Preface

This book could have been entitled “Analysis and Geometry.” The authors
are addressing the following issue: Is it possible to perform some harmonic
analysis on a set? Harmonic analysis on groups has a long tradition. Here
we are given a metric set X with a (positive) Borel measure p and we would
like to construct some algorithms which in the classical setting rely on the
Fourier transformation. Needless to say, the Fourier transformation does not
exist on an arbitrary metric set.

This endeavor is not a revolution. It is a continuation of a line of research
which was initiated, a century ago, with two fundamental papers that I would
like to discuss briefly.

The first paper is the doctoral dissertation of Alfred Haar, which was
submitted at to University of Géttingen in July 1907. At that time it was
known that the Fourier series expansion of a continuous function may diverge
at a given point. Haar wanted to know if this phenomenon happens for every
orthonormal basis of L2[0,1]. He answered this question by constructing an
orthonormal basis (today known as the Haar basis) with the property that
the expansion (in this basis) of any continuous function uniformly converges
to that function.

Today we know that Haar was the grandfather of wavelets and we also
know that wavelet bases offer a powerful and flexible alternative to Fourier
analysis. Indeed wavelet bases are unconditional bases of most of the func-
tional spaces we are using in analysis. In other words wavelet expansions
offer an improved numerical stability, as compared with Fourier series expan-
sions. One of the goals of this book is to construct wavelets on any metric set
equipped with a positive measure which is compatible with the given metric.
In this setting we do not have Fourier analysis at our disposal.

The second paper which preluded the authors’ endeavor was written in
French by Marcel Riesz in 1926. It is entitled “Sur les fonctions conjuguées.”
The author proves that the Hilbert transform is bounded on LP(R) when 1 <
p < oo. The Hilbert transform H is the convolution with }T p.v.;, which is a

distribution. In other words H(f)(z) = lp.v. [ i(_y; dy. The Fourier transform
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of H(f) is —isign(§)f(§) when f(€) is the Fourier transform of f. Therefore,
H is isometric on L?(R).

The proof given by Riesz relies on the properties of holomorphic functions
F in the unit disc D of the complex plane. The boundary I" of I is the unit
circle identified to [0, 27] and functions on I' can be written as Fourier series.
If a holomorphic function F' in D extends to the boundary I', then the Fourier
series of F' on I coincides with its Taylor series. Moreover if u is the real part
of a holomorphic function F' and v is the imaginary part, then v is the Hilbert
transform of u on T'.

To prove his claim, Riesz used the Cauchy formula and the fact that F?
(F raised to the power p) is still holomorphic when p is an integer or when
F has no zero in D. This attack was named “complex methods” by Antoni
Zygmund.

In the 1950s Alberto Calderén and Zygmund discovered a new strategy
for proving LP estimates. They could not use complex methods anymore
since they were interested in operators acting on L?(R™). The operators con-
structed by Calderén and Zygmund are the famous pseudo-differential oper-
ators and soon became one of the most powerful tools in partial differential
equations.

Let us sketch the proof of LP estimates discovered by Calderén and Zyg-
mund. It begins with a lemma which is known as the “Calderén—Zygmund
decomposition.” It says the following. Let f be any function in L!(R™) and
let A > 0 be a given threshold. Then f can be split into a sum u + v where
|u| is bounded by A and belongs to L?(R"), while v is oscillating and sup-
ported by a set of measure not exceeding gf As noticed by Joseph Doob, the
proof of this lemma is indeed a stopping time argument applied to a dyadic
martingale. On the other hand, the Haar basis yields a martingale expansion.
Calderén and Zygmund argued as follows. They assumed that the distribu-
tional kernel K (z,y) of an operator T satisfies the following conditions: There
exists a constant C such that for every x € R™ and every 2’ # x one has

ly—z|>2]z’ =]

and there exists a constant C’ such that for every y € R™ and every y' # y
one has

|K(z,y') = K(z,y)|de < C". (t)

|[z—y'|>2]y—y’|

Calderon and Zygmund proved a remarkable result. If T is bounded on
L?(R™) and if the distributional kernel K (z,y) of T satisfies (), then for
every f in L'(R™),T(f) belongs to weak L!'. There exists a constant C
such that for every positive A the measure of the set of points x for which
IT(f)(z)| > A does not exceed C“f)\lll. This is optimal, since f = ¢,,(Dirac
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mass at o) yields T'(f)(z) = K (z, ) which belongs to weak L' and not to
L'. This theorem follows from the Calderén-Zygmund decomposition. Then
the Marcinkiewicz interpolation theorem implies the required LP estimates
for 1 < p < 2. Applying the same argument to the adjoint operator T, we
obtain the LP estimates for 2 < p < oco.

The arguments which were used in these two steps do not rely on Fourier
methods; therefore, this scheme easily extends to geometrical settings where
the Fourier transformation does not exist. Such generalizations were achieved
by Ronald Coifman and Guido Weiss. They discovered that the “spaces of
homogeneous type” are the metric spaces to which the Calderén—Zygmund
theory extends naturally. A space of homogeneous type is a metric space X
endowed with a positive measure y which is compatible with the given metric
in a sense which will be detailed in this book. Roughly speaking, the measure
w(B(z,r)) of a ball centered at x with radius r scales as a power of r.

Coifman and Weiss observed that any bounded operator T : L?(X,du) —
L?(X,du) whose distributional kernel satisfies ()—with |2 — /| > 2|y — /|
replaced by d(x,y’) > 2d(y,y’)—maps L' into weak L'. That implies L?
estimates for 1 < p < 2. This can be found in the remarkable book Analyse
Harmonique Non- commutative sur Certains Espaces Homogenes which was
published in 1971.

But this does not tell us how to prove the fundamental L? estimate. We
will return to this issue after a detour.

In the 1960s Calderén launched an ambitious program. He wanted to free
the pseudo-differential calculus from the unnecessary smoothness assump-
tions which were usually required to obtain commutator estimates. The first
issue he addressed was the following problem. Let A be the pointwise mul-
tiplication by a function A(z) and let T be any pseudo-differential operator
of order 1. Can we find a necessary and sufficient condition on A imply-
ing that all commutators [A,T] are bounded on L?(R™)? This is required
for every pseudo-differential operator of order 1 and the particular choices
T, = a‘zj ,1 < j < n, show that A must be a Lipschitz function. The other
way around is much more difficult and was proved by Calderén in 1965. The
proof relies on new estimates on the Hardy space H!(R). Calderén proved
that the ! norm of a holomorphic function F is controlled by the L' norm
of the Lusin area function of F. This connection between an L? estimate and
the Hardy space ! is the most surprising. An explanation will be given by
the T'(1) theorem of David and Journé.

This spectacular achievement gave a second life to the theory of Hardy
spaces and Charles Fefferman, in collaboration with Elias Stein, proved that
the dual of H'(R") is BMO(R™). Here H'(R™) is the real variable version
of the Hardy space H'(R). In other words, H' is the subspace of L! which
is defined by n+1 conditions f € L! and R, f € L', where R;,1 < j < n, are
the Riesz transforms.

Calderon conjectured that the Cauchy kernel on a Lipschitz curve T is
bounded on L2(R). A Lipschitz curve I' is the graph of a (real-valued)
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Lipschitz function A. The curve I' admits a parameterization given by
z(x) = o + iA(z), —00 < & < oo, and the Cauchy operator can be writ-
ten as

C(Pa) =pa. ;[ cla) = 20 )y,

If |A |l < 1, the Cauchy operator is given by a Taylor expansion
o0
S Cn(f), where C,, are the iterated commutators between A (the point-
0

wise multiplication with A(z)) and D™H. Here, as above, H is the Hilbert
transform and D = —1¢ d‘i.

In 1977 Calder6n used a refinement of the method which was successful
for the first commutator and could prove the boundedness of the Cauchy
kernel under the frustrating condition |A’||oc < B, where 3 is a small positive
number. Guy David combined this result with new real variable methods and
got rid of the limitation in Calderén’s theorem.

But the main breakthrough came when David and Jean-Lin Journé at-
tacked a much more general problem. They moved to R™ and studied singular
integral operators which are defined by

T(f)(@) = po. / K(z,9)f (y)dy,

where K (z,y) = —K(y,z), |K(z,y)| < Cle—y|™", and |V, K (z,y)] < C'|x—
yl7

They discovered that T is bounded on L2(R") if and only if T(1) €
BMO(R"™). Here T(1)(z) = p.v. [ K(x,y)dy and in many situations this
calculation is trivial. For instance, when K, (z,y) = "“ff’,;;i‘fpn is the n-th
commutator,

1
p-v-/Kn(w,y)dy = —np-v-/Kn_l(w,y)A’(y)dy,

which immediately yields Calderén’s theorem. Complex methods are beaten
by real variable methods and the surprising connection between Hardy spaces
and L? estimates is explained. Indeed BMO is the dual of H'.

A spectacular discovery by David, Journé, and S. Semmes is the general-
ization of the T'(1) theorem to spaces of homogeneous type.

This version of the T'(1) theorem will receive a careful exposition in this
book. It paves the road to a broader program which is the extension to spaces
of homogeneous type of the Littlewood—Paley theory. The Littlewood—Paley
theory began with the fundamental achievements of J. E. Littlewood and R.
E. A. C. Paley.

Let me say a few words on this discovery. We consider the Fourier series

o0
> ek exp(ikz) of a 2mw-periodic function f(x) and we define the dyadic blocks

— 00

Dj(f)(x),j €N, by
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Dif(x) = Z ek exp(ikx).

27 <|k|<2i+1

Then the square function S(f) of Littlewood and Paley is defined by

S = (S ID;(H)@)2) 2.
0

Littlewood and Paley proved that we have

cpll Fllp < leol + 1S (H)llp < Coll £l

when 1 < p < oco.

The definition of the square function S(f) was generalized by Elias Stein.
Then LP[0,27] can be replaced by LP(R™). Jean-Michel Bony used Stein’s
version of the Littlewood—Paley theory to construct his famous paraproducts.
Such paraproducts play a pivotal role in the proof of the T'(1) theorem.

The authors of this book show us how to extend the Littlewood—Paley
theory to spaces of homogeneous type. This is a key achievement since
most of the usual functional spaces admit simple characterizations using the
Littlewood-Paley theory.

The last but not the least contribution of the authors is the construc-
tion of wavelet bases on spaces of homogeneous type. Once again, wavelets
offer an alternative to Fourier analysis. As we know, wavelet analysis can
be traced back to a fundamental identity discovered by Calderdn. If 1 is a
radial function in the Schwartz class with a vanishing integral and if, for
t>0,1(x) = t7"(7), then for f € L*(R™) we have

T~ at
f=c | fxg*t
/ t

where ¢ > 0 is a normalizing factor and ¢(z) = 1h(—z). In other words, one
computes the wavelet coefficients by

W(y.1) = / F@), (- y)da

and one recovers f through

fla) = c]o [ Wt - vay’).

0 R

Everything works as if the wavelets ¢, (z) = t~"/23( ", ¥) were an ortho-
normal basis of L?(R"). Indeed, orthonormal wavelet bases exist. There exist



X Preface

2" — 1 functions ¢, € S (R"),e € F,#F = 2" — 1, such that the functions
VYe(x) = 27 Y (290 — k),j € Z,k € Z", ¢ € F, are an orthonormal basis of
L2(R™).

The authors succeeded in generalizing the construction of wavelet bases to
spaces of homogeneous type; however, wavelet bases are replaced by frames,
which in many applications offer the same service.

One is amazed by the dramatic changes that occurred in analysis during
the twentieth century. In the 1930s complex methods and Fourier series played
a seminal role. After many improvements, mostly achieved by the Calderén—
Zygmund school, the action takes place today on spaces of homogeneous type.
No group structure is available, the Fourier transform is missing, but a version
of harmonic analysis is still present. Indeed the geometry is conducting the
analysis.

Donggao Deng passed away after completing a preliminary version of this
book. In his last moments he knew his efforts were not in vain and that his
collaboration with Yongsheng Han would eventually lead to this remarkable
treatise.

China 2007 Yves Meyer
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