω

sinh [|K|(Z +D)]
cosh(|K|D)

sin(K ·X−ΩT ) , (2.60)

where KX and KY are the X– and Y – components of K, respectively. The pressure
P(X; Z; T ) is obtained from the Bernoulli equation (2.19).

For infinite depth D → ∞, the bottom condition becomes

∇φ → 0 as Z →−∞, (2.61)

and the corresponding 2D gravity waves of permanent form propagating with a con-
stant phase velocity are given by Eq. (2.50) and

φ (X ,Z,T ) =
Ag
Ω

exp(KZ)sin(KX −ΩT ) (2.62)

with
Ω2 = gK. (2.63)

2.2 Statistical Description

The second approach to studying waves is statistical. Water waves, of course, obey
physical laws. They all, in principle, may be taken into account in a deterministic
model, and therefore this model will be able (theoretically) to describe wave dynam-
ics. In practice, this approach fails due to incomplete information about the initial
state of the fluid, complexity of the physics, and growing fluctuations (this means
that small perturbations with time may result in very different dynamics). Gener-
ally, the system of equations suffers from sensitive dependence on initial conditions.
This feature is met in chaotic and turbulent systems. We know from our everyday
experience that sea waves behave irregularly and unpredictably in even rather short
time scales, although they show some periodicity. So, the dynamic system Ocean
manifests random wave dynamics. Therefore, at certain sea conditions (significant
wave height, wave age, winds, currents, etc.), different realizations (concerning the
wave elevation – they are functions η(X, T )) of sea waves are equally possible
and may be considered as the object of investigation. The collection of realizations
{η j(X, T )} (integer subscript j counts them) builds an ensemble. In that way, the
sea surface at one moment of time T0 in one point X0 is represented by random
functions numbered by the index j: η j(X0,T0) with some statistical properties. This
approach is referred to as stochastic and is aimed at a statistical description of sea
wave dynamics.
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The ultimate goal here is to describe and foresee the dynamics of certain real-
izations on the basis of the dynamics of averaged statistical characteristics. This
approach is currently the center of attention of both theorists and experts, especially
in the fields of ocean and atmospheric research; it is widely used in ocean enge-
neering. To obtain the time-dependence of statistical properties, one may perform
stochastic simulations—i.e., to use deterministic models to compute a number of
randomly chosen realizations (Monte Carlo simulations). Thus, one takes the posi-
tion that the simulation of a sufficiently large but finite number of realizations repre-
sents the evolution of the whole ensemble in a statistical sense. The other approach
is to compose and study models for direct computation of the evolution of statis-
tical wave parameters. This is aimed at the theories that deal with spectral kinetic
equations.

2.2.1 The Rayleigh Probability

Let us consider the surface displacement η(X, T )—a function of space and time. Its
autocorrelation function is defined as

R(X,T,r,τ) = E [η (X,T ) ·η (X+ r,T + τ)] , (2.64)

where E[·] denotes statistical averaging over the ensemble of realizations η j(X, T ):

E [η (X,T ) ·η (X+ r,T + τ)] = lim
N→∞

1
N

N

∑
j=1

η j (X,T ) ·η j (X+ r,T + τ). (2.65)

In practice, N is finite, but it should be sufficiently large to provide a good esti-
mate of the limit (2.65). Averaging over an ensemble is convenient for reproducible
laboratory experimental conditions, but not the real ocean, where waves do not
repeat themselves. For natural observations, a long time series is split into many
shorter samples—“realizations”—that are used for averaging. This approach needs
the random process to be stationary (i.e., its statistical properties do not depend on
time). If these two ways of averaging result in the same statistics, the process is
called ergodic. Although it is impossible to prove the ergodicity property for water
waves via direct natural experiments, it is commonly invoked for the study of waves
on the sea surface.

The statistical stationarity and statistical homogeneity in space imply that the
autocorrelation function does not depend on X and T : R = R(r, τ).

Averaging (2.64) may be also rewritten in terms of the probability function as

R(r,τ) =
∞∫

−∞

η1η2 f (η1,η2,r,τ)dη1dη2, (2.66)

where f is the two-point probability density function defined as
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f (η1,η2,r,τ) =
∂ 2F (η1,η2,r,τ)

∂η1∂η2
, (2.67)

and the distribution function F measures probability such that η(X, T ) and η(X +
r,T + τ) do not exceed η1 and η2, respectively.

F (η1,η2,r,τ) = P(η (X,T ) ≤ η1 |η (X+ r,T + τ) ≤ η2 ) . (2.68)

Functions F and f do not depend on X and T if the field is both statistically
homogeneous in space and stationary.

The probability distribution function or probability density function defines the
statistical properties of the random field. To simplify the analysis of the statistics,
integral parameters are often used. The nth statistical moment is defined as

μn = E [ηn] =
∞∫

−∞

ηn f (η)dη , (2.69)

where f is the probability density function for η . Due to the normalization of the
probability density function,

μ0 = 1. (2.70)

The centered moments are defined as

μc
n = E [(η−μ)n] =

∞∫

−∞

(η−μ)n f (η)dη , μ ≡ μ1. (2.71)

Only few low-order statistical moments have specific names due to their great
importance in statistics. The first statistical moment μ in this instance is the mean
water level. The variance σ2 is equal to the second central moment

σ2 = μc
2 = E

[
(η−μ)2

]
, (2.72)

and σ is the standard deviation. The skewness γ and kurtosis κ are defined through

γ =
μc

3

σ3 (2.73)

and

κ =
μc

4

σ4 . (2.74)

The skewness is usually used to estimate the vertical asymmetry of the sea sur-
face elevation, whereas the kurtosis corresponds to the peakedness of the distribu-
tion when compared with the normal distribution (see Massel 1996).

The Central Limit Theorem proves that a superposition

η =∑
j
η j (2.75)
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of statistically independent1 variables η j with mean values μ j and variances σ2
j

results in the Gaussian probability density

f (η) =
1√

2πσ
exp

[

− (η−μ)2

2σ2

]

(2.76)

with mean
μ =∑

j
μ j (2.77)

and variance
σ2 =∑

j
σ2

j . (2.78)

For Gaussian statistics, the skewness and kurtosis are γ = 0 and κ = 3, respec-
tively.

Linear superposition of random periodic waves

η (X,T ) =∑
n

An cos(KnX−ΩnT +θn) (2.79)

is a natural representation of sea waves. Here, amplitudes An obey some probability
distribution, and frequencies Ωn and wave vectors Kn are dependent according to
the dispersion relation; the wave phases θn are supposed to be uniformly distributed
on the interval [0, 2π]. In this approximation, the surface elevation is described by
the Gaussian statistics (2.76).

Let us now consider the linear superposition (2.79) of statistically independent
Gaussian processes with variances σ2

n . In the narrow-band assumption, the field may
be represented in the following form

η = |B|cos(KcX−ΩcT +ϕ) (2.80)

where B = |B|exp(iϕ) is a slowly varying function of X and T , and σ2
n is rapidly

decaying when values Kn (or Ωn) are not close to Kc (or Ωc, respectively). In this
limit, the distribution for the linear wave amplitude |B| is described by the Rayleigh
function (Massel 1996)

f (|B|) =
|B|
σ2 exp

(

−|B|2

2σ2

)

. (2.81)

In the limit of small bandwidth, the wave height is twice the envelope, H = 2|B|,
and therefore

f (H) =
H

4σ2 exp

(
− H2

8σ2

)
, (2.82)

1 Two random variables are statistically independent if their joint probability density function may
be factorized: f (x,y) = fx(x) · fy(y).
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and the probability that the wave height exceeds the value H (the exceedance prob-
ability) is

P(H) = 1−F (H) = exp

(
− H2

8σ2

)
. (2.83)

In Chap. 1, we introduced the significant wave height, which is the mean value
of one-third of the highest waves. According to this definition and formula (2.82),
the significant wave height is defined as (Massel 1996)

Hs =
3
4

∞∫

σ
√

8ln3

H2

4σ2 exp

(
− H2

8σ2

)
dH ≈ 4.004σ . (2.84)

Integral (2.84) may be expressed through the error function (see Massel 1996).
Usually a simplified relation is used, Hs = 4σ . Hence, formula (2.83) may be written
in the convenient form

P(H) ≈ exp

(
−2

H2

H2
s

)
(2.85)

that helps to easily estimate the probability of high waves. For instance, a freak
wave (H > 2Hs) should appear once among about 3,000 waves. For a typical sea
wave period of 10 s, this gives the estimation that one should meet a freak wave
every 8–9 h. In a Gaussian sea, a wave exceeding three times the significant height
may occur once in 20 years.

Study of rogue waves in the framework of Gaussian statistics is already a tricky
task. But waves (especially extreme waves) in the real ocean are obviously non-
Gaussian due to various reasons: dissipation including wave breaking, insufficiently
narrow spectrum, and nonlinear effects. Because rogue waves are rare events, and
the sea state is persistently changing, the statistical stationarity condition also breaks
down.

Nonlinear effects contribute to bound corrections to the wave shape as well as
to the interaction between different harmonics, so periodic waves in superposition
(2.79) become correlated. Due to the nonlinearity, waves become asymmetric: the
crests are sharper and higher, while the troughs are flatter and shallower. The ap-
proximate bound nonlinear corrections may be taken into account with the help of
the perturbation technique. In the deep-water case, the second-order small steepness
(KA << 1) approximation gives

η (X ,T ) = Acos(KX −ΩT +θ)+
1
2

KA2 cos [2(KX −ΩT +θ)] . (2.86)

for a regular monochromatic (Stokes) wave.
Assuming that the linear wave amplitude preserves the Rayleigh distribution,

Formula (2.85) can be used to estimate the probability exceedance for wave crests
(ηcr) and troughs (ηtr) by
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P(ηcr > η) = exp

(

− 8
H2

s

(√
1+2Kη−1

)2

K2

)

(2.87)

and

P(ηtr > η) = exp

(

− 8
H2

s

(√
1−2Kη−1

)2

K2

)

. (2.88)

Formulas (2.87) and (2.88) predict that extreme waves have larger crests than
troughs. We should note, however, that representation (2.86) does not lead to a
change of the crest-to-trough wave height at this level of accuracy.

Different types of modified distribution functions, taking into account weak non-
linear bound corrections, were developed in Tayfun (1980), Tung and Huang (1985),
and Mori and Yasuda (2002) and many others (see survey by Prevosto 2001); other
modifications of the Rayleigh distribution are being developed, as are empirical for-
mulas. Apparently, second-order statistical models turn out to be insufficient for
the adequate description of rogue waves (Bitner-Gregersen and Magnusson 2005,
Rosenthal 2005, Petrova et al. 2007). Nonlinear corrections of higher orders should
be taken into account (Creamer et al. 1989, Huang et al. 1983, Zhang et al. 1999);
these corrections may enhance the probability of high waves by ten (Prevosto and
Bouffandeau 2002) or even one hundred (Stansell 2004, Forristall 2005) times!
Since nonlinear properties of surface waves depend on depth, the depth is one more
parameter in the statistical model (see Massel 1996).

The considered theory is applied to one-point observations. Real needs and re-
cent 3D observations require development of a statistical model describing wave
probability over a specific area. Reduction from the point statistics is not trivial for
this purpose (Forristall 2005, Socquet-Juglard et al. 2005), and may be very impor-
tant. Thus, Forristall (2005) estimates that for the air gap under a fixed structure
with a deck 50 m × 50 m, the maximum wave crest is almost 20% higher than the
one expected at a single point.

The sea state is rather changeable; this results in failure of the condition of statis-
tical stationarity. Donelan and Magnusson (2005) and Müller et al. (2005) show how
the probability of high waves grows in a mixed sea constituted by two wave trains.
Baxevani and Rychlik (2006) considered a Gaussian sea evolving in time and also
studied the effects of wave spreading. They report that the neglect of these effects
leads to an underestimation of the high wave probability.

2.2.2 Wave Spectra

The Fourier transform of the autocorrelation function R gives the wave spectrum

Ŝ (K,Ω) =
1

(2π)3

∞∫

−∞

R(r,τ) · exp [i(Kr−Ωτ)]drdτ. (2.89)
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Here, K = (KX ,KY ) is the wave vector and Ω is the frequency. The frequency
spectrum and wave vector spectrum (or two-dimensional wavenumber spectrum or
spatial spectrum) are defined, respectively, by

Ŝ (Ω) =
∞∫

−∞

Ŝ (K,Ω)dK, (2.90)

and

Ŝ (K) =
∞∫

−∞

Ŝ (K,Ω)dΩ. (2.91)

The wavenumber spectrum is defined as

Ŝ (K) =
π∫

−π

KŜ (K)dα, where K = (K cosα,K sinα) , (2.92)

and K = |K| > 0 is the wavenumber. The directional spectrum is

Ŝ (α) =
∞∫

0

dK

∞∫

−∞

dΩKŜ (K,Ω). (2.93)

The frequency and wave vector (wavenumber) spectra can be related to one an-
other; this can be achieved with the help of the dispersion relation. For instance, for
the deep-water case, the dispersion relation is as follows

KdK = 2
Ω3

g2 dΩ, (2.94)

and hence

Ŝ (Ω) =
2Ω3

g2 Ŝ (K) . (2.95)

For a real process—statistically stationary and statistically homogeneous in
space—the correlation function possesses the symmetry property R(−r,−τ) =
R(r,τ). Then the spectrum is real, and Ŝ (−K,−Ω) = Ŝ (K,Ω). That is why only
one half of the spectrum is commonly used in the analysis: Ω > 0 for the frequency
spectrum, and K > 0 for the wavenumber spectrum.

In the first approximation, the wave field may be represented as a linear superpo-
sition of periodic waves (2.79). To see this, let us consider a single cosine wave

η (X,T ) = A0 cos(K0X−Ω0T +θ) , (2.96)

where A0, K0 and Ω0 are defined, but θ is a random value uniformly distributed
within the interval [−π,π]. Then, the corresponding correlation function is
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R(r,τ)

=
π∫

−π

A0 cos(K0X−Ω0T +θ)A0 cos [K0 (X+ r)−Ω0 (T + τ)+θ ]
dθ
2π

=
A2

0

2
cos(K0r−Ω0τ) .

(2.97)

Furthermore, the wave spectrum for a single cosine wave reads

Ŝ (K,Ω) =
1

(2π)3

∞∫

−∞

R(r,τ) · exp [i(Kr−Ωτ)]drdτ

=
A2

0

4
(δ (K+K0)δ (Ω+Ω0)+δ (K−K0)δ (Ω−Ω0))

. (2.98)

Hence, for the linear superposition of periodic waves (2.79), the spectrum has the
form

Ŝ (K,Ω) =∑
n

A2
n

4
(δ (K+Kn)δ (Ω+Ωn)+δ (K−Kn)δ (Ω−Ωn)) . (2.99)

Thus, the wave spectrum is represented by Dirac delta functions and has non-zero
values in the (K, Ω) space only at points corresponding to the waves represented in
the superposition (2.79).

It is well known that the total energy of a linear plane progressive wave (2.96) is
defined as

En = ρg
A2

0

2
. (2.100)

Alternatively, Formula (2.98) gives

En = ρg

∞∫

−∞

Ŝ (K,Ω)dKdΩ. (2.101)

Therefore, the wave spectrum has the meaning of the wave energy distribution in
the space of wave vectors and frequencies; the quantity ρgŜ is called the energetic
spectrum.

The wave amplitudes may be expressed through the relation

A2
n = 2

∫
Ŝ (Kn,Ωn)dKdΩ, (2.102)

where the integration is effective only in closed intervals around ±Kn and ±Ωn.
Relations (2.99) and (2.102) allow us to define the spectrum as the squared absolute
value of the Fourier transform of the process. The relationship between the spec-
trum and the autocorrelation function (2.89) is then called the Wiener-Khintchine
Theorem. The spectrum concept is a powerful tool for investigating time series,
since it displays the distribution of wave energy among frequencies and scales rep-
resented by harmonics. Data processing in the spectral space (such as filtering) may
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be very powerful. Although the wave height, peak period, and main wave direction
are sufficient to describe sea states for most practical purposes, Olagnon and Mag-
nusson (2004) pointed out at the same time that it is likely that no spectral parame-
ter alone can provide useful information on the risk and potentially abnormal wave
events when it is estimated. Thus, this approach needs improvement to be applied
to the needs of rogue wave research.

2.2.2.1 Frequency Spectrum

For most of the numerous measurements of sea waves represented by time series
at one spatial point, only the frequency spectrum may be obtained. Since it is an
even function of frequency, instead of the symmetric function Ŝ (Ω) ,Ω ∈ (∞;∞),
only one part is used in experimental practice (so-called nonsymmetric spectrum):
S(Ω) = 2Ŝ (Ω) ,Ω ∈ [0;∞). The longer the record is, the more statistical material it
provides; on the other hand, sea conditions may change if the realization takes too
long. Usually wave record samples of duration 10–30 min are retrieved for analysis
to fulfill these contradictory requirements. The relationship between the spectrum
and the wave amplitudes persists

An =
√

2S (Ωn)ΔΩ, (2.103)

where ΔΩ is the frequency discretization interval. As an estimator for frequency
spectrum S(Ω), the Fourier transform of the wave field is usually employed in
practice:

S (Ω) ∼= 2 |ηΩ|2 , ηΩ =
1
T

T∫

0

η (t)exp(iΩt)dt. (2.104)

When analyzing the wave spectrum, the spectral moments are frequently used;
they are, in general, defined as

mn =
∞∫

0

ΩnS (Ω)dΩ. (2.105)

Inversing the Fourier transform (2.89), one obtains

R(τ = 0) =
∞∫

−∞

Ŝ (Ω)dΩ =
∞∫

0

S (Ω)dΩ, (2.106)

therefore the zero spectral moment is expressed through the second statistical
moment

m0 = μ2, (2.107)

or for the case of a field with zero mean,

m0 = μc
2 = σ2. (2.108)
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The mean wave frequency and wave period are defined as

Ωp =
m1

m0
, Tp =

2π
Ωp

= 2π
m1

m0
, (2.109)

although other possible ways to define the mean frequency exist.
Central moments

mc
n =

∞∫

0

(Ω−Ωp)
n S (Ω)dΩ (2.110)

are also used. The central moment mc
2 is a measure of the concentration of the spec-

tral wave energy around the frequency Ωp, which characterizes the spectral width
through the dimensionless parameter

δΩ =
1
Ωp

√
mc

2

m0
. (2.111)

The spectral shape displays the distribution of energy between scales and thus
contains information about the physical mechanisms supporting and generating the
waves. Concerning wind-generated waves, the energy growth due to the wind action
is balanced by the wave interactions—which transfer energy between frequencies—
and energy dissipation. Following the hypothesis of similarity for ocean waves, the
energy spectrum should be represented by a function of the form (Massel 1996)

S (Ω) = S
(
Ω,Xf ,T,Uw,g

)
, (2.112)

where Xf is the fetch, T is related to the wave age, and Uw is the wind velocity, or
alternatively,

S (Ω) = S (Ω,g,σ ,Ωp) . (2.113)

The suggested spectral shapes usually have the general form

S (Ω) = C1Ω−p exp
(
−C2Ω−q) . (2.114)

One of the most popular spectrums was suggested by Pierson and Moskowitz
(1964) on the basis of theoretical discoveries and field data analysis:

S (Ω) = αg2Ω−5 exp

(

−B

(
ΩUX

g

)−4
)

= αg2Ω−5 exp

(

−5
4

(
Ω
Ωp

)−4
) , (2.115)

where α = 8.1× 10−3, and B = 0.74. It was proposed for a fully developed sea,
when the wave phase speed is equal to the wind speed. It is controlled by a single
parameter, which is the wind speed.
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The Joint North Sea Wave Project (JONSWAP) Spectrum extends the Pierson-
Moskowitz Formula (2.115) to include fetch-limited seas through inclusion of one
more governing parameter manifesting peakedness, γ

S (Ω) = αg2Ω−5 exp

(

−5
4

(
Ω
Ωp

)−4
)

γδ (2.116)

δ = exp

[

− (Ω−Ωp)
2

2σ2
0Ω2

p

]

where γ = 3.3; σ0 = 0.07, if Ω≤Ωp; and σ0 = 0.09, if Ω > Ωp.

α = 0.076

(
gXf

U2
w

)−0.22

, (2.117)

Ωp = 7π
g

Uw

(
gXf

U2
w

)−0.33

. (2.118)

The JONSWAP Spectrum was built on the basis of an extensive wave measure-
ment in the North Sea. This area is very popular in recent studies, owing to its great
economical importance and large number of instrumental observations. With an ex-
tra free parameter, this shape is a convenient model spectrum. Other spectral shapes
have been suggested and may be found in Massel (1996), but will not be considered
in the present book.

2.2.3 Kinetic Models

So far, only statistically stationary and spatially homogeneous processes have been
considered. This approach does not describe a realistic sea state where the wave
field is evolving and changing from one area to another. The variability of waves
may be computed when local (in time and space) statistics, that are represented by
the wave spectrum, are considered. So, the spectrum function Ŝ depends on slow
variables X and T , and all the wave conditions and statistical wave parameters may
vary slowly in space and time.

Energy conservation results in the energy balance equation if there are no
currents. Generally, it is given by the balance equation for the wave action, N
(Whitham 1974)

dN
dT

= G, (2.119)

where

N =
Ŝ
Ωi

. (2.120)

Value Ωi is the intrinsic frequency (in absence of current) that is related to the
wavenumber through Eq. (2.57),
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Ω2
i = g |K| tanh(|K|D) , (2.121)

while the observed (apparent) frequency in the presence of the current with velocity
Uc is given by

Ω = Ωi +KUc. (2.122)

The term G on the RHS of Eq. (2.119) defines the external action and losses, is
called the collision integral, and takes into account different physical mechanisms:
income of energy from the wind (pressure fluctuations, wave-flow linear and non-
linear interactions); interaction with the atmosphere and sea turbulence; dissipation
due to bottom friction; wave breaking; and spectral nonlinear exchange, etc.

G =∑
n

Gn (2.123)

The wave action is a function of wave vector, apparent frequency, and slow vari-
ables X and T , thus the conservation of volume in space (X, K, Ω) results in

dN
dT

=
∂N
∂T

+
∂N
∂X

dX
dT

+
∂N
∂K

dK
dT

+
∂N
∂Ω

dΩ
dT

= G. (2.124)

The assumption that all changes happen much slower (in time and space) than
the period and length of the waves allows us to use the ray theory. Hence the wave
filed may be represented as

η = A(X,T )exp(iθ) , (2.125)

where θ is the phase. It is natural to define the local wave vector and frequency as

K(X,T ) =
∂θ
∂X

, and Ω(K,X,T ) = −∂θ
∂T

. (2.126)

These relations then give the kinematic conservation equations

∂K
∂T

+∇Ω = 0,
∂KX

∂Y
=

∂KY

∂X
, (2.127)

where K = (KX ,KY ), ∇= (∂/∂X ,∂/∂Y ). The second equation means that the wave
vector field is irrotational. It follows then that

dK
dT

= −∂Ω
∂X

,
dX
dT

=
∂Ω
∂K

, and
dΩ
dT

=
∂Ω
∂T

, (2.128)

which means that the quantity Ω may be understood as the Hamiltonian, while X is
the position and K is the momentum. With the help of relations (2.128), the balance
equation (2.124) transforms into

∂N
∂T

+
∂N
∂X

∂Ω
∂K

− ∂N
∂K

∂Ω
∂X

+
∂N
∂Ω

∂Ω
∂T

= G. (2.129)
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The spectral energy balance equation (2.129) is called the radiative transfer
equation, or the transport equation, or the kinetic equation and is used for fore-
casting spectral changes of sea waves. The first step for describing the evolution
of the wave spectrum was done by Gelci et al. (1956, 1957) who introduced the
concept of the spectral transport equation.

The first term at the Left Hand Side (LHS) of (2.129) expresses the local time
evolution of the spectrum, and the second one represents the evolution of the spec-
trum for the horizontally inhomogeneous wave field and provides the energy trans-
port with the group velocity ∂Ω/∂K. The third term in (2.129) reflects the effects of
refraction and shoaling due to the spatial change of the dispersion relation (because
of variable bathymetry or currents), while the fourth term describes the temporal
evolution of the dispersion relation due to changing conditions.

The basic difficulty in solving Eq. (2.129) is an evaluation of the source func-
tion G. The theory of weak nonlinear interactions for wind-induced waves was
first formulated by Hasselmann (1962, 1968); it involves nine terms in the sum
(2.123). The terms representing the wave-wave interactions are quite bulky and
make Eq. (2.129) an integro-differential type. The nonlinear interaction coefficients
have been obtained through tedious computations for low-order nonlinear interac-
tions (up to five-wave interactions) (see Zakharov 1974, 1999; Krasitskii 1994; and
Davidan et al. 1985; Lavrenov 2003; Janssen 2004; Polnikov 2007). In this applica-
tion, the Hamiltonian approach is very convenient when the theory is expressed
in terms of specially defined canonical variables (Zakharov 1968, 1974, 1999;
Zakharov and Kuznetsov 1997; Polnikov 2007). The kinetic equation may be ob-
tained rigorously starting from the primitive hydrodynamic equations, or from
weakly nonlinear dynamical models such as the Zakharov equations (Zakharov 1974,
1999; Krasitskii 1994). However, the still open question is whether—and, if so, how
much and under which conditions—the numerical evolution of a spectrum evaluated
with the kinetic equation corresponds to the spectrum obtained with the full integra-
tion of the dynamical model starting from the actual surface distribution (Cavaleri
2005).

It has already been pointed out that in addition to the bound corrections to the
wave shapes, the wave nonlinearity results in interactions between Fourier harmon-
ics (that are independent in the linear limit). Due to this interaction, the energy in
the spectral space may focus on one scale (uniform waves), or spread over many
frequencies, and under certain conditions form very steep intensive waves. On the
surface of deep water, the main part of the wave-wave nonlinear interactions in G
is represented by the four-wave interaction. The spectral energy balance equation
was used by Janssen (2003) to find the corrections to the Gaussian statistics of high
sea waves when four-wave interactions are taken into account. The results were
compared against the stochastic Monte Carlo simulations of dynamical models. The
nonlinear effects in wave dynamics causing significant wave enhancement will be
considered further in Chaps. 4 and 5.

Both considered approaches—deterministic and statistical—have strong and
weak points that indicate their successful application for different purposes. In
Sect. 2.2.1, we describe the one-point approach imposed by the instrumental data
that is presently available. Other restrictions are due to the hypotheses employed
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by the approach (such as statistical homogeneity and stationarity). Realistic statis-
tical models are still developing, and they should be verified versus observations.
Some statistical aspects of nonlinear waves over deep, shallow, and coastal waters
are discussed further in Sects. 4.4, 4.7, 5.3, and 5.5.

Unlike field observations and laboratory experiments, which usually give either
temporal data at a few locations in space or spatial data at a few instants, the direct
numerical simulations may provide both temporal and spatial data of a large-scale
wave field. At the same time, the complexity and nonreproducibility of sea wave
dynamics make the phase-resolving, long-time dynamic simulations practically use-
less. Draper in 1964 remarked that it is probably not possible to predict rogue-wave
occurrence at a given time and space, although their probability might be estimated
exceeding the framework of the stationary Gaussian process.

To obtain realistic rogue statistics, wave data collection is probably not the most
adequate approach. Besides the problem of instrumental measurement briefly dis-
cussed in Chap. 1, one will face the following question: is the observed extreme
wave a very rare realization from the typical slightly non-Gaussian sea surface pop-
ulation, or is it a typical realization of a very rare and strongly non-Gaussian sea sur-
face population (Haver and Andersen 2000, Haver 2005)? The ensemble technique
widely used in meteorology is promising. Each simulation is obtained by perturb-
ing the conditions and/or initial sea wave field and letting the system evolve. Given
the spectrum at a certain instant of time and location, one can choose a possible
realization or a number of realizations. This would provide robust statistics of the
sea surface, inclusive of all the nonlinear processes. Rather than acting only on the
phases, one could act on the spectrum, both as amplitude and directions. In addition,
the perturbations could be done not at random, but acting, for example, on specific
groups of components chosen according to the situation (Cavaleri 2005).

2.3 Possible Physical Mechanisms of Rogue Wave Generation

Freak waves have been observed in basins of arbitrary depth (in deep as well as shal-
low water) with or without current and with or without wind. To resume, they may
potentially occur everywhere on the ocean surface under any sea state conditions
(see Chap. 1).

Before briefly presenting the main physical mechanisms leading to huge waves,
let us introduce the critical depth parameter that allows separation between deep
water and shallow water. Wave properties depend crucially on the water depth. This
evident feature follows from the dispersion relation. While very long waves are
not dispersive, dispersion becomes essential for shorter waves (see Figs. 2.2, 2.3).
Furthermore, the dependence of the dispersion on water depth results in different
manifestations of nonlinear wave-wave interactions. In shallow water, three-wave
interactions play a major role, whereas in deep or moderately deep water, the main
contribution to nonlinear wave interactions comes generally from four-wave inter-
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actions. The variety of nonlinear properties of sea waves over finite depths provides
a rich and complex picture of nonlinear instabilities that could spawn rogue waves.

The natural parameter used to define deep water or shallow water conditions is
the dimensionless depth, KD, where K is the wave number and D is the water depth.
Following Fenton (1979), shallow water conditions correspond to KD < π/4, oth-
erwise waves are propagating on finite depth or deep water. For KD > π/4, the
Stokes-like expansion is relevant to calculating accurately nonlinear wave fields,
whereas in shallow water it is the cnoidal-like expansion that prevails. In deep water
and finite depth, the small parameter used in the Stokes expansion is the wave steep-
ness AK (A denotes the wave amplitude), while for shallower water this parameter
becomes A/D. In this book, we use the critical value π/4 of the normalized depth
KD to separate deep water from shallow water. Note that in Chap. 3, the distinc-
tion between deep and shallow water is not used, whereas Chaps. 4 and 5 consider
physical mechanisms that act in deep and shallow seas, respectively.

As it was noted previously, in addition to the dispersive parameter KD, there
exist nonlinear parameters AK and A/D for deep water and shallow water, respec-
tively. The parameter AK was already introduced in Sect. 2.1.3 for linearization of
the equations. Chapter 3 will focus on linear aspects of rogue occurrence, while
Chaps. 4 and 5 will consider nonlinear aspects. The main efforts are focused on the
nonlinear and strongly nonlinear dynamics of the rogue-wave phenomenon based on
recent research, because such waves are more dangerous. We also collect the results
of statistical processing of natural registrations in Sect. 4.7.2; they, in part, support
theoretical trends, although in the present state they are, in fact, often contradictory.

There are various physical mechanisms generating rogue waves on the sea sur-
face. They can be due to geometrical focusing of directionally spread waves, re-
fraction phenomena (presence of variable current or bottom topography), frequency
modulation (dispersive focusing or modulational instability of Benjamin-Feir type),
or soliton interactions that may produce wave energy that focuses in a small area.
It was recently suggested that wave fields resulting from the nonlinear interaction
of two wave systems (crossing seas) could be unstable to modulational instability
and therefore produce rogue-wave occurrence (see Sect. 4.6). In this section, the
different mechanisms are briefly listed and presented, they will be investigated and
discussed deeply in the subsequent chapters. These effects have been previously
reviewed by Kharif and Pelinovsky (2003) and Dysthe et al. (2008).

2.3.1 Wave-Current Interaction

Freak-wave occurrence on currents is a well-understood problem (see Sect. 3.4)
that can explain the formation of rogue waves when wind waves or swells are
propagating against a current. Besides more sophisticated models, the use of ba-
sic equations describing conservation of kinematical and dynamical properties of
water-wave fields can be very convenient in determining the transformation of wa-
ter waves by currents.
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2.3.2 Geometrical or Spatial Focusing

Meanwhile, freak waves are seemingly observed throughout the world’s oceans
without significant currents as well. Underwater topography modifies the wave
propagation. The result is spatial variations of the kinematic and dynamic variables
of the problem that can be solved by the use of ray theory. Hence, rogue wave oc-
currence corresponds to caustics (see Sect. 3.1).

2.3.3 Focusing Due to Dispersion: The Spatio-Temporal Focusing

The spatio-temporal wave focusing due to the dispersive nature of water waves
is a classic mechanism yielding wave-energy concentration in a small area (see
Sect. 3.2). This effect, which can occur at the sea surface, can be reproduced easily
in a laboratory experiment. Interactions with sea currents and wind flows represent
specific features of sea waves. The effect of wind action is taken into account within
the linear approximation in Sect. 3.3.

It is evident that once the wave steepness becomes finite, nonlinearity needs to be
included. Effects of water wave nonlinearity on the above processes are discussed in
Chap. 3 and further in Chaps. 4 and 5. Both weak and strong nonlinear approaches
are presented. The achieved conclusions are verified against available results of lab-
oratory experiments.

2.3.4 Focusing Due to Modulational Instability

This phenomenon is essentially nonlinear. Nonlinear uniform wave trains suffer an
instability known as the Benjamin-Feir instability, which produces growing mod-
ulations of the envelope. These modulations that evolve into short groups of steep
waves correspond to a nonlinear focusing of the wave energy. At the maximum of
modulation, rogue waves can occur followed by the demodulation of the envelope.
Rogue waves resulting from the modulational instability are considered in Chap. 4.

2.3.5 Soliton Collision

Uniform wave trains under modulational instability transform into a system of enve-
lope solitons that may collide to give rise to huge wave events. Instability of quasi-
solitons of large amplitude followed by collapse has been suggested as a proper
scenario of rogue wave occurrence as well. These mechanisms that are working on
finite and infinite water depths are presented in Chap. 4. Rogue waves can also occur
in shallow water due to soliton interaction. The latter aspect is discussed in Chap. 5.



List of Notations 59

List of Notations

Cgr group velocity
CLW long wave velocity
Cph phase velocity
D water depth
D / DT material derivative
E[·] statistical averaging
f probability density function
F probability distribution function
g = (0,0,−g)t acceleration vector due to gravity
H wave height
Hs significant wave height
K = (KX ,KY ) wave vector
K wavenumber
Kp mean wavenumber
mn nth spectral moment
mc

n nth central spectral moment
n unit vector normal to the surface
N wave action in the kinetic equation
P pressure
Pa atmosphere pressure
R autocorrelation function
S non-symmetric spectrum
Ŝ wave spectrum
T time
Tp mean wave period
U = (U,V,W )t the velocity field
Uc current velocity
Un normal to the surface velocity
Uw wind velocity
X = (X ,Y )t horizontal plane coordinate
(X ,Y,Z) coordinates
Xf fetch
δΩ spectral width
ε linearization parameter
φ(X ,Y,Z,T ) velocity potential
γ peakedness in the JONSWAP spectrum
γ skewness
η(X ,Y,T ) surface elevation
κ kurtosis
λ wavelength
μ dynamic viscosity
μ ≡ μ1 first statistical moment, the expected value
μn nth statistical moment
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μc
n nth central statistical moment

ν kinematic viscosity
ρ water density
σ standard deviation, σ2 is the variance
ω vorticity
Ω cyclic wave frequency
Ωi intrinsic frequency
Ωp mean wave frequency
∇ gradient operator
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Hasselmann K (1962) On the nonlinear energy transfer in a gravity wave spectrum. Part 1. General
theory. J Fluid Mech 12:481–500

Hasselmann K (1968) Weak-interaction theory of ocean waves. In: Holt M (ed) Basic Develop-
ments in Fluid Dynamics, vol 2. Academic Press, New York, pp 117–182

Haver S (2005) Freak waves: a suggested definition and possible consequences for marine struc-
tures. In: Olagnon M, Prevosto M (eds) Rogue Waves 2004, Ifremer, France

Haver S, Andersen OJ (2000) Freak waves – rare realizations of a typical extreme wave population
or typical realizations of a rare extreme wave population? In: Proc. 10th Int Offshore and Polar
Eng Conf ISOPE, Seattle, USA, 2000, pp 123–130

Huang NE, Long SR, Tung CC et al (1983) A non-Gaussian statistical model for surface elevation
of nonlinear random wave fields. J Geophys Res 88:7597–7606

Janssen PAEM (2003) Nonlinear four-wave interactions and freak waves. J Phys Oceanogr
33:863–884

Janssen P (2004) The interaction of ocean waves and wind. Cambridge University Press,
Cambridge



References 61

Johnson RS (1997) A modern introduction to the mathematical theory of water waves. Cambridge
University Press, Cambridge

Kharif C, Pelinovsky E (2003) Physical mechanisms of the rogue wave phenomenon. Eur J Mech
B/Fluids 22:603–634

Krasitskii VP (1994) On reduced equations in the Hamiltonian theory of weakly nonlinear surface
waves. J Fluid Mech 272:1–30

Lavrenov IV (2003) Wind waves in ocean: dynamics and numerical simulations. Springer-Verlag,
Heidelberg

Massel SR (1996) Ocean surface waves: their physics and prediction. World Scientific Publishing
Co Pte Ltd, Singapore

Mei CC (1983) The applied dynamics of ocean surface waves. Wiley-Interscience, New York
Mori N, Yasuda T (2002) A weakly non-Gaussian model of wave height distribution for random

wavetrain. Ocean Eng 29:1219–1231
Müller P, Osborne A, Garrett C (2005) Rogue waves. Oceanography 18:66–75
Olagnon M, Magnusson AK (2004) Sensitivity study of sea state parameters in correlation to ex-

treme wave occurrences. In: Proc. 14th Int Offshore and Polar Eng Conf ISOPE, Toulon, France,
2004, pp 18–25

Petrova P, Cherneva Z, Guedes Soares C (2007) On the adequacy of second-order models to predict
abnormal waves. Ocean Eng 34:956–961

Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based
on the similarity theory of S.A. Kitagorodskii. J. Geophys. Res. 69:S181–S190

Polnikov VG (2007) Nonlinear theory of random wave fields on water. Lenand, Moscow.
(In Russian)

Prevosto M (2001) Statistics of wave crests from second order irregular wave 3D models. In:
Olagnon M, Athanassoulis GA (eds) Rogue Waves 2000, Ifremer, France, pp 59–72

Prevosto M, Bouffandeau B (2002) Probability of occurrence of a “giant” wave crest. In Proc 21st
Int Conf OMAE 2006, Oslo, Norway, 2002, OMAE2002-28446:1-8

Rosenthal W (2005) Results of the MAXWAVE project. In: Proc. 14th Aha Huliko‘a Win-
ter Workshop, Honolulu, Hawaii, 2005. http://www.soest.hawaii.edu/PubServices/2005pdfs/
Rosenthal.pdf. Accessed 14 March 2008

Socquet-Juglard H, Dysthe KB, Trulsen K, Krogstad HE, Liu J (2005) Probability distributions of
surface gravity waves during spectral changes. J Fluid Mech 542:195–216

Stansell P (2004) Distributions of freak wave heights measured in the North Sea. Appl Ocean Res
26:35–48

Tayfun M (1980) Narrow–band nonlinear sea waves. J Geophys Res 85 C3:1548–1552
Tung CC, Huang NE (1985) Peak and trough distributions of nonlinear waves. Ocean Eng

12:201–209
Whitham GB (1974) Linear and nonlinear waves. Wiley & Sons, New York London Sydney

Toronto
Zakharov V (1968) Stability of periodic waves of finite amplitude on a surface of deep fluid. J Appl

Mech Tech Phys 2:190–194
Zakharov V (1999) Statistical theory of gravity and capillary waves on the surface of a finite-depth

fluid. Eur J Mech/B – Fluid 18:327–344
Zakharov VE (1974) The Hamiltonian formalism for waves in nonlinear media having dispersion.

Radiofizika 17:431–453. (In Russian) [(1975) Radiophys Quantum Electronics 17:326–343]
Zakharov VE, Kuznetsov EA (1997) Hamiltonian formalism for nonlinear waves. Physics-Uspekhi

40:1087–1116
Zhang J, Yang J, Wen J, Prislin I, Hong K (1999) Deterministic wave model for short-crested ocean

waves: Part I. Theory and numerical scheme. Appl Ocean Res 21:167–188



http://www.springer.com/978-3-540-88418-7


