
Chapter 2
Delay Model, SSA and Brownian Motion

This chapter presents three other tools to approach complex, nonlinear and chaotic
dynamics. We will consider the Delay-model, the Singular Spectrum analysis and
the Brownian motions (fractional or non-fractional). Firstly, we present the delay-
model which is applied to the logistic equation. According to the Medio’s work, a
discrete-delay is integrated into the construction of an economic model by means of
a convolution. The lengths of lags are distributed in a random way in the population.
The delay is in fact modelled by means of a random variable which is characterized
by its probability distribution. We will notice that in this way, the system built rocks
more tardily to the chaos. We will observe a shift of bifurcation points, but also an
unhooking in the trajectory.

Delay-model applied to the logistic equation. We will use the equation with the
first-order differences used by Robert May. The central element of the model is the
concept of “delay”. For a macroeconomic consumption model for example, if we
postulate that there is an (unspecified) great number of agents, and that all these
agents answer to a certain stimulation with given discrete-lags, the lengths of lags
are different for various agents and are distributed in a random way in the popula-
tion. In a global model, in the whole population, the reaction times are aggregate. In
the described case, we can model the reaction-time by means of a random variable
that will represent the global length of the lag.

The Singular Spectrum Analysis is the second investigation tool of complex
dynamics presented in this chapter. The method associates the Takens reconstruc-
tion technique and a technique known in matrix algebra which is the Singular Value
Decomposition. In such a framework, the purpose is to project a time series on a
basis of eigenvectors extracted from this same time-series. We project a trajectory
matrix on the space described by the eigenvectors of the covariance matrix of the
time series. The eigenvalues obtained can be ordered and be the subject of a filtering
with the aim to extract the deterministic part of the signal cleaned of its background
noise. The SSA was used in signal theory, and its applications to dynamical system
theory have been introduced by Broomhead and King in 1986, in connection with
their version of the Takens theorem (see Chap. 1). The method is presented in the
framework of the delay-model behavior applied to the logistic equation, but also on
the French stock index.
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228 2 Delay Model, SSA and Brownian Motion

The last concept described in this chapter is the Brownian motion, which is
a formidable tool to study chaotic behaviors. We will describe their construc-
tions and experiment different types of Brownian motions, fractional (H �= 1/2) or
non-fractional (H = 1/2). The concepts associated with Brownian motions, such
as persistence, memory, Levy distribution, fractal dimension and Rescaled range
statistics are approached in this heading.

2.1 Delay Model Applied to Logistic Equation (Medio)

2.1.1 Nonlinearities and Lags

Here, the first-order difference equation of R.May is used and its general form
is: Xt+T = G(Xt), where T represents the length of the lag and G is a smoothed
one-hump function. Such an equation can be understood as an aggregate system
(i.e. a one-loop feedback system) with two components (1) a nonlinear relationship
(here, single-hump functions) and (2) a lag (here, fixed delay). For (1): Nonlinear-
ities are widely used in Economics, for example in rational consumption models,
overlapping generations models, optimal growth models, we can mentioned: Sutzer
(1980), Day (1981–1982), Benhabib and Day (1981), Grandmont (1985), Pelikan
and Deneckere (1986), Baumol and Benhabib (1988), Lorenz (1989), Boldrin and
Woodford (1990), Scheinkman (1990). For (2): The notion of lag is neglected in
Economics, however it can be a source of important developments in connection
with the notions of aggregates, agent behaviors, stochastic processes, aggregate
models and chaotic systems.

2.1.1.1 Lag Distribution of Agents

This notion of “lag” has been revisited by A. Medio and can find a significance
in certain economic models (e.g. rational consumption or overlapping generations
models).1 Suppose that there is an unspecified great number of agents and that all
these agents respond to a certain stimulation with given discrete lags. The lengths
of lags are different for various agents, and are distributed in a random way in the
population. The subject here is the “reaction time” of agents. In a global model, in
the whole population the reaction times are aggregate. In the described case, we can
model the reaction time by means of a random variable, real, positive or null, that
is called T (in accordance with the equation posed at the beginning of chapter) and
will represent the Global length of the lag. A random variable is characterized by its
probability distribution (if it is known).

1 Ref. to Medio publications, in particular: Medio (1992).
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2.1.1.2 Convolution of the Lag and Reaction of Agents

Let X(t) be a variable that is function of another variable Z(t) through a continu-
ously distributed lag.2 (Note that Z may indicate the same variable X at some time
different from t.) m can be understood as a “weighting function” (i.e. a kind of
“moment”) that formalizes the strength of impact that values of Z in the more or
less distant past have on the value of X (i.e. a kind of temporal correlation). The
equation of the lag can given by:

X(t) =
∫ ∞

0
m(s)Z(t − s)ds (2.1)

with m continuous on R, and
∫ ∞

0 m(s)ds = 1. In practice, s is bounded by t and the
previous equation becomes X(t) =

∫ t
0 m(s)Z(t − s)ds. This equation can be taken as

a (commutative) convolution.3 Given the polynomial v(p) = a0 pn + · · ·+ an, with
L the Laplace transform that is written L [m(s)] = 1/v(p) = L [L −1[1/v(p)]].
Then m(s) is defined as the inverse Laplace transform of 1/v(p), thus, m(s) =
L −1[1/v(p)], then X = m � Z is the solution of the differential equations v(D)X(t)=
Z(t) with D ≡ d./dt and the initial conditions X = X

′
= · · · = Xn−1 = 0. If the lag

is an exponential lag of order n, we have 1
v(p) =

( τ p
n + 1

)−n. Thus the differential

equation v(D)X(t) = Z(t) is written
( τD

n + 1
)n X(t) = Z(t) or also

X(t) =
(

τD
n

+ 1
)−n

Z(t), (2.2)

where n ∈ Z
+ and τ is the time constant of the lag. For multiple exponential lags,

m(t) can be calculated through the inverse Laplace transform, we have: m(t) =( n
τ
)n tn−1

(n−1)!e
−nt/τ . For n ≥ 2, m(t) has a one-hump shape:

(a) When n = 1, we deal with the ordinary differential system which can be written
in the following way: Ẋ(t) = γ(Z(t)−X(t)) where γ represents the speed of
adjustment of the model (note that 1/γ = τ).

(b) When n becomes large, the weighting function tends to a Dirac delta func-
tion and the exponential lag tends to a fixed delay of length τ . Then we have:
limn→∞

( τD
n + 1

)−n = e−τD (Fig. 2.1).

At this stage, we have to combine the delay and the model. If we place the lag in the
generic initial model Xt+T = G(Xt), this can be written:

Xn =
(

D
n

+ 1
)−n

G(Xn). (2.3)

2 The lag can be understood as a shift in the reaction time of agents.
3 See Appendix.
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Fig. 2.1 Weighting function
of different exponential lags

After the application of the factor (D
n + 1)−n to G(Xn) we encounter the value of

Xn again. We can turn over the equation, and move the lag term on the other side
of the equality and change the sign of the exponent. Then we write the following
equivalent relations that describe a differential equation system:

((D/n)−1)Xi = Xi−1, with i = 2 . . .n, (2.4)
((D/n)−1)X1 = G(Xn), (2.5)

where G(Xn) is a one-hump function. The system can also be written:

((D/n)+ 1)X2 = X1,
...

((D/n)+ 1)X1 = G(Xn).

(2.6)

2.1.2 Application to the Logistic Equation

The logistic equation is written Xn+1 = αXn(1 − Xn). Consequently: G(Xn) =
αXn(1−Xn) and the lag takes the form (D

n + 1)−n, Xn = ((D/n)+ 1)−n(αXn(1−
Xn)). We face a nonlinear functional relation and a delay-function. We will see that
the application of the lag to the logistic model shifts the chaotic zone.

2.1.2.1 Solution of the Logistic Model

At the equilibrium we have X1 = X2 = X3 = · · · = X̄ , thus for Xn+1 = αXn(1−Xn),
there are the equilibrium solutions: X̄ = 0 and X̄ = 1− (1/α). The stability of
these equilibrium points was previously studied in Chap. 1. Finally, we write the
differential system with the delay function as follows:
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2.1.2.2 Differential System Combining Logistic Model and Delay Funct

The system of ordinary differential equations of dimension n is:

((D/n)+ 1)X2 = X1,
...

((D/n)+ 1)X1 = αXn(1−Xn).
(2.7)

For a system of dimension 10 and of length N, we write:

((D/10)+ 1)X2 = X1,
...

((D/10)+ 1)X2 = αX10(1−X10).
(2.8)

By simple multiplication, the system is written:

((
.

X2/10)+ X2) = X1,

... (2.9)

((
.

X10/10)+ X10) = X9,

((
.

X1/10)+ X1) = αX10(1−X10).

The differential system can be written in matrix form:

[
·

X ] = [ A]∗ [ X ] . (2.10)

2.1.2.3 Figures of Various Simulations for α ∈ [3, . . . , 5]

Pictures of differential system solutions for different α values (Figs. 2.2–2.9).
For each value of alpha, we have to face a rectangular matrix made with vectors

X of dimension 10×N. A weight ( D
10 + 1) is applied to each vector of the matrix,

and this weight changes the trajectory.

2.1.2.4 Shift of Bifurcation Points, and Periodicity

For the logistic model the ultimate bifurcation before chaos occurs for α 	 3.56.
In our case, for a system dimension equal to 10×N, this occurs for α 	 5. The
period-doublings visible in the graphs of the preceding section are more tardy under
the effect of delay function. The periodic behaviors and their periods are identifi-
able with the numbers of distinct orbits in the figures. Starting from the value equal
to 5, the trajectory seems to describe different and distinct orbits which do not over-
lap, contrary to what occurred for α = 4, for example, where if we eliminate the
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Fig. 2.2 α = 4. Transitory
behavior was preserved before
convergence
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Fig. 2.3 α = 4.35. Transitory
behavior suppressed to make
the orbit visible
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Fig. 2.4 Period-doubling.
α = 4.5. Asymptotic behavior
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transitory behaviors before convergence, we have a “dense closed” orbit without
unhooking and period-doubling. Moreover, in order to underline the periodicities,
we can analyse the spectrum of these trajectories and calculate the Lyapunov expo-
nent to highlight the “moment” during which the system rocks towards a pure
chaotic behavior, as we could do it in the first chapter for the logistic equation
itself. We did not represent the sensitive dependence on initial conditions of the
system which is the characteristic of chaos nor the value of the Lyapunov exponent
during the evolution of the system on the route towards chaotic zone. The capacity
dimension can also be measured rather easily. The set of these elements converges
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Fig. 2.5 α = 4.75
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Fig. 2.6 α = 4.85
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Fig. 2.7 α = 4.95
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towards a value of alpha equal to 5 to characterize the critical point. The value of
the capacity dimension for α = 5 is close to 2.15, which is a non-integer value and
characterizes the presence of a simple attractor. The principle of the exponential
lag makes it possible to model a large variety of economic situations by control-
ling the parameters T and n. The nonlinearities of one-hump functions coupled to a
delay function produce chaos. One of the characteristics of this exponential lag is
that the variance which was used to build it is low. Thus we are close to the aspect
of a Dirac function. In conclusion, it is possible to say that a high order lag, for
example n = 10 is a condition for chaos occurrence. The type of model that we have
just seen can find applications in macroeconomics, in particular in the models of
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Fig. 2.8 α = 5. Orbit
and chaotic attractor, with
unhooking

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Chaotic attractor-alpha = 5

Fig. 2.9 Behavior of X(8)
with n = 10
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production–consumption, for example the developments of Grandmont models on
the equilibrium cycles (“Overlapping-generations models”).

2.2 Singular Spectrum Analysis

2.2.1 Singular Spectrum Analysis Principle: “Windowing”,
Eigenvector and Projection

The SSA method is built from a technique known in matrix algebra as the “singular
value decomposition”. This method consists in projecting a time series on a basis of
eigenvectors extracted from this same time-series. Or more exactly, it is the projec-
tion of a matrix trajectory, built from the initial time series, on the eigenvectors of
an intermediate matrix, itself built from the studied experimental series. The SSA
was used in signal theory, and its applications to the dynamical system theory have
been introduced by Broomhead and King in 1986 (see Chap. 1). Their version of
the Takens theorem states that the space containing the image of the map ΦF,v is
called the embedding-space and its dimension n is called embedding dimension.4

4 See Takens theorem. Recall: ΦF,v : A −→ R2m+1.
ΦF,v(y) = (v(y),v(φ1(y)), . . . ,v(φ2m(y)))T .
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This is the reconstruction of phase space of solutions of an arbitrary dynamical sys-
tem. And the dimension of this reconstructed phase space is also the dimension of
the embedding space. It is pointed out that the conclusions of the Takens theorem
impose the following constraint n � 2m+ 1 with:

• m: Dimension of the attractor
• n: Dimension of the embedding space

Consider for example the values taken by a variable Y (t) with regular time
intervals denoted τ , then we can write this without dimensioning the number of
observations in the following way Y (t),Y (t + τ),Y (t + 2τ), . . .. If the set is dimen-
sioned, we can write a group of observations of the variable Yp = Y (pτ) as follows
with p = 1, . . . ,n and where τ is a “step” corresponding to a “periodic measurement
of the variable”. We will use the concept of (n,τ)-window presented in the first
chapter (see Takens theorem). Here, it is pointed out that a window is the combi-
nation of two criteria: the number of selected measurements that becomes, in fact,
the length of the series and the step τ which is the periodicity of the measurement.
Thus, the periodicity of the measurement with the number of measurements makes
visible n elements of the initial time series, which is therefore sampled on intervals
of length τ . An optimal approach in a discrete case makes us take τ equal to 1, i.e.
each measurement of the value of the variable, without descending to the value of
the step below the unit. Thus for a (n,τ)-window, we make visible n elements of the
initial time series. In the continuous case, things are different since we can construct
windows with the length we select and show exactly what we want about the model.
This makes much more easier the handling of trajectories. Our limits in this con-
struction are rather those fixed by what we wish to exhibit of the trajectory, i.e. in
general the attractor and in particular to operate its reconstruction whose principal
constraint is n � 2m+1. The subject is to manage scale problems that are important
in this type of construction. For the choice of a (n,τ)-window which obviously is of
the size n, we must generate, by means of the model equation, a discrete time series
of a sufficient length so that the window can “exist” and in a significant way.

(a) Classical method of reconstruction and trajectory matrix. It is possible to
construct a set that is sequence of vectors in the embedding space of dimension n,
which is written: {xi ∈ R

n | i = 1, . . . ,N} . Each vector xi of this set is a point in R
n.

The set contains thus N points, each one of the dimension in R
n. Consequently, we

represent the set called “n-history” by a rectangular matrix of dimension N ×n. We
can write the constraint on the set:

N = No −n + 1, (2.11)

with No: number of observations (i.e. the length of the series), N: dimension of the
reconstructed series, and n: dimension of the embedding space. These sequences are

Knowing that n ≥ 2m + 1. φt is a flow of F. φ is a map representing the dynamics such that:
y j+1 = φ(y j). And the function v(y) can be taken as a measurement made on the system at the
point y ∈ A, i.e. v(φi(y)) would be equal to an observation of Y at time i.
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used to build a matrix X , which is the trajectory matrix of dimension N × n. If we
pose the trajectory matrix in the following way:

X = N− 1
2

⎛
⎜⎝

XT
1
...

XT
N

⎞
⎟⎠ , or X = N− 1

2

⎛
⎜⎝
(
x1

1, . . . ,x
n
1
)

...(
x1

N , . . . ,xn
N
)

⎞
⎟⎠ , (2.12)

with dim(X) = (N,n), and the factor N− 1
2 being introduced by convenience. “By

plotting the columns of X against the principal directions of the embedding space
while respecting n � 2m + 1, we obtain the reconstructed attractor” according to
Takens method.

(b) The SSA method. The previous method has evolved. A better reconstruction
technique has replaced the Takens method. We will describe it hereafter. In spite of a
rather long presentation, the resulting system is of a quite simple handling. Consider
a set of vectors

{
si ∈ R

N/i = 1, . . . ,n
}

(2.13)

such as by their action on X , they generate a new set of vectors “linearly independent
and orthogonal”5 which is

{ci ∈ R
n/i = 1, . . . ,n} . (2.14)

It is possible to assume that the vectors {ci} are also “normal” and provide a basis
in R

n

sT
i X = σicT

i , (2.15)

where {σi} is a set of real constants used to normalize the vectors. From the algebra
of matrices we know that:

sT
i XXT s j = σiσ jδi j, (2.16)

where δ is the Kronecker symbol.6 In addition, the matrix H = XXT is real and
symmetrical and, moreover, its eigenvalues form an orthogonal basis for R

N. More
precisely the eigenvectors of H satisfy the preceding equation sT

i X = σicT
i . The

extraction of eigenvectors and eigenvalues is made from the square matrix H whose

5 We will refer to the following different notions: basis of vectors, linearly independent vectors,
singular values, and “rank” of a group of vectors. The rank of a family of p vectors (V1,V2, . . . ,Vp)
is the greatest number of linearly independent vectors among them. It is also said: row of the p
vectors. It is also said: Rank of the p vectors (V1,V2 , . . .,Vp). The rank is lower or equal to p. If A is
a matrix of vectors, we note by k = rank(A) the number of singular values of A (which are larger
than the [max(size(A)) ·norm(A)]).
6 δ is the Kronecker symbol: A family of vectors (v1,v2, . . . ,vs) of R

n is said orthogonal system
if for all (i, j), i �= j, vi · v j = δi j (where δ is the symbol of Kronecker: δi j = 0 if i �= j, δi j = 1, if
i = j). Any orthogonal system of non-null vectors is free.
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dimensions are very large, since they are those of the length of X . Then, we will see
that it is easier to work with a matrix that is a variant of H and of which the dimen-
sion is much lower. This new square matrix will note V and its dimension will be
equal to the width of matrix X . We can write:7

Hsi = σ2
i si. (2.17)

Then we have the set {si} of the corresponding eigenvectors of H, and the set
{

σ2
i
}

of the corresponding eigenvalues of H all real and non-negative (H being positive-
semidefinite). H can be written as follows:

H = N−1

⎛
⎜⎝

XT
1 X1 · · · XT

1 XN
...

. . .
...

XT
N X1 · · · XT

N XN

⎞
⎟⎠ (2.18)

with dim(H) : (N,n)∗ (n,N) = (N,N). The writing in the simplified form is:

H = XT X . (2.19)

H can be understood as a correlation matrix between pairs of vectors (generated
by the window of size n). With this technique, we have to face an important dif-
ficulty: indeed, H has a dimension N ×N usually very large and consequently its
diagonalization is often impossible to practice.8 To remove this serious constraint in
particular, a new technique was developed.

(c) SSA 2nd method. A more effective method to obtain the desired result is the
following: it is to take the “transpose” of the equation sT

i X = σicT
i , thus:

XT si = σici. (2.20)

If we pre-multiply by X : XXT si = σiXci. By using the equation Hsi = σ2
i si and by

simplifying:
Xci = σisi. (2.21)

And if we pre-multiply the preceding equation by XT and we introduce it into the
equation sT

i X = σicT
i the following equation is obtained:

Vci = σ2
i ci, (2.22)

7 Let us note that:
f (V )−λV = 0; AV −λV = 0. Hsi −σ 2

i si = 0; (H −σ 2
i ) si = 0

Collinearity:
AV −λV
↓ ↓
Hsi −σ 2

i si.
8 See appendix about the diagonalization of matrices.
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where V ≡ XT X ∈ R
n×n, the extraction of eigenvectors and eigenvalues is carried

out on the square matrix V

V =

⎛
⎜⎝

XT
1 X1 · · · XT

n Xn
...

. . .
...

XT
n X1 · · · XT

n Xn

⎞
⎟⎠ . (2.23)

The equation Vci = σ2
i ci allows to deduce {ci} as the set of eigenvectors of V and{

σ2
i
}

as the set of the corresponding eigenvalues of V . As said for the matrix H, note
that V can be taken as a covariance matrix of observations. The number of “steps”
(τ) will be equal to the dimension of the “embedding” n being appreciably smaller
than N, the equation Vci = σ2

i ci is much easier to treat than the equation Hsi =
σ2

i si. The numerical calculation of eigenvectors and eigenvalues of H was often very
long, sometimes even impossible, due to the high dimensions of the matrix, directly
connected with the length of observed vectors. For example, for an experimental
series constructed from 1,000 measurements, the matrix H becomes a square matrix
of dimensions 1,000×1,000 (i.e. millions of values) which has to be diagonalized
to obtain the eigenvectors and eigenvalues. Often the calculations by H fail. On
the other hand, the use of the matrix V (which is of a considerably reduced size)
facilitates the calculation by its simplification. Let C be the matrix whose columns
are composed by the ci and ∑2 = diag

(
σ2

1 , . . . ,σ2
n
)
, where the σ2

i are ordered from
the largest to the smallest, i.e. σ2

1 ≥ σ2
2 ≥ ·· · ≥ σ2

n ≥ 0. Consequently, the equation
Vci = σ2

i ci can be written:

VC = C ∑2 (2.24)

XT X ci ≡ ci diag
(
σ2

1 , . . . ,σ2
n
)
. Using the definition of V , consider V ≡XT X ∈R

n×n,
we have:

(XC)T (XC) = ∑2 . (2.25)

The matrix XC represents the trajectory matrix projected on the basis {ci} . The
subject is the choice of {ci} as a basis for the projection, i.e. to project the tra-
jectory matrix onto the space spanned by the eigenvectors of the covariance matrix
of the time series. This projection is optimal because the columns of the trajectory
matrix are independent (XC)T (XC) = ∑2 and minimize the mean square error of
the projection. (“Thus the plots are not squeezed any more onto the diagonal and
the projections on the planes (I, J) and (i + p, j + p) are not equal any more, like
with the Takens method” Medio 1992.) We will find an application of the method
above in the section that follows. There are other developments of this method
which approached the time-series with a background noise that disturbs the anal-
ysis. The statistical approaches that aim at sorting the eigenvalues of the matrix V,
make it possible to “denoise” the reconstruction, but they are not depicted in the
present work.
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2.2.2 SSA Applied to the Logistic Equation with Delay Function

2.2.2.1 Projections and Reconstructions of the Initial Series

Consider the delay model applied to the logistic equation, whose system is:

Xt+1 = αXt(1−Xt), Xn = ((D/n)+ 1)−n G(Xn) with n = 10, α = 5 (2.26)

then we have ((D/n)+ 1)n + 1nX = αX(1−X). Consider the trajectory of X1 for
α = 5 to be positioned at the beginning of the chaotic regime, and then we will com-
pute outputs for α = 3, α = 4, α = 20. (Recall: Takens constraint for the attractor
reconstruction is n � 2m+ 1.)
(a) Observe the logistic system attractor for a function delay α = 5 (Fig. 2.10).

X (above) is the solution of the delay model applied to the logistic equation for a
parameter equal to 5. X has the shape of a rectangular matrix. Starting from the first
vector x1 of X , we will apply the SSA. Let us visualize x1 (Fig. 2.11).
(b) Then, let us calculate the trajectory matrix by the first method with N = No −
n + 1, N = 1000,n = 10,No = 1,009,dim(X) = (N,n) = (1000,10):

X = 1000−
1
2

⎛
⎜⎝

XT
1
...

XT
1000

⎞
⎟⎠= 1000−

1
2

⎛
⎜⎝

xT
1 (1) · · · xT

1 (10)
...

. . .
...

xT
1000(1) · · · xT

1 (10)

⎞
⎟⎠ , (2.27)

H = XT X , (2.28)

dim(H)= (N,n)∗(n,N)= (N,N). dim(H)= (1000,10)∗(10,1000)= (1000,1000)

H = 1000−1

⎛
⎜⎝

XT
1 X1 · · · XT

1 X1000
...

. . .
...

XT
1000X1 · · · XT

1000X1000

⎞
⎟⎠ . (2.29)

Fig. 2.10 Logistic system
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Fig. 2.11 Behavior of x1
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(c) Let us compute the new trajectory matrix V . According to what precedes,
note that as the matrix H is heavy to handle, we use the following more effi-
cient way: Given {si ∈ R

1000/i = 1, . . . ,10} and {ci ∈ R
10/i = 1, . . . ,10} with

dim(V ) = (n,N)∗ (N,n) = (n,n), dim(V ) = (1000,10)∗ (10,1000)= (10,10)

V = XT X =

⎛
⎜⎝

XT
1 X1 · · · XT

1 X10
...

. . .
...

XT
10X1 · · · XT

10X10

⎞
⎟⎠ . (2.30)

(d) Results. The vectors and matrices contributing to the decomposition are:
X which is the initial matrix of vectors
XT : the transpose of X
V = X ·XT : the product of both preceding vectors
c: eigenvectors of V
σ2: eigenvalues of V
V · c: product of the matrix V with its eigenvectors
σ2 · c: product of the eigenvalues with eigenvectors
X · c: product of the initial matrix of vectors with vectors of matrix V
(X · c)T · (X · c): product of transpose of previous projection with itself
If we extract the eigenvalues from V , by taking the diagonal of the matrix of

eigenvalues σ2 composed of σ2
1 , . . . ,σ2

n , the values of the diagonal are: [ 0 0 0 0
0 0 0.0004 0.0148 0.3185 6.9033]. These eigenvalues are naturally ordered in
an ascending order. And the construction of ∑2 which is carried out in a descending
order of eigenvalues does not give more information. But such a case is obviously
not frequent in practice, especially if we increase the size of n. When the matrix
X · c is constructed, several types of Poincaré sections are shown from the different
components of X ·c and with various steps. These projections of the attractor recon-
structed by the SSA method are depicted in Fig. 2.12 (α = 5). The results of this
SSA construction could be compared with the projections resulting from the Takens
method – not shown here –: in the Takens method, the figures would show orbit
projections more or less squeezed on the diagonal according to selected “steps”.
Figure 2.12 of pairwise components of the matrix X · c, we observe very different
results. Indeed, in such a case, we do not observe any more squeezing on the diago-
nal. Note that each plane constructed with two different vectors from the matrix X ·c
provides different plots, whereas the Takens method always showed similar orbits.
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Fig. 2.12 Pairwise components of X · c by disregarding time for α = 5

Thus, the projection of X on the eigenvectors ci of C allows to isolate different struc-
tures of the signal, which correspond to the many aspects of the signal. This is due to
the eigenvectors of V that are individually different. Periodicities and stationarities
can be observed in the vectors X · c. Note that the more the sequence number of the
vector increases, the more its amplitude above and below zero increases. Then, we
construct a sample of Poincaré sections similar to the previous construction and we
observe eigenvectors of V which constitute the basis on which X is projected.
(f ) Case α = 3.5. The behavior of the system for this value of alpha is not chaotic
but periodic. The orbit exhibits a spiral form for X · c(9,10). Figure 2.13 shows
different components of XC by disregarding time.
(g) Case α = 4. Same remarks as previously, the orbit shows periodicities at the
same time on the V ·c vectors and also on the eigenvectors. The matrix XC exhibits
all the periodicities in course of time (not shown here). Figure 2.14 show the various
components of XC by disregarding time.

2.2.3 SSA Applied to a Financial Series (Cac40)

The method is based on the decomposition of a time series by using a basis generated
by the initial time series itself. In Economics and Finance, it is usual to observe time
series whose terms are autocorrelated. To study the series, it is often necessary to
suppress the trend.

In order to stationarize the time series, a regression on time can be used or the nth-
differences. Here we stationarize by the first-differences. As previously, we compute
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Fig. 2.13 Pairwise components of XC for α = 3.5

Fig. 2.14 Pairwise components of XC for α = 4

the following vectors: X ,XT ,(V = X ∗XT ),c,σ2
i ,(V ∗c),(σ2

i ∗c),(X ∗c). If the diag-
onal is extracted (σ2

1 , . . . ,σ2
n ) from matrix of eigenvalues of V , we obtain: [770.5

761.4 826.2 850.2 965.3 952.8 952.8 1,005.4 1018.5 693.5 647.1]. Note that
the eigenvalues are not naturally ordered. In Fig.2.15 we project matrix X on the
matrix of eigenvectors of V .



2.2 Singular Spectrum Analysis 243

−5 0 5
−5

0

5
X . C (1,2)

−5 0 5
−5

0

5
X . C (2,3)

−5 0 5
−5

0

5
X . C (3,4)

−5 0 5
−5

0

5
X . C (4,5)

−5 0 5
−5

0

5
X . C (5,6)

−5 0 5
−5

0

5
X . C (6,7)

−5 0 5
−5

0

5
X . C (7,8)

−5 0 5
−5

0

5
X . C (8,9)

−5 0 5
−5

0

5
X . C (9,10)

Fig. 2.15 Nine main components of X ·C for SSA applied to a stock index (Cac40)

2.2.3.1 Role of Eigenvalues, and Filtering of Background Noises

One of the elements contributing to the SSA is ∑2 = diag(σ2
1 , . . . ,σ2

n ) (i.e. the vec-
tor containing the eigenvalues of the matrix V ), whose eigenvalues σ2

i are classified
in descending order from the largest to the smallest, i.e. σ2

1 ≥ σ2
2 ≥ ·· · ≥ σ2

n ≥ 0.
After their classification, the elements σ2

i of ∑2 are: [1,018.5 1,005.4 965.3 952.8
850.2 826.2 770.5 761.4 693.5 647.1]. From these ordered eigenvalues, we
obtain a diagonal matrix: ∑2. Here, the size of the window or the dimension of
the embedding space is 10. One of the properties of the SSA method is the fil-
tering of background noise of a time series. According to the words of A. Medio
(1992, p. 186), this method allows “the identification of directions along of which
the deterministic component of motion takes place, which we shall henceforth call
significant (or deterministic) directions”, whereas the infinite rest will be denoted by
“stochastic directions”. These assertions were applied to unidimensional systems in
which deterministic chaos appear (e.g. logistic equation). Here, we will not compare
the eigenvalues and the dimension of phase-space orbits of a dynamics, which has
been largely presented by A. Medio in 1992 in “Chaotic dynamics”. We will just
say that we can split the embedding space n into a space in which the attractor is
immersed, i.e. a subspace called d where the orbits exist without background noise
and a stochastic subspace (n−d) in which the only involved motion is the noise. We
also mention9 that the rank10 of the matrix V gives the higher limit of the dimension

9 By considering the Broomhead and King assumptions.
10 The rank of a matrix V is the number of linearly independent columns in the matrix V. For
a square matrix, this number is always equal to the number of linearly independent lines. If the
matrix is rectangular m×n, then the rank is lower or equal to the min(m,n).
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of the subspace explored by the deterministic component of the trajectory. Thus,
the dimension d of the deterministic subspace is obtained by computing the rank
of the matrix V . In the case of a series without background noise, a hypothesis has
been enunciated saying that d (with d ≤ n) is equal to the number of strictly positive
eigenvalues of V , and the rest of eigenvalues is equal to the number of (n−d) whose
value is equal to zero. In this particular case (i.e. differentiated Cac40), we observe
that there is no eigenvalue equal to zero. It was different for the vector x1 resulting
from the delay model applied to the logistic equation (for α = 5), for which six
values among ten were equal to zero. Observe below the eigenvalues (after classifi-
cation in descending order), (1) for the delay model, (2) then for the stock index:

Logistic. Eq/Delay model:
[6.9033 0.3185 0.0148 0.0004 0 0 0 0 0 0]
First-difference of Cac40:
[1,018.5 1,005.4 965.3 952.8 850.2 826.2 770.5 761.4 693.5 647.1]

However, the previous assumptions about the eigenvalues proved to be incom-
plete and non-exhaustive. In addition, the noise level of the background noise is
not dependent on the dimension n of the embedding space. Thus, when we increase
the size of the embedding space (by increasing the size of the window-(n,τ) or by
reducing the size of the interval τ which is used to sample), then the level of back-
ground noise is lowered and new eigenvalues appear. From these observations, we
can work on the eigenvalues σ2

i and treat them to distinguish (in a noisy signal) the
deterministic part corresponding to the cleaned signal, and the part corresponding to
the background noise. σ2

i = (σD
i )2 +(σB)2 (D: determinist, B: noise). The SSA is

an important source of research for complex dynamics in Economics and Finance.

2.3 Fractional Brownian Motions

2.3.1 Brownian Motion and Random Walk

A Brownian motion can be defined as a random series x(t) with Gaussian increases
and whose variance

var[x(t2)− x(t1)] is proportional to |t2 − t1|2H

with 2H = 1/2. Although the internal structure of Brownian motion is different
according to the value of H (0 < H < 1), in a generic way, we speak of a fractional
Brownian motion, whatsoever H. Figure 2.16 shows examples of three Brownian
motions respectively for H = 0.1, 0.5 and 0.72.

Without presenting its genesis, it is possible to say that H is a statistical indicator
known under the name of the Hurst exponent. In particular, for an experimental
series, the goal of this indicator was to dissociate random walk from non-random
walk. The Hurst subject was that the experimental dynamics in Nature do generally
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Fig. 2.16 Examples of Brownian motions respectively for H = 0.1, 0.5 and 0.72

not follow random walks. The Hurst-Test was used by analogy on financial markets
in order to test the concept of random walk, which in econometrics has been used
for a long time to characterize financial series. We will see later on how the Hurst
statistic also plays a role in the following concepts: Persistence, Long memory of
the series (part II), ARFIMA models (part II), Self-similarities (part III, and fractal
series).

2.3.1.1 Rescaled Range Statistic and Fractional Brownian Motion

The long-term temporal dependence was approached by the statistic called
“Rescaled Range” that corresponds to a ratio: the ratio of the extent of a series to a
standard deviation. This is the extent of partial sums of variations to the average (of
a time series) divided by its standard deviation. Given a series (x1,x2, . . . ,xn) and
the average of sample x̄n = 1

n ∑k
j=1 x j, we write R and S:

R = max
1≤k≤n

k

∑
j=1

(x j − x̄n)− min
1≤k≤n

k

∑
j=1

(x j − x̄n), (2.31)

S =

(
1
n ∑

j
(x j − x̄n)2

)1/2

. (2.32)

(k = shifts). Thus the R/S statistic is written:

R/S =
max

1≤k≤n
∑k

j=1(x j − x̄n)− min
1≤k≤n

∑k
j=1(x j − x̄n)

[
1
n

∑ j(x j − x̄n)2

]1/2 .

The relation between these statistics and the Hurst exponent can be written:

R/S = a ·nH, (2.33)
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Fig. 2.17 Log (R/S) of a Brownian motion H = 0.75

a is a constant. If the series is a random walk, then H = 0.5. On the other hand,
when H > 0.5, it is not a random walk. This statistical criterion, which implicitly
rests on the autocorrelation concept, would allow to identify the stochastic aspect of
a series. This test is also expressed in a logarithmic form:

log(R/S) = H · log(n)+ b. (2.34)

By using a log-log scale, we show the graph of the statistic (in relation to the number
of observations of the time series). From the preceding equation and for b = 0, we
deduce H = log(R/S)/ log(n). Thus, we can read the estimate of H compared with
the value chosen to construct the series. Plane [log10(n), log10(R/S)] (Fig. 2.17).

We mentioned above that when H = 0.5, we have to face a random walk, and not
for H > 0.5. This assertion means that for H = 0.5, the variable of the series is not
autocorrelated, as we could see it in a statistical analysis. On the other hand for H >
0.5, there are autocorrelation or dependence of terms. It is said that: “Each observa-
tion carries a memory of events which precedes it, this is a long term memory: the
most recent events have an impact larger than those which are prior to them. What
happens today has an influence on the future; the present is a consequence of the
past. The time plays an important role” (Abraham-Frois and Berrebi 1995).11

C = 22H−1 −1. (2.35)

C is an autocorrelation of long period or a correlation of future values with the past
values. If H = 0.5 then C = 0, there is not a “temporal correlation” between the
terms of the series, we are thus faced with a random process of a random walk.
And it is noted that the characterization of the process is done without using the
probability law of the series.

11 Remark: These remarks will be able to echo in econometrics concerning concepts of process of
the DS type (Difference Stationary) where the method used to make the time series stationary is
done by differentiation, and of TS type (Trend Stationary) where the method used to make the time
series stationary is done by a regression over time.
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Fig. 2.18 Empirical distributions (histograms) of three arbitrary Brownian motions for H = 0.5.
Below histograms of their 1st-differences

If H is not equal to 0.5 and in particular when it is higher than 0.5, the corre-
lation is an increasing function of H. It is said that there is persistence, it is also
said that the Brownian motion is fractional and for this reason, there are global and
even local tendencies that emerge from the series. The series has frequent “exits”
of the tunnel described around the average of values which precede. These exits
are kinds of fractures (“unhookings”) in relation to the prior walk of the process
which does not have a periodicity. This random component of a process, which was
stated as non-stochastic, requires to use the probability laws to describe it, and the
statistic H is understood as the probability so that two consecutive events occur.12

On the other hand, if H > 0.5, there is an occurrence of non-periodic cycles, and the
more H is high, the more the aperiodic oscillations frequently deviate from the aver-
age of values that the time series took prior to each fracture. In Fig.2.18, we show
for H = 0.5 the histograms (empirical distributions) of three Brownian motions
(50,000 steps) and below, the histograms of their first-differences (increases). Note
that signal distributions have particular forms and the distributions of their first-
differences seemingly tend towards a structure of the Gaussian type (to verify with
normality test).

In Fig. 2.19, (1) we show for H > 0.5 the histograms of three Brownian motions,
(2) the histograms of their first-differences and (3) the histograms of their second-
differences.

In this case, on the other hand, for H = 0.8 > 0.5, only the distributions of
second-differences appear to tend towards a structure of the Gaussian type.

2.3.2 Capacity Dimension of a Fractional Brownian Motion

Although the characterization of a Brownian motion is complex, even if we have
given a definition above, we can depict a Brownian motion in the following way. Let
us imagine an object represented by a point that moves and that at every moment

12 Ref: Abraham-Frois and Peters: “For H = 0.6, there is a probability of 60% so that if the last
change were positive the following movement will be also” (cf. Abraham-Frois and Berrebi 1995,
p. 330).
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Fig. 2.19 Histograms of three arbitrary Brownian motions for H > 0.5. Below histograms of their
1st-differences. Below histograms of their 2nd-differences

makes a jump (or a step) in an unspecified direction (knowing that here, it is a two-
dimensional or three-dimensional Brownian motion). More exactly, we imagine that
this displacement is that of a drunk walker as it is usual to symbolize it. Viewed from
a big distance, one does not know if it is a continuous curve where each step is rep-
resented by a point, or if it is discontinuous, i.e. if each point corresponds to 100
or 1,000 steps for example. If we compare the trajectories taken step by step, all
the 100 steps or all the 1,000 steps, we will observe that the trajectories resemble
each other. It is usual to say that the trajectory is a fractal curve and its capac-
ity dimension (or fractal dimension) is equal to 2 (D = 2). This type of trajectory
has been highlighted by Jean Perrin at the beginning of the twentieth century, he
observed the movements of atoms under the microscope. One of the consequences
of this capacity dimension equal to 2 is that the trajectory tends to “blacken” the
plane while advancing in the course of time. And if despite everything the length
of the time series is not sufficient, we will be able to observe portions of the plane
“filled” uniformly by the trajectory. A “singular geometry” can be associated with
this type of trajectory which is (certainly too quickly) defined as a random walk. The
selected example of a walker, lets precise that the step taken by the walker excludes
all the “long distance jumps”. We can choose another way of symbolizing this type
of movement borrowed from the physical science by observing the trajectory of an
atom or a molecule belonging to a gas from which the temperature is different from
the absolute zero. The random movements of atoms consecutive to the presence of a
non-zero ambient temperature are called phenomena of diffusion which are related
to Physics but also the biology for example. Generally, any matter undergoes this
diffusion phenomenon through an increase in the ambient temperature. Above, we
evoked the notion of the long distance jump, but the length of the walker’s steps is
always close for two arbitrary steps, which may be slightly different if we measured
them with precision. But this way of representing the movement excludes the long
distance jump. This type of long distance jump has been approached by Paul Levy
who in the 1930s studied fundamental variants of the Brownian motion where these
long jumps are allowed, in opposition to what is stated above. The probability of
these jumps is weak, however they have the very important capacity to modify the
general structure of a movement. This type of event is called Levy jump or Levy
flight.
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2.3.2.1 Capacity Dimension of Trajectories, Gauss and Levy Laws

This concept of Levy jump can find transpositions in Nature. The most usual case
is the displacement of an albatross above the ocean, seeking the fish shoals to nour-
ish itself. The displacement of the bird is done in three dimensions. However if we
observe the trajectory in a plane (i.e. two-dimensions), we cannot observe the move-
ments (elevation) in the vertical dimension any more. The characteristic is that the
bird that found a fish shoal will describe displacements of weak length and width
during a time, the majority of its displacements at this place being vertical (not rep-
resented). Then, having finished at this place, it will move much further in the plane
until finding another fish shoal. This aspect of the set in the plane corresponds to
concentrations of movements in the form of very localized loops which will be sep-
arated by long curves without loops. The distance between two fish shoals is much
larger than the one inside the same fish shoal. In short, there will be many short
flights and from time to time long distance flights. This observation was done by
two teams, one from the British Antartic Survey from Cambridge and the other from
the Boston University. Unlike the Brownian motions described by the displacement
of a walker, where the steps have close lengths, the Levy jumps produce immense
steps (in the trajectory) even if they have a weak probability to occur. This type
of Levy jump offers trajectories whose capacity dimension or fractal dimension is
lower than 2 (D < 2). A Levy jump will thus be defined as a movement where the
probability P(s > S) of a jump s of distance higher than S varies like a negative
power of S: P(s > S) = S−D, with D < 2.13

This principle of the Levy distribution is used in astronomy in the study of the
distribution of “celestial objects”. The trajectories of the stock exchange indexes do
obviously not follow the Gauss law. The strong fluctuations of the stock exchange,
the shocks and the explosions over long periods could be integrated into the proba-
bility law. Sapoval (2001) gives a recent example of the Frankfurt Stock Exchange
index, for which we notice brutal explosions and self-similarities on different scales.
He notices that many stock market indexes have representations of this type and
have the statistical property of the self-affinity. (The stake is to consider that the
stock-exchange trajectories result from a subjacent deterministic dynamics, like the
trajectories with Levy jumps.)

2.3.2.2 Capacity Dimension and Fractional Integration

The fractional integration parameter d is defined as follows, in connection with the
Hurst exponent H evoked in the preceding sections: H = d + 1/2. In connection
with the Levy law, we can indicate the functional relation between the fractal
dimension and the Hurst exponent: D = 2−H or, the relation between the frac-
tal dimension and fractional integration: D = 3/2 − d. There exists a relation
between the Levy law and fractional integration: D = 3/2−d < 2, −d < −3/2+2,

13 The central limit theorem is impugned when the expectation value: E(s2) → ∞.
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d < 3/2−2, d < −1/2. This case corresponds to the lower bound of the parameter
of fractional integration d of a process ARFIMA(0,d,0) for which we have to face
“anti-persistence” phenomena. On the contrary, the relation between the Levy law
and the Hurst exponent is immediate: D < 2, 2−H < 2, H > 0. H will have to be
strictly higher than 0, what appears to be a too large sample to be significant. The
relation between the fractal dimension and the exponent is also written in certain
works (Mandelbrot 1975, p. 114) and under some conditions no longer described as
a difference but as a ratio: D = 1/H.

2.3.2.3 Definition of a Brownian Motion by Mandelbrot

Definition 2.1 (Mandelbrot, Brownian motion). If x is a point of the plane, x(t)
is called a Brownian motion it is a succession of small displacements which are
mutually independent and “isotropic”.14 The last characteristic means that all the
directions for the displacement of the point in the plane are possible. For any couple
of moments t and t ′ > t, one dissociates two points of vector x by x(t) to x(t ′) and
considers that (Mandelbrot 1975, p. 45):

(1) The direction as well as the length of the trajectory are independent of the initial
position and of the position of each previous point.

(2) The vector must be isotropic.
(3) The length of the vector is such that its projection on an unspecified axis obeys

the Gaussian distribution of density: 1√
2π |t′−t| exp −x2

2|t′−t| .

2.3.3 Introduction to Persistence and Loops Concepts

We implicitly evoked in different previous sections the fact that the Brownian
motion is spread in a natural space, i.e. in a plane or in a volume. This is why
in this section we chose to represent some Brownian motions in dimension higher
than 1. Brownian motions have been generated by the same simulator (simulator
seeds influence the results).

2.3.3.1 Brownian Motions: Highly Persistent, Fairly Persistent and Weakly
Persistent

Highly persistent. The Hurst exponent chosen for the simulation hereafter is close
to 0.85. We are beyond the value 0.5 of H for which we define a random walk

14 An isotropic line: an isotropic line passes through the circular points at infinity. Isotropic lines
are perpendicular to themselves.
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Fig. 2.20 (a) “Highly” persistent, H = 0.85; (b) “Fairly” persistent, H = 0.6

Fig. 2.21 (a) Brownian motion, H = 0.6; (b) Brownian motion for H = 0.51

in the sense of Hurst. The value H = 0.85 provides a fractal dimension near D =
2−0.85 = 1.15. The second approach also provides a dimension lower than 2,D =
1/0.85 = 1.17. The construction of such a time series, according to the terms of
Mandelbrot “discourages very strongly, without forbidding them”, the formation of
loops, because we “forced this trajectory to be very persistent”. We can observe
above in Fig. 2.20a that the loops are rare. The low frequency “drift” is very high.

Fairly persistent. The Hurst exponent chosen in this case is around 0.6. We are
beyond the value 0.5 of H for which we define a random walk in the sense of Hurst.
The value H = 0.6 provides a fractal dimension near D = 2−0.6 = 1.4. The second
approach also provides a dimension lower than 2, D = 1/0.6 = 1.66. We observe the
proliferation of many small loops that the trajectory describes on itself. The more the
Hurst exponent approaches 0.5, or the more the fractal dimension approaches 2, the
more the curve forms convolutions. The time series becomes dense (see Fig. 2.20b
built by means 1,000 steps). Figures 2.21a and 2.22 represent fairly persistent Brow-
nian motions built by means of 10,000 steps, the first one is a two-dimensional
motion (see Fig. 2.21a) and the second one is a three-dimensional Brownian motion
(see Fig. 2.22):

Weakly persistent. The Hurst exponent chosen in this case is around 0.51. We are
very close to the value 0.5 of H for which we define a random walk in the sense
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Fig. 2.22 Three-dimensional
Brownian motion, H = 0.6
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Fig. 2.23 Brownian motion
for H = 0.5

of Hurst. The value H = 0.51 provides a fractal dimension about D = 2− 0.51 =
1.49. the second approach also provides a dimension lower than 2 but very close,
D = 1/0.51 = 1.96. The number of loops that the trajectory describes on itself is
growing. The more the fractal dimension approaches 2, the more the curve forms
convolutions, the time series becomes more and more dense. The low frequency
“drift” becomes very variable and is almost invisible in our case (see Fig. 2.21b).

Brownian motion for H = 0.5. The different convolutions are similar. Such a
situation is similar to the statistical analysis where the spectrum is white, we have
to face a white noise, by the average or after the differentiation of the time series.
Low frequency drift is invisible. We will be able to visualize the density of the
trajectory that blackens and uniformly fills the plane (see Fig. 2.23).

2.3.4 Comment on DS/TS Process and Brownian Motions

In this section, we open a parenthesis that has the form of a question. The “memory”
notion of observations mentioned above (which appears when H > 0.5, i.e. when
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“the present is a consequence of the past”) interrogates about the “tendency” notion
in a time series. The analysis of the trend in econometrics, or more exactly the
analysis of the stationarity by means of the Dickey and Fuller (Unit root) statistic,
leads to choose for an arbitrary series between the two tendency types. The series
are identified by these tests as, either (1) or (2):

(1) DS type (Difference stationary), i.e. stationary by difference. The “stationariza-
tion” is done by differentiation.15 We speak of the stochastic stationarity that
concerns the non stationary random processes.

(2) TS type (Trend stationary), i.e. with “stationary trend”. The “stationarization”
(or detrend) is done by a regression on time. We say that there is a deterministic
non-stationarity.

The stock markets and economic time series are processes that are rarely anal-
ysed as being stationary (or even Gaussian). The non-stationarity (non-
stationariness) can result from moments of the first order (i.e. Expectation) or of the
second order (i.e. Variance). Before the end of the 1970s, there was no analytical
method to study non-stationariness. The Box–Jenkins method of graphic analysis,
that makes it possible to visualize the tendencies or the cycles and the saisonali-
ties, is interesting but not sufficient. In 1984, works of Nelson and Plosser analysed
the non-stationarity (non-stationariness) by means of two processes: TS and DS
processes.

2.3.4.1 TS Processes: Non-Stationarity of Deterministic Type

Such a process is written xt = ft + εt , where ft is a polynomial function of time,
linear or nonlinear and εt is a stationary process. An example of an elementary
process TS of order 1 is written: xt = a0 + a1t + ε t . If ε t is a white noise (Gaussian
or not) ε t ∼ N(0,σ2

ε ), the process is determined by:

E(xt) = a0 + a1t + E(εt) = a0 + a1t, (2.36)
V (xt) = E(a0 + a1t + εt − (a0 + a1t))2 = σ2

ε , (2.37)
cov(xt ,xt′) = 0 for t �= t ′. (2.38)

Such a process is non-stationary because the expectation depends on time (in a linear
way), as one can see above, t is provided with a coefficient. The expectation is calcu-
lated at every moment and obviously depends on t. We speak of (non-stationariness)
non-stationary of the deterministic type. The parameters of the tendency has a0 and
a1, we can estimate them by the method of least squares. The estimators obtained
are the “Best Linear Unbiased Estimators (BLUE)” which make forecasts possible.
The detrend is done by removing from the value of xt the estimation â0 + â1t at each
moment t. In this type of process, it is said that after a random shock, known as
transitory, the series re-takes its walk around its tendency curve.

15 Stationarization (mathematical barbarism or neologism): To make a time series stationary.
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2.3.4.2 DS Processes: Random Walk

Such a process is called “random walk” (and often used concerning stock markets).
Here, the process becomes stationary by a filter using the differences: (1−B)d =
β + εt , usually the filter is of order 1 (d = 1). εt is a stationary process or a white
noise and β is a constant symbolizing the possible drift of the process. The process
is written: xt = xt−1 + β + εt , εt is a white noise (Gaussian or not). If the process is
without drift (β = 0), then: xt = x0 + ∑t

i=1 εi, thus E(xt) = x0, V (xt) = tσ2
ε , cov =

σ2
ε ×Min(t,t ′) for t �= t. If the process has a drift (β �= 0), then we write: xt =

x0 +β t +∑t
i=1 εi, thus E(xt) = x0 +β t, V (xt) = tσ2

ε , cov = σ2
ε ×Min(t, t ′) for t �= t ′.

2.3.4.3 Fractional Brownian Motion and DS Process

The fractional Brownian motions are mainly non-stationary. For a Hurst expo-
nent (H > 0.5), the process is not analysed as a random walk but as a more or
less persisting process, and the correlation C is an “increasing function of H for
0.5 < H < 1”. It is known that in this case, the movement has frequent exits of the
tunnel described by its average and its variance. These exits are fractures in rela-
tion to its prior walk. It was also said that these “exits” have a random periodicity.
(It is the random component of a process which for H > 0.5 is considered as non-
stochastic by Hurst.) The more H approaches 1, the more the non-periodic cycles
deviate frequently from the average of values that the time series took before. For
H = 0.5, we have pure randomness as in this case the correlations C = 0. The present
does not influence the future and is not influenced by the past. This is known as a
random walk.

Traditional Statistics analyse DS processes as a random walk. We can study the
stationarity by means of the Dickey and Fuller (Unit root) Test of some samples of
fractional Brownian motions for H = 0.5 and H > 0.5. In the cases where the series
exhibits a non-stationarity, usually the conclusion is that we are faced with a DS
process, i.e. a random walk that becomes stationary by means of a filter using the
differences (test not presented here). Later we will present the traditional statistical
tests of stationarity, in Part II and they will be applied to a stock index.
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