Chapter 2

The Boundedness of Calderon-Zygmund
Operators on Wavelet Spaces

We first define test functions and wavelet spaces on spaces of homogeneous
type. Then we prove the main result of this chapter, namely that Calderén-
Zygmund operators whose kernels satisfy an additional smoothness condition
are bounded on wawvelet spaces. This result will be a crucial tool to provide
wavelet expansions of functions and distributions on spaces of homogeneous
type in the next chapter.

We first introduce test functions on spaces of homogeneous type.

Definition 2.1. Fix 0 < v, 5 < 6. A function f defined on X is said to be a
test function of type (20,7, 3,7),z¢ € X, and r > 0, if f satisfies the following
conditions:

(1) |f(5€)‘ < C(,.+p(xr7x0))1+»y;

i — < o e V' for all X with

(11) |f(l‘) f(y)l = r+p(x,z0) (r+p(@,30)) 1 77 or all z,y € wit
pla,y) < 35(r + p(z, x0))-

Such functions exist and the reader will find a recipe two lines after Defini-
tion 1.2. If f is a test function of type (zo,r, 3,7), we write f € M(zo,r,3,7),
and the norm of f in M(zg,r,5,7) is defined by

| fll M(zo,r,8,4) = Inf{C : (i) and (i) hold}.

One should observe that if f € M(xq,r, 3,7), then

11l ~ [l mao.r8.)-

We say that a function f is a scaling function if f € M(zg,r,3,7) and
J F@)duz) = 1.

Now fix zy € X and denote M(3,v) = M(xo, 1, 3,7). It is easy to see that
M(z1,7r,B,7) = M(B,7) with equivalent norms for all z; € X and r > 0.
Furthermore, it is also easy to check that M(3,7) is a Banach space with
respect to the norm in M(3,7).
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28 2 Boundedness of CZO on Wavelet Space

Definition 2.2. A function f defined on X is said to be a wavelet of type
(zo,7,3,7) if f € M(zo,r,B,7) and [ f(z)du(xz) = 0. We denote this by
f € Mo(x()vrvﬂvv)'

These wavelets are named molecules by Guido Weiss. A compactly supported
molecule is an atom. Atomic decompositions preluded wavelet analysis, as
indicated in the Introduction. Moreover Caderén-Zygmund operators 1" sat-
isfying T'(1) = T*(1) = 0 have the remarkable property map a molecule into
a molecule. We use the notation Mg(8,), when the dependence in xy and
r can be forgotten, as a space of wavelets with regularity (53,~).

To study the boundedness of Calderén-Zygmund singular integral opera-
tors on a wavelet space, we define the following “strong” weak boundedness

property.

Definition 2.3. An operator T" defined by a distributional kernel K, is said
to have the “strong weak boundedness property” if there exist n > 0 and
C < oo such that

(K fil <Cr (2.1)

for all f € CJ(X x X) with supp(f) C B(z1,7) X B(y1,r),z1 and y; €
X fllse <L fC9)lly <775 and || f(z, )]y < 77" for all 2 and y € X.

If T has the “strong weak boundedness property”, we write T' € SW BP.

Note that if ¥ and ¢ are functions satisfying the conditions in Defini-
tion 1.15, then f(z,y) = ¥(x) x ¢(y) satisfies the conditions in Definition
2.3, and hence [Ty, ¢)| = (K, f)| < Cr if T has the “strong weak bound-
edness property”. This means that the strong weak boundedness property
implies the weak boundedness property. However, in the standard situa-
tion of R™, the weak boundedness property implies the strong one. In-
deed any smooth function f(z,y),x € B,y € B, supported by B x B can
be written, by a double Fourier series expansion, as »_ «;f;(z)g;(y) with
2 lajl < oo fillgp < Lillgillgp < 1.

If T € CZK(e), we say that T*(1) = 0 if [T(f)(z)dz = 0 for all f €
Mo (B,7). Similarly, T'(1) = 0 if [ T*(f)(z)dz =0 for all f € My(3,7).

The main result in this chapter is the following theorem.

Theorem 2.4. Suppose that T € CZK(e) N SWBP, and T(1) =T*(1) = 0.
Suppose further that K (x,y), the kernel of T, satisfies the following condition:

|K(I7y)7K(Ilvy)7K(I7y/)+K(Ilvyl)| (22)
< Cplw,2')p(y,y) pla,y) -+
for p(z, @), p(y,y') < ., p(x,y). Then there exists a constant C' such that

for each wavelet f € Mo(xo,r,B,7) with g € X,r > 0 and 0 < B,y < ¢,
Tf € Mo(zo,r,8,7). Moreover
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”T(f)HM(aco,rﬁ,'y) < C”THHfHM(xo,T,ﬁ,'y) (2-3)

where ||T|| denote the smallest constant in the “strong weak boundedness prop-
erty” and in the estimates of the kernel of T.

Before proving Theorem 2.4, we observe that this theorem will provide
wavelet expansions which, as in the standard case of R™, will be the building
blocks of most functional spaces.

To prove Theorem 2.4, we first need the following lemma.

Lemma 2.5. Suppose that T is a continuous linear operator from Cg to (Cg)'
satisfying T € CZK (e)NSW BP withn < €, and T(1) = 0. Then there exists
a constant C such that

||T¢||oo <C (2.4)

whenever there exist xg € X and r > 0 such that suppd C B(xg,r) with
[6lloc <1 and [|[|y < r~".

Proof. We follow the idea of the proof in [M1]. Fix a function § € C*°(R)
with the following properties: 6(z) = 1 for |z| < 1 and 0(x) = 0 for |z| > 2.
Let xo(x) = 9(p(””2’f°)) and x1 = 1—xo. Then ¢ = ¢xo and for all ¢ € CJ(X),

= (K(z,9),x0y)[¢(y) — o(2)]v(2)) + (K(2,9), xo(y)$(x)¥(2))
=p+q

where K(x,y) is the distribution kernel of 7.
To estimate p, let A\s(z,y) = O(p(fs’y)). Then

p = (K(z,y), (1= Xs(z,9)xo®)[e(y) — ¢(x)]3(x))
(K (z,9), As (2, y)x0(y)[6(y) — ()] (x))
= p1,6 + D2,5- (2.5)

Since K is locally integrable on = {(z,y) € X x X : © # y}, the first
term on the right hand side of (2.5) satisfies

iprsl = \ [ Ko = M nxal)loty) - o(a)}ble)dn(w)auty)
<c /X /X 1K (2, 1) %0 () [(0) — S(@)](@)|du(z)dp(y)
<c /X (@)ldu(z) = Cllgh.

Thus it remains to show that }in%pgﬁ =0, i.e.,
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lim (K (2, ), As (2, y)x0(®)[0(y) — o) () =0, (2.6)

and it is here that we use the “strong” weak boundedness property of 7" :
(K fil <Cr (2.7)

for all f € CJ(X x X) satisfying suppf C B(zo,7) X B(yo,7), || fllec <
LG o)y <r" and || f(z, )], < r7" for all 2,y € X.
To show (2.6), let {y;};ez € X be a maximal collection of points satisfying

1 .
50 < inf p(Yj, yx) < 6. (2.8)

By the maximality of {y;},ez, we have that for each x € X there ex-
ists a point1 yj such that p(z,y;) < 4. Let n;(y) = O(p(y(;yj)) and 7;(y) =
[>ni(y)] "n;(y). To see that 7; is well defined, it suffices to show that

for any y € X, there are only finitely many 7; with 7;(y) # 0. This
follows from the following fact: n;(y) # 0 if and only if p(y,y;) < 26
and hence this implies that B(y;,d) C B(y,4A46). Inequalities (2.8) show
B(y;, fA) N B(yk, 4(34) = ¢, and thus there are at most C'A points y; € X
such that B(y;, ) C B(y,4A8). Now let T' = {j : 7;(y)xo(y) # 0}. Note
that #I" < Crd since p(suppxo) ~ r and p(supp;) ~ 6. We write

(2, y)x0 W) [(y) — o) (x) = D Ns(w, ) (v)x0(¥)[(y) — ()]0 (),

jer
and we obtain

(K(z,y), As (@, y)x0 (W) [0(y) — d(z)](2))
= (K (2, 9), As(@, 1)1 () xo0 ) [6(y) — ¢(2)]1b ().

Jer

It is then easy to check that supp{As(z, ¥)7; (¥)x0(y)[0(y) — é(x)](z)} C
B(y,,3A0) x B(y;,20) and

15 (@, )75 (W)x0 (W) [D(y) — d()](2)[[0 < CO"

where C is a constant depending only on 6, ¢, v, xg, and r but not on § and j.
We claim that

[As (s )75 (W) x0 (W) [(y) — o))y < C, (2.9)

and

A5 (@, )75 (Oxo([o() — ()¢ (@), < C. (2.10)
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We accept (2.9) and (2.10) for the moment. Then, since T satisfies the
“strong” weak boundedness property, we have

(K (2, y), )\a(fB y)xO(y)[¢(y) — o(@)]¢ ()]

< ZI N (Y)x0 (W) [(y) — d(x)]e ()]
< ZCH (y;,3A8))8" < C 6CA55" = CArs"

which yields (2.6).

It remains to show (2.9) and (2.10). We prove only (2.9) since the proof
of (2.10) is similar. To show (2.9) it suffices to show that for z,z; € X and
p<$v xl) <9,

175 ) xo W)l [ As (@) [B(y) — b)) — As(ar, ) [B(y) — élen) ()|
SCMme

since if p(z,21) > 0, then the expansion on the left above is clearly bounded
by

175 () x0 W) { IXs (2, 1) [¢(y) — d(@)]9 ()] + [Ns (21, 9)[D(y) — dla1)]¢ (1)}
< 05" < Cp(x,z1)".

By the construction of 7;, it follows that

17 (y)xo(y)| < C

for all y € X. Thus

175 (W)x0 (W)l As (2, 9)[¢(y) — (@)Y (x) = As(z1, y)

S
—
s
|
=
5
ks
=
<
5
ks

< ClAs(@,9)[o(y) — (@) (2) = As(21,9)[¢(y) — d(w1)]ih(21)]
< ClAs(z,y) = As(z1, 9)l[9(y) — ¢(2)]¢ ()]

+As (21, y)[o(2) — dla)]v ()|

+As(@1,9)[0(y) — P(x)][1h(x) — P (z1)]]
;= I+ IT+II1.

Recall that p(z, 1) <. If p(z,y) > C§, where C is a constant depending
on A but not on §, then A\s(x,y) = As(x1,y) = 0, so I = 0. Thus we may
assume that p(z,y) < Cé and with 6 in (1.7),

x, x1, _ -
1< ]9 Py < 08 pla 1)) + ol )]

< Céniap(xaxl)o < Cp(l',.%’l)n
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since we may assume 1 < 6. Terms I] and I1] are easy to estimate:

IT < Cp(z,21)",

I1T < Cp(z,x1)",

since we can assume that § < 1. This completes the proof of (2.9) and implies

lpl < Cllella-

To finish the proof of Lemma 2.5, we now estimate ¢. It suffices to show
that for x € B(zg,r),

|Tx0(x)| < C. (2.11)
To see this, it is easy to check that ¢ = (T'x0, $1), and hence (2.10) implies

lal < I Txollzo (B(zo,r) 1PV L1 (B(z0.r)) < CllPl1-

To show (2.11), we use Meyer’s idea again ([M1]). Let v € C"(X)
with suppy) C B(zo,r) and [ (z)du(z) = 0. By the facts that 7'(1) =
0, [ (z)du(z) = 0, and the conditions on K, we obtain

|@mwﬂ|@mwﬂ|/ﬁmeKman@w@wwww>
< gl

Thus, Txo(x) = w + y(z) for x € B(zg,r), where w is a constant
and [|v]cc < C. To estimate w, choose ¢ € CJ(X) with supp ¢ C
B(zo,7), ||¢1]lcc < 1,[|¢1]ly <777 and [ ¢1(z)du(z) = Cr. We then have, by
the “strong” weak boundedness property of T

‘aw+/@ww@w@>|@m¢MSCT

which implies |w| < C' and hence Lemma 2.5.

We remark that the calculation above, together with the dominated con-
vergence theorem and 7T'1 = 0, yields the following integral representation:

(T, )
:/QK(Ly){Xo(y)[aﬁ(y)*sb(x)]*X1(y)¢(x)}¢(x)du(y)du($) (2.12)

and

(K(z,9),[9(y) — é(z)]x0(v))

= lim ( )>5K(w,y)><o(y)[¢(y)—¢(w)]du(y) (2.13)

where Yo, ¢ and 1 are defined as above.
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We return to prove the Theorem 2.4. Fix a function § € C'(R) with
supp 0 C {z € R : |z|]| < 2} and § = 1 on {& € R : |z| < 1}. Suppose
that f € Mo(zo,r,5,7) with g € X,r > 0 and 0 < 8,7 < e. We first
prove that T'(f)(x) satisfies the size condition (i) of Definition 2.1. To do
this, we first consider the case where p(x,x¢) < 5r. Set 1 = {(y) +n(y) where

{ly) = 9(‘)%’1;6;’) ). Then we have

T(f)(x) = / Kz, )e@)f(y) - F@)duly) + / K 9)1(0) f () du(y)
+f(x) / K(z,y)¢(y)du(y) == T+ IT + II1.

Using (2.13),
n<c/ K@ Il () = f@)ldiy)
plw,y)<25A27

_1p(x,y)?
< O\ flMm(zor / plz,y)~* du(y
|| ||M( 0,78,7) (@) <2547 ( ) P18 ( )

< Ol fll o g™

By Lemma 2.5,

11| < C|f ()] < Cl fllmaompm -

For term I1 we have
1| < Ol fl maor / pz,y) dp
| | H HM( 0":7) p(x,y)>10Ar ( ) p(y7$0)1+ﬁ’
< Cllflmeor s
since p(z, zo) < 5r.

This implies that T'(f)(z) satisfies (i) of Definition 2.1 with p(z, zo) < 5r.
Consider now p(x,zo) = R > 5r. Following the proof in [M1], set 1 = I(y) +
J(y) + L(y), where I(y) = 6(*™)), J(y) = 6(**"%)), and fiy) =
FW)I(y), fa(y) = f(y)J(y), and f3(y) = f(y)L(y). Then it is easy to check

the following estimates:
AW < Cllmtsorsn pro (2.14)
[f1ly) = A < W) = FEOI+FEOIT ) = Iy (2-15)

ply.y)" 17
< OHfHM(:Eo,T,B,v) RB R+~

for all y and v/;
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rY
|f3(y)| < CHf”M(CEO»Tﬁ»’Y) p(y,CEo)H'V X{yGX:p(y,zo)>41AR}; (216)

/mwwmmscwmmwﬁﬂ;; .17

’/ﬁ@w " [ hwinty /ﬁ )y ‘ (2.18)

< C”f”./\/l(wo,rﬁ v) R,Y
We write
/ny (£10) = 1 @dn(o) + (o) [ K p)ul)dnty)
= 0'1 + 0'2( )

where u(y) = 9(2Ap1(;’y)). Applying the estimate (2.15) and Lemma 2.5, we
obtain

_ipzy)? o
1@ <l Imearsy [ oo T dutw)

pla,y)< B
T’Y
< CHfHM(LEO,T‘,B,’Y) R1+’7;
and
Y
lo2(2)] < Clfu(@)] < Cllflmeorrs) pras-
Notice that x is not in the support of fo. We can write
T(£)(0) = [1K(2,) = Klo,z0) fo)dn(o) + K (a20) [ folw)dn(y)
= 51(,’B) + 52(1’)

Using the estimates on the kernel of 7" and on f5 in (2.18), we then get

p(xo,y) 7
si(z) < C eor / . d
| 1( )| HfHM( 0:758,7) p(wo)< B R+ p(fl?o,y)H'V (y)

Y
< Ol fll Mo, 8,7) R1+v

since v < €, and

- 7
o) < 17| [ )] < €U sy

Finally, since z is not in the support of f3, (2.16) implies
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T’Y
T(f3)(@)] < Ol fll Mzo.rs, / p(z,y)~" du(y
IT(f3)(2)] < Cllf |l Mm@orsy) s o (z,9) oo, )1+ (v)
T’Y

< CHfHM(xo,r,ﬁ-,'v) R1+7°

This yields that T'(f)(z) satisfies (i) of Definition 2.1 for p(z, z¢) > 5r and
hence, estimate (i) of Definition 2.1 for all 2 € X.

Now we prove that T'(f)(x) satisfies the smoothness condition (ii) of De-
finition 2.1. To do this, set p(z, o) R and p(z,2’) = 6. We consider

first the case where R > 10r and § < 20142 (r + R). As in the above, set

1= I(y) + J(y) + L(y), where I(y) = 0>, J(y) = 0(**%*)), and
fiy) = fW)(y), f2(y) = f(y)J(y), and f3(y) = f(y)L(y). We write

T()(@) = [ Klaguwlhi) - fi@)duty
+/K(w»y)v(y)f1(y)dﬂ(y) +f1(:v)/K(:v»y)U(y)du(y)

where u(y) = 9(%3’?)) and v(y) = 1—u(y). Denote the first term of the above

right-hand side by p(x) and the last two terms by ¢(x). The size condition of
K and the smoothness of f; in (2.15) yield

B
< C —1 p(xvy) d
Ip(2)| < Cllflmo,r,8,7) /p(z,y)qpr(x,y) e piey )

Al
< C”f”./\/l(mo,r,ﬁ,'y) RB R+~
This estimate still holds with « replaced by 2’ for p(x,2’) = 6. Thus

58
p(@) = (@) < Clf Mo s s

For g(x), using the condition T'1 = 0, we obtain
ale) ~ o) = [ K@) = K@ p)l)l) - fi@)dn(w)
HAO) - @) [ Ko
=I+11I.
Using Lemma 2.5 and the estimate for f; in (2.15),

58
1111 £ C1f1(@) = Fu(@)] £ Ol atenrin pos g

Observing
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(z,y)? 7

AW = A@IRW) < Clflvorsm” ps piiy

for all y € X, we see that I is dominated by

C / |K (z,y) — K2, y) o)l f1(y) = fr(z)|du(y)

px,y)>2A68
pla,a')e pla,y)’
<|f 0,7 / € d/L Y
[ HM( 0,7,3,7) o(e.)>245 pla,y)+ RP Rt (y)
§8

< CHfHM(Io,Tﬁ»’Y) RB R1+v
since B < e. This implies

5P
T(F)@) ~ T < Ol sttanrn) o o

Note that for p(z,2') = § < 4. (r + R) and R > 10r, z and 2’ are not in

the supports of fo and f3. Using the condition for K and the estimate for fs
in (2.18), then

T(f2)(x) — T(f2)(a')] = ] JECOR K(x',y>]f2<y>du<y>|
< / K (2,y) - K (@', ) — K(z,20) — K(&', 20)|| f2()lds(y)
HE e 00) = K0l | [ it

p(z, ') p(y,xz0)s 17
< Cllf tcoor { / : dply
H HM( 0,7,8,7) o(w0,0)< I, R2+ p(y,%)”” ( )

o Y
+R1+6 RY
oc r
< CHfHM(LEmTﬁ»V) Re R1+~

since v < e. Finally, we have

T(f3)(@) - T(f3)(@')] = | JECHE K(x’,y)]fg(y)du(y)’

pla,z)

€
p(e)> B >245 p(x,y)t+

€

)
<C |f3(y)|dﬂ<y) < CHfHM(xo,r,ﬁ,'y) Re R1+7°

These estimates imply that T'(f)(z) satisfies the condition (ii) of Definition
2.1 for the case where p(z,z¢) = R > 10r and p(z,2') =6 < ,4. (r+R). We
now consider the other cases. Note first that if p(z,z9) = R and .}, (r+ R) >
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p(z,a') =6 > ,i'\. (r+R), then the estimate (ii) of Definition 2.1 for T'(f)(z)
follows from the estimate (i) of Definition 2.1 for T'(f)(z). So we only need
to consider the case where R < 10r and § < 20142 (r+ R). This case is similar
and easier. In fact, all we need to do is to replace R in the proof above by 7.
We leave these details to the reader. The proof of Theorem 2.4 is completed.

We remark that the condition in (2.2) is also necessary for the boundedness
of Calderén-Zygmund operators on wavelet spaces. To be precise, in the next
chapter, we will prove all kinds of Calderén’s identities and use them to
provide all kinds of wavelet expansions of functions and distributions on
spaces of homogeneous type. Suppose that 7' is a Calderén-Zygmund operator
and maps the wavelet space Mg (xq, 7, 3,7) to itself. By the wavelet expansion

given in Theorem 3.25 below, K(z,y), the kernel of T, can be written as

K(z,y) = )\ZA T(42)(x)x(y). Since 1y (z) is a wavelet, by the assumption
€

on T,T(1hy)(x) is also a wavelet. Then one can easily check that K(z,y)
satisfies the condition (2.2) but the exponent e must be replaced by €’ with
0 < € < B3,7. We leave these details to the reader.
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