Chapter 2

Classical Yang—Mills Black Hole Hair
in Anti-de Sitter Space

E. Winstanley

Abstract The properties of hairy black holes in Einstein—Yang—Mills (EYM) theory
are reviewed, focusing on spherically symmetric solutions. In particular, in asymp-
totically anti-de Sitter space (adS) stable black hole hair is known to exist for su(2)
EYM. We review recent work in which it is shown that stable hair also exists in
su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair
a black hole in adS can possess.

2.1 Introduction

We begin by very briefly reviewing the “no-hair” conjecture and motivating the
study of hairy black holes.

2.1.1 The “no-hair” Conjecture

The black hole “no-hair” conjecture [142] states that (see, for example, [51, 52,
77-179, 118] for detailed reviews and comprehensive lists of references): All sta-
tionary, asymptotically flat, four-dimensional black hole equilibrium solutions of
the Einstein equations in vacuum or with an electromagnetic field are characterized
by their mass, angular momentum, and (electric or magnetic) charge.

According to the no-hair conjecture, black holes are therefore extraordinarily
simple objects, whose geometry (exterior to the event horizon) is a member of the
Kerr—-Newman family and completely determined by just three quantities (mass,
angular momentum and charge). Furthermore, these quantities are global charges
which can (at least in principle) be measured at infinity, far from the black hole event
horizon. If a black hole is formed by the gravitational collapse of a dying star, the
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initial star will be a highly complex object described by many different parameters.
The final, equilibrium, black hole is, by contrast, rather simple and described by a
very small number of quantities. During the process of the formation of a black hole,
an enormous amount of (classical) information about the star which collapsed has
therefore been lost. Similarly, if a complicated object is thrown down a black hole
event horizon, once the system settles down, the only changes in the final state will
be changes in the total mass, total angular momentum and total charge. Advances
in astrometry [174] and future gravitational wave detectors [5] may even be able
to probe the validity of the “no-hair” conjecture for astrophysical black holes by
verifying that the mass, angular momentum and quadrupole moment Q, of the black
hole satisfy the relation Q> = J?/M which holds for Kerr black holes.

The ‘“no-hair” conjecture, stated above, has been proved by means of much
complicated and beautiful mathematics (as reviewed in, for example, [51, 52,
77-79, 118]), subject to the assumptions of stationarity, asymptotic flatness, four-
dimensional spacetime and the electrovac Einstein equations. It is perhaps unsur-
prising that if one or more of these assumptions is relaxed, then the conjecture does
not necessarily hold. For example, if a negative cosmological constant is included,
so that the spacetime is no longer asymptotically flat but instead approaches anti-de
Sitter (adS) space at infinity, then the event horizon of the black hole is not necessar-
ily spherical, giving rise to “topological” black holes (see, for example, [18, 64, 97,
98, 103, 112, 165]). More recently, the discovery of “black ring” solutions in five
spacetime dimensions ( [60], see [61] for a recent review) and the even more com-
plicated “black Saturn” [59] solutions indicates that Einstein-Maxwell theory has
a rich space of black solutions in higher dimensions, which are not given in terms
of the Myers-Perry [121] metric (which is the generalization of the Kerr—Newman
geometry to higher dimensions).

2.1.2 Hairy Black Holes

In this article we consider what happens when the other condition in the “no-hair”
conjecture, namely that the Einstein equations involve electrovac matter only, is re-
laxed. The “generalized” version of the no-hair conjecture [79] states that all station-
ary black hole solutions of the Einstein equations with any type of self-gravitating
matter field are determined uniquely by their mass, angular momentum and a set
of global charges. Even in asymptotically flat space, this conjecture does not hold,
even for the simplest type of self-gravitating matter, a scalar field. The first such
counterexample is the famous BBMB black hole [12, 13, 27] which has the same
metric as the extremal Reissner—Nordstrom black hole but possesses a conformally
coupled scalar field. However, this solution is controversial due to the divergence of
the scalar field on the event horizon [158] and is also highly unstable [48]. There-
fore, in some ways the first “hairy” black hole is considered to be the Gibbons
solution [71], which describes a Reissner—Nordstrom black hole with a non-trivial
dilaton field. While there are many results which rule out scalar field hair in quite
general models, particularly in asymptotically flat spacetimes (see, for example, [14]
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for a review), in recent years many other examples of black holes with non-trivial
scalar field hair have been found. For example, minimally coupled scalar field hair
has been found when the cosmological constant is positive [161] or negative [162]
and non-minimally coupled scalar field hair has also been considered (see, for ex-
ample, [176, 177] and references therein).

In this short review, we will focus on another particular matter model, Einstein—
Yang-Mills theory (EYM), where the matter is described by a non-Abelian (Yang-
Mills) gauge field. It is now well-known that this theory possesses “hairy” black hole
solutions, whose metric is not a member of the Kerr—Newman family (see [171] for
a detailed review). Furthermore, unlike the Kerr—Newman black holes, the geometry
exterior to the event horizon is not determined uniquely by global charges measure-
able at infinity, although only a small number of parameters are required in order to
describe the metric and matter field (see Sect. 2.3 for further details). All the asymp-
totically flat black hole solutions of pure EYM theory discovered to date are unsta-
ble [47] (however, there are examples of asymptotically flat, stable hairy black holes
in variants of the EYM action, such as Einstein—Skyrme [22, 58, 80, 81], Einstein-
non-Abelian-Proca [73, 110, 159, 160, 163] and Einstein—Yang—Mills—Higgs [1]
theories). This means that, while the “letter” of the no-hair theorem is violated in
this case (as there exist solutions which are not described by the Kerr—-Newman met-
ric), its “spirit” is intact, as stable equilibrium black holes remain simple objects,
described by a few parameters if not exactly of the Kerr—Newman form (see [21]
for a related discussion along these lines).

The situation is radically different if one considers EYM solutions in asymptoti-
cally adS space, rather than asymptotically flat space. For su(2) EYM, at least some
black hole solutions with hair are stable [25, 26, 175]. These stable black holes
require one new parameter (see Sect. 2.4) to completely describe the geometry exte-
rior to their event horizons. Therefore, one might still argue that the true “spirit” of
the “no-hair” conjecture remains intact and that stable equilibrium black holes are
comparatively simple objects, described by just a few parameters.

One is therefore led to a natural question: are there hairy black hole solutions in
adS which require an infinite number of parameters to fully describe the geometry
and matter exterior to the event horizon? In other words, is there a limit to how
much hair a black hole in adS can be given? This is the question we will be seeking
to address in this article.

2.1.3 Scope of this Article

The subject of hairy black holes in EYM theory and its variants is very active, with
many new solutions appearing each year. The review [171], written in 1998, is very
detailed and thorough and contains a comprehensive list of references to solutions
known at that time. We have therefore not sought to be complete in our references
prior to that date, and have, instead, chosen to highlight a few solutions (the selection
being undoubtedly personal). Even considering just work after 1998, we have been
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unable to do justice to the huge body of work in this area (for example, the seminal
paper [7] has 172 arXiv citations between 1999 and the time of writing) and have
instead chosen some examples of solutions. As well as [171], reviews of various as-
pects of solitons and black holes in EYM can be found in [21, 66, 72, 152, 153, 166].

The outline of this article is as follows. In Sect. 2.2 we will outline su(N) EYM
theory, including our ansatz for the gauge field and the form of the field equations.
We will then, in Sect. 2.3, briefly review some of the properties of the well-known
asymptotically flat solutions of this theory. Our main focus in this article are asymp-
totically adS black holes, and we begin our discussion of these in Sect. 2.4 by re-
viewing the key features of the su(2) EYM black holes in adS, before moving on to
describe very recent work on su(N), asymptotically adS, EYM black holes in Sect.
2.5. Our conclusions are presented in Sect. 2.6. Throughout this article the metric
has signature (—, +,+,+) and we use units in which 471G = ¢ = 1.

2.2 su(N) Einstein-Yang—Mills Theory

In this section we gather together all the formalism and field equations we shall
require for our later study of black hole solutions.

2.2.1 Ansatz, Field Equations and Boundary Conditions

In this article we shall be interested in four-dimensional su(N) EYM theory with a
cosmological constant, described by the following action, given in suitable units:

1
Sevm = 5 /d4x\/—g [R—2A —TrFy F*V], 2.1)

where R is the Ricci scalar of the geometry and A the cosmological constant. Here

we have chosen the simplest type of EYM-like theory, many variants have been

studied in the literature (see, for example, [171] for a selection of examples).
Varying the action (2.1) gives the field equations

1
T[JV = R[JV - ERguv JFAguv;

0=DyRH* =V R+ A, R (2.2)
where the YM stress—energy tensor is
P ro
Tuv = TrFua i — 28 TrFpg PO (2.3)

In this article we consider only static, spherically symmetric black hole geome-
tries, with metric given, in standard Schwarzschild-like co-ordinates, as
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ds* = —puS?dr* + u='dr* + 2 de* + rsin® 0d¢>, (2.4)

where the metric functions i and S depend on the radial co-ordinate r only. In the
presence of a negative cosmological constant A < 0, we write the metric function
u as

2
_2m(r) Ar (2.5)

=1
u(r) . 3
The most general, spherically symmetric, ansatz for the su(N) gauge potential
is [99]:

A= e;z%dH—L%’dH—% (c—c™) de—é [(C+C")sin®+DcosO] dop, (2.6)

where o7, %, C and D are all (N x N) matrices and C? is the Hermitian conjugate
of C. The matrices .« and % are purely imaginary, diagonal, traceless and depend
only on the radial co-ordinate r. The matrix C is upper triangular, with non-zero
entries only immediately above the diagonal:

Cjjr1 = w;(r)e"), 2.7)
for j=1,--- N — 1. In addition, D is a constant matrix:
D =Diag(N—I,N—3,--- —N+3,—N+1). (2.8)

Here we are primarily interested only in purely magnetic solutions, so we set .«# = 0.
We may also take # = 0 by a choice of gauge [99]. From now on we will assume
that all the j(r) are non-zero (see, for example, [69, 94-96] for the possibilities in
asymptotically flat space if this assumption does not hold). In this case one of the
Yang—Mills equations becomes [99]

Y, =0 Vj=1,---,N—1. (2.9)
Our ansatz for the Yang—Mills potential therefore reduces to

A:%(C—CH) dO—é[(C—FCH)sinO—f—DcosG] dg, (2.10)

where the only non-zero entries of the matrix C are
Cj,jH:wj(r). 2.11)

The gauge field is therefore described by the N — 1 functions @;(r). We comment
that our ansatz (2.10) is by no means the only possible choice in su(N) EYM. Tech-
niques for finding all spherically symmetric su(N) gauge potentials can be found
in [6], where all irreducible models are explicitly listed for N < 6.

With the ansatz (2.10), there are N — 1 non-trivial Yang—Mills equations for the
N — 1 functions wj:
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3
: ) o+ W;0; =0 2.12)

2A
rzua)}’ + (Zm — 2r3p9 -3

for j=1,...,N —1, where a prime ' denotes d/dr,

N
Po =13 2[(60 — o —-N-1+2))%], 2.13)
1
Wi =1-0j+ 5 (0] +}), (2.14)

and wp = @y = 0. The Einstein equations take the form

s 2G
m =uG+rpy, =", (2.15)
S r
where
N—1
G=Y of. (2.16)
j=1

Altogether, then, we have N + | ordinary differential equations for the N + 1
unknown functions m(r), S(r) and w;(r). The field equations (2.12) and (2.15) are
invariant under the transformation

w;(r) — —o;(r) (2.17)
for each j independently, and also under the substitution:
j—N—J. (2.18)

We are interested in black hole solutions of the field equations (2.12) and (2.15).
We assume there is a regular, non-extremal, black hole event horizon at r = ry,
where (t(r) has a single zero. This fixes the value of m(r;) to be:

A
2m(ry) = ry— % (2.19)
However, the field equations (2.12) and (2.15) are singular at the black hole event
horizon r = rj, and at infinity r — co. We therefore need to impose boundary condi-
tions on the field variables m(r), S(r) and @;(r) at these singular points. When the
cosmological constant A is zero, local existence of solutions of the field equations
in neighbourhoods of these singular points has been rigorously proved [100, 125].
This proof can be extended to the case when the cosmological constant is negative
[8, 11].
We assume that the field variables w;(r), m(r) and S(r) have regular Taylor series
expansions about r = ry:
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m(r) = m(ry) +m'(ry) (r—ra) + O (r—r)*;
0;(r) = @j(ry) + j(r) (r—r) + 0 (r— )
S(r) = S(ra) +8'(ra) (r=ru) + O (r —r3). (2.20)

Setting (t(r;) = 0 in the Yang-Mills equations (2.12) fixes the derivatives of the
gauge field functions at the horizon:

@}(rp) = — Wil @;(rh) e (2.21)

24
2m(ry) —2r;po(rp) — 5

Therefore the expansions (2.20) are determined by the N + 1 quantities ®; (rn), ris
S(rp) for fixed cosmological constant A. For the event horizon to be non-extremal,
it must be the case that

2m' (ry) = 2ripe(ry) < 1 —Ary, (2.22)

which weakly constrains the possible values of the gauge field functions w;(r;) at
the event horizon. Since the field equations (2.12) and (2.15) are invariant under the
transformation (2.17), we may consider w;(r,) > 0 without loss of generality.

At infinity, we require that the field variables ®;(r), m(r) and S(r) converge to
constant values as r — oo and have regular Taylor series expansions in r~! near
infinity:

m(r):M—f—O(r*l); S(r):l—i-O(r*l); a)j(r):a)j7.>o+0(fl).
(2.23)

If the spacetime is asymptotically flat, with A = 0, then the values of ®; .. are

constrained to be
Wjo=E\j(N—J). (2.24)

This condition means that the asymptotically flat black holes have no magnetic
charge at infinity, or, in other words, these solutions have no global magnetic charge.
Therefore, at infinity, they are indistinguishable from Schwarzschild black holes.
However, if the cosmological constant is non-zero, so that the geometry approaches
(a)dS at infinity, then there are no a priori constraints on the values of ®;.. In
general, therefore, the (a)dS black holes will be magnetically charged. It should be
noted that the boundary conditions in the case when the cosmological constant A
is positive are more complex, as there is a cosmological horizon between the event
horizon and infinity.

2.2.2 Some “trivial” Solutions

Although the field equations (2.12) and (2.15) are highly non-linear and rather com-
plicated, they do have some trivial solutions which can easily be written down:
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Schwarzschild(-(a)dS)  Setting
0;(r) = £/ j(N = j) (2.25)
for all j gives the Schwarzschild(-(a)dS) black hole with
m(r) = M = constant (2.26)
We note that, by setting M = 0, pure Minkowski (A = 0) or (a)dS (A # 0) space
is also a solution.

Reissner—Nordstrom(-(a)dS)  Setting

wj(r) =0 (2.27)

u(r) = - T a3 (2.28)
where the magnetic charge Q is fixed by
1
QZ:EN(N—H)(N—l). (2.29)

Embedded su(2) solutions  For our later numerical and analytic work, an addi-
tional special class of solutions turns out to be extremely useful. We begin by

setting
wj(r) =%/ jN—j)o(r) vVi=1,...,.N—1, (2.30)
then follow [100] and define

ANz\/éN(N—l)(NH), 2.31)

and then rescale the field variables as follows:

R=2y'rs  A=J3A;s  m(R) =2y m(r);
S(R) = S(r); @(R) = o(r). (2.32)

Note that we rescale the cosmological constant A (this is not necessary in [100]

as there A = 0). The field equations satisfied by /m(R), S(R) and @(R) are then

dm ~
% = UG+ R po;

dR
145 _ 26,
SdR ™~ R’

d*® 2AR?) d® 97 ~
O:RZuWJr 2/ — 2R pg — 3 d—R+[1—w2]w; (2.33)
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where we now have

2 AR?
and X
~ 740 5 1 N2
6=(F) meml-eV. e

The (2.33) are precisely the su(2) EYM field equations. Furthermore, the bound-
ary conditions (2.20) and (2.23) also reduce to those for the su(2) case.

2.2.3 Dyonic Field Equations

As will be discussed in Sect. 2.4.3, if either N > 2 or we have a negative cosmo-
logical constant A, then we do not need to restrict ourselves to considering only
purely magnetic equilibrium gauge potentials. If the electric part of the gauge po-
tential (2.6), <7, is non-zero, there is still sufficient gauge freedom to set Z =0
in (2.6) [99]. Then, provided none of the ®; vanish identically, one of the Yang—
Mills equations again tells us that all the y; are identically zero. Following [99] it is
convenient to define new real variables c;(r) by

(2.36)

,l[ zkak+z <1)ak

so that the matrix <7 is automatically purely imaginary, diagonal and traceless. In
this case the Yang—Mills equations (2.12) now take the form [99]

r? / u s
o;+W0;+ ﬁaj w; =0, (2.37)

2A
rzuw}’—k (Zm —2r3p9 -3

and there are additional Yang—Mills equations for the o;, namely [99]
— !
(7S (uSay)'| =2007 — 01 0F | — 01 ©F . (2.38)

The Einstein equations retain the form (2.15) but the quantities pg (2.13) and G
(2.16) now read [99]

[\

2
2 [
(a)?—a)},l—N—l—irZ]) +<S(MS$Z/]‘]‘)/> ]

%ﬂ
U A

Q
|

[ }2+%2 7] . (2.39)

~.
Il
=
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2.2.4 Perturbation Equations

We are also interested in the stability of the static, equilibrium solutions. For sim-
plicity, we consider only linear, spherically symmetric perturbations of the purely
magnetic solutions. We return to the general gauge potential of the form (2.6), and
the metric (2.4), where now all functions depend on time ¢ as well as r. There is still
sufficient gauge freedom to enable us to set <7 = 0. This choice of gauge is partic-
ularly useful as then we shall shortly see that the perturbation equations decouple
into two sectors, the “gravitational” and “sphaleronic” sectors [102]. We consider
perturbations about the equilibrium solutions of the form

a)j(t,r):a)j(r)+6wj(t,r), (2.40)

where m;(r) are the equilibrium functions and d @; (¢, r) are the linear perturbations.
There are similar perturbations for the other equilibrium quantities m and S, and in
addition we have the perturbations §y;(z,r) and 6;(z, r), the latter being the entries
along the diagonal of the matrix % (2.6):

% = Diag (i6B,--,i0By). (2.41)
Note that the §3; are not independent because the matrix 4 is traceless, so
8Pi+-+8By=0, (2.42)

but it simplifies the derivation of the perturbation equations to retain all the 63; for
the moment. We ignore all terms involving squares or higher powers of the pertur-
bations. The full derivation of the perturbation equations is highly involved and the
details will be presented elsewhere [11]. Instead here we summarize the key features
of the perturbation equations. As usual, we will employ the “tortoise” co-ordinate

74, defined by

dr, 1
= — 2.43
= s (2.43)

where  and S are the equilibrium metric functions.

2.2.4.1 Sphaleronic Sector

The sphaleronic sector consists of the 2N — 1 perturbations 6, j =1,...,N and
0Yj, j=1,...,N — 1. We define new variables 0 ®; by

The perturbation equations for the sphaleronic sector arise solely from the Yang—
Mills equations, and comprise
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.. S P P
0B = = @19, (6@j-1) — 00, ()]

S
+r7 [(Qr*a)j) 64’] — (8,*(01-_1) 5(1)j_1]

SZ
+Lt7 7 (8Bj+1 —8B;) — @f—; (8B; —8Bj-1)]: (2.45)
. 1
8b; = 07 (80;) — — (07 ;) 6+ uSw;oy. (8B; — 5P;1)
J
+ (1 (91, S) )+ (9. 1) S0 + 218 (9, ;)] (8B — 8Bj1) 5 (2.46)

together with the Gauss constraint

. uS 9.8
0=0, (88;) + H . }(m, 2 w0 8d;+ 0, 18b; ], (247)

where a dot denotes d/dt. It is important to note that the cosmological constant A
only appears in these equations through the metric function u (2.5), and therefore
the perturbation equations (2.45) and (2.46) and the Gauss constraint (2.47) have
exactly the same form as derived in [47] for arbitrary gauge groups in asymptotically
flat space.

2.2.4.2 Gravitational Sector

The gravitational sector consists of the perturbations of the metric functions u and
0S as well as the perturbations of the remaining gauge field functions d ;. Both
the Einstein equations and the remaining Yang—Mills equations are involved in this
sector. For an arbitrary gauge group and asymptotically flat space, the perturbation
equations in this sector have been considered in [47]. In asymptotically adS, we
also find that the metric perturbations can be eliminated to give a set of equations
governing the perturbations § w;, which can be written in matrix form

86 =09} () +. A8, (2.48)
where dw = (5w1,...,6wN_1)T and the (N — 1) x (N — 1) matrix .# has entries

H52 1 85
Majj = W) —20; ]+“TT(9”601) + 3 W0; (0, 0));

2

,LL

Gl = 00 + —— I Y (9, ;) (0r, ;1)
8S

+— [Wj0; (0r. 0j41) + Wir10j11 (0, )] 5

4 85
= Er(a&wj) (ar*wk)+r7[ijj(ar*wk)-f'Wkwk(ar*wj)];(2-49)
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where k # j, j+ 1, and Y is given in terms of the equilibrium metric functions gt and
S as follows:
us

1 1
Y=—9, <9,5 + —. 2.50
LOnk + GOS + 5 (2.50)

2.3 Asymptotically Flat/de Sitter Solutions for su(N) EYM

We now turn to black hole solutions of the EYM field equations, beginning by briefly
reviewing some of the key features of solutions in asymptotically flat or asymptoti-
cally de Sitter space.

2.3.1 Asymptotically Flat, Spherically Symmetric su(2) Solutions

Apart from the trivial solutions given above (2.25) and (2.27), the first black hole
solutions of the EYM field equations were found by Yasskin [182], and correspond
to embedding the Reissner—Nordstrom electromagnetic gauge field into a higher—
dimensional gauge group. The metric of these solutions is still Reissner—Nordstrom.
Yasskin conjectured that his solutions were the only ones possible. This conjecture
was only shown to be false 25 years later [19, 101, 168, 169]. That the discovery of
hairy black holes in s1(2) EYM took so long may be attributed to the conjecture that
there were no soliton solutions in this model. This conjecture is based on the fact
that there are no solitons in pure gravity (see, for example, [78, 104]); no solitons
in Einstein—-Maxwell theory [77], no pure YM solitons in flat spacetime [53, 56]
and no EYM solitons in three spacetime dimensions [57]. However, once Bartnik
and McKinnon [7] had discovered non-trivial EYM solitons in four-dimensional
spacetime, Yasskin’s no-hair conjecture for EYM theory was quickly shown to be
false [19].

For su(2) EYM, it has been shown [23, 62, 67] that non-trivial solutions (i.e.,
solutions in which the gauge field is not essentially Abelian) must have a purely
magnetic gauge potential, which is described by a single gauge field function @(r)
(2.10). Note that the ansatz (2.10) for su(2) is not the same as the Witten ansatz
[179] which was used in the original papers [7, 19], but it gives equivalent field
equations. In this case the su(2) EYM equations have the form

dm 2m\ (do\* 1 502
i~ (=) (@) -0

1ds _ 2 (do\*
Sdr r\ dr ’

(1)’

r

do
- o’ o. (2.51)
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It is the highly non-linear nature of these equations which allows for non-trivial
soliton and hairy black hole solutions, which may be thought of heuristically as
arising from a balancing of the gravitational and gauge field interactions (see [82]
for a recent discussion). The non-linear nature of the equations also means, however,
that (apart from the solutions for the Yang—Mills field on a fixed Schwarzschild
metric [28, 34]) solutions can only be found numerically.

The numerical work in [7, 19, 101, 168, 169] found discrete families of solutions
[156], indexed by the event horizon radius r;, (with r, = 0 for solitons) and n, the
number of zeros of the single gauge field function @, each pair (r,n) identifying
a solution of the field equations. A key feature of the solutions is that n > 0, so
that the gauge field function must have at least one zero (or “node”). Later analytic
work [29, 149-151] rigorously proved these numerical features. The black holes are
“hairy” in the sense that they have no magnetic charge [23, 62, 67] and are therefore
indistinguishable at infinity from a standard Schwarzschild black hole. However, the
“hair”, that is, the non-trivial structure in the matter fields, extends some way out
from the event horizon, leading to the “no-short-hair” conjecture [122].

Although initially controversial [20, 24, 152, 173], rapidly it was accepted that
both the soliton [154] and the black hole solutions [155] are unstable. This insta-
bility is not unexpected if we consider the solutions as arising from a balancing of
the gauge field and gravitational interactions. Studies of the non-linear stability of
the solutions [183, 184] reveal that the gauge field “hair” either radiates away to
infinity or falls down the black hole event horizon, leaving, as the end-point, a bald
Schwarzschild black hole. Due to this instability, the black holes, while they vio-
late the “letter” of the no-hair conjecture, may be thought of as not contradicting its
“spirit”, and one might be led to conjecture that all stable black holes are fixed by
their mass, angular momentum and conserved charges.

Originally these hairy black holes were shown to be unstable using numerical
techniques [155] but the instability can also be shown analytically [68, 170]. In the
su(2) case, the perturbation equations (2.45), (2.46) and (2.48) simplify consider-
ably. The sphaleronic sector reduces to a single equation (see Sect. 2.4.2 below for
further details)

— _ — 2
6= ot w? \dr.

2 2
B o)+ (‘“") ] ¢, 2:52)

while, on eliminating the metric perturbations, the gravitational sector also has just
one equation:

80 = -9} (Sw) (2.53)
2 _2\2
+£ 307 —1—4re” 1—w +§ww’(co2—l) Sw.
}"2 r 1"3 r

The instability has been compared to that of the flat-space Yang—Mills sphaleron
[170], which has a single unstable mode. The situation is slightly more complicated
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here, due to the two sectors of perturbations. The sphaleronic sector certainly, as
its name suggests, mimics the perturbations of the flat-space sphaleron. It can be
shown [167] that the number of instabilities in the sphaleronic sector equals n, the
number of zeros of the gauge field function . The same is true in the gravitational
sector, as conjectured in [102] and can be shown using catastrophe theory, by con-
sidering the more general EYM—Higgs solutions [115]. The above concerns only
spherically symmetric perturbations. It is known that the flat-space sphaleron has
instabilities only in the spherically symmetric sector [4]. Extending this to the su(2)
EYM black holes requires complicated analysis [143], using a curvature-based for-
malism developed in [43, 144, 145].

Using the isolated horizons formalism, these “hairy” black holes can be inter-
preted as bound states of ordinary black holes with the Bartnik—MacKinnon soli-
tons [3, 54, 55]. In particular, the soliton masses are given in terms of the masses
of the corresponding black holes [55], and the instability of the colored black holes
arises naturally from the instability of the corresponding solitons [3, 54].

Since these initial discoveries a plethora of new, asymptotically flat, hairy black
hole solutions have been found in Einstein—Yang—Mills theory and its variants (see
[171] for a review of those solutions discovered prior to 1999). Most of these are,
indeed, unstable. However, there are notable exceptions, including (a) the Skyrme
black hole [22, 58, 80, 81] where the existence of an integer-valued topological
winding number renders the solutions stable, (b) Einstein—Yang—Mills—Higgs black
holes in the limit of infinitely strong coupling of the Higgs field [1] and (c) a par-
ticular branch of Einstein-non-Abelian-Proca black holes [73, 110, 159, 160, 163].
We will not consider additional matter fields further in this article.

2.3.2 Non-spherically Symmetric, Asymptotically Flat
su(2) Solutions

One of the surprising aspects of the failure of black hole uniqueness in EYM is
that almost every step in the uniqueness theorem in Einstein-Maxwell theory has
a counterexample in EYM (see [79] for detailed discussions on this topic, and [45,
128, 153, 156, 157] for examples of some results from Einstein—-Maxwell theory
which do generalize). An important example of this is Israel’s theorem [86, 87],
which states that the geometry outside the event horizon of a static black hole must
be spherically symmetric. This is not true in EYM: there are static black hole so-
lutions which are not spherically symmetric but only axisymmetric [90] (in more
general matter models, static black holes do not necessarily possess any symmetries
at all [138, 139]). These solutions are found numerically by writing the metric in
isotropic co-ordinates

) 5 m(r,0) 5 m(r,0)r* , L(r,0)r’sin’>6

ds f(r,0)dr +f(r,0)dr + 70n0) do”+ 7(r.0)

do’, (2.54)
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and using the following ansatz for the s1(2) gauge field [137]

AL {rg [Hy(r,0)dr+ (1 — Ho(r,0)) rd6)]

2r
—p [tPH3(r,0) + T4 (1 — Ha(r,6))] rsin9d¢}, (2.55)
where
T = 1.(sinO cos p¢,sin O sin pd,cos ),
Th = 7.(cos @ cos pg,cos O sinp¢, —sin ),
Tg :L(_Sinp¢7COSp¢,0), (2.56)
with

T= (T, 7y, T2), (2.57)

where 7y, Ty, T, are the usual generators of su(2). Here, p is a winding number, with
p = 1 corresponding to spherically symmetric solutions (with the gauge potential
written in a different form to that we have used in (2.10)). Substituting the ansatz into
the field equations gives a complicated set of partial differential equations, solutions
of which are exhibited in [90]. Static, axisymmetric soliton solutions also exist [65,
85, 91].

It is less surprising that rotating black holes also exist in this model [92, 93],
generalizing the Kerr—Newman metric (as predicted in [156]). These solutions are
indexed by the winding number p (2.56) and a node number n. They carry no
magnetic charge, but all have non-zero electric charge [156, 157]. The question
of whether there are rotating solitons in pure s1(2) EYM has yet to be conclusively
settled, however. Rotating soliton solutions have been found in EYM-Higgs the-
ory [127], but not in pure EYM theory. Although rotating solitons are predicted
perturbatively [44], the consensus in the literature is now that it seems unlikely that
rotating soliton solutions do exist [17].

2.3.3 Asymptotically Flat su(N) Solutions

We shall next consider generalizations of the s1(2) YM gauge group. The simplest
such generalization is to consider su(N) EYM. The results of [62, 67] do not ex-
tend to this larger gauge group, and it is possible to have solutions with electric
charge [69], which correspond to a superposition of electrically charged Reissner—
Nordstrom and the su(2) EYM black holes. Numerical solutions of the field equa-
tions have been found in the following papers: [69, 94-96]. As N increases, the
possible structures of the gauge field potential (2.6) become ever more complicated.
A method for computing all spherically symmetric su(N) gauge field potentials is
given in [6], where all the irreducible possibilities are enumerated for N < 6. As
in the su(2) case, black hole solutions are found at discrete points in the parameter
space {®@j(ry),j=1...N—1}.
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There is comparatively little analytic work for more general gauge groups. Local
existence of solutions of the field equations (2.12) and (2.15) near the black hole
event horizon and at infinity has been proven for gauge group su(N) [100], and
subsequently extended to arbitrary compact gauge group [124, 125]. The existence
of non-trivial black hole solutions to the field equations has been proven rigorously
only in the su(3) case [140, 141], although there are arguments that hairy black
hole solutions exist for all N [116]. In the su(3) case, Ruan [140, 141] has proved
that there are infinitely many hairy black hole solutions, indexed by the numbers of
zeros (ny,ny), respectively, of the two gauge field functions (@, ®;). Furthermore,
provided that the radius of the event horizon is sufficiently large, there is a black
hole solution for any combination of (ny,n,). The global properties of the solutions
for arbitrary compact gauge group are studied in [126]. However, it will come as
no surprise to learn that all these solutions, in asymptotically flat space, and for any
compact gauge group, are unstable [46, 47]. To show instability it is sufficient to
find a single unstable mode, and therefore the work in [46, 47] studies the simpler,
sphaleronic sector of perturbations (see Sect. 2.2.4).

2.3.4 Asymptotically de Sitter su(2) EYM Solutions

Another natural generalization of asymptotically flat su(2) EYM is the inclusion of
a non-zero cosmological constant A. When the cosmological constant is positive,
soliton [172] and black hole [164] su(2) EYM solutions have been found (other
numerical solutions are presented in [41, 119]). These solutions possess a cosmo-
logical horizon and approach de Sitter space at infinity (for a complete classification
of the possible spacetime structures, see [30]). The phase space of solutions is again
discrete, and the single gauge field function @ must have at least one zero. Un-
surprisingly, these solutions again turn out to be unstable [42, 63, 164]. Given this
instability, the asymptotically de Sitter solutions have received rather less attention
in the literature, but some analytic work can be found in [105-107].

2.4 Asymptotically anti-de Sitter Solutions for su(2) EYM

We now turn to the main focus of this article: asymptotically anti-de Sitter solutions.
We begin by reviewing some of the properties of black holes in su(2) EYM.

2.4.1 Spherically Symmetric, Asymptotically adS, su(2) EYM
Solutions

Black hole solutions of su(2) EYM with a negative cosmological constant were first
studied in [175], and subsequently in [25, 26]. The field equations now take the form
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+[1- 0% 0. (2.58)

The inclusion of a negative cosmological constant means that boundary condi-
tions at infinity (2.23) are considerably less stringent than in the asymptotically
flat case; it is therefore unsurprising that it is easier to find solutions in asymptoti-
cally adS.

The space of solutions in adS is very different to that in asymptotically flat space.
Instead of finding solutions at discrete values of @(r;), solutions exist in continu-
ous, open intervals. Furthermore, for sufficiently large |A|, we now find solutions
in which the single gauge field function @(r) has no zeros. A typical example of
such a solution is shown in Fig. 2.1, further examples can be found in [175]. These
properties of the space of solutions of the (2.58) are proved in [175].

We now examine the structure of the space of solutions, more details of which
can be found in [8, 9, 175]. There are three parameters describing the solutions, 7y,
A and o(ry,). In order to plot two-dimensional figures, we fix either r;, or A and vary
the other two quantities. For s1(2) black holes, the constraint (2.22) on the value of
the gauge field function at the event horizon reads

(0(m)?—1)* < (1-Ar7). (2.59)

1.2
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Fig. 2.1 An example of an su(2) EYM black hole in adS in which the gauge field function o(r)
has no zeros. Here, A = —1, r;, = 1 and @(r;) = 0.7
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Fig. 2.2 The space of su(2) black hole solutions when A = —0.01, for varying r;,. The shaded
region indicates values of the gauge field function @(r;) at the event horizon for which the con-
straint (2.59) is satisfied, but for which we find no well-behaved black hole solution. The number
of zeros n of the gauge field function w are indicated in those regions of the phase space where we
find black hole solutions. Elsewhere on the diagram, the constraint (2.59) is not satisfied. Between
the region where n = 2 and the shaded region we find black hole solutions with n = 3, 4 and 5, but
these regions are too small to indicate on the graph. Taken from [9]

Whether we are varying r;, or A, we perform a scan over all values of @y, which
satisfy (2.59). First, we show in Fig. 2.2 the space of black hole solutions for fixed
A = —0.01 and varying event horizon radius r;,. The outermost curves in Fig. 2.2 are
where the inequality (2.59) is saturated. Immediately inside these curves we have
a shaded region, which represents values of (r;, @(r;)) for which the constraint
(2.59) is satisfied, but for which we are unable to find black hole solutions which
remain regular all the way out to infinity. Where we do find solutions, we indicate in
Fig. 2.2 the number of zeros of the gauge field function @(r). The solution for which
o(ry) = 1 is simply the Schwarzschild-adS black hole, while that for w(r;) =0 is
the magnetically charged Reissner—Nordstrom-adS black hole (see Sect. 2.2.2). As
rp — 0, the constraint (2.59) implies that @(r,) — 1, as can be seen in Fig. 2.2.
The black hole solutions become solitons in this limit. However, for this value of A,
there are different soliton solutions, with @ having different numbers of zeros [31],
a feature which is not readily apparent from Fig. 2.2. We find similar behavior on
varying ry, for different values of A.

If we now fix the event horizon radius to be r;, = 1 and vary A, the solution space
is shown in Fig. 2.3, with a close-up for smaller values of |A| in Fig. 2.4.

Again, in Figs. 2.3 and 2.4 we have shaded those regions where the constraint
(2.59) is satisfied, but no regular black hole solutions could be found. Where we
do find solutions, the number of zeros of the gauge field function w(r) is indicated
in the figures. As A — 0, the phase space breaks up into discrete points, which
correspond to the asymptotically flat “colored” su(2) black holes described in Sect.
2.3.1 [19]. For sufficiently large |A|, we find solutions in which the gauge field
function has no zeros.
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Fig. 2.3 Phase space of su(2) black holes with r;, = 1 and varying A. The shaded region indicates
values of the gauge field function @(r;) at the event horizon for which the constraint (2.59) is
satisfied, but for which we find no well-behaved black hole solution. The number of zeros n of the
gauge field function w are indicated in those regions of the phase space where we find black hole
solutions. Elsewhere on the diagram, the constraint (2.59) is not satisfied. As well as the regions
where n =0,...,4 as marked on the diagram, we find a small region in the bottom left of the plot

where n = 5. This region is too small to indicate on the current figure, but can be seen in Fig. 2.4.
Taken from [9]

The spectrum of black hole solutions (that is, the relationship between the mass
M and magnetic charge Q of the black holes) was first studied in [26]. We plot in
Fig. 2.5 the black hole mass versus magnetic charge for black holes with r, = 1
and varying values of A (cf. Fig. 8 in [26]). For large values of |A |, there are only
nodeless solutions and the spectrum is simple, with the black holes being uniquely

no solution

Fig. 2.4 Close-up of the phase space of su(2) black holes with r;, = 1 and smaller values of A. In
the bottom left of the plot there is a small region of solutions for which n = 7, but the region is too
small to be visible. Taken from [9]
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Fig. 2.5 Black hole mass M and magnetic charge Q for su(2) EYM black holes with r;, = 1 and
varying A (cf. Fig. 8 in [26])

specified by A, rj, and Qy. As |A| decreases, the spectrum becomes more compli-
cated. For example, looking at the A = —0.1 curve in Fig. 2.5 we see that a branch
structure emerges. The lower M curve for A = —0.1 consists of n = 0 (nodeless)
solutions, and extends from negative Q up to Q = 1. When Q = 1, abranch of n =1
solutions appears, which have larger mass. As Q decreases along this branch of solu-
tions, the mass M increases, until a bifurcation point is reached and a second branch
of n = 1 solutions appears, with even larger mass, and with the charge increasing
as M increases. For smaller values of |A|, we find ever more complicated spectra,
which appear to become “fractal” as |A| — 0 [26, 114]. In view of the catastro-
phe theory analysis of other hairy black hole solutions [159, 160, 163], one might
anticipate that the stability of the solutions changes at the points in the spectrum
where two branches of solutions meet, but this has yet to be fully investigated in
the literature (see [31] for an in-depth stability analysis of the soliton solutions). We
therefore next consider the stability of these black holes.

2.4.2 Stability of the Spherically Symmetric Solutions

As discussed in Sect. 2.3.1, for the asymptotically flat su(2) EYM black holes, it
has been shown that the number of instabilities is twice the number of zeros of the
gauge field function w(r). Therefore, one might anticipate that at least some solu-
tions when @(r) has no zeros could be stable. For the su(2) EYM case, the pertur-
bation equations (2.45), (2.46) and (2.48) simplify considerably. In the sphaleronic
sector, there is a single 0 @ (2.44) and two further perturbations 831, 03, although
these are not independent (2.42), so we may consider just v = 83, — 63;. The
sphaleronic sector perturbations equations (2.45) and (2.46) then reduce to
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28 2us?
87 = 2 [0d,, (5) ~ (3,,0) 58] - -0, (260
8b =092 (60) % (97 @) 8@ — uSwd,, (8v)
+ [ (9r.8) @+ (0, ) Sw — 2uS (9, )] 5V; (2.61)

and the Gauss constraint (2.47) is now

28 9,5
r S

0=0,, (6\'/)+[ }5v+52w6q'>. (2.62)
r

By introducing a new variable { (note our notation above is different from that
used in [175])

2
{=—=dv, (2.63)
S
the sphaleronic sector then reduces to a single equation [175]
, us> 2 (do\?
~{=-0? = (+o?)+ (= 2.64
¢ A b (+w)+w2<dr*>]é, (2.64)

while the gravitational sector (2.48) also has just one equation:

-80 = -9} (Sw) (2.65)
2 _2)2
HHS 30 1 — 40 l—Ar—& +§ww’(w2—1) Sw.
r2 r r3 r

The sphaleronic sector equation (2.64) is exactly the same as that in the asymp-
totically flat su(2) EYM case (2.52), but the gravitational sector equation (2.53)
unsurprisingly is modified by the presence of non-zero A. Both (2.64) and (2.65)
have the standard Schrodinger form

Y =-PVY+uY, (2.66)

with potential % . For the sphaleronic sector, when the gauge field function ®(r)
has no zeros, it is immediately clear that the potential % is positive, so there are no
instabilities in this sector (this result does not hold in the asymptotically flat case
because the zeros of @(r) in that case mean that 7%/ is not regular). The gravita-
tional sector potential is more complex to analyze, but, for sufficiently large |A| and
o(ry) > 1/4/3, it can be shown that the potential is positive and there are no insta-
bilities in this sector either. Therefore there are at least some hairy black holes which
are stable under linear, spherically symmetric, perturbations. It can further be proved
that at least some of these solutions remain stable when non-spherically symmetric
perturbations are considered [146, 178] but the analysis is highly involved and so
we do not attempt to summarize it here.
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It should be remarked that it is unlikely that a/l nodeless black hole solutions are
stable, although this has not been investigated in the literature. An in-depth study
of the corresponding solitonic solutions [31] has revealed that some soliton solu-
tions for which @(r) has no zeros, although they do not have any instabilities in
the sphaleronic sector, do possess unstable modes in the gravitational sector. A scal-
ing behavior analysis of the solitonic solutions [83] has shown that the stable soli-
ton solutions can be approximated well by the stable solitons which exist on pure
adS space. On the other hand, the unstable solitons are interpreted as the unstable
Bartnik—MacKinnon solitons [7] dressed with solitons on pure adS.

2.4.3 Other Asymptotically Anti-de Sitter su(2) EYM Solutions

2.4.3.1 Dyonic Solutions

In asymptotically adS, it is no longer the case that the only genuinely non-Abelian
solutions must have vanishing electric part in the gauge potential (2.6), so the re-
sults of [62, 67] do not extend to non-asymptotically flat solutions. As well as the
magnetically charged solutions described above, dyonic black holes were discussed
in [25, 26], which we shall not consider further here. The stability of the dyonic
solutions remains an open question as the perturbation equations do not decouple
into two sectors in this case, making analysis difficult.

2.4.3.2 Topological Black Holes

As in Einstein-Maxwell theory, topological black hole solutions exist for su(2)
EYM in adS [16]. The metric in this case reads

ds? = —uS?dr* + u='dr* + 2 de* + r £2(0)de?, (2.67)
where
sin@ for k=1,
f(e)=¢ 06 for k=0, (2.68)
sinh@ for k= -1,
and )
2 A
g 2mln) _Ar (2.69)
r 3
The ansatz for the purely magnetic gauge field potential is now [16]
dl
A=10(r)do+ {ryw(r) +1 dzf} f(6)do. (2.70)
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When A = 0, only spherically symmetric solutions with k = 1 are possible, but
for A < 0, solutions with both k = 0 and k = —1 have been found [16]. All the
solutions are nodeless, which can be easily proved from the field equations [16]. It
is found in [16] that all the kK = 0 solutions are stable under spherically symmetric
perturbations in both the sphaleronic and the gravitational sectors. The same is true
for the k = —1 solutions for which @ > 1 as r — o [16].

2.4.3.3 Non-spherically Symmetric Solutions

As in the asymptotically flat case, there are both soliton [129] and black hole [136]
solutions which are static but not spherically symmetric, so that the metric and gauge
potential take the form (2.54) and (2.55). Rotating black holes have also been found
[113], and there are also rotating dyonic soliton solutions [131].

2.5 Asymptotically Anti-de Sitter Solutions for su(N) EYM

In the previous section we found that stable hairy black holes exist in su(2) EYM
with a sufficiently large and negative cosmological constant. A natural question is
therefore whether there are stable hairy black hole solutions of su(N) EYM in adS,
and we examine this question in this section.

2.5.1 Spherically Symmetric Numerical Solutions

For any fixed N, the field equations (2.12) and (2.15) can be solved numerically
using standard techniques. We will outline briefly some of the key features of the
black hole solutions for su(3) EYM. Details of the corresponding soliton solutions
and the solution space for su(4) EYM can be found in [9].

For su(3) EYM, there are two gauge field functions o) (r) and @,(r), and there-
fore four parameters describing black hole solutions: ry,, A, ®;(r;) and @;(ry,). Us-
ing the symmetry of the field equations (2.17), we set @ (r;), @2(r,) > 0 without
loss of generality. The constraint (2.22) on the values of the gauge field functions at
the horizon becomes, in this case

(o1 () —2)° + [01(m)? — 02(m)?] 4+ [2— wn(m)?)” < 27 (1= AR) . (271)

Two typical black hole solutions are shown in Figs. 2.6 and 2.7. The metric func-
tions behave in a very similar way to the su(2) solutions, smoothly interpolating
between their values at the horizon and at infinity. We note that S(r) in particular
converges very rapidly to 1 as r — oo. In Fig. 2.6, we show an example of a black
hole solution in which both gauge field functions have no zeros. We note that both
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Fig. 2.6 Typical su(3) black hole solution, with r, = 1, A = —1, @; (r;) = 1.2 and @ (r,) = 1.3.
In this example, both gauge field functions have no zeros. Taken from [9]

2

- m() - m(r,)

log S(r)

-5 r T : , .
100 101 102 102 104 105 r 108

Fig. 2.7 Example of an su(3) black hole solution, with r, = 1, A = —0.0001, @, (r,) = 1.184 and
@, (rp) = 1.216. In this case, both gauge field functions have three zeros. Taken from [9]

gauge field functions are monotonic, however, one is monotonically increasing and
the other monotonically decreasing. In our second example (Fig. 2.7) both gauge
field functions have three zeros. Although, in both our examples the two gauge field
functions have the same number of zeros, we also find solutions where the two gauge
field functions have different numbers of zeros (see Figs. 2.8 and 2.9).

We now examine the space of black hole solutions. Since we have four parame-
ters, in order to produce two-dimensional figures, we need to fix two parameters in
each case. We find that varying the event horizon radius produces similar behavior
to the s1(2) case, so for the remainder of this section we fix r;, = 1 and consider the
phase space for different, fixed values of A, scanning all values of w;(ry), @2(rp)
such that the constraint (2.71) is satisfied. From the discussion in Sect. 2.2, we have
embedded su(2) black hole solutions when, from (2.30)
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Fig. 2.8 Solution space for su(3) black holes with r, = 1 and A = —0.1. The numbers of zeros of
the gauge field functions for the various regions of the solution space are shown. For other values
of @y (ry), 2 (ry) we find no solutions. There is a very small region containing solutions in which
both gauge field functions have no zeros, in the fop-right-hand corner of the plot. Taken from [9]
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Fig. 2.9 Solution space for su(3) black holes with r;, = 1 and A = — 1. The shaded region indicates
where the constraint (2.71) is satisfied but we do not find black hole solutions. Outside the shaded
region the constraint (2.71) does not hold. Where there are solutions, we have indicated the number
of zeros of the gauge field functions within the different regions. For this value of A there is a large
region in which both gauge field functions have no zeros. Taken from [9]

o1 (r) =V20(r) = o (r) (2.72)

which occurs when @ (r;) = @2 (7).

In Figs. 2.8, 2.9 and 2.10 we plot the phase space of solutions for fixed event
horizon radius r, = 1 and varying cosmological constant A = —0.1, —1 and —S5,
respectively. In each of Figs. 2.8, 2.9 and 2.10 we plot the dashed line @ (r;) =
@, (ry,), along which lie the embedded su(2) black holes. It is seen in all these figures
that the solution space is symmetric about this line, as would be expected from the
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Fig. 2.10 Solution space for s1(3) black holes with r;, = 1 and A = —5. It can be seen that for
the vast majority of the phase space for which the constraint (2.71) is satisfied, we have black hole
solutions in which both gauge field functions have no zeros. Taken from [9]

symmetry (2.18) of the field equations. The solution space is found to be symmetric
about the line @ (r,) = @, (ry) not only in terms of where we find solutions but
also in terms of the numbers of zeros of the gauge field functions. To state this
precisely, suppose that at the point w; (r;,) = ay, @2(ry) = a we find a black hole
solution in which @ (r) has n; zeros and @,(r) has ny zeros. Then, at the point
1 (r) = ap, wr(r) = ay, we find a black hole solution in which @ (r) has ny zeros
and o) (r) has nj zeros. This is clearly seen in Figs. 2.8 and 2.9 and follows from the
symmetry (2.18) of the field equations. As we increase |A |, we find (see Figs. 2.8,
2.9, and 2.10) that the solution space expands as a proportion of the space of values
of @i (ry), 0 (ry,) satisfying the constraint (2.71). It can also be seen from Figs. 2.8,
2.9 and 2.10 that the number of nodes of the gauge field functions decreases as |A |
increases and that the space of solutions becomes simpler. For A = —0.1, there is
a very small region of the solution space where both gauge field functions have no
zeros. This region expands as we increase |A[, until for A = —5, both gauge field
functions have no zeros for all the solutions we find.

The solution space becomes progressively more complicated as N increases, due
to the increased number of parameters required to describe the solutions. However,
the key feature described above is found; namely that for sufficiently large |A|, all
the solutions we find are such that all the gauge field functions @; have no zeros.
These solutions are of particular interest since one might hope that at least some of
them might be stable.

As with the su(2) black holes we may consider the spectra of black hole solutions
by plotting the relationship between the mass M and the magnetic charge Q of the
solutions (see Fig. 2.5 for the su(2) case). As may be expected, for higher N the
spectra are even more complicated than for su(2). In Fig. 2.11 we plot some of
the possible values of M and Q for su(3) EYM black holes with A = —0.1 and
r, = 1. In Fig. 2.11 we have color coded the various possible numbers of zeros of
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Fig. 2.11 Black hole mass M versus magnetic charge Q for su(3) EYM black holes with r, = 1 and
A = —0.1. There are many different combinations of number of zeros of the gauge field functions
(see Fig. 2.8), which are indicated by different colors. Here we have performed a scan over a grid of
possible values of the gauge field functions at the event horizon, @ (r;), @ (rp), leading to discrete
points in the spectrum. This is to enable the complicated structure of the spectrum to be seen

the gauge field functions (cf. Fig. 2.8). We have used a discrete grid of initial values
of the gauge field functions at the event horizon (@, (), @ (ry,)) and plotted discrete
points so that at least some of the structure can be seen. In this case, because we have
a four-parameter (A,ry, @;(ry), 2 (ry)) space of solutions of the field equations,
even when A and r;, are fixed, we obtain two-dimensional regions in the (M, Q)
plane, rather than curves as in the su(2) case. It can be seen from Fig. 2.11 that the
spectrum is very complicated, with the regions corresponding to different numbers
of zeros of the gauge field functions overlapping. It is certainly the case that the
black holes cannot be uniquely characterized by the four parameters (A, r,,M, Q).

2.5.2 Analytic Work

For any fixed value of N, it is possible to examine the space of solutions numeri-
cally. However, we would like to know whether there are solutions for all N, and, in
particular, whether for all N there are some solutions for which all the gauge field
functions have no zeros, which we expect to be the case for sufficiently large |A|.
Answering this question for general N requires analytic rather than numerical work.

In [175], the existence of black hole solutions for which the gauge function (r)
had no zeros was proven analytically in the su(2) case. Since su(2) solutions can be
embedded as su(N) solutions via (2.30), we have automatically an analytic proof of
the existence of nodeless su(N) EYM black holes in adS. However, these embedded
solutions are “trivial” in the sense that they are described by just three parameters:
rp, A and @(ry). The question is therefore whether the existence of “non-trivial”
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(that is, genuinely su(N)) solutions in which all the gauge field functions w;(r) have
no zeros can be proven analytically. The answer to this question is affirmative and
involves a generalization to su(N) of the continuity-type argument used in [175].
The details are lengthy and will be presented elsewhere [11]. Here we simply outline
the key steps in the proof.

The main idea of the proof is sketched in Fig. 2.12. We wish to find black hole
solutions which are regular on the event horizon, regular everywhere outside the
event horizon and regular at infinity. The proof proceeds via the following steps:

1. We first prove (generalizing the analysis of [100] to include A) that the field
equations (2.12) and (2.15) and initial conditions at the event horizon (2.20) pos-
sess, locally in a neighborhood of the horizon, solutions which are analytic in
r, ry, A and the parameters @;(r). As might be expected, the analysis of [100]
requires only minor modifications to include a negative cosmological constant.

2. This enables us to prove that, in a sufficiently small neighborhood of any em-
bedded su(2) solution in which @(r) has no nodes, there exists (at least in a
neighborhood of the event horizon) an su(N) solution in which all the w;(r)
have no nodes.

3. Using the analyticity properties of the solutions of the field equations, we then
show that these su(NN) solutions can be extended out to large ry, >> ry, provided
the initial parameters ®;(r) are sufficiently close to those of an embedded su(2)
solution in which @(r) has no zeros. Furthermore, by analyticity, none of the
oj(r) will have any zeros between the event horizon r;, and ry.

4. The key part of the proof lies in then showing that these su(N) solutions can be
further extended out to » — o and that they satisfy the boundary conditions (2.23)
at infinity. This part of the analysis uses the properties of the Yang—Mills field
equations (2.12) in the asymptotically adS regime. As in the su(2) case [175],
these have very different properties from the asymptotically flat case, and this
makes it much easier to prove the existence of solutions. Furthermore, it can be
shown that the gauge field functions w;(r) will have no zeros for r > .

Black hole solution is

Fig. 2.12 Sketch of the main regular everywhere if.....

steps in the proof of the
existence of non-trivial su(N)
EYM black holes in adS for Regu lar ----Tegu lar
which all the gauge field here.... here
functions have no zeros.
We wish to find black hole ...regular
solutions which are regular
on the event horizon regular
everywhere outside the event =
horizon and regular at infinity.
We thank J. E. Baxter for
providing this sketch

throughout here.....
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In summary, this process gives genuinely su(N) black hole solutions in which all
the gauge field functions have no zeros and which are characterized by the N + 1
parameters 7, A and @;(ry).

2.5.3 Stability Analysis of the Spherically Symmetric Solutions

The remaining outstanding question is whether these new black holes, with poten-
tially unbounded amounts of gauge field hair, are stable. We consider linear, spher-
ically symmetric perturbations only for simplicity. The analysis of [146, 178] in
the su(2) case revealed that, for sufficiently large |A|, stability under spherically
symmetric perturbations continued to hold also for non-spherically symmetric per-
turbations, and one might hope that a similar result will hold in the more complex
su(N) case. However, we leave this for future work. Even for spherically symmetric
perturbations, the analysis is highly involved in the su(N) case and the details will
be presented elsewhere [8, 11]. Here we briefly outline just the key features. The
perturbation equations themselves can be found in Sect. 2.2.4.

2.5.3.1 Sphaleronic Sector

The sphaleronic sector consists of the perturbation equations (2.45) and (2.46) to-
gether with the Gauss constraint (2.47). The analysis of this sector essentially fol-
lows that of [47] in the asymptotically flat case. We begin by defining yet more new
variables, ¢, for j=1,...,N by

5€j = r\/ﬁ5ﬁj, (2.73)

then, after much algebra, the sphaleronic sector perturbation equations can be cast
in the form
¥ =4, (2.74)

where the (2N — 1)-dimensional vector '\ is defined by
gz(661,...,561\/,5‘1’1,...,6@1\/,1). (275)

and /s is a self-adjoint, second order, differential operator (involving derivatives
with respect to r but not ), depending on the equilibrium functions ;(r), m(r)
and S(r). The operator .#s can be written as the sum of three parts. The first is of
the form 'y for a particular first-order differential operator y (whose precise form
can be found in [8, 11]) and is therefore manifestly positive and is regular if the
gauge field functions ®; have no zeros. The second part vanishes when applied to a
physical perturbation due to the Gauss constraint (2.47). The third part is a matrix
¥ which does not contain any differential operators. It can be shown that the matrix
 is regular and positive definite provided the unperturbed gauge functions @;(r)
have no zeros and satisfy the N — 1 inequalities
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Fig. 2.13 Phase space of black hole solutions in su(3) EYM with A = —10 and rj, = 1. The shaded
region shows where solutions exist which satisty the inequalities (2.76) at the event horizon. Taken
from [10]

o} > 1+ % (07 + 7)) (2.76)

forall j=1,...N—1 and all r > ry. The inequalities (2.76) define a non-empty
subset of the parameter space. For example, we show in Fig. 2.13 where the in-
equalities (2.76) are satisfied for the gauge field functions at the event horizon, for
the particular case of A = —10 and rj, = 1. From Fig. 2.13 we can see that there are
some nodeless solutions which satisfy the inequalities (2.76) at the event horizon.
For any N, it can also be proved analytically that, for sufficiently large |A |, there are
non-trivial su(N) solutions, in a neighborhood of some embedded su(2) solutions,
such that the inequalities (2.76) are satisfied at the event horizon.

However, the requirements of (2.76) are considerably stronger, as the inequalities
have to be satisfied for all r > ry. Our analytic work shows that, in fact, for any N
and sufficiently large |A|, there do exist solutions to the field equations for which
the inequalities (2.76) are indeed satisfied for all . This involves proving that for at
least some solutions for which the gauge field function values at the event horizon lie
within the region where the inequalities (2.76) are satisfied, the gauge field functions
remain within this open region. In Fig. 2.14 we show an example of such a solution
for su(3) EYM.

2.5.3.2 Gravitational Sector

As might be expected, the gravitational sector perturbation equations (2.48) are
more difficult to analyze than the sphaleronic sector perturbation equations. For
stable solutions, we require the matrix .Z¢ (2.49) to be negative definite. For suffi-
ciently large |A], it can be shown that . is indeed negative definite for embedded
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Fig. 2.14 An example of an su(3) solution for which the inequalities (2.76) are satisfied for all
r > rp. In this example, A = —10, r, = 1 and the values of the gauge field functions at the event
horizon are w; (ry) = 2, @y (ry) = 1.95. Taken from [10]

su(2) solutions, provided that @w?(r) > 1 for all > r,, (the existence of such s1(2)
solutions is proved, for sufficiently large |A|, in [175]). As described in Sect. 2.5.2
above, our analytic work ensures the existence of genuinely su(N) solutions in a
sufficiently small neighborhood of these embedded s1(2) solutions. These su(N)
solutions are such that the inequalities (2.76) are satisfied for all » > r;, (and there-
fore the solutions are stable under sphaleronic perturbations). The negativity of .Z
can then be extended to these genuinely su(N) solutions using an analyticity argu-
ment, based on the nodal theorem of [2] (see also [178] for a similar argument for
the non-spherically symmetric perturbations of the su(2) EYM black holes). The
technical details of this argument will be presented elsewhere [11].

The conclusion of the work in this section is that there are at least some genuinely
su(N) EYM black holes in adS, for sufficiently large |A|, for which all the gauge
field functions ®; have no zeros, and which are stable under spherically symmetric
perturbations in both the sphaleronic and the gravitational sectors.

2.6 Summary and Outlook

In this review we have studied classical, hairy black hole solutions of su(N) EYM
theory, particularly spherically symmetric spacetimes and black holes in adS. We
very briefly discussed some of the key aspects of the solutions in asymptotically flat
space, which have been extensively reviewed in [171]. Hairy black hole solutions
exist for all N, with N — 1 gauge field degrees of freedom [116], however, all these
solutions are unstable [47]. Therefore, while these hairy black holes violate the “let-
ter” of the no-hair conjecture (that is, their geometry is not completely fixed by
global charges measurable at infinity), its “spirit” is maintained. In particular, stable
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equilibrium black holes are comparatively simple objects, described completely by
just a few parameters.

The main conclusion of this article is that this is not true in adS. The existence
of stable hairy black holes in su(2) EYM [175] did not really contradict the “spirit”
of the no-hair conjecture, as only a single additional parameter was required to fix
the geometry outside the event horizon. However, the recent work [10] which shows
that there are stable hairy black holes in su(N) EYM in adS for arbitrarily large
N changes the picture completely. For sufficiently large |A|, an infinite number
of parameters are required in order to describe stable black holes. We might flip-
pantly describe these as “furry” black holes, since they possess copious amounts
of hair.

What are the consequences for black hole physics in adS of these “furry” black
holes? These need to be explored. Given the huge amount of interest in the adS/CFT
correspondence in string theory [111, 180, 181], a natural question is how black
hole hair in the bulk asymptotically adS spacetime relates to the dual CFT. In par-
ticular, it has been suggested [76] that there should be observables in the dual (de-
formed) CFT which are sensitive to the presence of black hole hair. Another ex-
ample of this approach can be found in [70], where an adS/CFT interpretation is
given of some stable seven-dimensional black holes with so(5) gauge fields. We
would expect that, in analogy with the su(2) case [49, 50, 74, 84, 113, 130, 132],
there are solutions in some super-gravity theories with a gauge group containing
an su(N) factor, which will need to be studied in the context of adS/CFT. There is
evidence [117] that there are non-trivial black hole solutions of si(ee) EYM in adS,
giving black holes not just with unbounded amounts of hair, but infinite amounts of
hair, at least in the limit |A| — oo. It remains to be seen whether exact solutions of
the su(eo) field equations can be found for finite A < 0 and whether any of these
black holes are stable. If so, then their role in adS/CFT would be puzzling indeed.

Due to space restrictions, there are many aspects of black holes in EYM which
we have not been able to discuss. In particular, we have not mentioned the vast
number of solutions which involve modifications of the EYM action (2.1), including
higher curvature terms (see, for example, [88, 89]) or the inclusion of dilaton (see,
for example, [134]), Higgs (see, for example, [15, 108, 109]) or other modifications
of the EYM action (see, for example, [120, 147, 148]). Here we have also only
studied four-dimensional spacetimes, while recent work has considered EYM in
higher-dimensional spacetimes (see, for example, [32, 33, 35-40, 75, 123, 133, 135]
and [166] for a review).

The black hole solutions of EYM and its variants certainly exhibit an abundantly
rich structure, and no doubt will have more surprises in store for us in the future.
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