
Chapter 2
Thermodynamics

2.1 Thermodynamic Description

In some cases, mechanical systems with many degrees of freedom admit a simpler
description using a small number of parameters. Consider, for example, modeling of
a gas in a vessel. The vessel is closed with a piston to which some force P is applied.
The force compresses the gas (Fig. 2.1). The gas is envisioned as a system of a large
number of rigid balls representing its molecules. The balls move inside the vessel
colliding elastically with the walls and the other balls. Usually one is not interested
in knowing the molecule motion. It is of interest to determine how the volume oc-
cupied by the gas depends on the applied force. This is a typical “thermodynamic”
question: one is concerned with some integral characteristics of the system and the
relations between them. The characteristics used for the reduced description of the
system are called thermodynamic parameters. Traditionally, thermodynamics is pre-
sented as a field which is logically and conceptually independent of mechanics. In
such treatments, the central notion of thermodynamics, entropy, remains vague; and
achieving an understanding of thermodynamics is a similar process to that in quan-
tum mechanics, where, by Feynman’s words, “to understand” means “to get used to
and learn how to apply.” In fact, thermodynamics may be derived from mechanics.
Such a derivation makes clear the notions used and provides the conditions which
are necessary for the basic thermodynamical laws to be true. “The mechanical view”
on thermodynamics is outlined in this chapter. We focus only on the basic ideas and
skip a derivation if it is lengthy. For more details the reader is referred to [46, 50].

The reason why some universal thermodynamic relations may exist was uncov-
ered by Boltzmann and Helmholtz: the rate of change of the thermodynamic pa-
rameters is much smaller than the rate of change of the generalized coordinates
and momenta of the system. In the system of enclosed gas forced by the piston, a
thermodynamic description is possible if the piston velocity is much smaller than
the average molecule velocity. If the velocity of the piston is on the order of the
average molecule velocity, thermodynamic description fails: the relation between
the force and the gas volume becomes dependent on the details of the molecule
motion.

The gas-piston system may be viewed as a mechanical system consisting of the
balls and the piston. Mass of the piston is much greater than the molecule masses:
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Fig. 2.1 Gas under piston

this is the reason why the coordinate of the piston, y, changes slowly.1 In case of
elastic collisions, the system is Hamiltonian. One may say that the thermodynamic
description of the system “gas under piston” corresponds to elimination of the fast
degrees of freedom from the governing Hamiltonian equations. In fact, this situation
is generic: classical thermodynamics is a theory of slow variables for a Hamiltonian
system which governs micromotion.

Thermodynamics is concerned with systems possessing at least two well sep-
arated time scales and, thus, characterized by fast and slow variables. Thermody-
namic theory is a theory of slow variables for such systems – this was a major
Boltzmann’s insight. One can say that thermodynamic equations are the equations
that are obtained by elimination of fast variables from the governing equations.

Why should macromotion obey the first and second laws of thermodynamics?
Clearly, this must be caused by some special features of microdynamics. It turns
out that these features are ergodicity, mixing and the Hamiltonian structure of the
underlying microdynamics. The meaning of the terms ergodicity and mixing is dis-
cussed in the next section. The absence of ergodicity or Hamiltonian structure would
prevent the existence at macrolevel temperature and entropy. The absence of mixing
would yield the violation of the second law.2

We call the laws of thermodynamics obtained by elimination of fast degrees of
freedom from Hamiltonian equations primary thermodynamics. The characteristic
features of primary thermodynamics are the appearance of two new slow variables,
temperature and entropy, and the dissipation of energy of slow variables (the total
energy of fast and slow variables is conserved in isolated systems).

The first and the second laws of thermodynamics are the constraints which must
be obeyed by any macroscopic theory. There are additional independent constraints,

1 In fact, the slow change of y is accompanied by fast oscillations of small magnitude due to the
collisions of the piston with the molecules. In thermodynamic description, these oscillations can
be neglected. They are studied in the theory of thermodynamic fluctuations (Sect. 2.4).
2 These statements will be rectified further in one respect: in fact, to have the laws of thermody-
namics on macrolevel, the microequations might possess slightly more general structure than the
Hamiltonian one.
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which are sometimes called the third law of thermodynamics, Onsager’s reciprocal
relations (they are considered further in Sect. 2.6). Are there other constraints of a
similar level of universality? Yes, there are. It turns out that, if dissipation is negli-
gible, the governing equations of some slow variables must possess a Hamiltonian
structure. That indicates the existence of quite peculiar “Hamiltonian reciprocities”
in macrophysical interactions.

The dissipative equations of primary thermodynamics can also possess two well
separated time scales. Elimination of fast degrees of freedom in primary thermo-
dynamics yields the equations of secondary thermodynamics. If the fast variables
in primary thermodynamics perform some chaotic motion then, after elimination of
fast degrees of freedom and transition to the secondary thermodynamics, two new
slow variables appear, “secondary entropy” and “secondary temperature.” It is quite
plausible that the secondary entropy possesses the features which are similar to the
features of the usual thermodynamic entropy.

We touch upon all these issues in this chapter and further in Chap. 17.

2.2 Temperature

If a mechanical system is governed by Hamiltonian equations, and its motion is
sufficiently chaotic, one can introduce the notion of temperature. First, the term
“sufficiently chaotic” must be explained.

Consider a Hamiltonian system with Hamiltonian H (p, q). Function H (p, q)
does not change in the course of motion; its value is called the energy of the system.
Let energy have the value E . Any trajectory of the system lies on a surface in phase
space defined by the equation

H (p, q) = E .

This surface is called an energy surface. It is assumed that energy surfaces bound
finite regions in phase space.

The system is called ergodic if (almost) any trajectory covers the entire energy
surface. That means the following. Let a trajectory start at some point A. Consider
a point B with some vicinity of this point �B. For ergodic systems, sooner or later,
the trajectory will pass through the vicinity, �B, of the point B for any choice of
B and �B (Fig. 2.2). Since �B can be chosen as small as we wish, the trajectory
will be passing closer and closer to B. The time of the next passage can, however,
be very large. Such a behavior is observed for almost any trajectory in the sense
that the set of points A for which trajectories behave differently has zero area on
the energy surface. For example, there might be periodic trajectories on the energy
surface of an ergodic Hamiltonian system, but the area covered by such trajectories
is zero.

Intuitively, ergodicity is a feature of chaotic motion. There is another feature of
chaotic motion, mixing. To define mixing one has to view the trajectories of the
Hamiltonian system on an energy surface as the trajectories of particles of some
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Fig. 2.2 A sketch for the
definition of ergodicity;
shadowed region is �B

media. One can put an ink spot on the energy surface and observe its evolution in
the course of motion (Fig. 2.3). If the spot tends to cover densely the entire energy
surface, the system is called mixing. It turns out that every mixing system is ergodic.
Ergodic systems are not necessarily mixing. Equilibrium thermodynamics discussed
in Sects. 2.2–2.5 holds true for ergodic systems. In order the laws of nonequilibrium
thermodynamics to be true the underlying Hamiltonian system must be also mixing.
The notion of temperature and entropy is based on ergodicity only.

Consider the time average of some function, ϕ(p, q), of generalized coordinates
and momenta along a trajectory p(t), q(t):

〈ϕ〉 = lim
θ→∞

1

θ

θ∫

0

ϕ (p(t), q(t)) dt.

Fig. 2.3 A sketch for the definition of mixing: an initial small spot �B is being spread by the
phase flow to cover densely the entire energy surface

As was discovered by Boltzmann, for ergodic systems this time average is the
same for (almost) all trajectories on the same energy surface. Moreover, this time
average can be computed without knowing the particular trajectory by the formula
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〈ϕ〉 =
�

�E

∫
H (p,q)≤E

ϕ(p, q)dpdq

�
�E

∫
H (p,q)≤E

dpdq
. (2.1)

Here dp = dp1 . . . dpn, dq = dq1 . . . dqn .

This formula was proven with mathematical rigor by Birkhoff and Khinchine,
and is called usually the Birkhoff-Khinchine theorem.

Plugging in (2.1) various functions ϕ(p, q) and computing the integrals on the
right hand side, one can find their time averages. Functions p1

�H
�p1

, . . . , pN
�H
�pN

are
of special interest: for systems with the Hamiltonian

H (p, q) = p2
1

2m1
+ . . .+ p2

N

2m N
+U (q) (2.2)

they are (doubled) kinetic energies of each degree of freedom. Evaluation of the in-
tegrals from (2.1) for these functions is simple and yields the so-called equipartition
law :

〈
p1

�H

�p1

〉
= . . . =

〈
pN

�H

�pN

〉
. (2.3)

Indeed, let us find
〈
p1

�H
�p1

〉
. Consider the integral,

∫

H (p,q)≤E

p1
�H

�p1
dpdq.

Using the step function

θ (x) =
{

1 x ≥ 0

0 x < 0
(2.4)

we can write this integral as an integral over the entire phase space,

∫
p1

�H

�p1
θ (E − H (p, q))dpdq.

Therefore,

�

�E

∫

H (p,q)≤E

p1
�H

�p1
dpdq =

∫
p1

�H

�p1
θ ′(E − H (p, q))dpdq,

where θ ′(x) is the derivative of the step-function (the derivative, θ ′(x), is equal to the
δ-function, but this is not essential at the moment). The integrand can be written as
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p1
�H

�p1
θ ′(E − H (p, q)) = −p1

�

�p1
θ (E − H (p, q))

= − �

�p1
(p1θ (E − H (p, q)))+ θ (E − H (p, q)) . (2.5)

The integral of the first term in the right hand side over the entire phase space is
equal to zero due to the divergence theorem and vanishing of θ (E − H (p, q)) at
infinity (H (p, q) > E at infinity). Therefore,

�

�E

∫

H (p,q)≤E

p1
�H

�p1
dpdq =

∫
θ (E − H (p, q))dpdq. (2.6)

The result (2.6) does not depend on the choice of a particular component of mo-
menta, p1, . . . , pn, and the same answer we get for integrals of p2

�H
�p2

, . . . , pn
�H
�pn

.

Then the equipartition law follows from (2.1) and (2.6)
For the systems with Hamiltonians (2.2) equipartition law means that the aver-

aged values of kinetic energies of all degrees of freedom are the same. The common
value (2.3) is denoted by T and called absolute temperature. We drop the adjective
and call it temperature because no other temperatures will appear in our considera-
tion.

The integral in the right hand side of (2.6) is called the phase volume,

�(E) =
∫

θ (E − H (p, q))dpdq =
∫

H (p,q)≤E

dpdq.

The denominator in (2.1) is the derivative of the phase volume, d�(E)/d E,

which will also be denoted for brevity �E (E).
Finally, temperature can be expressed explicitly in terms of the phase volume

�(E):

T = �(E)

d�(E)/d E
. (2.7)

As follows from (2.7), temperature has the dimension of energy. Traditionally,
temperature is measured in degrees. The two numbers are linked by Boltzmann’s
constant k: if T ◦ is the value of temperature in degrees Kelvin, then

T = kT ◦.

The constant k is very small:

k = 1.38× 10−16 erg/ deg .



2.3 Entropy 51

Fig. 2.4 A sketch of energy
surface for a two-temperature
system

i.e. one degree Kelvin corresponds to energy of about 10−16 g cm2/ s2. Temper-
ature becomes on the order of unity if measured in electron-volts. (1 eV is the
energy which an electron gains accelerating between the points with the differ-
ence of electric potential equal to 1 V; this energy is very small due to the small
mass of an electron). Room temperature corresponds to about 1/40 eV. Energy
units for temperature are convenient in all theoretical treatments and will be used
here; Boltzmann’s constant appears only at the stage of comparing theory and
experiments.

Ergodicity is necessary to introduce temperature. If the system is not ergodic,
temperature may not exist. For example, consider the system for which the energy
surface contains two parts such that trajectory started in one part always remains
in that part (see Fig. 2.4). For such systems, formula (2.1) does not hold, and the
equipartition law is not true. Under some additional conditions, one may say that
the system has two temperatures corresponding to each part of the energy surface,
but such a situation is beyond the scope of classical thermodynamics.

Ergodicity yields immediately irreversibility of macromotion. This is seen from
the equipartition law. Consider, for example, the gas-piston system. Let the piston
be given some initial velocity. After some time, the equipartition of energy sets up
in the system. This means that the average kinetic energy of the piston is equal to
the average kinetic energy of a molecule. Since the mass of the piston is much larger
than the mass of molecules, the velocity of the piston becomes very small, i.e. the
piston comes to rest. This clearly demonstrates the irreversible character of piston’s
motion in spite of reversibility of the underlying microdynamics.

2.3 Entropy

Entropy is a characteristic of slow processes in ergodic Hamiltonian systems.3

3 The term “entropy” is widely explored now in many different senses. What we mean here by
entropy is, precisely, the thermodynamic entropy introduced by Clausius. The meaning of Clausius’
entropy for ergodic Hamiltonian systems was determined by J.W. Gibbs and P. Hertz.
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To explain what entropy is, consider first the gas-piston system. Let the position
of the piston, y, be changed slowly by some “hard device.” This means that we
prescribe the function, y(t). Changing y we do some work. Therefore energy of the
system changes. To find the dependence of energy on time we note that Hamiltonian
of the system,

H (p, q, y) = p2
1

2m
+ . . .+ p2

n

2m
+U (q1, . . . , qn, y), (2.8)

depends explicitly on time through the dependence of potential energy on y. The
energy rate is

d E

dt
= d H (p, q, y)

dt
= �H

�pi

dpi

dt
+ �H

�qi

dqi

dt
+ �H

�y

dy

dt
= �H (p, q, y)

�y

dy

dt
. (2.9)

The two terms in (2.9) are canceled due to Hamiltonian equations (1.63). The
derivative �H/�y has the meaning of force which one has to apply in order to make
the piston move along the path y(t).4

If we know the trajectory of the systems, p(t), q(t), we could find the energy at
time t by integrating (2.9):

E(t)− E(t0) =
t∫

t0

�H (p(τ ), q(τ ), y(τ ))

�y(τ )

dy(τ )

dτ
dτ. (2.10)

In principle, one obtains different values of energy at time t for different trajecto-
ries p(τ ), q(τ ) and different piston paths y(τ ). Remarkably, for ergodic Hamiltonian
systems and a slow change of the parameter y, the final value of energy depends only
on the final value of the parameter y, the initial values of energy, E0 = E(t0) and the
initial value of the parameter y, y0 = y(t0), and depends neither on the trajectories,
p (τ ) , q (τ ) , nor on the path, y (τ ):

E(t) = function(y(t), y0, E0). (2.11)

Moreover, the dependence of the final value of energy, E (t) , on y0 and E0

is “degenerated”: the parameters y0 and E0 enter (2.11) only through a combina-
tion S(E0, y0), where S(E, y) is some function which is determined uniquely by
Hamilton function H (p, q, y) :

E (t) = E(y (t) , S0 (E0, y0)). (2.12)

4 For the gas-piston system the factor �H (p, q, y)/�y does not depend on p due to (2.8), but this
is not essential in our reasoning and we proceed in a more general setting.
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Derivation of (2.12) is quite simple. First, we note that on the right hand side of
(2.10) dy/dτ changes slowly. Therefore, �H/�y may be substituted by its average
over the energy surface H (p, q, y(τ )) = E(τ ),

E(t)− E(t0) =
t∫

t0

〈
�H

�y

〉
dy

dτ
dτ,

or, after differentiation with respect to t,

d E

dt
=
〈

�H

�y

〉
dy

dt
. (2.13)

The average value 〈�H/�y〉 can be computed using the Birkhoff-Khinchine
theorem (2.1) as

〈
�H

�y

〉
=

�

�E

∫
H (p,q,y)≤E

�H

�y
dpdq

�

�E

∫
H (p,q,y)≤E

dpdq
. (2.14)

Introducing the phase volume bounded by the energy surface H (p, q, y) = E,

�(E, y) =
∫

H (p,q,y)≤E

dpdq =
∫

θ (E − H (p, q, y))dpdq, (2.15)

and differentiating (2.15) with respect to y we find

��(E, y)

�y
= −

∫
θ ′(E − H (p, q, y))

�H (p, q, y)

�y
dpdq

= − �

�E

∫
θ (E − H (p, q, y))

�H (p, q, y)

�y
dpdq (2.16)

= − �

�E

∫

H (p,q,y)≤E

�H (p, q, y)

�y
dpdq.

From (2.14) and (2.16)

〈
�H

�y

〉
= − ��(E, y)/�y

��(E, y)/�E
. (2.17)

Plugging (2.17) into (2.13) we obtain

��(E, y)

�E

d E

dt
+ ��(E, y)

�y

dy

dt
= 0. (2.18)
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Hence, the phase volume does not change in time, which is also true of any
function of the phase volume, S(�).

Let us specify function S(�) by the condition that

�S(� (E, y))

�E
= 1

T
. (2.19)

Since

�S(�(E, y))

�E
= d S

d�

��

�E
,

and according to (2.7), T = � (��/�E)−1 , we obtain for S(�) the differential
equation

d S

d�
= 1

�
,

the only solution of which is

S(E, y) = ln �(E, y)+ const. (2.20)

This function is called thermodynamic entropy.
Entropy does not change in the process under consideration. Hence,

S(E, y) = S0, S0 = S(E0, y0). (2.21)

If T > 0, then �S/�E > 0 and we can solve (2.21) with respect to E . We see
that energy is determined by the current value of y, while the initial values of energy
and y enter in this dependence only through the combination S0 = S0(E0, y0), i.e.
we arrive at (2.12).

In terms of entropy, equation (2.17) for the force, 〈�H/�y〉 , takes the form

〈
�H

�y

〉
= −T

�S(E, y)

�y
. (2.22)

Obviously, our derivation remains valid if the system has a number of slow
parameters, y1, . . . , ym . In this case, y in all previous equations denotes the set
y = (y1, . . . , ym) while (2.22) is replaced by the equation

〈
�H

�yμ

〉
= −T

�S(E, y)

�yμ
, (2.23)

where μ runs through values 1, . . . , m.

Equations (2.19) and (2.23) link temperature, T, and generalized forces,
〈�H/�yμ〉 , with the slow characteristics of the system, E and yμ. They are called
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constitutive equations. The constitutive equations are specified as soon as entropy
is known as a function of E and yμ. For a given Hamiltonian of the system,
H (p, q, y) , one can determine the phase volume computing the integral (2.15),
and then find entropy S (E, y) from (2.20).

Constitutive equations (2.19) and (2.23) take a simpler form in the terms of
function E(y, S) :

T = �E(y, S)

�S
,

〈
�H

�yμ

〉
= �E(y, S)

�yμ
. (2.24)

Indeed, the equation

S (E (S, y) , y) = S (2.25)

must be an identity for all values of parameters S and y. Differentiating (2.25) with
respect to S and yμ, we obtain

�S

�E

�E(S, y)

�S
= 1,

�S

�E

�E(S, y)

�yμ
+ �S

�yμ
= 0. (2.26)

Equations (2.24) follow from (2.19), (2.23) and (2.26).
It is worthing emphasize that, if the system were not ergodic or the parameters y

were not slow, then the energy at time t computed from differential equation (2.9)
depends on the initial values of the generalized coordinates and momenta p0, q0,

and the entire trajectory y(τ ), τ < t . Therefore, the constitutive equations obtained
do not make sense.

Formulas (2.12), (2.19), (2.21), (2.23) and (2.24) are valid for any ergodic Hamil-
tonian system no matter how many degrees of freedom it has. For example, one
can speak of entropy and temperature of a pendulum, which has just one degree
of freedom. In this case the energy surfaces are closed curves in the phase space
(for sufficiently small E). Each trajectory covers the entire energy surface, thus the
system is ergodic. Assuming for definiteness that the length of the pendulum is a
slow parameter, one can find entropy of the pendulum from (1.68): in the limit of
small energies, S = ln(E

√
l/g)+ const.

Example. Let us find entropy of a gas occupying volume V . We model the gas by
a Hamiltonian system of N rigid spheres of radii a and of equal masses m. Each
ball has three translational degrees of freedom, so the total number of degrees of
freedom, n, is 3N . Hamilton function is a sum of kinetic energy K and particle-
particle and particle-wall interaction energy U :

H = K +U,

K = p2
1

2m
+ . . .+ p2

n

2m
, U = U (q1, . . . , qn). (2.27)
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Interaction energy is zero if particles do not overlap with each other and the wall,
otherwise it is equal to infinity. The question of ergodicity of such a system is not
elementary. We proceed assuming that the system is ergodic. We have to find

� =
∫

H (p,q,y)≤E

dpdq.

Since H = +∞ if any two particles overlap or a particle overlaps with the wall
and, otherwise, H = K and does not depend on q, the phase volume is the product
of two integrals:

� = �p�q , �p =
∫

H (p)≤E

dp, �q =
∫

admissible q

dq. (2.28)

The integral, �p, is the volume of the sphere of the radius
√

2m E in
n-dimensional space. If R is the radius of a sphere in n-dimensional space, its
volume is

Vn(R) = cn Rn, cn = πn/2

n
2 �( n

2 )
,

�(s) being the �-function. For an integer s, �(s) = (s − 1)! So,

�p = cn(2m E)n/2. (2.29)

The integral, �q , can easily be found in the limit when the ball radius tends to
zero. In this limit one may neglect overlapping of the balls and take into account
only the positions of the balls inside the volume V . Then

�q = V N . (2.30)

Dropping additive constants we obtain for entropy from (2.20), (2.28), (2.29) and
(2.30):

S = ln(E3N/2V N ) = N

(
3

2
ln E + ln V

)
. (2.31)

One can find temperature from (2.19) and (2.31) as

1

T
= �S

�E
= 3

2

N

E
. (2.32)

Determining energy in terms of temperature from (2.32), we arrive at the familiar
constitutive equation of the perfect gas:
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E = 3

2
N T . (2.33)

An important consequence of formula (2.31) is an unbounded growth of entropy
when the gas volume increases. Such a behavior of entropy changes if a force, P,

acts on the piston. Then the Hamiltonian of the system acquires an additional term:5

H = K +U + Py. (2.34)

Calculation of entropy of the system (2.34) is reduced to the previous one for the
system (2.27) by changing E to E − Py :

S = N

(
3

2
ln(E − Py)+ ln V

)
.

Taking into account that V is a linear function of y: V = y�, � being the area
of the piston, and dropping unessential constants, we obtain

S(E, y) = N ln

[
3

2
ln(E − Py)+ ln(y�)

]

= N ln

[
Py

E

(
1− Py

E

)3/2
]
+ const.

A graph of the entropy per particle, S/N , as a function of the dimensionless
distance y∗ = Py/E is shown in Fig. 2.5.

The remarkable feature of this graph is that entropy reaches its maximum value.
The point where entropy is maximum corresponds to the equilibrium state of the
system the reader is invited to check this fact. It turns out that this property of en-
tropy, reaching its maximum value at equilibrium, is generic. The physical origin of
this property is explained in Sect. 2.5.

So far we have considered the case when all external forces act only on slow
variables as is seen from the energy equation (2.9). Such processes are called adia-
batic. If there are some external forces, Fi , acting on the fast coordinates, qi , then
the energy equation gets the additional term

5 Formula (2.34) becomes obvious if one writes first the energy of the entire system “gas+piston”
endowing the piston with some mass M :

H = K +U + Py + Y 2

2M
,

where Y is the momentum of the piston. In (2.34) we dropped the kinetic energy of the piston
which is negligible because, due to the equipartition of energy over all degrees of freedom, near
equilibrium it is on the order of kinetic energy of one molecule, K/N . The sign + at Py corresponds
to the negative direction of the force acting on the piston for P ≥ 0 (indeed, the Lagrange function
of the piston corresponding to the Hamilton function chosen is L = 1

2 M ẏ2−Py, thus M ÿ = −P).
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Fig. 2.5 S/N , as a function of the dimensionless distance between the piston and the bottom,
y∗ = Py/E

d E

dt
= �H

�yμ

dyμ

dt
+ �H

�qi
Fi .

Averaging over time and taking into account that E and y change slowly, we have

d E

dt
=
〈

�H

�yμ

〉
dyμ

dt
+ d Q

dt
,

d Q

dt
=
〈

�H

�qi
Fi

〉
. (2.35)

The additional work of external forces denoted by d Q is called heat supply. Heat
supply causes entropy to change. The process is called quasi-equilibrium, if the
constitutive equations (2.28) remain valid for d Q �= 0. Then, we have from energy
equation (2.35)

�E(y, S)

�yμ

dyμ

dt
+ �E(y, S)

�S

d S

dt
=
〈

�H

�yμ

〉
dyμ

dt
+ d Q

dt
. (2.36)

The first terms on both sides of (2.36) cancel out due to (2.24), and (2.36)
becomes a link between entropy, temperature and heat supply:

d Q

dt
= T

d S

dt
. (2.37)

If d Q �= 0, entropy may either increase or decrease depending on whether energy
is pumped to the system (d Q > 0) or taken from the system (d Q < 0).

Comparing the two characteristics of the system, energy and entropy, one may
say that energy is a more fundamental one: energy makes sense for any system while
entropy can be introduced only for slow processes in ergodic systems.

We have seen that the Hamiltonian structure of the equations of micromechanics
yields the laws of equilibrium thermodynamics. One may wonder how important
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it is that the equations of micromechanics are Hamiltonian. In other words: could
non-Hamiltonian equations of microdynamics yield the equations of classical equi-
librium thermodynamics? It turns out that the class of such equations is indeed
slightly wider than the class of Hamiltonian equations (see Appendix E).

2.4 Entropy and Probability

Slow parameters y fluctuate near the equilibrium values. For example, in the system
“gas under piston” the distance between the piston and the bottom, y, varies slightly
due to the collisions of the piston with the molecules. One may wonder what is the
probability density of y, f (y)? The answer was found by Einstein: the probability
density of slow variables fluctuating near the equilibrium values is determined only
by the equilibrium properties of the system, namely, by the function S(E, y), and is
given by the formula

f (y) = const eS(E,y). (2.38)

Formula (2.38) has an asymptotic nature and holds for systems with a very large
number of fast degrees of freedom, n. There is a generalization of this formula for
systems with any finite n [43, 46].

According to (2.38), the most probable values of y are the values for which
entropy takes its maximum value. Since entropy is usually proportional to the
number of fast degrees of freedom (for a gas this is seen from (2.31)) which is
large, maximum is very sharp and, in fact, the slow variables just fluctuate slightly
around the equilibrium values.

2.5 Gibbs Principles

Gibbs suggested use of the maximum property of entropy as the first principle in
any modeling of thermodynamic equilibrium.
The first Gibbs principle. In a state of thermodynamic equilibrium, the entropy S
of an isolated system attains its maximum on all possible states of the system with a
given energyE.

The Gibbs principle differs considerably from the variational principles of ana-
lytical mechanics. In mechanics, only the particle positions are subject to change,
but in the Gibbs principles virtually all characteristics of equilibrium are varied.
In the consideration of phase equilibrium, for example, the interphase surface and
the masses of both phases are subject to change. An example of the application of
the Gibbs principles to the equilibrium of elastic media will be given in Sect. 7.4.
Consider here another example.

Let us show that temperatures of two contacting systems are equal if the systems
are in thermodynamical equilibrium and isolated from the environment. Denote
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entropies and energies of the systems by E1, S1, and E2, S2. Thermodynamical
properties of the systems are determined by the functions S1(E1) and S2(E2). The
total entropy of the two systems, by our assumption, is

S(E1, E2) = S1(E1)+ S2(E2). (2.39)

Systems are in contact and may exchange energies: heat may flow from one sys-
tem to another. The total energy must not change in such a process because the
systems are isolated from the environment:

E1 + E2 = E . (2.40)

The total energy E is supposed to be given. In equilibrium, the entropy (2.39)
must be maximum on the set of all possible values E1, E2 obeying the con-
straint (2.40). The condition of thermodynamical equilibrium may be obtained, for
example, by eliminating the variable E2,

S = S1(E1)+ S2(E − E1),

and differentiating entropy with respect to E1. We get

d S1(E1)

d E1
− d S2(E2)

d E2

∣∣∣∣
E2=E−E1

= 0

or

1

T1
= 1

T2

as claimed. Similar result holds for many systems in contact. The first Gibbs princi-
ple can be put in another form which is often used:
The second Gibbs principle. In the state of thermodynamic equilibrium, the energy
E(y, S) of an isolated system attains its minimum on all states of the system with a
given value of entropy S.

The two Gibbs principles are equivalent except in some degenerate cases.

2.6 Nonequilibrium Processes

Consider an isolated system characterized by a number of slow variables, y1, . . . , yn .
There are some equilibrium values of y; the system remains in the state with such
values of y indefinitely. If the initial values of y differ from the equilibrium val-
ues, the slow variables evolve approaching the equilibrium values. The theory of
nonequilibrium processes aims to establish equations describing this evolution. In



2.6 Nonequilibrium Processes 61

this section we discuss the situation when the governing equations of the evolution
to equilibrium are ordinary differential equations.

Clausius found from phenomenological reasoning that entropy of an isolated sys-
tem may not decrease in the path to equilibrium. This is the so-called second law of
thermodynamics. For Hamiltonian systems this feature of entropy was established
by Kubo [163]. Hamiltonian systems possess such a feature if the phase flow is mix-
ing. In summary, the first and the second laws of thermodynamics are observed only
for one reason: the equations governing micromotion are Hamiltonian and mixing.6

If micromotion is not Hamiltonian or mixing, one can construct examples showing
that the first and/or the second laws are violated.

The governing equations of nonequilibrium thermodynamics are purely phe-
nomenological. They must obey the constraint of the second law: if the system is
isolated, its entropy may not decrease. To construct the evolution equations one
usually chooses as the main idea that entropy has a maximum value at equilibrium.
Then the simplest system of equations warranting the approach to equilibrium is

dyμ

dt
= Dμν(y)

�S(E, y)

�yν
, (2.41)

where Dμν(y) is some positive semi-definite matrix. Indeed, entropy of the system
grows along each trajectory y(t) of the system (2.41):

d S (E, y (t))

dt
= �S(E, y)

�yμ
Dμν(y)

�S(E, y)

�yν
� 0. (2.42)

We assumed here that the system is isolated, so the energy remains constant.
According to (2.42), Dμν(y) have the meaning of dissipation coefficients, i.e. the
coefficients controlling the entropy growth.

If y(t) are close to the equilibrium values, one can use a linearized version of
(2.41). To write down the linearized equations (2.41) we accept that the equilib-
rium corresponds to the zero values of y. Then, expanding S in a Taylor series with
respect to y in vicinity of equilibrium, we have

S = const− 1

2
aμν yμyν,

where aμν is a non-negative symmetric matrix. In linear approximation the coeffi-
cients Dμν are some constants, Dμν = Dμν(0). The governing equations take the
form a system of linear differential equations,

dyμ

dt
= −Dμν(0)aλν yλ. (2.43)

6 Up to some refinements of this statement like that made at the end of Sect. 2.3, which, most
probably, are of little physical significance.
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Equations (2.41) are more a concept than a “Law of Nature”: in modeling the
evolution to equilibrium, one may try equations of the form (2.41), but, in fact, the
physically adequate dynamical equations may have a different form: all one must
not violate is the evolution of entropy to its maximum value.

Are there other constraints to the governing equations, which are additional to the
first and the second laws of thermodynamics? Yes, there are. They are caused by the
Hamiltonian structure of microdynamics. The first such constraint was discovered
by Onsager [236]: the dissipative coefficients, Dμν(0), are not arbitrary. They must
obey the reciprocal relations

Dμν(0) = Dνμ(0). (2.44)

Onsager’s reciprocal relations follow from reversibility of micromotion. The lat-
ter takes place if Hamilton function is an even function of momenta, p. There are
systems for which Hamilton function is not an even function, like, for example,
the systems under action of external constant magnetic field, B: Hamilton function
contains the terms of the form, pB, which change the sign if time is reversed . For
systems in a magnetic field, the coefficients Dμν may also depend on the magnetic
field, and Onsager’s reciprocal relations are replaced by

Dμν(0, B) = Dνμ(0,−B).

Note that the coefficients of the linear differential equations (2.43), the product
of two symmetric matrices, are not necessarily symmetric.

Onsager’s reciprocal relations are independent of the first and the second laws of
thermodynamics. They are sometimes called the third law of thermodynamics.

There are also other constraints [44, 50]: if the slow variables are the coordinates
and momenta of the underlying Hamiltonian microdynamics, and the dissipation
is negligibly small, the equations of slow evolution must possess a Hamiltonian
structure with some effective Hamilton function, Heff (y, S) ,

dyμ

dt
= ωμν �Heff(y, S)

�yν
. (2.45)

Here ωμν is the constant tensor defining the Hamiltonian structure

ωμν =
⎧
⎨
⎩

1 μ ≥ n + 1, ν = μ

−1 μ ≤ n, ν = n + μ

0 otherwise
.

The effective Hamilton function, Heff(y, S), can be calculated explicitly in terms of
the phase volume of the Hamiltonian system. This calculation shows that it has the
meaning of the total energy of the system. Entropy in (2.45) is a given constant. In
many models of continuum mechanics, the kinematic variables can be viewed as the
slow variables of the underlying Hamiltonian system. Therefore, if the dissipation is
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neglected, the governing dynamics is Hamiltonian, and the corresponding principle
of least action must exist.7 This implies that only quite special interactions with spe-
cific “variational reciprocal relations” are possible in continuum mechanics. Most
considerations in this book are based on that point.

In general, if the dissipative terms are taken into account, then the slow evolution
is governed by the equations

dyμ

dt
= ωμν �Heff(y, S)

�yν
− 1

T
Dμν(y, S)

�Heff(y, S)

�yν

d S

dt
= 1

T 2
Dμν(y, S)

�Heff(y, S)

�yμ

�Heff(y, S)

�yν
, T = �Heff(y, S)

�S
. (2.46)

In these equations, the dissipative processes are characterized by the dissipative
coefficients, Dμν (y, S). The dissipative coefficients must be symmetric:

Dμν(y, S) = Dνμ(y, S). (2.47)

Equation (2.47) may be viewed as an extension of Onsager’s relations to the
non-linear case.

Equations (2.46) form a system of ordinary differential equations for unknown
functions yμ(t) and S(t). The model is specified by the effective Hamiltonian,
Heff(y, S), and the dissipative coefficients, Dμν(y, S). The effective Hamiltonian
is determined by the equilibrium properties of the system since it can be expressed
in terms of its phase volume. In contrast, the dissipative coefficients are the char-
acteristics of the nonequilibrium behavior; they describe the mixing properties of
the underlying Hamiltonian system. The dissipative coefficients are independent of
equilibrium properties: one may envision the systems with the same equilibrium
properties but different laws of evolution to equilibrium.

Energy of the system, Heff(y, S), is conserved in the course of evolution to
equilibrium:

Heff(y, S) = E = const, (2.48)

as it must be for an isolated system. Indeed,

d Heff(y, S)

dt
= d Heff(y, S)

�yμ

dyμ

dt
+ d Heff(y, S)

�S

d S

dt
, (2.49)

and the right hand side of (2.49) vanishes due to (2.46).
The energy conservation allows us to reduce the order of the system. The re-

sulting equations take a simple form if expressed in terms of the function, S(E, y),

7 The fact that (2.45) holds for isolated systems is not a constraint in consideration of continuum
media: the isolation requirement just specifies the boundary conditions and does not affect the
differential equations.
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which is the solution of (2.48) with respect to S for a given E . For this function,
similarly to (2.26),

1

T
= �S(E, y)

�E
,

�S(E, y)

�yμ
= − 1

T

�Heff(y, S)

�yμ
.

Therefore, the governing differential equations become a system of m differential
equations of the first order:

dyμ

dt
= −ωμν 1

�S(E, y)/�E

�S(E, y)

�yν

+ Dμν(y, S(E, y))
1

�S(E, y)/�E

�S(E, y)

�yν
. (2.50)

This system is determined by the functions, S(E, y) and Dμν(y, S), while E is
considered as a given parameter.

An important process which is not covered by (2.46) or (2.50) is heat conduction.
In this case, the slow variables, yμ, are the energies of small parts of the body;
they are not the coordinates or momenta of the underlying Hamiltonian system. The
equations of heat conduction also possess a special structure; the reader is referred
to [50] for consideration of this case and for further details regarding the derivation
of (2.46) and (2.50).

2.7 Secondary Thermodynamics and Higher Order
Thermodynamics

The special structure of thermodynamic equations, comprised of the existence of
energy and entropy, the equations of state and the constitutive equations and the
special form of equations of nonequilibrium thermodynamics, pertains only to the
equations governing the evolution of slow variables of a Hamiltonian system. Such
a theory may be called primary thermodynamics. It might happen that the equations
of primary thermodynamics also admit two well-separated time scales. One may
wonder what are the governing equations for the slow variables of the primary
thermodynamics or, in other words, which equations do we get after the elimi-
nation of the fast variables in the equations of primary thermodynamics. We call
the corresponding theory of slow variables of primary thermodynamics secondary
thermodynamics. There are two important examples of secondary thermodynamics:
plasticity theory and turbulence theory. Plasticity of crystalline bodies is caused by
motion of defects of crystal lattice, such as dislocations. The crystal lattice may
be viewed as a Hamiltonian system. The defects are the slow variables of this
Hamiltonian system. Therefore the governing dynamical equations for defects are
the subject of primary thermodynamics. Accordingly, macroscopic plastic behavior
of crystals and polycrystals is the subject of secondary thermodynamics. Another
example: turbulence theory. Equations describing fluid motion are the equations
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of primary thermodynamics. In the case of a chaotic fluid motion, turbulence, the
motion is characterized by fast and slow variables. Elimination of fast variables and
construction of the equations governing the slow variables is the major goal of tur-
bulence theory. For both examples of secondary thermodynamics, the development
of a theory of slow variables has not been completed yet. In particular, it is not
known whether the equations of secondary thermodynamics must possess a special
structure, as do the equations of primary thermodynamics. Most probably, there are
no statements of the same level of generality as for primary thermodynamics. In par-
ticular, in turbulence theory different flow geometries may yield quite different sys-
tems of equations for slow variables. One feature of secondary thermodynamics can
be quite general though. If the equations of primary thermodynamics exhibit chaotic
behavior, then a new entropy can enter the theory. As in primary thermodynamics, its
meaning is two fold: the new entropy characterizes fluctuations of the slow variables
and the information on the system lost in the elimination of fast degrees of freedom.
In the case of materials with random microstructures, this new characteristic called
entropy of microstructure is introduced and studied in Sect. 18.5−18.8. In contrast
to thermodynamic entropy, entropy of microstructure should decrease in an isolated
system.8 This feature is caused by the appearance of attractors in the phase space:
the phase volume shrinks when the system approaches the equilibrium state.

One may envision the situations when a secondary thermodynamics model pos-
sesses two well-separated time scales. Then the elimination of the fast variables
yields the equations of tertiary thermodynamics, etc. What will be common for all
levels of thermodynamics is the existence of energy and entropy equations as long
as energy and entropy remain slow variables. Besides, thermodynamic entropy, once
appeared, will remain an increasing function for closed systems.

The existence of entropy is intimately related to the Hamiltonian structure of
microdynamics. Such a structure is guaranteed by the classical approximation in
quantum mechanics. However, if the quantum mechanics problem has two well-
separated time scales, the elimination of the fast variables may yield the dissipa-
tive equations already at the level of the quantum mechanics description. On the
next level, the classical mechanics description, one would have a system that is
not Hamiltonian but instead a system with dissipation. Presumably, entropy can
still be introduced, but such a consideration seems not have been pursued yet. The
continuum mechanics level of description will then correspond at least to secondary
thermodynamics.

8 An exception is the case of unstable systems. For such systems entropy of microstructure can be
generated without external actions.
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