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Summary. We present a general introduction to the multiscale modelling and simulation of
complex fluids. The perspective is mathematical. The level is elementary. For illustration pur-
poses, we choose the context of incompressible flows of infinitely dilute solutions of flexible
polymers, only briefly mentioning some other types of complex fluids. We describe the mod-
elling steps, compare the multiscale approach and the purely macroscopic, more traditional,
approach. We also introduce the reader with the appropriate mathematical and numerical tools.
A complete set of codes for the numerical simulation is provided, in the simple situation of a
Couette flow. This serves as a test-bed for the numerical strategies described in a more gen-
eral context throughout the text. A dedicated section of our article addresses the mathematical
challenges on the front of research.
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1 Introduction

This article presents a general introduction to the multiscale modelling and simu-
lation of complex fluids. The perspective is mathematical. The level is elementary.
For illustration purposes, we choose the context of incompressible flows of infinitely
dilute solutions of flexible polymers. This category of fluids is that for which the
mathematical understanding is the most comprehensive one to date. It is therefore
an adequate prototypical context for explaining the recently developed multiscale
approach for the modelling of complex fluids, and more precisely for that of fluids
with microstructures. Other types of complex fluids, also with microstructures, such
as liquid crystals, suspensions, blood, may also be modeled by such types of models.
However the modelling is either less understood mathematically, or more intricate
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and technical to describe (or both). The former case is therefore more appropriate for
an initiation.

We describe the modelling steps, compare the multiscale approach and the purely
macroscopic, more traditional, approach. We also introduce the reader to the appro-
priate mathematical and numerical tools.

The readership we wish to reach with our text consists of two categories, and our
purpose is thus twofold.

Our primary purpose is to describe to mathematics (or applied mathematics) stu-
dents, typically at undergraduate level, or in their early years of graduate studies, the
various steps involved in a modern modelling endeavor. The multiscale simulation of
complex fluids is an excellent example for this. Thinking to this audience, we con-
centrate ourselves on key issues in the modelling, assuming only the knowledge of
some basic notions of continuum mechanics (briefly recalled in Sect. 2) and elabo-
rating on those in Sect. 3 to construct the simplest multiscale models for complex
fluids. We also assume that these students are familiar with some standard notions
about partial differential equations and the discretization techniques commonly used
for their simulation. On the other hand, because we know from our teaching expe-
rience that such students often have only a limited knowledge in probability theory
and stochastic analysis, we choose to give (in Sect. 4) a crash course on the elements
of stochastic analysis needed to manipulate the stochastic versions of the models for
complex fluids. The latter are introduced in the second part of Sect. 4. To illustrate
the notions introduced on a very simple case, and to allow our readers to get into the
heart in the matter, we devote the entire Sect. 5 to several possible variants of numer-
ical approaches for the simulation of start-up Couette flows. This simple illustrative
case serves as a test-bed for the numerical strategies described in a more general
context throughout the text. A complete set of codes for the numerical simulation is
provided, which we encourage the readers to work with like in a hands-on session.

The second category of readers we would like to get interested in the present ar-
ticle consists of practitioners of the field, namely experts in complex fluids rheology
and mechanics, or chemical engineers. The present text could serve, we believe, as
an introduction to a mathematical viewpoint on their activity. Clearly, the issues we,
as mathematicians and computational scientists, emphasize, are somewhat different
from those they consider on a regular basis. The perspective also is different. We are
looking forward to their feedback on the text.

For both communities above, we are aware that an introductory text, although
useful, is not fully satisfactory. This is the reason why we devote a section of our
article, Sect. 6, to a short, however comprehensive, description of the mathematical
and numerical challenges of the field. This section is clearly more technical, and
more mathematical in nature, than the preceding ones. It is, hopefully, interesting for
advanced graduate students and researchers, professionals in mathematics, applied
mathematics or scientific computing. The other readers are of course welcome to
discover there what the exciting unsolved questions of the field are.

Finally, because we do not want our readers to believe that the modelling of
infinitely dilute solutions of flexible polymers is the only context within complex
fluids science where mathematics and multiscale simulation can bring a lot, we close
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the loop, describing in our last Sect. 7 some other types of complex fluids where the
same multiscale approach can be employed.

2 Incompressible fluid mechanics: Newtonian and
non-Newtonian fluids

2.1 Basics

To begin with, we recall here some basic elements on the modelling of incompress-
ible fluids.

It experiences external forces fff per unit mass. Denote by TTT the stress tensor.
The equation of conservation of mass for this fluid reads

∂ρ
∂ t

+ div(ρ uuu) = 0. (1)

On the other hand, the equation expressing the conservation of momentum is

∂ (ρ uuu)
∂ t

+ div(ρ uuu⊗ uuu) − divTTT = ρ fff , (2)

where ⊗ denotes the tensor product: for two vectors uuu and vvv in Rd , uuu ⊗ vvv is a d × d
matrix with (i, j)-component uuuivvv j. For such a viscous fluid, the stress tensor reads

TTT = −pId + τττ, (3)

where p is the (hydrodynamic) pressure, and τττ is the tensor of viscous stresses. In
order to close the above set of equations, a constitutive law (or constitutive relation)
is needed, which relates the viscous stress τττ and the velocity field uuu, namely

τττ = τττ(uuu,ρ , ...). (4)

Note that (4) is symbolic. A more precise formulation could involve derivatives in
time, or in space, of the various fields τττ , uuu, ρ , . . .

Assuming that τττ linearly depends on uuu, that τττ is invariant under the change of
Galilean referential, and that the fluid has isotropic physical properties, it may be
shown that the relation between τττ and uuu necessarily takes the following form

τττ = λ (divuuu) Id + 2η ddd (5)

where λ and η are two scalar coefficients (called the Lamé coefficients). The latter
depends, in full generality, on the density ρ and the temperature. In (5), ddd denotes
the (linearized) rate of deformation tensor (or rate of strain tensor)

ddd =
1
2
(∇uuu+ ∇uuuT ). (6)

uuu.Consider a viscous fluid with volumic mass (or density) ρ , flowing at the velocity 
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When a fluid obeys the above assumptions, it is called a Newtonian fluid. The kinetic
theory of gases allows to show that

λ = −2
3

η (7)

and the common practice is to consider both coefficients λ and η constant.

The system of equations (1)-(2)-(3)-(5)-(6)-(7) allows then to describe the motion
of the fluid. When accounting for temperature effects, or for compressible effects,
the system is complemented by two additional equations, the energy equation and an
equation of state (relating p, ρ and T ). We will neglect such effects in the following
and assume the temperature is constant and the fluid is incompressible:

divuuu = 0. (8)

Then, equations (1)-(2)-(3)-(5)-(6)-(7)-(8) provide the complete description of the
evolution of the Newtonian fluid.

Let us additionally assume the fluid has constant density

ρ = ρ0.

Such a fluid is often called homogeneous. The equation of conservation of momen-
tum then rewrites

ρ
(

∂uuu
∂ t

+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p = ρ fff . (9)

It is supplied with the divergence-free condition

divuuu = 0. (10)

The couple of equations (9)-(10) form is the celebrated Navier-Stokes equation for
the motion of incompressible homogeneous viscous Newtonian fluids.

2.2 Non-Newtonian fluids

Some experimental observations

Non-Newtonian fluids, and, in particular, viscoelastic fluids are ubiquitous in in-
dustry (oil industry, food industry, rubber industry, for example), as well as in
nature (blood is a viscoelastic fluid). As mentioned above, Newtonian fluids are
characterized by the fact that the stress is proportional to the rate of deformation
1
2

(
∇uuu+ ∇uuuT

)
: this is viscosity. For elastic solids, the stress is proportional to the

deformation (see the tensors (35) CCCt or (36) FFFt below for some measure of defor-
mation): this is elasticity. The characteristic feature of viscoelastic fluids is that their
behavior is both viscous and elastic. Polymeric fluids are one instance of viscoelastic
fluids.



Multiscale Modelling of Complex Fluids 53

����
����
����
����

����
����
����
����

y

u

V
y=L

velocity profile

in
fl

ow

ou
tf

lo
w

Fig. 1. Schematic representation of a rheometer. On an infinitesimal angular portion, seen
from the top, the flow is a simple shear flow (Couette flow) confined between two planes with
velocity profile (u(t,y),0,0).

To explore the rheological behavior of viscoelastic fluids (rheology is the sci-
ence studying why and how fluids flow), physicists study their response to so-called
simple flows (typically flows in pipes or between two cylinders) to obtain so-called
material functions (such as shear viscosity, differences of normal stress, see below).
Typically, for such flows, the velocity field is known and is not influenced by the
non-Newtonian features of the fluid. This owes to the fact that the velocity field
is homogeneous, which means that ∇uuu does not depend on the space variable. Such
flows are called homogeneous flows. Two types of simple flows are very often used in
practice: simple shear flows and elongational flows (see R.B. Bird, R.C. Armstrong
and O. Hassager [11, Chap. 3]). We focus here on simple shear flows. In practical sit-
uations (in an industrial context for example), flows are generally more complicated
than the simple flows used to characterize the rheological properties of the fluids:
such flows are called complex flows. Complex flows are typically not homogeneous:
∇uuu depends on the space variable xxx.

In a simple shear flow, the velocity uuu has the following form:

uuu(t,xxx) = (γ̇(t)y,0,0),

where xxx = (x,y,z) and γ̇ is the shear rate. The shear viscosity η :

η(t) =
τττx,y(t)
γ̇(t)

, (11)

and the first and second differences of normal stress:



54 C. Le Bris, T. Lelièvre

Fig. 2. Schematic representation of two unexpected, counterintuitive behaviors for some poly-
meric fluids: the rod-climbing effect (left) and the open syphon effect (right).

N1(t) = τττx,x(t)− τττy,y(t),
N2(t) = τττy,y(t)− τττ z,z(t),

(12)

may be measured experimentally. For Newtonian fluids, the shear viscosity is con-
stant, and both N1 and N2 vanish. This is not the case in general for viscoelastic
fluids. In particular, for many non-Newtonian fluids, η is a decreasing function of γ̇
(this property is called shear-thinning), goes to a constant η∞ when γ̇ goes to infinity,
and goes to some value η0 (the zero-shear rate viscosity) when γ̇ goes to zero.

In practice, such flows are studied in rheometers, the fluid being confined be-
tween two cylinders. The outer cylinder is fixed, the inner one is rotating (see Fig. 1).
On an infinitesimal portion, the flow can be approximated by a simple shear flow. We
will return to this in Sect. 5.

The simple shear flow may also be useful to study the dynamics of the fluid
using an oscillating excitation: γ̇(t) = γ0 cos(ωt). The in-phase response with the
deformation is related to the elasticity of the fluid. The out-of-phase response is
related to the viscosity of the fluid. This can be easily understood for example in the
simple Maxwell model presented below, and an analogy with electric circuits (see
Fig. 4).

Before addressing the modelling in details, let us mention some peculiar behav-
iors of some non-Newtonian fluids.

We first describe the rod-climbing effect (see Fig. 2 or R. G. Owens and T. N.
Phillips [104, Fig. 1.9]). A rod is introduced in the fluid and is rotated: for a Newto-
nian fluid, inertia causes the fluid to dip near the rod and rise at the walls. For some
non-Newtonian fluids, the fluid may actually climb the rod (this is called the Weis-
senberg effect). This phenomenon is related to non zero normal stress differences
(see A.S. Lodge [91]).

Another experiment is the open syphon effect (see Fig. 2 or R.G. Owens and
T.N. Phillips [104, Fig. 1.11]). A beaker is tilted so that a small thread of the fluid
starts to flow over the edge, and then is put straight again. For some viscoelastic
fluids, the liquid keeps on flowing out.

Another, simpler experiment, which we will be able to reproduce with a micro-
macro model and a simple numerical computation (see Sect. 5) is the start-up of
shear flow. A fluid initially at rest and confined between two plates is sheared (one
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Fig. 3. Velocity profile as a function of time for a start-up of shear flow. The velocity profile
(u as a function of y, see Fig. 1) is represented at various times in the time interval [0,1].
For polymeric fluids (on the right, case of the Hookean dumbbell micro-macro model) an
overshoot of the velocity is observed, while this is not the case for Newtonian fluid (on the
left).

plate is moving, and the other one is fixed) (see Figs. 1 and 3). For Newtonian flu-
ids, the velocity profile progressively reaches monotonically the stationary state. For
some polymeric fluids, the velocity goes beyond its stationary value: this is the over-
shoot phenomenon.

Modelling of non-Newtonian fluids

When the fluid, although viscous, incompressible and homogeneous, does not obey
the simplifying assumptions leading to (5), the following system of equations is to
be used, in lieu of (9)-(10):





ρ

(
∂uuu
∂ t

+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p − divτττ p = ρ fff

divuuu = 0
(13)

where the stress τττ has been decomposed along

τττ = τττn + τττ p (14)
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giving birth to the terms −η∆uuu, and divτττ p, respectively. In (14), τττn denotes the
Newtonian contribution (expressed as in (5)) and τττ p denotes the part of the stress
(called non-Newtonian or extra stress) which cannot be modelled as in (4). Our no-
tation τττ p refers to the fact we will mainly consider in the sequel fluids for which
the non-Newtonian character owes to the presence of polymeric chains flowing in a
solvent.

For non-Newtonian fluids, many purely macroscopic models exist. All are based
upon considerations of continuum mechanics. The bottom line is to write an equa-
tion, in the vein of (4), ruling the evolution of the non-Newtonian contribution τττ p

to the stress tensor, and/or a relation between the latter and other quantities charac-
terizing the fluid dynamics, such as the deformation tensor ddd or ∇uuu itself. Such an
equation may read

Dτττ p

Dt
= F(τττ p,∇uuu), (15)

where
D•
Dt

denotes an appropriate extension (for tensorial quantities, see next sec-

tion) of the usual convected derivative for vectors

∂•
∂ t

+ (uuu ·∇) • .

A model such as (15) is called a differential model for the non-Newtonian fluid.
One famous example is the Oldroyd B model. It will be made precise in the next
section.

An alternative option is to resort to an integral model:

τττ p(t,xxx) =
∫ t

−∞
m(t − t ′)SSSt′dt ′, (16)

where m is a so-called memory kernel (typically m(s) = exp(−s)), SSSt′ denotes a
quantity depending on ∇uuu, and where the integral is considered along a fluid trajec-
tory (or pathline) ending at point xxx. We shall also return to such models in the next
section.

The major observation on both forms (15) and (16) is that, in contrast to the
Newtonian case (5), τττ p(t,xxx) does not only depend on the deformation at point xxx
and at time t (as it would be the case in (5)), but also depends on the history of the
deformation for all times t ′ ≤ t, along the fluid trajectory leading to xxx. It is particularly
explicit on the form (16), but may also be seen on (15).

The complete system of equations modelling the fluid reads






ρ
(

∂uuu
∂ t

+ (uuu ·∇)uuu

)
− η∆uuu+ ∇p − divτττ p = ρ fff ,

divuuu = 0,
Dτττ p

Dt
= F(τττ p,∇uuu).

(17)
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This system is called a three-field system. It involves the velocity uuu, the pressure p,
and the stress τττ p.

Solving this three-field problem is much more difficult and computationally de-
manding than the ’simple’ Newtonian problem (9)–(10), that is (13) where τττ p = 0
and only two fields, the velocity and the pressure, are to be determined. However, the
major scientific difficulty is neither a mathematical one nor a computational one. The
major difficulty is to derive an equation of the type (15) or (16). It requires a deep,
qualitative and quantitative, understanding of the physical properties of the fluid un-
der consideration. For many non-Newtonian fluids, complex in nature, reaching such
an understanding is a challenge. Moreover, even if such an equation is approximately
known, evaluating the impact of its possible flaws on the final result of the simulation
is not an easy matter. It can only be done a posteriori, comparing the results to actual
experimental observations, when the latter exist, and they do not always exist. The
difficulty is all the more prominent that the non-Newtonian fluids are very diverse in
nature. New materials appear on a daily basis. For traditional fluids considered under
unusual circumstances, or for recently (or even not yet) synthesized fluids, reliable
evolution equations are not necessarily available.

All this, in its own, motivates the need for alternative strategies, based on an
explicit microscopic modelling of the fluid. This will give rise to the so-called micro-
macro models, which are the main topic of this article. The lack of information at
the macroscopic level is then circumvented by a multiscale strategy consisting in
searching for the information at a finer level (where reliable models do exist, based on
general conservation equations, posed e.g. on the microstructures of the fluids). The
latter information is then inserted in the equations of conservation at the macroscopic
level. At the end of the day, because the modelling assumptions are avoided as much
as possible, a complete description is attained, based on a more reliable, however
much more computationally demanding, model. Otherwise stated, a crucial step of
the modelling is replaced by a numerical simulation. But before we turn to this, from
Sect. 3 on, let us give some more details on the purely macroscopic models (17) for
non-Newtonian fluids. They are today the most commonly used models (in particular
because they are less demanding computationally). For our explanatory survey, we
choose the context of viscoelastic fluids.

2.3 Some macroscopic models for viscoelastic fluids

Throughout this section, the stress tensor τττ is decomposed into a Newtonian part
and a non-Newtonian part, as in (14). The former, τττn, reads τττn = ηγ̇γγ where η is the
viscosity, and γ̇γγ is given by

γ̇γγ = ∇uuu+ ∇uuuT . (18)

The latter is denoted by τττ p. The stress is the combination of the two, namely:

τττ = ηγ̇γγ + τττ p. (19)
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γ̇

η E
τ

Fig. 4. One-dimensional Maxwell model. The analogy with an electric circuit is obvious, τ
and γ̇ playing the role of the current intensity and the voltage respectively, η and E that of the
capacity of a capacitor and the conductivity of a resistor respectively.

More on differential models

The basic model for viscoelastic fluids is the Maxwell model. It combines a linear
elasticity model and a linear viscosity model. In the former, the stress depends lin-
early on the deformation. It is the Hooke law. The proportionality constant is the
Young modulus E. This part of the stress is to be thought of as a linear spring. On
the other hand, the linear viscosity model assumes the stress depends linearly on the
rate (or speed) of deformation, the proportionality constant being the viscosity η .
Heuristically, this amounts to considering a piston. The one-dimensional Maxwell
model combines the Hookean spring and the piston (see Fig. 4). Then, denoting the
stress by τ and the deformation rate by γ̇ , the following ordinary differential equation
is obtained:

γ̇ =
1
E

dτ
dt

+
τ
η

, (20)

that is,

λ
dτ
dt

+ τ = ηγ̇, (21)

where λ =
η
E

denotes a characteristic relaxation time of the system.

Remark 1. The mathematically inclined reader should not be surprised by the ele-
mentary nature of the above arguments. Modelling is simplifying. Some excellent
models of fluid mechanics (and other fields of the engineering and life sciences) are
often obtained using such simple derivations. On the other hand, it is intuitively clear
that the determination of the parameters of such models is often an issue, which lim-
its their applicability, and that there is room for improvement using more advanced
descriptions of matter. This will be the purpose of the multiscale models introduced
in the present article.

Passing from the one-dimensional setting to higher dimensions requires to re-
place the time derivative in (21) by a convective derivative of a tensor. Based on
invariance arguments, the following model is derived:

λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ηpγ̇γγ, (22)
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where λ is a relaxation time, and ηp is an extra viscosity (due to the polymers in
our context). Then the stress tensor τττ is given by (19). When η = 0, the model is
called the Upper Convected Maxwell model (UCM). When η 6= 0, it is the Oldroyd-
B model, also called the Jeffreys model.

For future reference, let us rewrite the complete system of equations for the
Oldroyd-B model, in a non-dimensional form:






Re

(
∂uuu
∂ t

+ uuu ·∇uuu

)
= (1 − ε)∆uuu− ∇p + divτττ p,

divuuu = 0,

∂τττ p

∂ t
+ uuu ·∇τττ p − (∇uuu)τττ p − τττ p(∇uuu)T = −

1
We

τττ p +
ε

We

(
∇uuu+(∇uuu)T )

.

(23)

The Reynolds number Re > 0, the Weissenberg number We > 0 and ε ∈ (0,1) are
the non-dimensional numbers of the system (see Equations (97) below for precise
definitions). The Weissenberg number (which is the ratio of the characteristic relax-
ation time of the microstructures in the fluid to the characteristic time of the fluid)
plays a crucial role in the stability of numerical simulations (see Sect. 4.4).

Remark 2. In (22) and throughout this article, we denote by (∇uuu)i, j =
∂ui

∂x j
. Other,

and in fact many authors in the literature of non-Newtonian fluid mechanics (see
e.g. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager [11, 12], R.G. Owens
and T.N. Phillips [104], or H.C. Öttinger [102])), adopt the alternative convention:

(∇uuu)i, j =
∂u j

∂xi
. Our equations have to be modified correspondingly.

Remark 3. The convective derivative in (22) is called the upper-convected deriva-
tive. Other derivatives may be considered, such as the lower-convected derivative,
or the co-rotational derivative (the latter being particularly interesting for mathe-
matical purposes, see Sect. 6). All these derivatives obey the appropriate invariance
laws of mechanics, but we have chosen the upper-convected derivative because it
spontaneously arises when using the kinetic models (see Sect. 3). It is also the most
commonly used derivative in macroscopic models, such as the Phan-Thien Tanner
model, the Giesekus model or the FENE-P model. We shall return to such models
later on. A discussion of the physical relevance of convective derivatives appears in
D. Bernardin [10, Chap. 3]. See also R.B. Bird, R.C. Armstrong and O. Hassager [11,
Chap. 9].

The Oldroyd B model has several flaws, as regards its ability to reproduce exper-
imentally observed behaviors.

Refined macroscopic models for viscoelastic fluids have thus been derived, al-
lowing for a better agreement between simulation and experience. In full generality,
such models read:

λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ TTT (τττ p, γ̇γγ) = ηpγ̇γγ , (24)
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where TTT (τττ p, γ̇γγ) typically depends nonlinearly on τττ p. The most commonly used mod-
els are the following three. The Giesekus model(see H. Giesekus [51]) involves a
quadratic term:

λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p + α

λ
ηp

τττ pτττ p = ηpγ̇γγ. (25)

where α is a fixed scalar.
The Phan-Thien Tanner model (PTT) is derived from a lattice model (see

N. Phan-Thien and R.I. Tanner [106]). It writes:

λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ Z(tr(τττ p))τττ p +

ξ
2

λ (γ̇γγτττ p + τττ pγ̇γγ) = ηpγ̇γγ,

(26)
with two choices for the function Z :

Z(tr(τττ p)) =






1 + φλ
tr(τττ p)

ηp

exp

(
φλ

tr(τττ p)
ηp

) , (27)

where ξ and φ are fixed scalars.
The FENE-P model, which we will return to in Sect. 4.2, is derived from a kinetic

model (see A. Peterlin [105] and R.B. Bird, P.J. Dotson and N.L. Johnson [13] and
Sect. 4). It reads:






λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ Z(tr(τττ p))τττ p

−λ
(

τττ p +
ηp

λ
Id

)((
∂
∂ t

+ uuu ·∇
)

ln(Z(tr(τττ p)))
)

= ηpγ̇γγ,
(28)

with

Z(tr(τττ p)) = 1 +
d
b

(
1 + λ

tr(τττ p)
d ηp

)
, (29)

where d is the dimension of the ambient space and b is a scalar that is thought of
as related to the maximal extensibility of the polymer chains embedded in the fluids
(see the FENE force below, Equation (91)).

All these nonlinear models yield much better results than the Oldroyd B model,
and satisfactorily agree with experiments on simple flows. They can be further gen-
eralized, considering several relaxation times λi and several viscosities ηp,i, but we
will not proceed further in this direction in this introductory survey.

More on integral models

Let us return to the one-dimensional Maxwell model (21). Its solution may be ex-
plicitly written in terms of the integral:
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τ(t) = τ(t0)exp

(
−

t − t0
λ

)
+

∫ t

t0

η
λ

exp

(
−

t − s
λ

)
γ̇(s)ds. (30)

Letting t0 go to −∞, and assuming τ bounded when γ̇ is bounded, we obtain:

τ(t) =
∫ t

−∞

η
λ

exp

(
−

t − s
λ

)
γ̇(s)ds. (31)

Denoting by: 




d
dt

γ(t0,t) = γ̇(t)

γ(t0,t0) = 0

, (32)

and integrating by parts, we obtain a form equivalent to (31) :

τ(t) =
∫ t

−∞

η
λ 2 exp

(
− t − s

λ

)
γ(t,s)ds. (33)

This form explicitly shows that, as announced earlier, the constraint at time t de-
pends on the history of the deformation. The function η

λ 2 exp
(
− t−s

λ
)

is often called
a memory function.

The one-dimensional computation performed above can be generalized to higher
dimensions and yields:

τττ p(t,xxx) = −
∫ t

−∞
M(t − s) f

(
CCC−1

t (s,xxx)
)
(Id−CCC−1

t (s,xxx))ds. (34)

where M is a memory function, f is a given real valued function, and CCC−1
t (s,xxx)

denotes the so-called Finger tensor (at time t). The latter is the inverse tensor of the
Cauchy deformation tensor:

CCCt(s,xxx) = FFFt(s,xxx)T FFFt(s,xxx) (35)

where
FFFt(s,xxx) = ∇(χχχ t(s))(xxx) (36)

is the deformation tensor and χχχt(s) is the flow chart (mapping positions at time t to
positions at time s).

It is easily seen that the upper-convected derivative of the Finger tensor vanishes.

When M(t − s) =
ηp

λ 2 exp

(
−

t − s
λ

)
and f = 1, this shows that τττ p defined by (34)

satisfies (22). The parameter λ models the time needed by the system to “forget” the
history of the deformation.

Remark 4. As in the case of differential models, there exist many generalizations and
variants for the integral models introduced above. Alternative convective derivatives
may be considered, several characteristic times λi and viscosities ηp,i can be em-
ployed. See R.B. Bird, R.C. Armstrong and O. Hassager [11] or D. Bernardin [10]
for such extensions.
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3 Multiscale modelling of polymeric fluids

There exists an incredibly large variety of non-Newtonian fluids. We have briefly
overviewed in the previous section the modelling of viscoelastic fluids. This is one
category of non-Newtonian fluids. One important class of non-Newtonian fluids is
the family of fluids with microstructures. For such fluids, the non-Newtonian charac-
ter owes to the presence of microstructures, often more at a mesoscopic scale than at
a truly microscopic one. Snow, blood, liquid concrete, etc, are examples of fluids with
microstructures. Polymeric fluids form the category we will focus on in the sequel.
Analogous scientific endeavors can be followed for other fluids with microstructures.
The bottom line for the modelling remains: write an equation at the microscopic level
that describes the evolution of the microstructures, then deduce the non-Newtonian
contribution τττ p to the stress. Thus a better quantitative understanding. Section 7 will
give some insight on other types of fluids with microstructures.

The present section is only a brief introduction to the subject. To read more on
the multiscale modelling of complex fluids, we refer to the monographs: R. Bird, Ch.
Curtiss, C. Armstrong and O. Hassager [11, 12], H.C. Öttinger [102], R. Owens and
T. Phillips [104]. Other relevant references from the physics perspective are F. De-
vreux [34]. M. Doi [35], M. Doi and S.F. Edwards [36], M.P. Allen and D.J. Tildes-
ley [1], D. Frenkel and B. Smit [47].

Before we get to the heart of the matter, let us briefly introduce the reader to the
specificities of polymeric fluids.

A polymer is, by definition, a molecular system formed by the repetition of a
large number of molecular subsystems, the monomers, all bound together by in-
tramolecular forces. If the subsystems are not all of the same chemical type, one
speaks of copolymers. Polymeric materials are ubiquitous: they may be of natural
origin, such as natural rubber, wood, leather, or artificially synthesized, such as vul-
canized rubber or plastic. They can be classified according to their polymerization
degree, that is the number N of monomers present in the chain: N = 1 to 4 for gases,
N = 5 for oils, N = 25 for brittle materials such as a candle, N > 2000 for ductile
materials such as plastic films. As N grows, the fusion temperature grows and the
polymeric properties become prominent: they are already significant for N = 100,
and obviously dominant for N = 1000. The specific mechanical properties of the
material stem from the long chains present inside. The length of the chain for in-
stance prevents the material from organizing itself regularly when solidification oc-
curs, thus the flexibility of the material (such as a tire). Likewise, the long chains
give additional viscosity to liquid polymers, such as oils. Solvents may enjoy good,
or bad, solvating properties for the polymers, depending whether the chains expand
or retract in the solvent. For example, paints are solvated differently in water and
oils.

As regards the concentration of polymers within the solvent, three cases may
schematically arise. When the concentration is low, one speaks of infinitely dilute
polymeric fluids. There, the chains basically ignore each other, interacting with one
another only through the solvent. This is the case we will mainly consider in the se-
quel. The other extreme case is the case of dense polymeric fluids, also called polymer
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melts. In-between, one finds polymeric fluids with intermediate concentrations. Of
the above three categories, polymer melts form indeed the most interesting one, tech-
nically and industrially. Their modelling has made great progress in the 1960s with
the contributions by De Gennes, and his theory of reptation. Basically, it is consid-
ered that, owing to the density of polymeric chains present, each single chain moves
in the presence of others like a snake in a dense bush, or a spaghetti in a plate of
spaghettis.

Reptation models amount, mathematically, to equations for the evolution of mi-
crostructures similar in spirit to those that will be manipulated below. There are how-
ever significant differences. Macroscopic versions also exist. In any case, models for
polymer melts are much less understood mathematically than models for infinitely
dilute polymers. For this reason, we will not proceed further in this direction in the
present mathematically biased text.

Remark 5. Let us give some details about the reptation model for polymer melts (see
for example [102, Sect. 6]). In such a model, the microscopic variables are (UUUt ,St)
(say at a fixed position in space xxx), where UUUt is a three dimensional unit vector
representing the direction of the reptating polymer chain at the curvilinear abscissa
St (St is a stochastic process with value in (0,1)). The Fokker-Planck equation ruling
the evolution of (UUUt ,St) is:

∂ψ(t,xxx,UUU ,S)
∂ t

+ uuu(t,xxx) ·∇xxxψ(t,xxx,UUU ,S)

= −divUUU
(
(∇xxx uuu(t,xxx)UUU − ∇xxx uuu(t,xxx) : (UUU ⊗UUU)UUU)ψ(t,xxx,UUU ,S)

)

+
1
λ

∂ 2ψ(t,xxx,UUU ,S)
∂S2 ,

where : denotes the Frobenius inner product: for two matrices A and B, A : B =
tr(AT B). The boundary conditions for S = 0 and S = 1 supplementing the Fokker-
Planck equation are

ψ(t,xxx,UUU ,0) = ψ(t,xxx,UUU ,1) =
1

4π
δ|UUU |=1,

where δ|UUU |=1 is the Lebesgue (surface) measure on the sphere. In terms of the
stochastic process (UUUt ,St), this equation is formally equivalent to a deterministic
evolution of the process UUUt (the unit vector is rotated following the flow field) and
a stochastic evolution of the index St as dSt + uuu · ∇xxxSt dt =

√
2/λ dWt . The only

coupling between UUUt and St arises when St reaches 0 or 1, in which case UUUt is reini-
tialized randomly uniformly on the sphere. The contribution of the polymers to the
stress tensor can then be computed using a Kramers formula (similar to (48)), and
this closes the micro-macro model. An interesting open mathematical question is to
define rigorously the dynamics of the process (UUUt ,St).

Remark 6. Also for concentrated polymers, a regime different from reptation can also
be considered. When sufficiently numerous bridges are (chemically) created between
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Fig. 5. A collection of polymeric chains lies, microscopically, at each macroscopic point of
the trajectory of a fluid particle.

(θ1,ϕ1)

uuu1

uuu2

rrr

Fig. 6. A polymeric chain: uuu j denote the unit vectors between the “atoms”, each of them
corresponds to a pair of angles (θi,ϕi) and has length a. The end-to-end vector is rrr.

the entangled chains (this is exactly the purpose of the vulcanization process involved
in the production of tires), the polymeric material turns into a lattice, often called a
reticulated polymer. Its properties are intermediate between those of a fluid and those
of a solid material (owing to the -slight- rigidity provided by the lattice). A multiscale
modeling can be envisioned for such materials, but again this is not the purpose of
this article. We refer for example to H. Gao and P. Klein [48], or S. Reese [108, 109].

In the sequel of this article (with the notable exception of Sect. 7), we consider
infinitely dilute polymeric fluids.

In order to understand the contribution to the stress provided by this assembly
of long polymeric chains, we zoom out on such a chain. We now want to write an
evolution equation on this object. First we have to model the chain, then see the
forces it experiences, and finally write an appropriate evolution equation.

As regards the modelling of a polymeric chain, the point to understand is that it is
out of the question to explicitly model all the atoms of the chain. There are thousands
of them. The interactions between atoms are incredibly expensive to model. Without
even thinking to a model from quantum chemistry, the ’simple’ consideration of
a classical force-field for the molecular dynamics of an entire polymeric chain is
too a computationally demanding task. It can be performed for some sufficiently
short chains, considered alone, and not interacting with their environment. But the
simulation in situ, over time frame relevant for the fluid mechanics simulation, of
millions of long chains, is out of reach. Even if it was possible, there is no reason to
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believe that the actual motion of each single atom, and the precise description of the
dynamics of each chain significantly impacts the overall rheology of the fluid.

So the two keywords here are statistical mechanics and coarse-graining (some-
how, these terms are synonymous). The bottom line is to consider one single, hope-
fully representative chain, sitting at a macropoint of the fluid, then derive some suffi-
ciently simple description of this chain, which carries enough physics to adequately
model the impact of the chains onto the fluid, and conversely. This within the limit
of our simulation capabilities.

Let us first obtain a coarse-grained model for the chain.

3.1 Statistical mechanics of the free chain

Generalities

As said above, it is not reasonable, and it is not the point, to simulate the actual
dynamics of all atoms composing all the chains.

We first choose a representative chain. For simplicity, we assume the chain is a
linear arrangement of N beads (as opposed to the case of branched polymers, where
the chain has several branches). Each of these beads models a group of atoms, say 10
to 20 monomer units. They are milestones along the chain. They are assumed to be
connected by massless bars with length a. This is the so-called Kramers chain model
(see Fig. 6). The configuration of the chain, at time t and each macroscopic point xxx,
is described by a probability density ψ (momentarily implicitly indexed by t and xxx),
defined over the space

(θ1,ϕ1, ...,θN−1,ϕN−1)

of Euler angles of the unit vectors uuui along this representative chain. Thus

ψ(θ1,ϕ1, ...,θN−1,ϕN−1)dθ1dϕ1 . . .dθN−1dϕN−1 (37)

is the probability that the chain has angles between (θ1,ϕ1) and (θ1 +dθ1,ϕ1 +dϕ1)
between the first two beads labeled 1 and 2, etc. . .

Some coarse graining has already been performed by considering these beads
instead of the actual atoms, but we will now proceed one step further. We are going
to only keep a very limited number of these beads, say Nb, and eliminate (using a
limiting procedure) all the N − Nb beads in-between. The typical number of beads
kept is well below 100. The simplest possible case, that of Nb = 2 beads, is the
dumbbell case and we will in fact mainly concentrate on it in the sequel.

In order to reduce the description of the chain to the simple knowledge of Nb = 2
beads, we are going to consider the vector rrr linking the first bead to the last one. This
vector is called the end-to-end vector (see Fig. 6) and writes as the sum

rrr =
N−1

∑
i=1

auuui, (38)
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where uuui is the unit vector describing the i-th link. Between the extreme two beads
lies indeed a supposedly large number N − 2 of beads. The chain is free to rotate
around each of these beads: think typically to the arm of a mechanical robot. We first
describe all the possible configurations of all the N beads. In a second step, we will
pass to the limit N −→ +∞ in order to obtained a reduced model for the two extreme
beads, thereby obtaining a statistics on the end-to-end vector. The motivation for this
limit process is of course that, given the two extreme beads, the N − 2 other beads
are in extremely large number.

At equilibrium (namely for zero velocity field for the surrounding solvent and at
a fixed temperature), the probability density for the Euler angles (θi,ϕi) of the i-th
link writes

ψi(θi,ϕi) =
1

4π
sinθi,

simply by equiprobability of the orientation of this link. As the chain freely ro-
tates around each bead, the orientations of links are independent from one link to
another one, and thus the overall probability density for the sequence of angles
(θ1,ϕ1, ...,θN−1,ϕN−1) is simply the product

ψ(θ1,ϕ1, ...,θN−1,ϕN−1) =
(

1
4π

)N−1 N−1

∏
i=1

sinθi. (39)

Any statistical quantity (observable) B depending on the state of the chain thus has
average value

〈B〉 =
∫

B(θ N−1,ϕN−1)ψ(θ N−1,ϕN−1)dθ N−1 dϕN−1 (40)

where θ N−1 = (θ1, ...,θN−1) and ϕN−1 = (ϕ1, ...,ϕN−1).

For instance, it is a simple calculation that

〈|rrr|2〉 = (N − 1)a2 (41)

where a denotes the length between two beads.
It follows that the probability density for the end-to-end vector rrr reads:

P(rrr) =
∫

δ

(
rrr −

N−1

∑
i=1

auuui

)
ψ(θ N−1,ϕN−1)dθ N−1 dϕN−1, (42)

where δ is formally a Dirac mass and uuui the unit vector of Euler angles (θi,ϕi).
Using (39), a simple but somewhat tedious calculation shows that an adequate ap-
proximation formula for P, in the limit of a large number N −2 of beads eliminated,
is

P(rrr)
N large

≈
(

3
2π(N − 1)a2

)3/2

exp

(
− 3|rrr|2

2(N − 1)a2

)
. (43)

The right-hand side of (43) is now chosen to be the probability law of rrr, which is
consequently a Gaussian variable. From now on, only the end-to-end vector, and its
probability, are kept as the statistical description of the entire chain.
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Fig. 7. A polymeric chain consisting of, say, thirty beads and its phenomenological represen-
tation as a dumbbell.

Remark 7. For some dedicated applications, chains with Nb = 10 or Nb = 20 beads
are simulated. This is typically the case when one wants to model multiple relaxation
time scales in the polymer chain or understand boundary effects. Consider a pipeline
where the polymeric fluid flows. Some macroscopic model may provide good results
for the inner flow, but they need to be supplied with adequate boundary conditions
on the walls of the pipeline. Dumbbell models could be envisioned for this purpose,
but since the complexity of the chain is a key issue for rheological properties near
the boundaries, more sophisticated models with larger Nb have sometimes to be em-
ployed. Apart from such specific situations, it is considered that the dumbbell model
already gives excellent answers. But this also depends upon the force fields that will
be used. The purpose of the next section is exactly to introduce such a force. Others
will be mentioned in Sect. 4.

The Hookean model

We now have our configuration space, namely that of a single end-to-end vector rrr
equipped with a Gaussian probability at equilibrium. Let us next define the forces
this end-to-end vector experiences.

We need to equip the vector rrr with some rigidity. Such a rigidity does not express
a mechanical rigidity due to forces, of interatomic nature, holding between beads. It
will rather model an entropic rigidity, related to the variations of the configurations
of the actual entire chain when the end-to-end vector itself varies.

To understand this, let us only mention two extreme situations. If the end-to-end
vector has length exactly |rrr| = (N − 1)a, there is one and only one configuration of
the entire chain that corresponds to such an end-to-end vector, namely the chain fully
extended as a straight line. In contrast, when the end-to-end vector has, say, length
|rrr| = (N − 1)a/2, there is an enormous number of configurations, corresponding to
various shapes of a chain of total length (N − 1)a that give rise to such an end-to-
end vector. Entropy will thus favor short end-to-end vectors, rather than long ones. It
remains now to quantitatively understand this.

We know from Statistical Mechanics arguments that for a system with probability
law P(rrr) (obtained from (43)), the free energy is given by

A(rrr) = A0 − kT ln P(rrr)
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where T denotes temperature, A0 is a constant and k the Boltzmann constant. When
the end-to-end vector is modified by drrr, the resulting free energy modification reads

dA = −kT d ln P(rrr),

=
3kT

(N − 1)a2 rrr ·drrr. (44)

On the other hand, when temperature is kept constant, the free energy change is
related to the tension FFF of the chain by

dA = FFF(rrr) ·drrr. (45)

Comparing (44) and (45), we obtain the tension

FFF(rrr) =
3kT

(N − 1)a2 rrr. (46)

In other words, the entropic force FFF expressed in terms of the end-to-end vector rrr
is defined as the gradient of lnP with respect to rrr where P is the probability density of
the end-to-end vector at equilibrium (zero velocity field for the surrounding solvent,
and fixed temperature). This definition of the entropic force is consistent with the
fact that P is indeed a stationary solution for the dynamics that will be defined on the
probability density ψ of the end-to-end vector (see Equation (47) below) when the

The end-to-end vector therefore acts as a linear spring, with stiffness

H =
3kT

(N − 1)a2 .

The model obtained is called the Hookean dumbbell model.

The above derivation is the simplest possible one, based on oversimplifying as-
sumptions. Several improvements of the Hookean force (46) are indeed possible. We
prefer to postpone the presentation of such improvements until Sect. 4. Let us mo-
mentarily assume we have a force FFF(rrr) at hand, the prototypical example being the
Hookean force (46), and proceed further. On purpose, we do not make precise the
expression of FFF(rrr) in the sequel.

3.2 The multiscale model

Let us now denote ψ(t,xxx,rrr) the probability density for the end-to-end vectors of the
polymer chains at macropoint xxx and time t.

The variation of ψ in time, calculated along a fluid trajectory, that is
∂ψ
∂ t

+ uuu ·∇xxxψ , follows from three different phenomena:

1. a hydrodynamic force: the dumbbell is elongated or shortened because of the
interaction with the fluid ; Its two ends do not necessarily share the same macro-
scopic velocity, the slight difference in velocities (basically ∇uuu(t,xxx)rrr) results in
a force elongating the dumbbell ζ∇uuu(t,xxx)rrr where ζ denotes a friction coeffi-
cient;

velocity field in the solvent is zero (equilibrium situation).
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iniscent of the actual, much more complex, geometry of the entire polymeric
chain;

3. a Brownian force, modelling the permanent collisions of the polymeric chain by
solvent molecules, which (randomly) modifies its evolution.

above for the first and third phenomena (the hydrodynamic force and the Brownian

details, explaining the intimate nature of these forces and motivating their actual
mathematical form by rigorous arguments.

The overall conservation of momentum equation reads as the following evolution
equation on ψ :

∂ψ(t,xxx,rrr)
∂ t

+ uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 2

ζ
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

2kT
ζ

∆rrrψ(t,xxx,rrr).
(47)

Equation (47) is called a Fokker-Planck equation (or also a forward Kolmogorov
equation). The three terms of the right-hand side of (47) respectively correspond to
the three phenomena listed above, in this order. A crucial point to make is that, in this
right-hand side, all differential operators acting on ψ are related to the variable rrr of
the configuration space, not of the ambient physical space. In contrast, the gradient
of the left-hand side is the usual transport term in the physical space uuu · ∇xxx. In the
absence of such a transport term (this will indeed be the case for extremely simple
geometries, such as that of a Couette flow), (47) is simply a family of Fokker-Planck
equation posed in variables (t,rrr) and parameterized in xxx. These equations only speak
to one another through the macroscopic field uuu. When the transport term is present,
(47) is a genuine partial differential equation in all variables (t,xxx,rrr). It is intuitively
clear that the latter case is much more difficult, computationally and mathematically.

Once ψ is obtained, we need to formalize its contribution to the total stress, and,
further, its impact on the macroscopic flow.

Let us return to some basics of continuum mechanics. When defining the stress
tensor, the commonly used mental image is the following: consider the material, cut
it by a planar section into two pieces, try and separate the pieces. The reaction force
experienced when separating the two pieces is τττnnn, where τττ is the stress tensor and
nnn the unit vector normal to the cut plane. Varying the orientation of the cut planes,
and thus nnn, provides all the entries of τττ . Applying the same ’methodology’ to the
polymeric fluid under consideration gives rise to two contributions (see Fig. 8): that,
usually considered, of the solvent, which contributes as the usual Newtonian stress
tensor, and that coming from all the polymeric chains reacting. The latter needs to be
evaluated quantitatively. This is the purpose of the so-called Kramers formula.

τττ p(t,xxx) = −npkT Id + np

∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr, (48)

force, respectively) and proceed further. In Sect. 4, we will return to this in more

force) in the previous section. We will momentarily admit the modelling proposed

2. the entropic force F issued from the coarse-graining procedure and which is rem-

We have gone into many details about the second phenomenon (the entropic



70 C. Le Bris, T. Lelièvre

where ⊗ denotes the tensor product (rrr ⊗ FFF(rrr) is a matrix with (i, j)-component
rrriFFF j(rrr)) and np denotes the total number of polymeric chain per unit volume. Note
that the first term only changes the pressure by an additive constant.

The complete system of equation combines the equation of conservation of mo-
mentum at the macroscopic level, the incompressibility constraint, the Kramers for-
mula, and the Fokker-Planck equation for the distribution of the end-to-end vector:






ρ
(

∂uuu
∂ t

+ (uuu ·∇)uuu

)
−η∆uuu+∇p−div τττ p = ρ fff ,

divuuu = 0,

τττ p(t,xxx) = np

∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr −npkT Id,

∂ψ(t,xxx,rrr)
∂ t

+uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 2

ζ
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

2kT
ζ

∆rrrψ(t,xxx,rrr).

(49)

For future reference, let us rewrite this system of equations in a non-dimensional
form (see Sect. 4.3 and (97) for the derivation of the non-dimensional equations and
the definition of the non-dimensional numbers Re, ε and We):






Re

(
∂uuu
∂ t

+ (uuu ·∇)uuu

)
− (1− ε)∆uuu +∇p−div τττ p = fff ,

divuuu = 0,

τττ p(t,xxx) =
ε

We

(∫
(rrr ⊗ FFF(rrr))ψ(t,xxx,rrr)drrr − Id

)
,

∂ψ(t,xxx,rrr)
∂ t

+uuu(t,xxx) ·∇xxxψ(t,xxx,rrr)

= −divrrr

((
∇xxx uuu(t,xxx)rrr − 1

2We
FFF(rrr)

)
ψ(t,xxx,rrr)

)
+

1
2We

∆rrrψ(t,xxx,rrr).

(50)

The multiscale nature of this system is obvious. In the specific context of complex
fluids, such a system is called a micro-macro model. It is equally obvious on (50) that
the computational task will be demanding. Formally, system (50) couples a Navier-
Stokes type equation (that is, an equation the simulation of which is one of the major
challenges of scientific computing, and has been the topic of thousands of years of
researchers efforts), and, at each point (that is, slightly anticipating the discretization,
at each node of the mesh used for the space discretization of the macroequation), one
parabolic partial differential equation set on the space of rrr. It is thus intuitively clear
that, in nature, such a micromacro strategy will be limited to as simple as possible
test cases. We will return to this later.

With a view to generalizing the approach followed above to various other con-
texts, it is interesting to write system (50) as a particular form of a more abstract sys-
tem. A purely macroscopic description of non-Newtonian fluids, issued from equa-
tions of the type (13)–(15) typically reads:
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n

Fig. 8. Kramer Formula : the contribution of all polymeric chains to the stress is obtained
summing over all chains cut by the plane considered.






Duuu
Dt

= F (τττ p,uuu),

Dτττ p

Dt
= G (τττ p,uuu).

(51)

In contrast, a multiscale approach introduces an additional intermediate step, where
the stress tensor is calculated as an average value of a field Σ describing the mi-
crostructure. An evolution equation is written on the latter:






Duuu
Dt

= F (τττ p,uuu),

τττ p = average over Σ ,

DΣ
Dt

= Gµ(Σ ,uuu).

(52)

The structure of system (52) is a common denominator to all multiscale mod-
els for complex fluids. Beyond this, it also illustrates the nature of all multiscale
approaches, in very different contexts (see C. Le Bris [77]). A global macroscopic
equation is coupled with a local (microscopic) equation, via an averaging formula.
For instance, the reader familiar with homogenization theory for materials recognizes
in (52) the homogenized equation, the value of the homogenized tensor, and the cor-
rector equation, respectively. On the numerical front, it is also a structure shared with
multiscale algorithmic approaches: a global coarse solver coupled to a local fine one
using an averaging process (think of the Godunov scheme for solving the Riemann
problem in computational fluid dynamics).

4 The stochastic approach

We now need to complement the derivation of the previous section in three direc-
tions:

• We need to introduce a definite stochastic description of the polymeric chain that
will justify the expressions employed for the elongation force and the Brownian
force in (47).
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• We need to provide other entropic forces, alternative to the simple Hookean force
(46).

• We need to prepare for an efficient computational strategy that allows for the
practical simulation of systems of the type (50) even when the configuration
space for the chain is high-dimensional.

For all three aspects, stochastic analysis comes into play. This is why we devote
the next section to a brief introduction of the major ingredients from stochastic
analysis needed in the sequel. Such ingredients are traditionally not necessarily
well known by readers more familiar with the classical analysis of partial differ-

to Sect. 4.2. In any event, Subsection 4.1 is no more than a surrogate for a more
comprehensive course of Stochastic Analysis, as contained in the classical text-
books F. Comets and T. Meyre [26], I. Karatzas and S.E. Shreve [69], P.E. Kloeden
and E. Platen [73], B. Øksendal [101], L.C.G. Rogers and D. Williams [114, 115],
D. Revuz and M. Yor [113], D. Stroock and S.R.S. Varadhan [117]. We also refer to
D.J. Higham [58] for an attractive practical initiation.

4.1 Initiation to Stochastic Differential Equations

We assume that the reader is familiar with the following elementary notions of Prob-
ability Theory: the notion of probability space (Ω ,A ,P), where Ω is the space, A

is a σ -algebra, and P is the probability measure that equips the space; the notion of
vector-valued or scalar-valued random variables defined on this probability space;
the notion of expectation value and the notion of law.

A rather abstract notion we must define before getting to the heart of the matter
is the notion of filtration: a filtration (Ft ,t ≥ 0) is an increasing sequence, indexed
by time t ∈ R+, of subsets of the σ -algebra A . The filtration Ft is to be thought of
as the set of information available at time t.

The Monte Carlo method

The Monte Carlo method is a stochastic method to compute the expectation value of
a random variable. Let X be a random variable with finite variance:

Var(X) = E
(
(X −E(X))2) = E(X2)− (E(X))2 < ∞.

The principle of the Monte Carlo method is to approximate the expectation value
E(X) by the empirical mean

IK =
1
K

K

∑
k=1

Xk,

where (Xk)k≥0 are independent identically distributed (i.i.d.) random variables, the
law of Xk being the the law of X .

ential equations and their discretization techniques in the engineering sciences
(finite element methods, etc. . .). Of course, the reader already familiar with the 
basics of stochastic analysis may easily skip the next section and directly proceed
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The foundation of the Monte Carlo method is based on two mathematical results.
The law of large numbers states that (if E|X | < ∞)

almost surely, lim
K→∞

IK = E(X).

The central limit theorem gives the rate of convergence (if E((X)2) < ∞): ∀a > 0,

lim
K→∞

P

(
|IK −E(X)| ≤ a

√
Var(X)

K

)
=

1√
2π

∫ a

−a
exp(−x2/2)dx.

This estimate enables to build a posteriori error estimates (so-called confidence in-
tervals) by choosing typically a = 1.96 so that 1√

2π

∫ a
−a exp(−x2/2)dx

estimating the variance Var(X) by the empirical variance

VK =
1
K

K

∑
k=1

(Xk)2 − (IK)2.

This estimate shows that the rate of convergence of a Monte Carlo method is of

order
√

Var(X)
K : to reduce the error, one needs to add more replicas (increase K), or

reduce the variance of the random variable (which is the basis of variance reduction
methods, see Sect. 5.4 below).

Stochastic processes, Brownian motion and simple stochastic differential
equations

Let us now introduce the notion of a (continuous-in-time) stochastic process, as a
family of random variables (Xt)t≥0 indexed by time t ∈ R+. Given a stochastic pro-
cess Xt , we may consider the natural filtration generated by Xt , that is the filtration
Ft formed, for each t, by the smallest σ -algebra for which the maps ω −→ Xs(ω),
0 ≤ s ≤ t, are measurable functions.

Conversely, being given a filtration Ft , a stochastic process such that, for all t,
Xt is a measurable function with respect to Ft , is called a Ft -adapted stochastic
process.

A remarkable random process is the Brownian motion, which we now briefly
introduce.

The formal motivation for the introduction of the Brownian motion is the need
for modelling random trajectories. For such trajectories, the random perturbations at
time t should be independent of those at time t ′ < t, and essentially the same. By
this we mean that the two should share the same law. The mathematical manner to
formalize the above somewhat vague object is the notion of Brownian motion. There
are several ways to define a Brownian motion. One way is to take the limit of random
walks on lattices, with an adequate scaling law on the size of the lattice and time. The
definition we choose to give here is the axiomatic definition. We define a Brownian
motion as a real-valued random process enjoying the following three properties. First,

95%, and~–
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its trajectories, that is, the maps s −→ Xs(ω) are continuous, for almost all ω ∈
Ω . Second, it has independent increments, that is, when s ≤ t, the random variable
Xt − Xs is independent of the σ -algebra Fs: otherwise stated, for all A ∈ Fs, and all
bounded measurable function f , E(1A f (Xt −Xs)) = E( f (Xt −Xs))P(A). Third, it has
stationary increments, that is when s ≤ t, Xt − Xs and Xt−s − X0 share the same law.
In fact, the conjunction of these three properties implies that, necessarily, Xt − X0 is
a Gaussian variable, with mean rt (for some r) and variance σ2t (for some σ ). When
r = 0 and σ = 1, the Brownian motion is called a standard Brownian motion.

We now wish to define differential equations, typically modelling the motion
of particles, which are subject to random perturbations. The adequate mathematical
notion for this purpose is that of stochastic differential equations. Let us fix a prob-
ability space (Ω ,A ,P), where it is sometimes useful to think of Ω as the product
Ω = Ω1 × Ω2 where Ω1 models the randomness due to the initial condition sup-
plied for the differential equation, and Ω2 models the randomness associated with
the perturbations occurring at all positive times.

Let us also consider a filtration Ft and a Ft -adapted Brownian motion Bt . Let
σ > 0 denote a fixed parameter, called diffusion, and b(t,x) a fixed regular function,
called drift. As regards regularity issues, the most appropriate setting is to consider
functions b measurable with respect to time t, Lipschitz with respect to the space
variable x, and with a growth at most linear at infinity, that is | f (t,x)| ≤ C(1 + |x|)
for all t, x. For simplicity, the Lipschitz constant and the growth constant are assumed
uniform on t ∈ [0,T ]. We then define the stochastic differential equation:

dXt = b(t,Xt)dt + σ dBt , (53)

with initial condition X0(ω1). Equation (53) is formal. It is to be understood in the
following sense: Xt is said a solution to (53) when

Xt(ω1,ω2) = X0(ω1)+
∫ t

0
b(s,Xs(ω1,ω2))ds+ σ Bt(ω2), (54)

almost surely. Our setting in (53)–(54) is one dimensional, but the notion is readily
extended to the higher dimensional context (see (64) below).

Note that we do not question here the existence and the uniqueness of the solu-
tions to the above stochastic differential equations. This is beyond the scope of this
simplified presentation. Let us only say that we assume for the rest of this expository
survey that typically the Lipschitz regularity mentioned above is sufficient to define
in a unique manner the solution to (53). For less regular drifts and related questions,
we refer the interested reader to Sect. 6. The modelling of complex fluids may indeed
naturally involve non-regular drifts.

Stochastic integration

The above form (53) is actually a simple form of a stochastic differential equations.
This form is sufficient to deal with the context of flexible polymers, which is the main
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topic of this presentation. However, for rigid polymers, briefly addressed in Sect. 7,
and some other types of complex fluids, it is useful to define the general form of
stochastic differential equations. This is the purpose of this short section.

In addition, the consideration of this general form of stochastic differential equa-
tion will allow us to introduce a technical lemma which will be crucially useful, even
in our simple setting.

Using a standard Brownian motion Bt , the Itô integral may be constructed.

gral, proceeding first for piecewise constant functions, and then generalizing the
notion to more general functions by approximation. Consider a decomposition
{s0 = 0, ...,s j, ...,sn = t} of the range [0,t] and a piecewise constant process

Ys(ω) =
n

∑
j=1

Ỹj−1(ω)1]s j−1,s j ](s)

˜j (such that E(|Ỹj|)<+∞ ).
Then we define

∫ t

0
Ys dBs =

n

∑
j=1

Ỹj−1 (Bs j − Bs j−1). (55)

t∫ T

0
Yt(ω)2 dt < +∞, this allows, by approximation, for the definition of the stochas-

tic process ∫ t

0
Ys dBs.

In the simple case when Yt ≡ 1, this coincides with the already known notion∫ t

0
dBs = Bt . Notice that by taking the expectation of (55), we have, for all t ∈ [0,T ]

E

(∫ t

0
Ys dBs

)
= 0, (56)

which actually holds (by an approximation argument) for any arbitrary stochastic

process Yt such that E

(∫ T

0
Yt(ω)2 dt

)
< +∞.

Having defined the Itô integral, we are in position, for any regular drift b and
diffusion σ , to define the stochastic differential equation:

dXt = b(t,Xt)dt + σ(t,Xt)dBt , (57)

supplied with the initial condition X0. Mathematically:

Xt(ω1,ω2) = X0(ω1)+
∫ t

0
b(s,Xs(ω1,ω2))ds+

(∫ t

0
σ(s,Xs)dBs

)
(ω1,ω2), (58)

almost surely. In the right-hand side, the first integral is the Lebesgue integral, the
second one is a Itô integral.

FNext, for any arbitrary -adapted stochastic process Y (ω) such that, almost surely,

 is 

The construction of this notion of integral is similar to that of the Riemann inte-

Ỹj Fsand -measurableconstructed from random variables Y

t

j
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Itô calculus and Fokker-Planck equation

We now wish to relate the above stochastic differential equation (57) with a partial
differential equation. The latter is indeed the Fokker-Planck equation

∂ p
∂ t

(t,x)+
∂
∂x

(b(t,x) p(t,x))− ∂ 2

∂x2

(
σ2(t,x)

2
p(t,x)

)
= 0. (59)

In the context of deterministic equations, the reader is perhaps familiar with the
intimate link between ordinary differential equations and linear transport equations.
This is the famous method of characteristics, which we briefly recall here. Consider
the linear transport equation

∂u
∂ t

(t,x)− b(x)
∂u
∂x

(t,x) = 0 (60)

supplied with the initial condition u0 at initial time. Its solution reads

u(t,x) = u0(X(t;0,x)) (61)

where X(t;0,x) is the solution at time t of the ordinary differential equation

dX(t)
dt

= b(X(t)) (62)

starting from the initial condition X(0) = x. The proof of this fact is elementary. For
s ∈ [0,t], we have (where X(s) = X(s;0,x))

∂
∂ s

(u(t − s,X(s))) = −∂u
∂ t

(t − s,X(s))+
dX
dt

(s)
∂u
∂x

(t − s,X(s)),

= −∂u
∂ t

(t − s,X(s))+ b(X(s))
∂u
∂x

(t − s,X(s)) = 0.

By integrating this relation from s = 0 to s = t, we thus obtain (61).

A similar type of argument, based on the so-called Feynman-Kac Formula would
show the relation holding between the stochastic differential equation (57) and a
partial differential equation, called the backward Kolmogorov equation. A dual view-
point to the above one illustrates the relation between the stochastic differential equa-
tion (57) and the Fokker-Planck equation (59). We now present it.

First, we need to establish a chain rule formula in the context of stochastic pro-
cesses. This is the purpose of the celebrated Itô formula (stated here in a simple
one-dimensional setting).

Lemma 1. Itô Formula Let Xt solve

dXt = b(t,Xt)dt + σ(t,Xt)dBt ,

in the sense of (58). Then, for all C2 regular function ϕ ,
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dϕ(Xt) =
(

ϕ ′(Xt)b(t,Xt)+
1
2

ϕ ′′(Xt)σ(t,Xt)2
)

dt + ϕ ′(Xt)σ(t,Xt)dBt

in the sense

ϕ(Xt) = ϕ(X0)+
∫ t

0

(
ϕ ′(Xs)b(s,Xs)+

1
2

ϕ ′′(Xs)σ(s,Xs)2
)

ds

+
∫ t

0
ϕ ′(Xs)σ(s,Xs)dBs. (63)

The point is of course to compare with the deterministic setting, corresponding
to σ = 0, and for which no second derivatives of ϕ appears since

d
dt

ϕ(Xt) = ϕ ′(Xt)
dXt

dt
.

We are now in position to relate (57) and (59). Assume that all conditions of reg-
ularity are satisfied, which gives sense to the formal manipulations we now perform.
Let us assume that X0, the initial condition for (57) has law p0, where p0 is the initial
condition given to (59). Let us denote by p(t,x) the probability density (with respect
to the Lebesgue measure) of the random variable Xt .

For any arbitrary C2 function ϕ , we write
∫

ϕ(x)
∂ p
∂ t

(t,x)dx =
d
dt

∫
ϕ(x)p(t,x)dx =

d
dt

E(ϕ(Xt)) .

Now, taking the expectation of (63), we obtain

E(ϕ(Xt)) = E(ϕ(X0))+E

(∫ t

0

(
ϕ ′(Xs)b(s,Xs)+

1
2

ϕ ′′(Xs)σ(s,Xs)2
)

ds

)

+E

(∫ t

0
ϕ ′(Xs)σ(s,Xs)dBs

)
.

Under suitable regularity assumptions, the last term vanishes for all times (see (56)).
We thus have

∫
ϕ(x)

∂ p
∂ t

(t,x)dx = E

(
ϕ ′(Xt)b(t,Xt)+

1
2

ϕ ′′(Xt)σ(t,Xt)2
)

,

=
∫ (

ϕ ′(x)b(t,x)+
1
2

ϕ ′′(x)σ2(t,x)
)

p(t,x)dx,

=
∫

ϕ(x)
(

−
∂
∂x

(pb)(t,x)+
1
2

∂ 2

∂x2 (σ2 p)
)

dx.

This precisely shows that p is the solution to (59), which starts from p0 at initial
time.

A similar argument, based on the multi-dimensional Itô Formula (a straightfor-
ward extension of Lemma 1), allows to establish the same correspondence between,
on the one-hand, the vectorial stochastic differential equation
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dXXXt = bbb(t,XXXt)dt + σσσ(t,XXXt)dBBBt , (64)

where XXXt is a random process with values in RN , bbb(t, ·) is a vector field on RN for
all times, σ is N × K matrix valued function, and BBBt is a K-dimensional Brownian
motion, and, on the other hand, the Fokker-Planck equation.

∂ p
∂ t

(t,xxx)+ div ((bbb(t,xxx) p(t,xxx))−
1
2

∇2 :
(
σσσσσσT p

)
(t,xxx) = 0, (65)

where ∇2 :
(
σσσσσσT p

)
=

N

∑
i, j=1

∂ 2

∂xi∂x j

(
K

∑
k=1

σi,kσ j,k p

)
.

Under appropriate conditions of regularity (which we have omitted to make pre-
cise above), we may therefore claim that the law of any process solving the stochas-
tic differential equation solves the Fokker-Planck equation. The converse assertion is
false. Let us give the following simple illustration. Consider the stochastic differen-
tial equation

dXt = −1
2

Xt dt + dBt , (66)

with initial condition X0 normally distributed with zero mean and variance one (and
independent of Bt), and the associated Fokker-Planck equation

∂ p(t,x)
∂ t

−
1
2

∂
∂x

(x p(t,x))−
1
2

∂ 2

∂x2 p(t,x) = 0. (67)

Clearly, the solution to (66) reads

Xt = e−t/2X0 +
∫ t

0
e(s−t)/2dBs.

Therefore, for all t ≥ 0, Xt is a Gaussian random variable with zero mean and variance
one and of course, as the previous argument shows, p(t,x) = 1√

2π exp(−x2/2) indeed
solves the Fokker-Planck equation (67). However, any random process Yt such that
its marginals in time (namely the law of Yt , for fixed t) are normally distributed with
zero mean and variance one, such as the constant process Yt = X0, does not solve
(66). The process encodes more information than the law of the time marginals, and
it is thus intuitively clear that the knowledge of the law of the time marginals is not
sufficient to know the trajectory of the process. Otherwise stated, knowing the law
of the time marginals allows to compute all expectation values of the type E(ϕ(Xt)),
but, e.g., not quantities such as E(ψ(Xt ,Xs)).

Nevertheless, for most situations of interest, and in particular for many physi-
cally relevant situations, only the knowledge of expectation values such as E(ϕ(Xt))
is sufficient. In such situations, solving the Fokker-Planck equation, when it is prac-
tically feasible, provides all the information needed. In our context of the modelling
of complex fluids, we can therefore equivalently use the stochastic differential view-
point, or the Fokker-Planck viewpoint. Efficiency considerations indicate which is
the best strategy, depending on the dimension of the problem at hand, and other pa-
rameters. We will return to this below.
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Discretization of SDEs

We now briefly give here some basic elements of numerical analysis for stochastic
differential equations. For this purpose, we assume that the reader is familiar with
the discretization techniques for ordinary differential equations and the associated
analysis (see E. Hairer, S.P. Nørsett and G. Wanner [55, 56]).

For simplicity, we argue on the one-dimensional simple case (53), that is

dXt = b(t,Xt)dt + σ dBt ,

with in addition, a constant σ . We leave aside questions related to the general case
dXt = b(t,Xt)dt + σ(t,Xt)dBt , which, owing to the dependence of σ upon the solu-
tion Xt , might be significantly more technical than the simple case considered here
(see Remark 8 below). Likewise, we assume that b is regular and that all questions
of existence and uniqueness have been settled.

The crucial point to bear in mind is that, in contrast to the deterministic setting,
there are two notions of convergence for a scheme discretizing a stochastic differen-
tial equation.

The notion of convergence analogous to the deterministic notion is:

Definition 1. The numerical scheme is said strongly convergent and is said to have
strong order of convergence α > 0 when there exists a constantC, possibly depending
on the interval of integration [0,T ], such that, for all timesteps ∆ t and for all integer
n ∈ [0,T/∆ t],

E
(∣∣Xn − Xtn

∣∣) ≤ C (∆ t)α , (68)

where Xtn denotes the exact solution at time tn = n∆ t, and Xn denotes its numerical
approximation.

A weaker notion, which is a better metric to assess convergence in practical situ-
ations, is:

Definition 2. Under the same conditions as the above definition, the scheme is said
weakly convergent and is said to have weak order of convergence β > 0 when for
all integer n ∈ [0,T/∆ t],

∣∣∣∣E
(
ϕ(Xn)

)
−E(ϕ(Xtn))

∣∣∣∣ ≤ C (∆ t)β , (69)

for all C∞ function ϕ , with polynomial growth at infinity, and such that all its deriva-
tives also have polynomial growth at infinity.

The latter definition, specific to the stochastic setting, is motivated by the fact that
in many applications, as already mentioned above, the stochastic differential equa-
tion is simulated only to evaluate some expectation values E(ϕ(Xt)). This will be the
case for complex fluid flows simulation (see the expression (82) of the stress tensor
below). The notion of weak convergence is tailored for this purpose. In contrast to the
strong convergence, it does not measure the accuracy of the approximation of each
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realization (each “trajectory”) (note indeed that P(|Xn −Xtn | ≥ a)≤ 1
a

E(|Xn −Xtn |)),
but only the accuracy of the mean. Of course, strong convergence clearly implies
weak convergence.

Let us now mention the simplest possible scheme for the numerical integration
of (57). It is the forward (or explicit) Euler scheme:

Xn+1 = Xn + b(tn,Xn)∆ t + σ (Btn+1 − Btn). (70)

Since the increment Btn+1 −Btn is a centered Gaussian random variable with variance
tn+1 − tn = ∆ t, the scheme also writes

Xn+1 = Xn + b(tn,Xn)∆ t + σ
√

∆ t Gn, (71)

where (Gn)n≥0 denote i.i.d. standard normal random variables.
It is easy to see that the scheme (70) arises from the approximation

Xtn+1 − Xtn =
∫ tn+1

tn
b(t,Xt)dt + σ

∫ tn+1

tn
dBt ,

≈ b(tn,Xtn)∆ t + σ (Btn+1 − Btn).

The second integration in the right-hand side being exact, the precision order is ex-
actly that of the approximation of the Lebesgue integral, and is therefore α = 1. This
is the strong order of convergence, and we leave to the reader the task to check that
this is also the weak order of convergence.

Remark 8. Actually, the above argument is slightly misleading. It is specific to the
case of a constant diffusion σ as in (53) or, more appropriately stated, to a determin-
istic diffusion σ that may depend on time, but that does not depend on the solution
Xt . When the latter depends on the solution, that is

dXt = b(t,Xt)dt + σ(Xt)dBt ,

then the Euler scheme

Xn+1 = Xn + b(tn,Xn)∆ t + σ(Xn)(Btn+1 − Btn) (72)

(actually also called the Euler-Maruyama scheme) is only of strong order α = 1/2,
but it remains of weak order β = 1. The reason lies in the difference between the Itô
calculus and the usual deterministic calculus. In fact, to obtain strong convergence
with order 1, the adequate scheme to employ (at least for one-dimensional processes)
is the Euler-Milstein scheme:

Xn+1 − Xn = b(tn,Xn)∆ t + σ(Xn)(Btn+1 − Btn)

+
1
2

σ(Xn)σ ′(Xn)
(
(Btn+1 − Btn)

2 − ∆ t
)
.

(73)

It is of strong order of convergence α = 1, and of course agrees with the Euler-
Maruyama scheme when σ is independent of Xt .
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4.2 Back to the modelling

Given the notions of the previous section, we are now in position to return to some
key issues in the modelling step, briefly addressed earlier in Sect. 3. Our purpose
there was only to concentrate on the multiscale problem, and reach as soon as pos-
sible a prototypical form of such a system. This has been performed with (50) at
the price of some simplifications and shortcuts. Let us now take a more pedestrian
approach to the problem, and dwell into some issues, based on our present mathe-
matical knowledge of the stochastic formalism.

The microscopic equation of motion

Let us first concentrate on the two forces exerted by the solvent onto the chain,
namely the friction force elongating the chain and the Brownian force modeling col-
lisions.

For this purpose, we isolate one single bead, denote by m its mass, VVVt its velocity,
and write the following equation of motion, called the Langevin equation:

mdVVVt = −ζVVVt dt + DdBBBt , (74)

where BBBt denotes a standard, d-dimensional, Brownian motion and D a scalar pa-
rameter to be determined. The solution of (74) is a so-called Ornstein-Uhlenbeck
process:

VVVt = VVV 0 exp

(
− ζ

m
t

)
+

D
m

∫ t

0
exp

(
− ζ

m
(t − s)

)
dBBBs,

where VVV 0 is the initial velocity, assumed independent of BBBt . Consequently, VVVt is a
Gaussian process with mean

E(VVVt) = E(VVV 0)exp

(
− ζ

m
t

)
,

and covariance matrix

E((VVVt −E(VVVt))⊗ (VVVt −E(VVVt)))

= E((VVV 0 −E(VVV 0))⊗ (VVV 0 −E(VVV 0)))exp

(
−2ζ

m
t

)

+
D2

2ζm

(
1 − exp

(
−

2ζ
m

t

))
Id. (75)

For the above derivation, we have assumed that the fluid is at rest. The process VVVt is
thus expected to be stationary, which imposes:






E(VVVt) = E(VVV 0) = 0,

E(VVVt ⊗VVVt) = E(VVV 0 ⊗VVV 0) =
D2

2ζm
Id.

(76)
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2

1

X

X

X
R

Fig. 9. The dumbbell model: the end-to-end vector XXX is the vector connecting the two beads,
while RRR gives the position of the center of mass.

Using the principle of equipartition of energy, the mean kinetic energy 1
2 mE(‖VVVt‖2)

should be equal to d
2 kT (where d is the dimension of the ambient space) thus the

Nernst-Einstein relation:
D =

√
2kTζ . (77)

Let us next consider two beads, forming a dumbbell. We denote by XXXi
t the (ran-

dom) position of bead i, i = 1,2, and XXXt = XXX2
t −XXX1

t the end-to-end vector (see Fig. 9).
We also denote RRR = 1

2

(
XXX1 + XXX2) the position of the center of mass. In addition to the

above two forces experienced by each of the beads, a force FFF(XXXt) of entropic nature
is to be accounted for. We now know this well (see Sect. 3.1).

The Langevin equations for this simple two particle system reads:






md

(
dXXX1

t

dt

)
= −ζ

(
dXXX1

t

dt
− uuu(t,XXX1

t )
)

dt + FFF(XXXt)dt +
√

2kT ζ dBBB1
t ,

md

(
dXXX2

t

dt

)
= −ζ

(
dXXX2

t

dt
− uuu(t,XXX2

t )
)

dt − FFF(XXXt)dt +
√

2kT ζ dBBB2
t ,

(78)

where BBB1
t and BBB2

t are two independent, d-dimensional Brownian motions. In the limit
of a vanishing m

ζ , (that is when the characteristic timescale of relaxation to equilib-
rium for the end-to-end vector is far larger than this value), we obtain by linear
combination of the above two Langevin equations:
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




dXXXt =
(
uuu(t,XXX2

t )− uuu(t,XXX1
t )

)
dt −

2
ζ

FFF(XXXt)dt + 2

√
kT
ζ

dWWW1
t ,

dRRRt =
1
2

(
uuu(t,XXX1

t )+ uuu(t,XXX2
t )

)
dt +

√
kT
ζ

dWWW 2
t ,

(79)

where WWW 1
t = 1√

2

(
BBB2

t − BBB1
t

)
and WWW 2

t = 1√
2

(
BBB1

t + BBB2
t

)
are also two independent, d-

dimensional Brownian motions. We assume they do not depend on space.
At this stage, the following assumptions are in order:

• as the length of the polymer is in any case far smaller than the spatial variations
of the velocity of the solvent, we may perform the Taylor expansion

uuu(t,XXXi
t) ' uuu(t,RRRt)+ ∇uuu(t,RRRt)(XXXi

t − RRRt)

for i = 1,2,
• as 1

2

(
uuu(t,XXX1

t )+ uuu(t,XXX2
t )

)
dt is of macroscopic size, in comparison to the micro-

scopic variation
√

kT
ζ dWWW 2

t , the noise WWW 2
t = 0 is neglected.

Denoting by WWWt = WWW 1, we obtain:




dXXXt = ∇uuu(t,RRRt)XXXt dt − 2

ζ
FFF(XXXt)dt + 2

√
kT
ζ

dWWWt ,

dRRRt = uuu(t,RRRt)dt.

(80)

The above system is supplied with initial conditions XXX0 and RRR0. The processes XXXt and
WWWt are naturally indexed by the trajectories of fluid particles. The Eulerian descrip-
tion corresponding to the above Lagrangian description reads, for XXXt(xxx) denoting the
conformation at xxx at time t:

dXXXt(xxx)+uuu(t,xxx).∇XXXt(xxx)dt = ∇uuu(t,xxx)XXXt(xxx)dt − 2
ζ

FFF(XXXt(xxx))dt +2

√
kT
ζ

dWWWt . (81)

Equation (81) is simply the stochastic version of the model already introduced
in Sect. 3 under the form of equation (47). Indeed, the latter is the Fokker-Planck
associated to the stochastic differential (81). The function ψ solution to (47) is the
probability density of XXXt(xxx) solution to (81). We refer the reader to the previous
section for more details on the ingredient of stochastic analysis needed for the proof
of this fact (see Sect. 4.1).

The stress tensor

Using the definition of the stress tensor recalled in Sect. 3, the Kramers formula can
be shown. In the stochastic language we adopt here, it reads
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τττ p(t) = np

(
E(XXXt ⊗ FFF(XXXt))− kT Id

)
, (82)

where ⊗ denotes the tensorial product and np is the concentration of polymers.
See H.C. Öttinger [102, pp158–159], M. Doi and S.F. Edwards [36, section 3.7.4],
R.B. Bird et al [12, section 13.3]. Of course, this expression is similar, in terms of
XXXt , to the expression previously found in terms of the probability density function
ψ(t, ·) of XXXt , namely (48) in Sect. 3.

Using Itô calculus, an interesting alternative expression can be found for the
stress tensor. Indeed, introducing the so-called structure tensor XXXt(xxx)⊗ XXXt(xxx), we
have:

d(XXXt(xxx)⊗ XXXt(xxx)) = (dXXXt(xxx))⊗ XXXt(xxx)+ XXXt(xxx)⊗ (dXXXt(xxx))+
4kT

ζ
Iddt

=
(

− uuu(t,xxx).∇(XXXt(xxx)⊗ XXXt(xxx))

+∇uuu(t,xxx)(XXXt(xxx)⊗ XXXt(xxx))+ (XXXt(xxx)⊗ XXXt(xxx))(∇uuu(t,xxx))T

− 2
ζ

FFF(XXXt)⊗ XXXt −
2
ζ

XXXt ⊗ FFF(XXXt)+
4kT

ζ
Id

)
dt

+2

√
kT
ζ

((XXXt(xxx)⊗ dWWWt)+ (dWWWt ⊗ XXXt(xxx))) . (83)

The mean of the structure tensor

AAA(t,xxx) = E(XXXt(xxx)⊗ XXXt(xxx)) (84)

therefore solves, under some mathematical assumptions on XXXt ,

∂AAA
∂ t

(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= − 4
ζ

E(XXXt ⊗ FFF(XXXt))+
4kT

ζ
Id. (85)

Using (82), the following expression of the stress tensor, called the Giesekus formula,
is obtained, which only explicitly depends on second moments of XXXt :

τττ p(t,xxx) =

−ζ
4

np

(
∂AAA
∂ t

(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T
)

.

The stress τττ p is thus proportional to the upper-convected derivative of AAA.

The force

We now have to make the force FFF specific. In full generality, it is assumed that FFF is
the gradient of a convex, radially symmetric, potential Π(XXX) = π(‖XXX‖). Thus,
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FFF(XXX) = π ′(‖XXX‖)
XXX

‖XXX‖
. (86)

The convexity of Π(XXX) with respect to XXX of course amounts to that of π(l) with
respect to l, together with π ′(0) ≥ 0.

The simplest example of potential π is the quadratic potential πHook(l) = H
l2

2
,

which of course corresponds to the Hookean force introduced in (46). There are two
major pitfalls with the Hookean dumbbell model: first it is not a multiscale model
in nature, and second (and perhaps more importantly), it has a highly non physical
feature.

Let us begin by verifying that the Hookean model is actually equivalent to the
purely macroscopic Oldroyd B model introduced in (22).

More on the Hookean model

For Hookean dumbbell, we have: E(XXX ⊗ FFF(XXX)) = HE(XXX ⊗ XXX), thus the following
equation is obtained on the structure tensor AAA = E(XXX ⊗ XXX):

∂AAA
∂ t

(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= −4H
ζ

AAA(t,xxx)+
4kT

ζ
Id, (87)

that is, in terms of τττ p :

ζ
4H

(
∂τττ p

∂ t
(t,xxx)+ uuu(t,xxx).∇τττ p(t,xxx)− ∇uuu(t,xxx)τττ p(t,xxx)− τττ p(t,xxx)(∇uuu(t,xxx))T

)

= −τττ p(t,xxx)+ npkT
ζ

4H

(
∇uuu(t,xxx)+ (∇uuu(t,xxx))T )

. (88)

Introducing the relaxation time

λ =
ζ

4H
, (89)

and the viscosity
ηp = npkT λ , (90)

we recognize the macroscopic Maxwell (or Oldroyd B) model (22), that is,

λ
(

∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ηpγ̇γγ.

A few other multiscale models have a macroscopic equivalent. This is for exam-
ple the case of the FENE-P model (see Equation (92) below), which is deliberately
built to have a macroscopic equivalent. But for most other multiscale models of real
interest (in particular those involving FENE forces, see Equation (91) below), no
macroscopic equivalent formulation is known. And it is believed that no such formu-
lation exists. In this latter sense, multiscale models are more powerful than purely
macroscopic models.
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In addition to the above, a major theoretical flaw of the dumbbell model, exem-
plified in (46), is that nothing prevents the end-to-end vector, in the Hookean model,
to reach arbitrarily large lengths |rrr|. This is of course not consistent with the actual
finite length of the chain. This indeed comes from the method of derivation where
we have taken the limit of large N, each of the link being of length a. In the limit,
the total length of the chain therefore explodes, thus the formula (46). For all the
above reasons, the Hookean dumbbell model, although a perfect test case for pre-
liminary mathematical arguments, is not a fully appropriate benchmark, physically,
mathematically and numerically representative, for multiscale models.

Accounting for the finite extensibility of the chain is an important issue, for which
adequate models exist. We now turn to two of them.

Other forces

The FENE model, where FENE is the acronym for Finite Extensible Nonlinear Elas-
tic, is perhaps the most famous force field employed in the simulation of polymeric
fluids. It corresponds to the potential (see Fig. 10):

πFENE(l) = −bkT
2

ln

(
1 − l2

bkT/H

)
. (91)

The success of this potential is well recognized. In this mathematical text, it
is not our purpose to argue on the physical validity and relevance of the models.
However, an interesting point to make is the following. The dumbbell model is a
very coarse model of the polymer chain. Taking two beads to model a thousand-atom
chain seems oversimplifying. When equipped with an appropriate entropic force, like
the FENE force, this model nevertheless yields tremendously good results. From a
general viewpoint, this shows that

• a multiscale model is much more powerful than a purely macroscopic model,
• the description of the microstructure does not need to be sophisticated to give

excellent results,
• it only has to capture the right physics (see the FENE force in contrast to the

Hookean force).

Note also that, as a counterpart to the above, the FENE model raises a huge
number of challenging mathematical and numerical questions. We will address some
of them in Sect. 6.

The FENE model cannot be rephrased under the form of a purely macroscopic
model. There is no proof of this claim, but it is strongly believed to be the case.
For some specific purposes, the idea has arisen to find a modification of the FENE
model (a so-called closure approximation) which would have a macroscopic equiv-
alent. This gives birth to the FENE-P model, where P stands for Peterlin. Following
A. Peterlin [105] and R.B. Bird, P.J. Dotson and N.L. Johnson [13], it has indeed
been proposed to replace the denominator of the FENE force (91) by a mean value
of the elongation:
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FFFFENE−P(XXXt) =
HXXXt

1 − E(‖XXXt‖2)
bkT/H

. (92)

Accordingly, the microscopic description of the fluids now reads:






τττ p = np

(
HE(XXXt ⊗ XXXt)

1 −E(‖XXXt‖2)/(bkT/H)
− kT Id

)
,

dXXXt + uuu ·∇XXXt dt =
(

∇uuuXXXt −
2H
ζ

XXXt

1 −E(‖XXXt‖2)/(bkT/H)

)
dt

+ 2

√
kT
ζ

dWWWt .

(93)

Using the expression of τττ p

∂AAA
∂ t

(t,xxx)+ uuu(t,xxx).∇AAA(t,xxx)− ∇uuu(t,xxx)AAA(t,xxx)− AAA(t,xxx)(∇uuu(t,xxx))T

= −4H
ζ

AAA(t)
1 − tr(AAA(t))/(bkt/H)

+
4kT

ζ
Id. (94)

Inserting this into:

AAA =
1

HZ(tr(τττ p))

(
τττ p

np
+ kT Id

)
,

where Z is defined by (29), the following equation is obtained for τττ p :

ζ
4H

(
∂τττ p

∂ t
(t,xxx)+ uuu(t,xxx).∇τττ p(t,xxx)− ∇uuu(t,xxx)τττ p(t,xxx)− τττ p(t,xxx)(∇uuu(t,xxx))T

)

+Z(tr(τττ p))τττ p − ζ
4H

(τττ p + npkT Id)
(

∂
∂ t

+ uuu.∇
)

ln(Z(tr(τττ p)))

= npkT
ζ

4H

(
∇uuu(t,xxx)+ (∇uuu(t,xxx))T )

, (95)

which is exactly the FENE-P model mentioned in (28) (when λ and ηp are respec-
tively given by (89) and (90)). The FENE-P model can thus be seen as a modifica-
tion of the FENE model, in order to obtain a multiscale model that has an equivalent
purely macroscopic formulation. Other variants of the FENE model exist in the lit-
erature.

4.3 The multiscale model

We now have all the bricks for the stochastic variant of our multiscale system (49).
Collecting the material of the previous section, we obtain:

, (82) and (87), we obtain:
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π ′(l)

l
√

bkT
H

Fig. 10. Comparison of the Hookean force (continuous line) and the FENE force (dashed line).






ρ
(

∂uuu
∂ t

(t,xxx)+ uuu(t,xxx) ·∇uuu(t,xxx)
)

− η∆uuu(t,xxx)+ ∇p(t,xxx)

= div(τττ p(t,xxx))+ ρ fff (t,xxx),

div(uuu(t,xxx)) = 0,

τττ p(t,xxx) = np

(
E(XXXt(xxx)⊗ FFF(XXXt(xxx)))− kT Id

)
,

dXXXt(xxx)+ uuu(t,xxx).∇XXXt(xxx)dt

= ∇uuu(t,xxx)XXXt(xxx)dt − 2
ζ

FFF(XXXt(xxx))dt + 2

√
kT
ζ

dWWWt .

(96)

As was the case for the Fokker-Planck equation, the stochastic differential equa-
tions are to be solved at each point of the macroscopic flow. The process XXXt therefore
implicitly depends on xxx.

It is well-known that the form of equations actually used in the numerical practice
is a non-dimensional form. Because this involves the introduction of several non-
dimensional numbers that have a physical meaning and are present in the literature,
let us briefly establish now this non-dimensional form for (96) (and thus for (49), by
analogy, see (50)).

We introduce the following characteristic quantities: U the characteristic velocity,

L the characteristic length, λ =
ζ

4H
, as in (89), the characteristic relaxation time,

ηp = npkT λ , as in (90), the viscosity of polymers. Then, we consider the following
non-dimensional numbers:
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




Re =
ρUL

η
, ε =

ηp

η
,

We =
λU
L

, µ =
L2H
kT

(97)

respectively the Reynolds number Re measuring the ratio of inertia over viscosity
(usually for the complex fluids under consideration, Re ≤ 10), ε measuring the ra-
tio of viscosity of the polymers over the total viscosity (usually ε ≈ 0.1), We the

laxation time of the polymers versus the characteristic time of the flow (usually
0.1 ≤ We ≤ 10), and µ measuring a ratio of lengths.

Non-dimensionalizing also the force by FFF(XXX) =
FFF(LXXX)

HL
, and taking (which is

the commonly used value) µ = 1, we obtain:






Re

(
∂uuu
∂t

+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

τττ p =
ε

We

(
E(XXXt ⊗ FFF(XXXt))− Id

)
,

dXXXt + uuu.∇XXXt dt = ∇uuuXXXt dt − 1
2We

FFF(XXXt)dt +
1√
We

dWWWt .

(98)

An important practical remark stems from the actual range of parameters men-
tioned above. In contrast to the usual setting of computational fluid mechanics where
the challenge is to deal with flows with high Reynolds numbers, the challenge here
is not the Reynolds number (kept relatively small), but the Weissenberg number.
Tremendous practical (and also, actually, theoretical) difficulties are associated with
the so-called High Weissenberg number problem (“high” meaning exceeding, say,
10).

4.4 Schematic overview of the simulation

Our focus so far has been the modelling difficulties for viscoelastic fluids. Another
question is the discretization of the models, and their numerical simulations. This
has to be performed very carefully since a model is typically validated by some
comparisons between experiments and numerical simulations on simple or complex
flows.

The present section summarizes the issues and techniques, in a language acces-
sible to readers familiar with scientific computing and numerical analysis. A much
more elementary presentation will be given in Sect. 5.

Numerical methods

Most of the numerical methods are based upon a finite element discretization in
space and Euler schemes in time, using a semi-explicit scheme: at each timestep, the

Weissenberg number (also called Deborah number) which is the ratio of the re-

,
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velocity is first solved for a given stress, and then the stress is updated, for a fixed
velocity.

In the case of micro-macro models such as (50) and (98), another discretization
step is necessary to approximate the expectation or the integral in the definition of the
stress tensor τττ p. There are basically two methods of discretization, depending on the
formulation used: stochastic methods for (98), and deterministic methods for (50).

To discretize the expectation in (98), a Monte Carlo method is employed: at each
macroscopic point xxx (i.e. at each node of the mesh once the problem is discretized)
many replicas (or realizations) (XXXk,K

t )1≤k≤K of the stochastic process XXXt are sim-
ulated, driven by independent Brownian motions (WWW k

t )k≥1, and the stress tensor is
obtained as an empirical mean over these processes:

τττK
p =

ε
We

(
1
K

K

∑
k=1

XXXk,K
t ⊗ FFF(XXXk,K

t )− Id

)
.

In this context, this discretization method coupling a finite element method and a
Monte Carlo technique is called CONNFFESSIT for Calculation Of Non-Newtonian
Flow: Finite Elements and Stochastic SImulation Technique (see M. Laso and
H.C. Öttinger [75]). In Sect. 5, we will implement this method in a simple geom-
etry. Let us already mention that one important feature of the discretization is that, at
the discrete level, all the unknowns (uuu, p,τττ p) become random variables. The conse-
quence is that the variance of the results is typically the bottleneck for the accuracy
of the method. In particular, variance reduction methods are very important.

To discretize the Fokker-Planck equation in (50), spectral methods are typically
used (see A. Lozinski [92] or J.K.C. Suen, Y.L. Joo and R.C. Armstrong [118]). It
is not easy to find a suitable variational formulation of the Fokker-Planck equation,
and an appropriate discretization that satisfies the natural constraints on the probabil-
ity density ψ (namely non negativity, and normalization). We refer to C. Chauvière
and A. Lozinski [25, 93] for appropriate discretization in the FENE case. One ma-
jor difficulty in the discretization of Fokker-Planck equations is when the configu-
rational space is high-dimensional. In the context of polymeric fluid flow simula-
tion, when the polymer chain is modelled by a chain of N beads linked by springs,
the Fokker-Planck equation is a parabolic equation posed on a 3N-dimensional do-
main. Some numerical methods have been developed to discretize such high dimen-
sional problems. The idea is to use an appropriate Galerkin basis, whose dimen-
sion does not explode when dimension grows. We refer to P. Delaunay, A. Lozinski
and R.G. Owens [33], T. von Petersdorff and C. Schwab [120], H.-J. Bungartz and
M. Griebel [20] for the sparse-tensor product approach, to L. Machiels, Y. Maday,
and A.T. Patera [94] for the reduced basis approach and to A. Ammar, B. Mokdad,
F. Chinesta and R. Keunings [2, 3] for a method coupling a sparse-tensor product
discretization with a reduced approximation basis approach.
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Main difficulties

It actually turns out that the discretization of micro-macro models such as (50)
and (98) or that of macro-macro models such as (23) is not trivial. Let us mention
three kinds of difficulties:

1. Some inf-sup condition must be satisfied by the spaces respectively used for the
discrete velocity, pressure and stress (if one wants the discretization to be stable
for ε close to 1).

2. The advection terms need to be discretized correctly, in the conservation of mo-
mentum equations, in the equation on τττ p in (23), in the equation on ψ in (50),
on in the SDE in (98).

3. The nonlinear terms require, as always, a special care. On the one hand, some
nonlinear terms stem from the coupling: ∇uuuτττ p + τττ p(∇uuu)T in (23), ∇uuuXXXt in (98)
or divXXX(∇uuuXXXψ(t,xxx,XXX)) in (50). On the other hand, for rheological models more
complicated than Oldroyd-B or Hookean dumbbell, some nonlinear terms come
from the model itself (see the entropic force FFF(XXXt) in (98) for FENE model for
example).

Besides, for both micro-macro models and purely macroscopic models, one central
difficulty of the simulation of viscoelastic fluids is the so-called High Weissenberg
Number Problem (HWNP). It is indeed observed that numerical simulations do not
converge when We is too large. The maximum value which can be actually cor-
rectly simulated depends on the geometry of the problem (4:1 contraction, flow past
a cylinder,...), on the model (Oldroyd-B model, FENE model, ...) and also on the
discretization method. Typically, it is observed that this maximum value decreases
with mesh refinement.

We will return to these questions in Sect. 6.

4.5 Upsides and downsides of multiscale modelling for complex fluids

Micro-macro vs macro-macro modelling

We are now in position to compare the micro-macro approach and the macro-macro
approach to simulate polymeric fluids (and more generally complex fluids). Figure 11
summarizes the main features of these approaches. Let us discuss this from two view-
points: modelling and numerics.

From the modelling viewpoint, the interest of the micro-macro approach stems
from the fact it is based on a clear understanding of the physics at play. The ki-
netic equations used to model the evolution of the polymers are well established
and the limit of the validity of these equations is known. The constants involved in
micro-macro models have a clear physical signification, and can be estimated from
some microscopic properties of the polymer chains. From this point of view, the
micro-macro approach seems more predictive, and enables an exploration of the link
between the microscopic properties of the polymer chains (or more generally the
microstructures in the fluid) and the macroscopic behavior of the complex fluid.
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using principles of fluid mechanics 

Fig. 11. Macro-macro and micro-macro models for complex fluids.

Practice confirms this. It indeed appears that simulations with micro-macro mod-
els generally compare better to experiments (see R. Keunings [71, 72]). However, for
complex flows and general non-Newtonian fluids, it is still difficult to agree quan-
titatively with the experiments. In short, it remains a lot to do from the modelling
viewpoint, but it is generally admitted that the micro-macro approach is the most
promising way to improve the models.

From the numerical point of view, the major drawback of the micro-macro ap-
proach is its computational cost. The introduction of an additional field to describe
the configuration of the microstructure in the fluid implies additional computations
and additional memory storage.

For example, for the micro-macro models introduced above in their stochastic
form (98), the discretization by a CONNFFESSIT approach requires the storage at
each node of the mesh of an ensemble of configurations (XXXi,M

t )1≤i≤M of the polymer
chains. Even though the SDEs associated to each configuration, and at various node

mains very high. The micro-macro approach is currently not sufficiently efficient to
be used in commercial codes for industrial purposes.

In view of the arguments above, it seems natural to try and design some nu-
merical methods that couple the macro-macro and the micro-macro approaches. The
macro-macro model is used where the flow is simple, and the detailed micro-macro
model is used elsewhere. The idea of adaptive modelling based on modelling error a
posteriori analysis (see J.T. Oden and K.S. Vemaganti [100], J.T. Oden and S. Prud-
homme [99] or M. Braack and A. Ern [19] has been recently adapted in this context

We mentioned above the problems raised by the discretization of macro-macro
and micro-macro models. It seems that in complex flows, numerical methods based

of the mesh can be solved in parallel on each time step, the computational cost re-

in a preliminary work by A. Ern and T. Lelièvre [40].
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HWNP still limits the range of applicability of the computations, even with micro-
macro models. The main interest of micro-macro approaches as compared to macro-
macro approaches lies at the modelling level. It may become the method of choice
for a backroom strategy. The approach allows to test and validate purely macro-

simulations for actual real-world applications, owing to its extremely computation-

Fokker-Planck vs SDE formulation

To conclude this section, we would like to discuss the advantages and drawbacks
of the two numerical approaches introduced above for the micro-macro approach:
that based on the deterministic formulation (50) and that based on the stochastic
formulation (98).

The conclusions of this comparison (see Sect. 5 and also A. Lozinski and

istic approach (discretization of the Fokker-Planck PDE), it is much more efficient
than the stochastic approach (Monte Carlo methods to approximate the expectation).
The main reason for that is that the convergence of a Monte Carlo method is slower
than that of a deterministic approximation method.

proach? As we mentioned above, designing a numerical method that satisfies the
natural requirements of non-negativity and normalization of ψ is not an easy task. In

account the boundary conditions on ψ . In practice, it is observed that the stability
of numerical schemes deteriorates when ∇uuu becomes too large. But there is another
(more fundamental) limitation to the deterministic approach. We mentioned above
that the dumbbell model may be actually too crude to describe correctly the polymer
chain configuration in some specific situations. It might be better, then, to use a chain
of beads and springs. For such a model, the stochastic approach and the associated
discretization can both be generalized straightforwardly. However, the deterministic
approach is much more problematic. The Fokker-Planck equation becomes a high-
dimensional PDE, and the discretization is very difficult. We mentioned above some
numerical methods to deal with such PDEs (the sparse-tensor product approach, the
reduced approximation basis approach) but they are still limited to a relatively small
number of springs, and are much more difficult to implement than Monte Carlo meth-
ods.

A summary of the comparison of the various approaches to model complex fluids
is given in Table 1.

The following question is then: what are the limits of the Fokker-Planck ap-

C. Chauvière [93]) are actually very general: when it is possible to use the determin-

the FENE case, proper variational formulations are to be employed, which take into

ally demanding nature.

scopic models, to supply such models with adequate and reliable boundary condi-
tions, etc. . . , even if, in the state of the art technology, it does not allow to perform

on the micro-macro approach are more robust than those based on the macro-macro
approach (see A.P.G. Van Heel [119, p.38], J.C. Bonvin [18, p.115] or C. Chauvière
[24]). However, this is not yet well understood mathematically. In addition, the  
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MACRO MICRO-MACRO

modelling capabilities low high

current utilization industry laboratories

discretization discretization
by Monte Carlo of Fokker-Planck

computational cost low high moderate

computational bottleneck HWNP variance, HWNP dimension, HWNP

Table 1. Summary of the characteristics of macro-macro and micro-macro approaches for the
simulation of complex fluids.

5 Numerical simulation of a test case: the Couette flow

5.1 Setting of the problem

We consider in this section the simple situation of a start-up Couette flow (see
Fig. 12). The fluid flows between two parallel planes. Such a model is typically
obtained considering a flow in a rheometer, between two cylinders, and taking the
limit of large radii for both the inner and the outer cylinders (see Fig. 1). At initial
time, the fluid is at rest. The lower plane (y = 0, modelling the inner cylinder of the
rheometer) is then shifted with a velocity V (t), which, for simplicity, will be set to a
constant value V (sinusoidal velocities may also be applied):

V (t) = V.

On the other hand, the upper plane (y = L, modelling the outer cylinder of the
rheometer) is kept fixed. Such a setting is called a start-up flow, and because it is
confined between two parallel plane, a Couette flow.

We denote by x and y the horizontal and vertical axes, respectively. The flow is
assumed invariant in the direction perpendicular to (x,y).

The polymeric fluid filling in the space between the planes obeys equations (13),
which we reproduce here for convenience in their nondimensional form:





Re

(
∂uuu
∂ t

+ (uuu ·∇)uuu

)
− (1 − ε)∆uuu+ ∇p − divτττ p = fff ,

divuuu = 0.
(99)

For Couette flow, we have fff = 0.
It is natural to assume that the flow is laminar, that is, the velocity writes

uuu = ux(t,x,y)eeex, where eeex is the unitary vector along the x-axis. The incompress-
ibility constraint (8) immediately implies that uuu = ux(t,y)eeex. We now denote:

uuu = u(t,y)eeex. (100)
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y=0
x

y=L

y

V

Fig. 12. Couette flow.

In the Newtonian case (τττ p = 0), it can be easily shown that a natural assumption
on the pressure leads to






Re
∂u
∂ t

(t,y) = (1 − ε)
∂ 2u
∂y2 (t,y),

u(0,y) = 0,
u(t,0) = V,
u(t,L) = 0.

(101)

Let us now consider the case of a non-Newtonian fluid modelled but the Hookean
dumbbell model. We will treat this model as a multiscale model, even if we know
from Sect. 4.2 that it is equivalent to the purely macroscopic Oldroyd-B model. Our
purpose is indeed to illustrate the numerical approach for such multiscale models,
and the Hookean dumbbell model is a nice setting for the exposition. For other mod-
els, the situation is more intricate, but at least all the difficulties of the Hookean
dumbbell model are present.

In full generality, the Fokker-Planck version of the multiscale system describing
the flow for the Hookean dumbbell model reads (again in a non-dimensional form),
we recall:






Re

(
∂uuu
∂ t

+ (uuu ·∇)uuu

)
− (1 − ε)∆uuu+ ∇p − divτττ p = 0,

divuuu = 0,

τττ p(t,x,y) =
ε

We

(∫
(rrr ⊗ rrr)ψ(t,x,y,rrr)drrr − Id

)
,

∂ψ
∂ t

(t,x,y,rrr)+ uuu(t,x,y) ·∇x,yψ(t,x,y,rrr)

= −divrrr

((
∇x,y uuu(t,x,y)rrr − 1

2We
rrr

)
ψ(t,x,y,rrr)

)
+

1
2We rrr r

(102)
supplied with

∆ ψ(t,x,y,rr), ,
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




uuu(0,x,y) = 000,
uuu(t,x,y = 0) = Veeex, ∀t > 0,
uuu(t,x,y = L) = 0, ∀t > 0.

(103)

Owing to the specific Couette setting, and the assumptions that originate from it
(notably (100)), the above general system simplifies into the much simpler one:






Re
∂u
∂ t

(t,y) = (1 − ε)
∂ 2u
∂y2 (t,y)+

∂τ
∂y

(t,y),

τ(t,y) =
ε

We

∫

R2
PQψ(t,y,P,Q)dPdQ,

∂ψ
∂ t

(t,y,P,Q) = − ∂
∂P

((
∂u
∂y

(t,y)Q− 1
2We

P

)
ψ(t,y,P,Q)

)

+
∂

∂Q

(
1

2We
Q ψ(t,y,P,Q)

)
+

1
2We

(
∂ 2

∂P2 +
∂ 2

∂Q2

)
ψ(t,y,P,Q),

(104)
where P and Q are the two components of the end-to-end vector rrr, along the x and
y axes respectively. In the above system, τ(t,y) denotes the xy entry of the tensor
τττ p. Actually, the pressure field, and the other entries of the stress tensor may be then
deduced, independently.

Let us emphasize at this stage the tremendous simplifications that the Couette
model allows for. Owing to the simple geometric setting and the fact that the flow is
assumed laminar, the divergence-free constraint (8) is fulfilled by construction of the
velocity field and can be eliminated from the system. In addition, the transport terms
(uuu ·∇)uuu and (uuu ·∇)ψ cancel out, again because of geometrical considerations. This
explains the extremely simple form of the equation of conservation of momentum
in this context, which indeed reduces to a simple one-dimensional heat equation.
This set of simplifications is specific to the Couette flow. Substantial difficulties arise
otherwise.

We now describe the numerical approach for (104). To begin with, we present the
(simple) finite element discretization of the macroscopic equation. Then we turn to
the numerical approach employed for the Fokker-Planck equation. The variant using
a stochastic differential equation then follows.

5.2 Discretization of the macroscopic equation

Let us consider the stress τ(t,y) is known, and perform the variational formulation
of the equation in (104) determining the velocity

Re
∂u
∂ t

(t,y) = (1 − ε)
∂ 2u
∂y2 (t,y)+

∂τ
∂y

(t,y)

with a view, next, to discretize it using finite elements. Our formulation is
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




Search for u : [0,T ] −→ H1
1 (0,L) such that

∀v ∈ H1
0 (0,L), Re

d
dt

(u(t),v)L2 = −(1 − ε)
(

∂u
∂y

(t),
∂v
∂y

)

L2
−

(
τ(t),

∂v
∂y

)

L2
,

u(0,y) = 0,
(105)

where we have denoted

H1
0 (0,L) =

{
v ∈ H1(0,L), v(0) = 0, v(L) = 0

}

and
H1

1 (0,L) =
{

v ∈ H1(0,L), v(0) = 1, v(L) = 0
}

.

As regards the discretization, we introduce the shape functions for P1 finite ele-
ments (for the velocity)

ϕi(y) =






1 wheny = i
N ,

affine on

[
i− 1

N
,

i
N

]
and

[
i
N

,
i+ 1

N

]
,

0 wheny ∈
[

0,
i− 1

N

]
∪

[
i+ 1

N
,1

]
,

(106)

(for 0 ≤ i ≤ N), with the obvious adaptations when i = 0 and i = N, and the shape
functions for P0 finite elements (for the stress)

χi(y) =





1 wheny ∈

[
i− 1

N
,

i
N

)
,

0 otherwise ,
(107)

(for 1 ≤ i ≤ N), both on a regular mesh over [0,L], with meshsize h = ∆y =
1
N

. The

approximations for τ and u then read

τh(t,y) =
N

∑
i=1

(τh)i(t)χi(y), (108)

uh(t,y) =
N−1

∑
i=1

(uh)i(t)ϕi(y) +V ϕN(y),

respectively. Note indeed, that, because of the boundary condition, we have for all
t > 0, (uh)0(t) = 0 and (uh)N(t) = V .

It remains to discretize in time, which we do using a backward Euler scheme for
the viscous term. The fully discrete formulation is thus
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




Solve for (uh)n
j for j = 1, . . . ,N − 1and forn ≥ 0

such that (uh)0
j ≡ 0and ∀i = 1, . . . ,N − 1,

Re





N−1

∑
j=1

(uh)n+1
j ϕ j −

N−1

∑
j=1

(uh)n
jϕ j

∆ t
,ϕi





L2

= (1 − ε)

(
∂
∂y

(
N−1

∑
j=1

(uh)n+1
j ϕ j + VϕN

)
,

∂
∂y

ϕi

)

L2

−
(

(τh)n,
∂
∂y

ϕi

)

L2

(109)
where (τh)n denotes the approximation of τh at time tn.

In algebraic terms, this writes

ReM
Un+1 −Un

∆ t
= −(1 − ε)AUn+1 − GSn + B, (110)

where

Un =
[
(uh)n

1, . . . ,(u
h)n

N−1

]T

is the unknown,

Sn =
[
(τh)n

1, . . . ,(τ
h)n

N

]T
,

and G is a matrix with (i, j)-entry

Gi, j =
∫ L

0

∂ϕi

∂y
χ j dy. (111)

The vector B = −(1−ε)V
[
0, . . . ,0,

∫ L
0

∂ϕN
∂y

∂ϕN−1
∂y dy

]T
is associated with the Dirich-

let boundary condition. The matrices M and A respectively denote the matrices of
mass and rigidity of the P1 finite elements:

Mi, j =
∫ L

0
ϕi ϕ j dy, (112)

Ai, j =
∫ L

0

∂ϕi

∂y

∂ϕ j

∂y
dy. (113)

5.3 Microscopic problem: the deterministic approach

We now turn to the discretization of the Fokker-Planck equation in (104), that is
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∂ψ
∂ t

(t,y,P,Q) = −
∂

∂P

((
∂u
∂y

(t,y)Q−
1

2We
P

)
ψ(t,y,P,Q)

)
(114)

+
∂

∂Q

(
1

2We
Qψ(t,y,P,Q)

)
+

1
2We

(
∂ 2

∂P2 +
∂ 2

∂Q2

)
ψ(t,y,P,Q).

Since y is only a parameter, we omit to mention the explicit dependence of ψ upon
this parameter throughout this paragraph.

We introduce the equilibrium solution of (114) (i.e. the steady state solution
of (114) for u = 0), namely

ψ∞(P,Q) =
1

2π
exp

(
−P2 + Q2

2

)
. (115)

We next change the unknown function in (114) setting

ϕ =
ψ
ψ∞

(116)

and rewrite (114) as

ψ∞
∂ϕ
∂ t

(t,P,Q) = −
∂

∂P

(
∂u
∂y

Qψ∞ ϕ
)

+
1

2We
∂

∂P

(
ψ∞

∂
∂P

ϕ
)

+
1

2We
∂

∂Q

(
ψ∞

∂
∂Q

ϕ
)

(117)

which is readily semi-discretized in time as

ψ∞
ϕn+1 − ϕn

∆ t
= − ∂

∂P

(
∂u
∂y

Qψ∞ ϕn

)

+
1

2We
∂

∂P

(
ψ∞

∂
∂P

ϕn+1

)
+

1
2We

∂
∂Q

(
ψ∞

∂
∂Q

ϕn+1

)
. (118)

A variational formulation of (118) on an appropriate functional space V (see for






Solve for ϕn ∈ V for n ≥ 0 such that ∀θ ∈ V ,
∫ ϕn+1 − ϕn

∆ t
θ ψ∞ =

∫ ∂u
∂y

Q
∂θ
∂P

ϕnψ∞

− 1
2We

∫ ∂θ
∂P

∂ϕn+1

∂P
ψ∞ − 1

2We

∫ ∂θ
∂Q

∂ϕn+1

∂Q
ψ∞,

ϕ0 = 1.

(119)

The most appropriate basis to use for the Galerkin basis in (119) is a basis con-
sisting of (tensor products of) Hermite polynomials Hi:

χi, j(P,Q) = Hi(P)Hj(Q), (120)

example B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto [65, Appendix B]) is then:
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where

H0(P) = 1, H1(P) = P, H2(P) =
1√
2

(P2 − 1). (121)

Indeed, since
1√
2π

∫

R

Hi(P)Hj(P)exp(−P2/2)dP = δi j , (122)

and since the Gaussian function is precisely the stationary solution to the equation
under consideration, the basis of Hermite polynomials is well adapted to the prob-
lem under consideration. In particular, the mass matrix related to the discretization
of

∫ ϕn+1−ϕn
∆ t θ ψ∞ in (119) is the identity matrix. The matrix associated with the dis-

cretization of the diffusion terms
∫ ∂θ

∂P
∂ϕn+1

∂P ψ∞ +
∫ ∂θ

∂Q
∂ϕn+1

∂Q ψ∞ in (119) is diagonal.
In addition, the use of such a spectral basis allows to circumvent the practical diffi-
culty related to the fact that the equation is posed on the whole space.

5.4 Microscopic problem: the stochastic approach

Instead of using the Fokker-Planck equation viewpoint, we may alternatively intro-
duce the couple of stochastic differential equations






dP(t,y) =
(

∂u
∂y

(t,y)Q(t)− 1
2We

P(t,y)
)

dt +
1√
We

dVt ,

dQ(t) = −
1

2We
Q(t)dt +

1√
We

dWt ,

(123)

where Vt and Wt are two independent one-dimensional Brownian motions, and next
evaluate the stress with

τ(t,y) =
ε

We

∫

R2
PQψ(t,y,P,Q)dPdQ =

ε
We

E(P(t,y)Q(t)). (124)

Note that in this simple geometry and for Hookean dumbbells, Q(t) does not depend
on y.

In order to solve (123), we supply it with initial conditions homogeneous in y,
and use a forward Euler scheme:






Pn+1
i = ∆ t

Un+1
i −Un+1

i−1

∆y
Qn +

(
1 − ∆ t

2We

)
Pn

i +

√
∆ t
We

∆V n
i ,

Qn+1 =
(

1 − ∆ t
2We

)
Qn +

√
∆ t
We

∆W n,

(125)

for 1 ≤ i ≤ N, where ∆V n
i and ∆W n are standard normal random variables. The stress

is then given by

(τh)n+1
i =

ε
We

E(Pn+1
i Qn+1). (126)

Following the standard Monte Carlo method, (126) is approximated replacing the

of the random variables Pn
i and Qn is generated: (for 1 ≤ i ≤ N)

expectation value by an empirical mean. A supposedly large number K of realizations
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Pn+1
i,k = ∆ t

Un+1
i −Un+1

i−1

∆y
Qk

n +
(

1 −
∆ t

2We

)
Pn

i,k +

√
∆ t
We

V n
i,k, (127)

Qn+1
k =

(
1 − ∆ t

2We

)
Qn

k +

√
∆ t
We

W n
k , (128)

for 1 ≤ k ≤ K, and

(τh)n+1
i =

ε
We

1
K

K

∑
k=1

Pn+1
i,k Qn+1

k (129)

is computed. For the evolution (127)–(128), the initial conditions P0
i and Q0 are

chosen as standard normal random variables, since the fluid is assumed at rest at
initial time.

This discretization is the CONNFFESSIT approach mentioned above, imple-
mented in a simple case.

A crucial remark is the following. Since the stress (τh)n+1
i is an empirical mean

(129), it is thus also a random variable. It follows that the macroscopic velocity
itself, which solves the fully discretized version of (109) is a random variable. On the
contrary, in the limit K → ∞, the stress and the velocity are deterministic quantities
(since the expectation value (126) is a deterministic quantity).

Consequently, when one speaks of computing the velocity or the stress using the
stochastic approach, it implies performing a collection of simulations, and averaging
over the results.

Immediately, this brings into the picture variance issues. Let us briefly explain in
the present context how the noise inherently present in the numerical simulation may
be somewhat reduced. This is the famous variance reduction problem.

A basic approach consists in correlating the trajectories Pi from one index i to
another one. For this purpose, we first take as initial conditions for Pi standard normal
random variables P0

i,k = P0
k that do not depend on i, and second use Brownian motions

V n
k , uniform in i: V n

i,k = V n
k . Equation (127) is thus replaced with

Pn+1
i,k = ∆ t

Un+1
i −Un+1

i−1

∆y
Qk

n +
(

1 − ∆ t
2We

)
Pn

i,k +

√
∆ t
We

V n
k . (130)

It is observed that this technique reduces the variance on the velocity u. In addition,
it provides an empirical mean that is less oscillatory w.r.t. the space variable y than
that obtained from the original approach (see Sect. 6.3 below for more details).

Another method, with a large spectrum of applications, is that of control variate.
The bottom line is to avoid computing E(PQ) directly, and to rather compute each
of the terms of the sum

E(PQ) = E(P̃Q̃)+E(PQ − P̃Q̃)

where P̃ et Q̃ are two processes such that
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• E(P̃Q̃) is easy to compute or approximate, analytically or numerically,
• P̃Q̃ is close enough to PQ so that Var(PQ − P̃Q̃) � Var(PQ).

The two extreme situations are

• P̃ = Q̃ = 0, that is, E(P̃Q̃) is very easy to compute but no variance reduction is
attained,

• P̃ = P and Q̃ = Q, so that Var(PQ − P̃Q̃) = 0 but then E(P̃Q̃) is no easier to
compute than E(PQ) !

Somewhat in the style of preconditioners for the resolution of algebraic systems,
some compromise has to be found. In the specific case under consideration, an ef-
ficient choice consists in defining (P̃,Q̃)(t) as the solution to the same stochastic
differential equations (123) for zero velocity and (P̃,Q̃)(0) = (P,Q)(0) ((P̃,Q̃)(t)

dP̃(t) = − 1
2We

P̃(t)dt +
1√
We

dVt ,

dQ̃(t) = − 1
2We

Q̃(t)dt +
1√
We

dWt .

Clearly, both Q̃ and Q satisfy the same equation, and P̃ does not depend on y. On the
other hand, E(P̃Q̃) = 0 since P̃ and Q̃ are independent (since they are at initial time),
and both of zero mean (arguing on the above stochastic differential equations). In
order to simulate E(PQ − P̃Q̃), the forward Euler scheme is employed: for each n,
we set Q̃n

k = Qn
k and

P̃n+1
i,k =

(
1 − ∆ t

2We

)
P̃n

i,k +

√
∆ t
We

V n
i,k. (131)

Of course, in order for an effective variance reduction to be reached, the same Gaus-
sian variables V n

i,k are to be used for simulating both P̃ and P. If independent random
variables were used for simulating P̃ and P, P̃ and P would be independent random
variables and thus Var(P − P̃) = Var(P)+ Var(P̃) > Var(P).

The simulation of (τh)n+1
i consists in solving

(τh)n+1
i =

ε
We

E(PQ),

=
ε

We
(E(P̃Q̃)+E(PQ − P̃Q̃)),

=
ε

We
(0 +E(PQ − P̃Q̃)),

≈ ε
We

1
K

K

∑
k=1

(Pn+1
i,k Qn+1

k − P̃n+1
i,k Q̃n+1

k ),

≈ ε
We

1
K

K

∑
k=1

((Pn+1
i,k − P̃n+1

i,k )Qn+1
k ), (132)

remains at equilibrium):
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instead of (129).

n h n

h)n), in order to advance forward in time ∆ t, is:

(1) Knowing all (τh)n
i

macroscopic equation (110) to obtain the velocity values Un+1
i (1 ≤ i ≤ N − 1).

(2) On each space interval with length ∆y,
(2.1) An ensemble of K realizations of the random variables V n

i,k and W n
k (1 ≤

k ≤ K) are simulated ; If variance reduction by control variate is used, the
random variables P̃i,k are updated following (131);

(2.2) Using the values Un+1
i (1 ≤ i ≤ N −1) in the schemes (127)–(128) discretiz-

ing the SDEs (123), the values Pn+1
i,k and Qn+1

k are obtained;
(2.3) By computing the empirical mean (129) over the K realizations, the stress

(τh)n+1
i is obtained at the next timestep.

5.5 Extension to the FENE model

In the FENE model, the SDE that has to be discretized is

dXXXt + uuu.∇XXXt dt = ∇uuuXXXt dt − 1
2We

XXXt

1 −‖XXXt‖2/b
dt +

1√
We

dWWWt . (133)

In the specific geometric setting of this section, denoting XXXt = (P(t),Q(t)) and WWWt =
(Vt ,Wt), (133) writes:






dP(t,y) =
(

∂u
∂y

(t,y)Q(t,y)− 1
2We

P(t,y)
1 − (P(t,y)2 + Q(t,y)2)/b

)
dt

+
1√
We

dVt ,

dQ(t,y) = − 1
2We

Q(t,y)
1 − (P(t,y)2 + Q(t,y)2)/b

dt +
1√
We

dWt .

(134)

In contrast to the Hookean dumbbell case, notice that Q is now also depending on
the space variable y.

Let us now discuss how to discretize this SDE, and what type of control variate

Compared to the Hookean dumbbell case, an additional difficulty of the dis-
cretization of (133) is the singularity of the force when ‖XXXt‖2 goes to b. It can be

tic process XXXt does not hit the boundary of B(0,
√

b) in finite time, provided b > 2.
Notice that without the Brownian term, it would be clear that XXXt remains inside
B(0,

√
b) but this fact is not so clear in the SDE case, and actually requires an as-

erty for the discrete process XXXn. A naı̈ve Euler scheme such as (127)–(128) does not

for all intervals indexed by i, these values are used in the

Summarizing the above, the computation performed at time t , knowing ((u ) ,
(τ

technique may be employed to reduce the variance.

shown (see B. Jourdain and T. Lelièvre [66]) that, at the continuous level, the stochas-

sumption on b. When discretizing (133), one is interested in imposing also this prop-
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satisfy this property. One option is to simply reject draws such that ‖XXXn+1‖2 > b. An
alternative option has been proposed by H.C. Öttinger [102, p. 218-221]. It consists
in treating implicitly the force term, and it can be shown that it yields a discrete pro-
cess XXXn with actual values in B(0,

√
b). Let us write this scheme for the SDE (133)

without the advection term uuu.∇XXXt dt:






XXXn+1 = XXXn + ∇uuunXXXn∆ t − 1
2We

XXXn

1 −‖XXXn‖2/b
∆ t +

√
∆ t
We

GGGn,
(

1 +
1

4We
∆ t

1 −‖XXXn+1‖2/b

)
XXXn+1 = XXXn

+
1
2

(
∇uuunXXXn + ∇uuun+1XXXn+1 − 1

2We
XXXn

1 −‖XXXn‖2/b

)
∆ t +

√
∆ t
We

GGGn,

(135)

where GGGn are i.i.d. Gaussian variables with covariance matrix Id.
We next consider the question of variance reduction by control variate. As men-

tioned above, the idea is to compute the stress tensor as

τττ p =
ε

We

(
E

(
XXXt ⊗ XXXt

1 −‖XXXt‖2/b
− X̃XXt ⊗ F̃FF(X̃XXt)

)
+E

(
X̃XXt ⊗ F̃FF(X̃XXt)

))
,

X̃ t F̃
F̃FF = FFF) such that the variance of the term in the first expectation,

E

(
XXXt ⊗ XXXt

Xt
2 − X̃XXt ⊗ F̃FF(X̃XXt)

)
,

is as small as possible, and the computation of the second expectation E
(
X̃XXt ⊗ F̃FF(X̃XXt)

)

is easy. For the variance of the first term to be small, X̃XXt needs to be as close as pos-
sible to XXXt (in stochastic terms, X̃XXt needs to be coupled to XXXt ). In particular, one
requires that XXX0 = X̃XX0 and the Brownian motion driving XXXt is the same as the one
driving X̃XXt .

Then two types of control variate are classically used (see J. Bonvin and M. Pi-
casso [16]). As in the previous section for Hookean dumbbells, X̃XXt can be the process
“at equilibrium”. It consists in computing X̃XXt as the solution to the same SDE as XXXt

(and thus F̃FF = FFF) without the term ∇uuuXXXt dt. If XXX0 = X̃XX0 is distributed according to
the invariant law of the SDE, then the law of X̃XXt does not depend on time and thus

E

(
X̃XXt ⊗ X̃XXt

1 −‖X̃XXt‖2/b

)
= E

(
X̃XX0 ⊗ X̃XX0

1 −‖X̃XX0‖2/b

)

which can be analytically computed. This method typically works when the system
remains close to equilibrium.

When the system goes out of equilibrium, another idea is to use a closure ap-
proximation to obtain a model which is close to the FENE model, but which has a
macroscopic equivalent so that the second term E

(
X̃XXt ⊗ F̃FF(X̃XXt)

)
can be computed

by discretizing a PDE (which is very cheap compared to the Monte Carlo method).

where XX

1 −‖XX ‖ /b

is a suitable chosen stochastic process, and FF an adequate force (for ex-
ample
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For example, one can take the Hookean dumbbell model (F̃FF(X̃XXt) = X̃XXt ) and compute
E

(
X̃XXt ⊗ X̃XXt

)
by solving the PDE for the Oldroyd-B model. One can also choose the

FENE-P model (F̃FF(X̃XXt) = X̃XXt⊗X̃XXt
1−E‖X̃XXt‖2/b

) and compute E
(
X̃XXt ⊗ F̃FF(X̃XXt)

)
by solving the

associated PDE (28). Closure relations are thus important not only to obtain macro-
scopic models with microscopic interpretation, but also to build efficient variance
reduction methods. For closure relations for the FENE model, we refer to Q. Du,
C. Liu and P. Yu [37, 32].

5.6 MATLAB codes

In this section, we give the MATLAB codes3 for the computation of the velocity and
the stress in a Couette flow for the Hookean dumbbell model (start-up of shear flow).
We recall that this model is equivalent to the Oldroyd-B model. We thus have three
formulations of the problem:

• The macro-macro formulation:




Re

∂u
∂ t

(t,y)− (1 − ε)
∂ 2u
∂y2 (t,y) =

∂τ
∂y

(t,y),
∂τ
∂ t + 1

We τ = ε
We

∂u
∂y .

(136)

• The micro-macro formulation with the SDEs:





Re
∂u
∂ t

(t,y)− (1 − ε)
∂ 2u
∂y2 (t,y) =

∂τ
∂y

(t,y),

τ(t,y) =
ε

We
E(Xt(y)Yt),

dXt(y) =
∂u
∂y

(t,y)Yt dt − 1
2We

Xt(y)dt +
1√
We

dVt ,

dYt = − 1
2We

Yt dt +
1√
We

dWt .

(137)

• The micro-macro formulation with the Fokker-Planck equation:






Re
∂u
∂ t

(t,y)− (1 − ε)
∂ 2u
∂y2 (t,y) =

∂τ
∂y

(t,y),

τ(t,y) =
ε

We

∫
XY p(t,y,X ,Y )dXdY ,

∂ p
∂ t

= −div (X ,Y )

((
(

∂u
∂y

Y,0)− (X ,Y)
1

2We

)
p

)
+

1
2We

∆(X ,Y )p.

(138)

We now insert the MATLAB source Couette Oldroyd B.m for the discretiza-
tion of (136).

3 The codes are available at the following address:
http://hal.inria.fr/inria-00165171
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clear all;

% Physical parameters
Re=0.1;Eps=0.9;We=0.5;
v=1.;
T=1.; % Maximal time

% Discretization
% Space
I=100;
dx=1/I;mesh=[0:dx:1];
% Time
N=100;
dt=T/N;

% Matrices
D1=diag(ones(1,I-1),-1);D1=D1(2:I,:);D1=[D1,zeros(I-1,1)];
D2=diag(ones(1,I-1));D2=[zeros(I-1,1),D2,zeros(I-1,1)];
D3=diag(ones(1,I-1),+1);D3=D3(1:(I-1),:);D3=[zeros(I-1,1),D3];
% Mass matrix
M=(1/6)*D1+(2/3)*D2+(1/6)*D3;
M=M.*dx;M=sparse(M);
MM=M(:,2:I);
% Stiffness matrix
A=(-1)*D1+2*D2+(-1)*D3;
A=A./dx;A=sparse(A);
AA=A(:,2:I);
BB=Re*MM./dt+(1-Eps)*AA;

% Vectors
u=zeros(I+1,1); % Initial velocity
tau=zeros(I,1); % Initial stress: \E(PQ)=0 at t=0
gradtau=zeros(I-1,1);
CLL=zeros(I+1,1);

% Time iterations
for t=dt:dt:T,

uold=u;
gradtau=tau(2:I)-tau(1:(I-1));
if ((t/T)<0.1)

CLL(1)=v*10*(t/T);
else

CLL(1)=v ;
end;
CL=(Re*M./dt+(1-Eps)*A)*CLL;
F=(Re*M./dt)*u-CL+(Eps/We)*gradtau;
u(2:I)=BB\F;
if ((t/T)<0.1)

u(1)=v*10*(t/T);
else

u(1)=v;
end;
for l=1:I

tau(l)=(1-dt/We).*tau(l)+(dt/dx)*(u(l+1)-u(l));
% tau(l)=(1-dt/We).*tau(l)+dt/dx*(uold(l+1)-uold(l));

end;
% Drawings
plot(mesh',u,mesh',[(Eps/We)*tau;(Eps/We)*tau(I)]);
axis([0 1 -1 1.2]);
drawnow;

end;
legend('velocity','stress');

Exercise 1. Compare numerically and theoretically the stability of the two time-
discretizations:
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




Re
δ t

(un+1(y)− un(y))− (1 − ε)
∂ 2un+1

∂y2 (y) =
∂τn

∂y
(y),

1
δ t

(τn+1(y)− τn(y))+
1

We
τn+1(y) =

ε
We

∂un+1

∂y
,

(139)

and 




Re
δ t

(un+1(y)− un(y))− (1 − ε)
∂ 2un+1

∂y2 (y) =
∂τn

∂y
(y),

1
δ t

(τn+1(y)− τn(y))+
1

We
τn+1(y) =

ε
We

∂un

∂y
,

(140)

for zero Dirichlet boundary conditions on un.
Hint: For the numerics, choose a sufficiently large timestep. For the numerical

analysis, consider the quantity En = Re
∫ 1

0 |un|2(y)dy + We
ε

∫ 1
0 |τn|2(y)dy and prove

that En+1 ≤ En, for a sufficiently small timestep for the scheme (139). Can you prove
a similar result for the scheme (140) ? How to modify these schemes to obtain a
stable scheme whatever the timestep ?

Below is the MATLAB source Couette MC VarReduc.m for the discretiza-
tion of (137).

clear all;

% Physical parameters
Re=0.1;Eps=0.9;We=0.5;
v=1.;
T=1; % Maximal time

% Numerical parameters
% Space
I=100;
dx=1/I;mesh=[0:dx:1];
% Time
N=100;
dt=T/N;
% Number of polymers per cell (Monte Carlo)
J=1000;

% Matrices
D1=diag(ones(1,I-1),-1);D1=D1(2:I,:);D1=[D1,zeros(I-1,1)];
D2=diag(ones(1,I-1));D2=[zeros(I-1,1),D2,zeros(I-1,1)];
D3=diag(ones(1,I-1),+1);D3=D3(1:(I-1),:);D3=[zeros(I-1,1),D3];
% Mass matrix
M=(1/6)*D1+(2/3)*D2+(1/6)*D3;
M=M.*dx;M=sparse(M);
MM=M(:,2:I);
% Stiffness matrix
A=(-1)*D1+2*D2+(-1)*D3;
A=A./dx;A=sparse(A);
AA=A(:,2:I);
BB=Re*MM./dt+(1-Eps)*AA;

% Vectors
u=zeros(I+1,1); % Initial velocity
Y=zeros(J,1);X=zeros(J,I);
X_var_controle=zeros(J,1); % Control variate
Y=randn(size(Y));
% Initial condition not depending on the space variable
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X=randn(J,1)*ones(1,I);
X_var_controle=X(:,1);
tau=zeros(I,1);
gradtau=zeros(I-1,1);
CLL=zeros(I+1,1);

% Time iterations
for t=dt:dt:T,

for l=1:I,
tau(l)=sum(Y.*(X(:,l)-X_var_controle))/J;

end;
tau=(Eps/We)*tau;
gradtau=tau(2:I)-tau(1:(I-1));
if ((t/T)<0.1)

CLL(1)=v*10*(t/T);
else

CLL(1)=v ;
end;
CL=(Re*M./dt+(1-Eps)*A)*CLL;
F=(Re*M./dt)*u-CL+gradtau;
u(2:I)=BB\F;
if ((t/T)<0.1)

u(1)=v*10*(t/T);
else

u(1)=v;
end;
% Y, X and X_var_controle
r=randn(J,1);
for l=1:I,

X(:,l)=(1-dt/(2*We))*X(:,l)+(dt/dx)*(u(l+1)-u(l))*Y+sqrt(dt/We)*r;
end;
X_var_controle=(1-dt/(2*We))*X_var_controle+sqrt(dt/We)*r;
Y=(1-dt/(2*We))*Y+sqrt(dt/We)*randn(J,1);
% Drawings
plot(mesh',u,mesh',[tau;tau(I)]);
axis([0 1 -1 1.2]);
drawnow;

end;
legend('velocity','stress');

Exercise 2. Investigate numerically the influence of the number of dumbbells in each
cell. Compare the results with and without variance reduction. Modify the program
to use Brownian motions Vt for Xt which are independent from one cell to another
(again with and without variance reduction). Discuss the results (see Sect. 6.3 below).

Exercise 3. Modify the program to treat FENE dumbbells. You can use either an Eu-
ler scheme to discretize the SDE and a rejection step, or the scheme (135). Program
a variance reduction using the FENE-P model for the control variate.

The MATLAB source Couette FP.m for the discretization of (138) follows.

clear all;

%%%% This file contains some integrals of Hermite polynomials
run Ortho_HD_normalise_20

%%%% Physical parameters
d=2; % dimension of the ambiant space
n=1; % number of springs
% Warning: Only d=2 and n=1 are implemented here
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T=1; % Maximal time
Re=0.1;Eps=0.9;We=0.5;v=1.;

%%%% Discretization
% Space
I_esp=100; % number of spacesteps
dx=1/I_esp;mesh=0:dx:1;
% Time
N=100; % number of timesteps
dt=T/N; % timstep

l_max=2; % Maximal degree of Hermite polynomials
% Discretisation for q: FULL TENSOR PRODUCT
dim=(l_max+1)*(l_max+1);
disp('Dimension of the Galerkin basis for Fokker-Planck:');disp(dim);

% To get the tensorial index as a function of the absolute index
% 0 \leq nu(1) \leq l_max
get_nu=@(i) [ floor((i-1)/(l_max+1)), i-1-floor((i-1)/(l_max+1))*(l_max+1)];

% To get the absolute index as a function of the tensorial index
% 1 \leq i \leq dim
get_i=@(nu) 1+nu(1)*(l_max+1)+nu(2);

% Matrix S
D1=diag(ones(1,n*d),-d);D1=D1((d+1):(n+1)*d,:);
D2=diag(ones(1,n*d),d);D2=D2(1:n*d,:);
S=-D1+D2;
% Matrix D
D=S*S';
% Here, D=2 Id

%%%% Operators
disp('Computing matrices...');
%%%% Operators for Fokker-Planck
M=zeros(dim,dim);
G_de_base=zeros(dim,dim);
A=zeros(dim,dim);
% \int_X (1/dt qˆ{n+1}) r \omega
% since int_P_P= Id, this is only Id
M=eye(dim,dim);
% G = Nabla_u : \int_X ( \nabla_X r \otimes X ) q \omega
% G depends on the timestep
% G=nabla_u*G_de_base where nabla_u is the off-diagonal component
% of the matrix \nabla u
for i=1:dim % r_i

for j=1:dim % q_j
% +1 : to get the indices of Ortho_HD_normalise.m
nu_i=get_nu(i)+1;
nu_j=get_nu(j)+1;
G_de_base(i,j)=int_DP_P(nu_i(1),nu_j(1))*int_P_X_P(nu_i(2),nu_j(2));

end
end
% A = D : \int_X ( \nabla_X q \otimes \nabla_X r) \omega
% Here, D=2 Id
% D(1,1) * \int \partial_{X_1}P_{i}(x) \partial_{X_1}P_{j}(x) \omega
for i=1:dim % r_i

for j=1:dim % q_j
nu_i=get_nu(i)+1;
nu_j=get_nu(j)+1;
A(i,j)=A(i,j)+D(1,1)*int_DP_DP(nu_i(1),nu_j(1))...

*int_P_P(nu_i(2),nu_j(2));
end

end
% D(2,2) * \int \partial_{X_2}P_{i}(x) \partial_{X_2}P_{j}(x) \omega
for i=1:dim % r_i

for j=1:dim % q_j
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nu_i=get_nu(i)+1;
nu_j=get_nu(j)+1;
A(i,j)=A(i,j)+D(2,2)*int_P_P(nu_i(1),nu_j(1))...

*int_DP_DP(nu_i(2),nu_j(2));
end

end
% Computation of \int X_1 X_2 P_{i}(x) \omega
% This vector is useful to compute tau
int_X_X_q_1_2=zeros(dim,1);
for i=1:dim

nu_i=get_nu(i)+1;
int_X_X_q_1_2(i)=int_X_P(nu_i(1))*int_X_P(nu_i(2));

end;
%%%% Operators for the velocity
D1=diag(ones(1,I_esp-1),-1);D1=D1(2:I_esp,:);D1=[D1,zeros(I_esp-1,1)];
D2=diag(ones(1,I_esp-1));D2=[zeros(I_esp-1,1),D2,zeros(I_esp-1,1)];
D3=diag(ones(1,I_esp-1),+1);D3=D3(1:(I_esp-1),:);D3=[zeros(I_esp-1,1),D3];
% Mass matrix
M_esp=(1/6)*D1+(2/3)*D2+(1/6)*D3;
M_esp=M_esp.*dx;
M_esp=sparse(M_esp);
MM_esp=M_esp(:,2:I_esp);
% Stiffness matrix
A_esp=(-1)*D1+2*D2+(-1)*D3;
A_esp=A_esp./dx;
A_esp=sparse(A_esp);
AA_esp=A_esp(:,2:I_esp);
BB_esp=Re*MM_esp./dt+(1-Eps)*AA_esp;
%%%% Vectors
% initial conditions
u=zeros(I_esp+1,1); % velocity is zero
q=zeros(dim,I_esp);
q(1,:)=ones(1,I_esp); % equilibrium at each point
tau=zeros(I_esp,1);
gradtau=zeros(I_esp-1,1);
nabla_u=0;
CLL=zeros(I_esp+1,1);

%%%% Time iterations
disp('Time iterations');
for t=dt:dt:T,

q_old=q;
u_old=u;
% Computation of u
gradtau=tau(2:I_esp)-tau(1:(I_esp-1));
if ((t/T)<0.1)

CLL(1)=v*10*(t/T);
else

CLL(1)=v ;
end;
CL=(Re*M_esp./dt+(1-Eps)*A_esp)*CLL;
F=(Re*M_esp./dt)*u-CL+gradtau;
u(2:I_esp)=BB_esp\F;
if ((t/T)<0.1)

u(1)=v*10*(t/T);
else

u(1)=v;
end;
% computation of tau
for l=1:I_esp % iteration on the cells

nabla_u=(u(l+1)-u(l))/dx;
nabla_u_old=(u_old(l+1)-u_old(l))/dx;
% computation of q(:,l)
G=nabla_u*G_de_base;
G_old=nabla_u_old*G_de_base;
% Crank Nicholson
M_n_p_1=(1/dt)*M - 0.5*(G-A/(4*We));



Multiscale Modelling of Complex Fluids 111

M_n=(1/dt)*M + 0.5*(G_old-A/(4*We));
q(:,l)=M_n_p_1\(M_n*q_old(:,l));
% Computation of tau(l)
% tau = \int_X ( X \otimes X ) q \omega
tau(l)=(Eps/We)*(q(:,l)'*int_X_X_q_1_2);

end;
% Drawings
plot(mesh',u,mesh',[tau;tau(I_esp)]);
axis([0 1 -1 1.2]);
drawnow;

end;
legend('velocity','stress');

Exercise 4. Compare the results obtained with the three formulations. Which formu-
lation is the most efficient computationally ? Discuss the applicability of these three
formulations to the following two more general settings: chain of N > 2 beads linked
with Hookean springs, FENE dumbbell model.

6 Mathematical and numerical issues

As mentioned earlier, the present section is much more elaborate mathematically
than the preceeding sections.

6.1 Overview of the main difficulties

Let us first formally summarize the difficulties raised by the mathematical analysis
of systems such as (50) and (98) (for micro-macro models) or (23) (for macro-macro
models).

These systems of equations include the Navier-Stokes equations, with the addi-
tional term divτττ p in the right-hand side. The equation on τττ p is essentially a transport
equation and, formally, τττ p has at most the regularity of ∇uuu (this fact will be clear
in the choice of appropriate functional spaces for existence results, and of the dis-
cretization spaces for numerical methods). The term divτττ p in the right-hand side in
the momentum equation is not likely to bring more regularity on uuu. It is thus expected
that the study of these coupled systems contains at least the well-known difficulties
of the Navier-Stokes equations. Recall that for the (3-dimensional) Navier-Stokes
equations, it is known that global-in-time weak solutions exist but the regularity,
and thus the uniqueness, of such solutions is an open problem. Only local-in-time
existence and uniqueness results of strong solutions are available.

In addition to the difficulties already contained in the Navier-Stokes equations
(which essentially originate from the Navier term uuu ·∇uuu), the coupling with the equa-
tion on τττ p raises other problems. First, these equations (both for macro-macro and
micro-macro models) contain a transport term (uuu · ∇τττ p, uuu · ∇ψ or uuu · ∇XXXt ) with-
out diffusion terms (in the space variable). They are hyperbolic in nature. The reg-
ularity on the velocity uuu is typically not sufficient to treat this transport term by
a characteristic method. Moreover, these equations involve a nonlinear multiplica-
tive term (∇uuu∇τττ p, divXXX (∇uuuXXX∇ψ) or ∇uuuXXXt ). Finally, except for very simple models
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(Oldroyd-B or Hookean dumbbell), the equations defining τττ p generally contain ad-
F

To summarize, the difficulties raised by mathematical analysis of these models
are related to:

•
• nonlinear terms coming either from the coupling between the equations and

(uuu, p) and τττ p τ p.

the numericals methods (choice of the discretization spaces, stability of the numer-
ical schemes, ...). Actually, the problems raised by the discretization we mentioned
in Sect. 4.4 can be seen as counterparts of the difficulties raised by the mathemat-
ical analysis. Many questions are still open, and the mathematical analysis and the
numerical analysis for viscoelastic fluids are very lively fields.

In the following, we provide more detailed results for macro-macro models, and,
next, micro-macro models. Considering the focus of the present article, more em-
phasis is laid on the latter.

6.2 Macroscopic models

We refer to M. Renardy [112] or E. Fernandez-Cara, F. Guillen and R.R. Ortega [44]
for a review of the mathematical analysis of macroscopic models. For the nu-
merical methods, we refer to R. Keunings [70] F.P.T. Baaijens [6] R. Owens and
T. Phillips [104]. We recall the prototypical macroscopic model, namely the Oldroyd-
B model:






Re

(
∂uuu
∂ t

+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

We

(
∂τττ p

∂ t
+ uuu ·∇τττ p − ∇uuuτττ p − τττ p(∇uuu)T

)
+ τττ p = ε(∇uuu + ∇uuuT ).

(141)

Mathematical results

Concerning existence results for macroscopic models, four types of results can be
found in the litterature:

• local-in-time results (perturbation of the initial condition),
• global-in-time results for small data (perturbation of the stationary solution),
• existence results for stationary solutions close to equilibrium solutions,
• existence results for stationary solutions close to Navier-Stokes stationary solu-

tions.

local-in-time existence and uniqueness results. They also have many implications on

, or inherently contained in the equations defining ττ

ditional non-linearities (for micro-macro model, the force FF is generally non-linear

transport terms,

These difficulties limit the state-of-the-art mathematical well-posedness analysis to

and typically blows up when the length of the polymer reaches a critical value).
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For illustration, let us only mention the result obtained by M. Renardy in [110].
The author considers the following coupled problem, in a bounded domain D of R3:






ρ
(

∂uuu
∂ t

+ uuu.∇uuu

)
= divτττ p − ∇p + fff ,

divuuu = 0,(
∂
∂ t

+ uuu.∇
)

(τττ p)i, j = AAAi, j,k,l(τττ p)
∂uuuk

∂xxxl
+ gggi, j(τττ p),

(142)

with summation convention on repeated indices. The fluid is inviscid (η = 0). This
system is supplied with homogeneous Dirichlet boundary condition on the velocity uuu,
and initial conditions. The differential models introduced in Sect. 2.3 indeed enter
this framework. Introduce the fourth order tensor:

CCCi, j,k,l = AAAi, j,k,l − (τττ p)i,lδk, j, (143)

where δ is the Kronecker symbol. Assume the following strong ellipticity property
on CCC: ∀ζ ,η ∈ R3

CCCi, j,k,l(τττ p)ζiζkη jηl ≥ κ |ζ |2|η |2 (144)

where κ > 0 is a constant not depending on τττ p. Under additional assumptions of
symmetry on the tensor AAA, of regularity and compatibility on the initial conditions, it
is shown by M. Renardy in [110] that:

Theorem 1. There exists a time T ′ > 0, such that the system (142) admits a unique
solution with regularity:

uuu ∈
4⋂

k=0

C
k([0,T ′],H4−k(D), τττ p ∈

3⋂

k=0

C
k([0,T ′],H3−k(D)).

tence results for less regular solutions are obtained there for non-zero viscosity of the
solvent η > 0. In a series of works, E. Fernandez-Cara, F. Guillen and R.R. Ortega
study the local well-posedness in Sobolev spaces (see [44] and references therein).

in-time existence and uniqueness results and global-in-time existence and uniqueness

The only global-in-time existence result we are aware of is the work of P.-L. Li-
ons and N. Masmoudi [89] where an Oldroyd-like model is studied, but with the
corotational convective derivative on the stress tensor rather than the upper convected
derivative.

Besides, there exist many studies on the stability of viscoelastic flows, and the
change of mathematical nature of the equations (transition from parabolic to hyper-
bolic). We refer to M. Renardy [112], R. Owens and T. Phillips [104] and references
therein.

results for small data are proven for Oldroyd-like models.

The works of C. Guillopé and J.C. Saut [53, 54] are also to be mentioned. Exis-

We also mention the work of F.-H. Lin, C. Liu and P.W. Zhang [86] where local-
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Numerical methods

Most of the numerical methods employed in practice to simulate such models are
based upon a finite element discretization in space (see however R. Owens and
T. Phillips [104] for spectral methods) and a finite difference discretization in time
(usually Euler schemes), with a decoupled computation of (uuu, p) and τττ p. More pre-
cisely, at each timestep, the equation for (uuu, p) is first solved, given the current stress
tensor τττ p. This allows to update the velocity. Next, the equation for τττ p is solved, and
the stress is updated.

We have already mentioned in Sect. 4.4 the main three difficulties raised by
the discretization: (i) a compatibility condition is needed between the discretization
spaces for uuu and for τττ p, (ii) the transport terms need to be correctly discretized, (iii)

describe how to deal with these difficulties for macroscopic models. Notice that, as
observed in Sect. 4.4, the three difficulties mentioned above are also present for the
discretization of micro-macro models. Most of the methods described below are thus
also useful for the discretization of micro-macro models.

Concerning difficulty (i), it actually appears that an inf-sup condition is required
for the three discretization spaces for respectively the pressure, the velocity and the
stress tensor. More precisely, in addition to the usual inf-sup condition required for
the discretization spaces for the velocity and the pressure, a compatibility between
the discretization space for the velocity and that for the stress tensor is required to
obtain stable schemes when η is small as compared to ηp

These compatibility conditions have been analyzed by J.C. Bonvin M. Picasso and
R. Sternberg in [18, 17] on the three-field Stokes system:






−η∆uuu+ ∇p − divτττ p = fff ,
divuuu = 0,
τττ p − ηpγ̇γγ = ggg.

(145)

Many methods have been proposed in the literature to treat the problem:

• Use discretization spaces that satisfy an inf-sup condition. These are usually dif-
ficult to implement (see for example J.M. Marchal and M.J. Crochet [96]),

• Introduce an additional unknown to avoid this compatibility condition (see the
EVSS method in R. Guénette and M. Fortin [52]),

• Use stabilization methods, like the Galerkin Least Square (GLS) method, which
enables to use the same discretization space for the three unknown fields (see
J.C. Bonvin M. Picasso and R. Sternberg in [18, 17]).

The second difficulty (ii) is raised by the discretization of the advection terms
both in the equation for uuu and for τττ p. It is well known that naı̈ve discretization
by a finite element method leads to unstable schemes. Many techniques have been
used to circumvent this problem: stabilization techniques like Streamline Upwind
Petrov-Galerkin (SUPG) or GLS, Discontinuous Galerkin methods (see M. Fortin
and A. Fortin [46]), or numerical characteristic method (see J.C. Bonvin [18] or the
Backward-tracking Lagrangian Particle Method of P. Wapperom, R. Keunings and

the discretization of the nonlinear terms requires special attention. Let us now briefly

(i.e. when ε is close to 1).
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V. Legat [121]). We refer to R. Owens and T. Phillips [104, Chap. 7] or to R. Ke-
unings [71] for references about these methods in the context of viscoelastic fluid
simulations (see also T. Min, J.Y. Yoo and H. Choi [98] for a comparison between
various numerical schemes). These difficulties are prominent for high Reynolds num-
ber (which is not practically relevant in the context of viscoelastic fluid simulations)
or for high Weissenberg number (which is relevant).

The third difficulty (iii) we mentioned concerns the discretization of the nonlinear
terms. Consider the term ∇uuuτττ p + τττ p(∇uuu)T in the convective derivative of τττ p. In
most of the numerical methods, this term is treated explicitly by taking its value at
the former timestep. Linearizing this term by treating the velocity explicitly and the
stress implicitly leads to an ill-posed problem if the Weissenberg problem is too high.

We mentioned that two of these difficulties are prominent for large Weissenberg
number. It indeed appears that numerical methods become unstable in this latter
regime. This is the so-called High Weissenberg Number Problem (HWNP) we al-
ready mentioned in Sect. 4.4. Many works are related to the HWNP (we refer for
example to R. Owens and T. Phillips [104, Chap. 7]). The HWNP is certainly not
only related to the discretization scheme. It has indeed been observed that for some
geometries, the critical Weissenberg number (above which the scheme is unstable)
decreases with the mesh step size (see R. Keunings [71]), which could indicate a loss
of regularity for the continuous solution itself (see D. Sandri [116]). It is still an open
problem to precisely characterize the HWNP, and to distinguish between instability
coming from the model itself, or its discretization. For the theoretical study of the
limit We → ∞, we refer to M. Renardy [112, Chap. 6].

We would like to mention the recent works [42, 43, 60] where R. Fattal, R. Kupfer-
man and M.A. Hulsen propose a new formulation for macroscopic models based on
a change of variable: instead of using (uuu, p,τττ p) as unknowns, they set the problem
in terms of (uuu, p,φφφ), where

φφφ = lnAAA

and AAA is the conformation tensor defined by:

AAA =
We
ε

τττ p + Id. (146)

better understand the problem.

6.3 Multiscale models

Let us recall the micro-macro model we are interested in:

numerical methods. In this alternate formulation, the numerical instability arises only
[43, 60] and Y. Kwon [74] for various models, various geometric settings, and various
This new formulation was implemented in R. Fattal, R. Kupferman and M.A. Hulsen

for much higher a Weissenberg number. It thus seems to be a promising method to
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




Re

(
∂uuu
∂ t

+ uuu ·∇uuu

)
− (1 − ε)∆uuu+ ∇p = divτττ p + fff ,

divuuu = 0,

τττ p =
ε

We
(E(XXXt ⊗ FFF(XXXt))− Id),

dXXXt + uuu.∇XXXt dt = ∇uuuXXXt dt − 1
2We

FFF(XXXt)dt +
1√
We

W t

(147)

with FFF(XXXt) = XXXt for Hookean dumbbells, FFF(XXXt) = XXXt
1−‖XXXt‖2/b

for FENE dumbbells,

or FFF(XXXt) = XXXt
1−E(‖XXXt‖2)/b

for FENE-P dumbbells. The space variable xxx varies in a

bounded domain D ⊂ Rd . This system is supplied with boundary conditions on the
velocity, and initial conditions on the velocity and the stochastic processes. In the
following, we suppose ε ∈ (0,1).

We recall the Fokker-Planck version of (147):





Re

(
∂uuu
∂ t

(t,xxx)+ uuu(t,xxx) ·∇uuu(t,xxx)
)

− (1 − ε)∆uuu(t,xxx)+ ∇p(t,xxx)

= div(τττ p(t,xxx)),
div(uuu(t,xxx)) = 0,

τττ p(t,xxx) =
ε

We

(∫

XXX
(XXX ⊗ FFF(XXX))ψ(t,xxx,XXX)dXXX − Id

)
,

∂ψ
∂ t

(t,xxx,XXX)+ uuu.∇xxxψ(t,xxx,XXX)

= −divXXX

((
∇uuu(t,xxx)XXX −

1
2We

FFF(XXX)
)

ψ(t,xxx,XXX)
)

+
1

2We
∆XXX ψ(t,xxx,XXX).

(148)
There is a growing literature on the analysis of micro-macro models for poly-

meric fluids. The first work we are aware of is M. Renardy [111], where the micro-
macro model in its Fokker-Planck formulation (50) is studied. Since this early work,
many groups have studied these models, perhaps because they are prototypical for a
class of multiscale models, where some parameters needed in the macroscopic equa-
tions are computed by some microscopic models (see the general formulation (52)).

Let us recall the two main difficulties we already mentioned in Sect. 6.1,

• transport terms (uuu ·∇uuu, uuu ·∇XXXt and uuu.∇ψ),
• nonlinear terms coming either from the coupling between the equations and

(uuu, p) and τττ p (∇uuuXXXt or divXXX (∇uuuXXXψ)), or inherently contained in the equations
defining τττ p F

In the next sections, we explain how these difficulties have been addressed both from

and T. Li and P.W. Zhang [85]).

Simplifications of the equations

The system (147) is quite difficult to study as such. Two simplifications of this gen-
eral setting are usually considered for preliminary arguments: homogeneous flows
and shear flows.

dWW ,

the mathematical viewpoint and the numerical viewpoint (see also T. Lelièvre [82],

(due to the non-linear entropic force FF).
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To specifically study the microscopic equations, one can consider homogeneous
flows. We recall that in such flows, ∇uuu does not depend on the space variable, and
therefore XXXt τ p) does not depend on the space variable either. A solution
to (147) is then obtained by solving the SDE without the advective term. For a ve-
locity field uuu(t,x) = κκκ(t)xxx, (147) becomes:






τττ p =
ε

We
(E(XXXt ⊗ FFF(XXXt))− Id),

dXXXt = κκκ(t)XXXt dt − 1
2We

FFF(XXXt)dt +
1√
We

dWWWt .
(149)

and the microscopic equations but to eliminate the difficulties related to transport
terms, many authors (see M. Laso and H.C. Öttinger [75], J.C. Bonvin and M. Pi-

or W. E, T. Li and P.W. Zhang [38]) consider shear flows (see Fig. 1). In this geome-
try, (147) writes:






Re
∂u
∂ t

(t,y)− (1 − ε)
∂ 2u
∂y2 (t,y) =

∂τ
∂y

(t,y)+ f (t,y),

τ(t,y) =
ε

We
E(Xt(y)FY (XXXt(y))),

dXt(y) =
∂u
∂y

(t,y)Yt(y)dt − 1
2We

FX(XXXt(y))dt +
1√
We

dVt ,

dYt(y) = −
1

2We
FY (XXXt(y))dt +

1√
We

dWt ,

(150)

where (Xt(y),Yt(y)) are the two components of the stochastic process XXXt(y), (Vt ,Wt)
are two independent Brownian motions and (FX(XXXt),FY (XXXt)) are the two compo-
nents of the force FFF(XXXt). In this case, y ∈ (0,1), and Dirichlet boundary conditions
are assumed on the velocity at y = 0 and y = 1. The initial conditions (X0,Y0) are
assumed to be independent from one another and independent from the Brownian
motions.

Mathematical Analysis

A fundamental energy estimate

In order to understand the mathematical structure of the system (147), we first derive
an energy estimate. Such an estimate is called an a priori estimate, since it is formally
derived assuming sufficient regularity on the solutions for all the manipulations to
hold true. These estimates are then used to prove existence and uniqueness results,
and, possibly, study longtime properties of the solutions.

Multiplying the momentum equation by uuu and integrating in space and time, one
obtains on the one hand

Re
2

∫

D

|uuu|2(t,xxx)+ (1 − ε)
∫ t

0

∫

D

|∇uuu|2(s,xxx) (151)

=
Re
2

∫

D

|uuu|2(0,xxx)−
ε

We

∫ t

0

∫

D

E(XXXs(xxx)⊗ FFF(XXXs(xxx))) : ∇uuu(s,xxx),

(and thus ττ

casso [16], C. Guillopé and J.C. Saut [54], B. Jourdain, C. Le Bris and T. Lelièvre [68]

To keep the difficulty related to the coupling between the macroscopic equation
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assuming homogeneous Dirichlet boundary conditions on uuu.
On the other hand, using Itô calculus on Π(XXXt) (where Π is the potential of the

force FFF of the spring), integrating in space, time and taking the expectation value, it
is seen that

∫

D

E(Π(XXXt(xxx)))+
1

2We

∫ t

0

∫

D

E(‖FFF(XXXs(xxx))‖2) (152)

=
∫

D

E(Π(XXX0(xxx)))+
∫ t

0

∫

D

E(FFF(XXXs(xxx)) ·∇uuu(s,xxx)XXXs(xxx))

+
1

2We

∫ t

0

∫

D

∆Π(XXXs(xxx)).

Summing up the two equalities (151) and (152), and using

E(XXXs(xxx)⊗ FFF(XXXs(xxx))) : ∇uuu(s,xxx) = E(FFF(XXXs(xxx)) ·∇uuu(s,xxx)XXXs(xxx)), (153)

the following energy estimate is obtained:

Re
2

d
dt

∫

D

|uuu|2(t,xxx)+ (1 − ε)
∫

D

|∇uuu|2(t,xxx)+
ε

We
d
dt

∫

D

E(Π(XXXt(xxx)))

+
ε

2We 2

∫

D

E(‖FFF(XXXt(xxx))‖2) =
ε

2We 2

∫

D

∆Π(XXXt(xxx)). (154)

Notice that this energy estimate does not help in the study of the longtime be-
havior since the term in the right-hand side (which comes form Itô calculus and is
non-negative since Π is convex) brings energy to the system. We will return to this
question below.

As said above, this energy estimate is a first step towards an existence and unique-
ness result. For example, in the case of Hookean dumbbells in a shear flow, it allows
to prove the following global-in-time existence and uniqueness result (see B. Jour-

Theorem 2. Assuming u0 ∈ L2
y and fext ∈ L1

t (L
2
y), the system (150) for Hookean

dumbbells admits a unique solution (u,X) on (0,T ), ∀T > 0. In addition, the fol-
lowing estimate holds:

‖u‖2
L∞

t (L2
y) +‖u‖2

L2
t (H1

0,y)
+‖Xt‖2

L∞
t (L2

y(L2
ω )) +‖Xt‖2

L2
t (L2

y(L2
ω ))

≤ C
(
‖X0‖2

L2
y(L2

ω ) +‖u0‖2
L2

y
+ T +‖ fext‖2

L1
t (L2

y)

)
.

Notice that in this case, Yt = Y0 e−t/2 +
∫ t

0 e
s−t

2 dWs is analytically known, so that the
existence and uniqueness result only concerns (u,X). The notion of solution em-
ployed is: the equation on u is satisfied in the distribution sense and the SDE holds
for almost every (y,ω). The proof relies on a variational formulation of the PDE,
and follows a very classical line. It consists in (i) building a sequence of approximate
solutions (by a Galerkin procedure), (ii) using the energy estimate (which indeed
has then a rigorous, better than formal, meaning) to derive some bounds on this se-
quence from which one deduces the existence of a limit (up to the extraction of a

dain, C. Le Bris and T. Lelièvre [67]):
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subsequence), (iii) passing to the limit in the variational formulation of the PDE.
This approach is interesting since, as is well known, it is also useful to prove the
convergence of numerical methods based on variational formulations (such as finite
element methods).

This setting (Hookean dumbbell in a shear flow) is actually extremely specific.
A global-in-time existence and uniqueness result is obtained since the coupling term
∇uuuXXXt of the original problem (147) simplifies to ∂u

∂yYt in (150), where Yt is known
independently of (u,X). In other words, this coupling term is no more nonlinear.

For FENE dumbbell, two new difficulties have to be addressed: first, the SDE
contains an explosive drift term and second, even in a shear flow, the coupling term
∇uuuXXXt is genuinely nonlinear.

The FENE SDE

In this paragraph, we consider the FENE SDE in a given homogeneous flow. As we
mentioned earlier, the FENE force has been introduced to prevent the length of the
dumbbell from exceeding the maximal length of the polymer. What can be actually

Proposition 1. Let us consider the SDE in (149) for FENE force: FFF(XXX) = XXX
1−‖XXX‖2/b

.

• For κκκ ∈ L1
loc (R+) and b > 0, this SDE admits a strong solution with values in B =

B(0,
√

b), which is unique in the class of solutions with values in B = B(0,
√

b).
• Assume κκκ ∈ L2 (R+). If b ≥ 2, then the solution does not touch the boundary of B

in finite time. If 0 < b < 2, The solution touches (a.s.) the boundary of B in finite
time.

• Take κκκ ≡ 0 (for simplicity) and 0 < b < 2. It is possible to build two different
stochastic processes satisfying the SDE.

In practice, b is typically larger than 10, so that the SDE has indeed a unique strong
solution.

The FENE model in a Couette flow

As mentioned above, for the FENE model in the Couette flow, the coupling term
∂u
∂yYt is indeed nonlinear since Yt depends on Xt (through the force term FY (XXXt)) and
thus on u. This nonlinearity implies additional difficulties in the existence result, and
the a priori estimate we derived above does not provide enough regularity on the
velocity to pass to the limit in the nonlinear term ∂u

∂y (t,y)Yt .

The question is then: for a given regularity of u (say u ∈ L∞
t (L2

y)∩L2
t (H1

0,y) if we
consider the first energy estimate), what is the regularity of τ ? Formally, owing to the
presence of the nonlinear term ∇uuuXXXt in the SDE, τ has the regularity of exp(

∫ t
0

∂u
∂y )

which may be very irregular if one only assumes u ∈∈ L∞
t (L2

y)∩L2
t (H

1
0,y).

One way to address this difficulty is to derive additional a priori regularity on the
velocity. This can be performed by multiplying the equation for u in (150) by − ∂ 2u

∂y2

and using Girsanov theorem to explicitly obtain the dependency of τ in terms of u:

proven is the following (see B. Jourdain and T. Lelièvre [66]):
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τ(t,y) = E

(
Xt(y)Yt(y)

1 − (Xt(y))2+(Yt(y))2

b

)
,

= E

((
X̃tỸt

1 − X̃2
t +Ỹ 2

t
b

)
E

(
1√
We

∫ •

0

∂u
∂y

(y)Ỹs dVs

)

T

)
, (155)

where X̃XXt = (X̃t ,Ỹt) is the stochastic process satisfying the FENE SDE with ∂u
∂y = 0 :

dX̃XXt = −
1

2We
X̃XXt

1 −‖X̃XXt‖2/b
dt +

1√
We

dWWWt ,

and E is the exponential martingale:

E

(
1√
We

∫ •

0

∂u
∂y

Ỹs dVs

)

t
= exp

(
1√
We

∫ t

0

∂u
∂y

Ỹs dVs − 1
2We

∫ t

0

(
∂u
∂y

Ỹs

)2

ds

)
.

Owing to the exponential dependency of τ on u in (155), this additional a priori
estimate yields bounds on u in L∞

t (H1
0,y)∩L2

t (H2
y )-norm but only locally in time.

The following local-in-time existence and uniqueness result can then be proven

Theorem 3. Under the assumptions b > 6, fext ∈ L2
t (L

2
y) and u0 ∈ H1

y , ∃T > 0 (de-
pending on the data) s.t. the system admits a unique solution (u,X ,Y ) on [0,T ). This
solution is such that u ∈ L∞

t (H1
0,y)∩L2

t (H2
y ). In addition, we have:

• P(∃t > 0,((Xy
t )2 +(Y y

t )2) = b) = 0,
• (Xy

t ,Y y
t ) is adapted with respect to the filtration F

V,W
t associated with the Brow-

nian motions.

For a similar result in a more general setting (3-dimensional flow) and forces
with polynomial growth, we refer to W. E, T. Li and P.W. Zhang [39]. The authors
prove a local-in-time existence and uniqueness result in high Sobolev spaces. We

Hookean dumbbells, neglecting the advection terms. When the velocity field is not
regular enough, it is difficult to give a sense to the transport term in the SDE (which
is actually a Stochastic Partial Differential Equation). We refer to C. Le Bris and
P.-L. Lions [78, 79].

Longtime behavior

ε
2We2

∫
D

∆Π(XXXt(xxx))
in the right-hand side. It actually appears that eliminating this term requires to add an
entropy term to the energy. To study the longtime behavior, the appropriate viewpoint
is to consider the free energy rather than the energy.

To introduce the entropy, one needs to consider the probability density functional
of the stochastic process XXXt , and thus the system (148) coupling the momentum

longtime behavior of the system because of the non-negative term

(see B. Jourdain, C. Le Bris and T. Lelièvre [68]):

also refer to A. Bonito, Ph. Clément and M. Picasso [15] for existence results for

As we mentioned above, the a priori estimate (154) cannot be used to understand the
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equation with the Fokker-Planck equation introduced in Sect. 3.2. Let us assume
zero Dirichlet boundary condition on the velocity uuu. The expected stationary state
(equilibrium) is

uuu(∞,xxx) = 0,

ψ(∞,xxx,XXX) = ψeq(XXX) = C exp(−Π(XXX)),

where C is a normalization factor. Using entropy estimates (see C. Ané et al. [4],
F. Malrieu [95], A. Arnold, P. Markowich, G. Toscani and A. Unterreiter [5]), ex-
ponential convergence to equilibrium may be shown (see B. Jourdain, C. Le Bris,

The first derivative of the kinetic energy

E(t) =
Re
2

∫

D

|uuu|2(t,xxx) (156)

writes (as in (151))

dE
dt

= −(1 − ε)
∫

D

|∇uuu|2(t,xxx)− ε
We

∫

D

∫

Rd
(XXX ⊗ ∇Π(XXX)) : ∇uuu(t,xxx)ψ(t,xxx,XXX).

The entropy

H(t) =
∫

D

∫

Rd
Π(XXX)ψ(t,xxx,XXX)+

∫

D

∫

Rd
ψ(t,xxx,XXX) ln(ψ(t,xxx,XXX))−|D | lnC,

=
∫

D

∫

Rd
ψ(t,xxx,XXX) ln

(
ψ(t,xxx,XXX)
ψeq(XXX)

)
(157)

is next introduced. Notice that H(t) ≥ 0 (since x ln(x) ≥ x − 1). Using (153) and
divuuu = 0, a simple computation shows:

dH
dt

= − 1
2We

∫

D

∫

Rd
ψ(t,xxx,XXX)

∣∣∣∣∇XXX ln

(
ψ(t,xxx,XXX)
ψeq(XXX)

)∣∣∣∣
2

+
∫

D

∫

Rd
(XXX ⊗ ∇Π(XXX)) : ∇uuu(t,xxx)ψ(t,xxx,XXX).

Thus, the free energy F(t) = E(t)+
ε

We
H(t) (a non-negative quantity) satisfies:

dF
dt

= −(1 − ε)
∫

D

|∇uuu|2(t,xxx)− ε
2We 2

∫

D

∫

Rd
ψ(t,xxx,XXX)

∣∣∣∣∇XXX ln

(
ψ(t,xxx,XXX)
ψeq(XXX)

)∣∣∣∣
2

.

(158)
Comparing with (154), we observe that the introduction of the entropy allows to
eliminate the right-hand side. In particular, (158) shows that the only stationary state
is uuu = 0 et ψ = ψeq u 1

0
∫

|uuu|2 ≤ C
∫

|∇uuu|2

and the Logarithmic Sobolev inequality: for all probability density functional ψ ,

T. Lelièvre and F. Otto [64, 65]). Let us explain this with more details.

. Moreover, using a Poincaré inequality: for all uu ∈ H (D),
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∫
ψ ln

(
ψ

ψeq

)
≤ C

∫
ψ

∣∣∣∣∇ ln

(
ψ

ψeq

)∣∣∣∣
2

, (159)

exponential convergence to zero for F u 2
xxx

eq(XXX)=Cexp(−Π(XXX))
if Π is α-convex for example (which is the case for Hookean and FENE dumbbells).
The Csiszar-Kullback inequality (see C. Ané et al. [4]) then shows that ψ converges
to ψeq exponentially fast in L2

xxx(L1
XXX )-norm.

For generalizations of these computations to non-homogeneous boundary condi-
u u x 6

F. Otto [65].
We would like also to mention that these estimates on the micro-macro system

can be used as a guideline to derive new estimates on related macro-macro models

Remark 9 (On the choice of the entropy). If one considers the Fokker-Planck equa-
tion with uuu = 0, it is well-known (see A. Arnold, P. Markowich, G. Toscani and
A. Unterreiter [5]) that exponential convergence to equilibrium can be obtained us-
ing more general entropy functions of the form

H(t) =
∫

D

∫

Rd
h

(
ψ

ψeq

)
ψeq

where h : R → R∗
+ is a convex C 2 function, such that h(1) = 0. However, it seems

that to derive the entropy estimate (158) on the coupled system (150), it is necessary
to choose the “physical entropy” corresponding to the choice h(x) = x ln(x)−(x−1).

Remark 10 (On the assumptions on the force FFF). Recall that we assumed that FFF =
∇Π , where Π is a radial convex function. Let us briefly discuss the assumptions on
FFF we used so far.

• The fact that FFF can be written as the gradient of a potential Π is important to
obtain a simple analytical expression for ψeq.

• The fact that Π is radial is a very important assumption to ensure the symmetry
of the stress tensor.

• The convexity assumption on Π is important in the analysis of the SDEs (in
particular for uniqueness of strong solutions).

• The α-convexity of the potential Π has been used to obtain the Logarithmic
Sobolev inequality (159).

Existence results on the coupled problem with the Fokker-Planck PDE

Many authors have obtained existence and uniqueness results for the micro-macro
problem (148), that is the coupled model involving the Fokker-Planck equation.

For local existence and uniqueness results, we refer to M. Renardy [111],
T. Li, H. Zhang and P.W. Zhang [83] (polynomial forces) and to H. Zhang and
P.W. Zhang [123] (FENE force with b > 76). In a recent work by N. Masmoudi [97],

from (158). The Logarithmic Sobolev inequality (159) holds for ψ
(and thus for uu in L -norm) is obtained 

tions on uu (and thus uu(∞,xx) = 0), we refer to B. Jourdain, C. Le Bris, T. Lelièvre and

(see D. Hu and T. Lelièvre [59]).
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a local in time existence result is obtained for the FENE model without any assump-
tion on b (using reflecting boundary conditions). The author also shows global in
time existence result for initial data close to equilibrium (see also F.-H. Lin, C. Liu
and P.W. Zhang [87] for a similar result under the assumption b > 12).

Global existence results have also been obtained for closely related problems:

• Existence results for a regularized version: In J.W. Barrett, C. Schwab and
E. Süli [7, 8], a global existence result is obtained for (148) (Hookean and FENE
force) using a regularization of some terms, which allows for more regular so-
lutions. More precisely, the velocity uuu in the Fokker Planck equation is replaced
by a smoothed velocity, and the same smoothing operator is used on the stress
tensor τττ p in the right-hand side of the momentum equations. See also L. Zhang,
H. Zhang and P.W. Zhang [124].

• Existence results with a corotational derivative: In J.W. Barrett, C. Schwab and
E. Süli [7, 8] (again with some regularizations) and P.-L. Lions and N. Mas-
moudi [90, 97] (without any regularizations), the authors obtain global-in-time
existence results replacing ∇uuu in the Fokker-Planck equation by ∇uuu−∇uuuT

2 (which
is similar to considering the corotational derivative of τττ p instead of the upper con-
vected derivative in differential macro-macro models). More precisely, in [90], a
global-in-time existence result of weak solutions is obtained in dimension 2 and
3, while in [97], it is proved that in dimension 2, there exists a unique global-in-
time strong solution. A related recent result by F.-H. Lin, P. Zhang and Z. Zhang
is [88].

We would like also to mention the related works [27, 28, 31] (existence results
for coupled Navier-Stokes Fokker-Planck micro-macro models) by P. Constantin,
C. Fefferman, N. Masmoudi and E.S. Titi, and also the work of C. Le Bris and P.-
L. Lions [78, 79] about existence and uniqueness of solutions to Fokker-Planck type
equations with irregular coefficients.

Numerical methods

In this section, we review the literature for the numerical analysis of methods to
discretize (98). For the discretization of the micro-macro problem in the Fokker-
Planck version, we refer to Sect. 4.4.

The idea of coupling a Finite Element Method for discretization in space and a
stochastic method (Monte Carlo to approximate the expectation and Euler scheme
on the SDE) has been first proposed by M. Laso and H.C. Öttinger [75]. Such a
method is called Calculation Of Non-Newtonian Flow: Finite Elements and Stochas-
tic SImulation Technique (CONNFFESSIT). At first, Lagrangian methods were used
on the SDE, and independent Brownian motions on each trajectories (see M. Laso
and H.C. Öttinger [76]). The algorithm then consists in: (i) computing (uuu, p), (ii)
computing the trajectories of the fluid particles carrying the dumbbells (character-
istic method), (iii) integrating the SDEs along these trajectories and (iv) computing
the stress tensor τττ p by local empirical means in each finite element. This Lagrangian
approach is the most natural one since it is naturally obtained from the derivation
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of the model (see Sect. 4.2). However, owing to the term divτττ p, numerical results
are very noisy in space when using independent Brownian motions on each trajec-
tory. Moreover, such an approach requires to maintain a sufficiently large number of
dumbbells per cell of the mesh, which is not easy to satisfy (there is a need to add
some dumbbells and to destroy others during the simulation).

The idea then came up to use the Eulerian version of the SDE, and introduc-
ing fields of end-to-end vectors: XXXt(xxx). This is the concept of Brownian Configu-
ration Field introduced by M.A. Hulsen, A.P.G. van Heel and B.H.A.A. van den
Brule in [61]. In this Eulerian description, the most natural and simple choice is to
use the same Brownian motion at each position in space. This reduces the noise in
space and the variance of the velocity (but not the variance of the stress, see below

the transport term can then be done using a Discontinuous Galerkin method (see
M.A. Hulsen, A.P.G. van Heel and B.H.A.A. van den Brule [61]), the characteris-
tic methods (see J.C. Bonvin [18] or the Backward-Tracking Lagrangian Particle
Method of P. Wapperom, R. Keunings and V. Legat [121]), or classical finite element
methods with stabilization.

Let us recall how the CONNFFESSIT method writes in a shear flow (see
Sect. 5.4). In this special case, both the Lagrangian and the Eulerian approaches
lead to the same discretization: for given un

h, Xk
h,n and Y k

h,n, compute un+1
h ∈ Vh such

that for all v ∈ Vh,






Re
δ t

∫

y
(un+1

h − un
h)v = −(1 − ε)

∫

y

∂un+1
h

∂y
∂v
∂y

−
∫

y
τh,n

∂v
∂y

+
∫

y
f v,

τh,n =
ε

We
1
K

K

∑
k=1

Xk
h,nFY (Xk

h,n,Y
k
h,n),

Xk
h,n+1 − Xk

h,n =

(
∂un+1

h

∂y
Y k

h,n − 1
2We

FX(Xk
h,n,Y

k
h,n)

)
δ t

+
1√
We

(
V k

h,tn+1
−V k

h,tn

)
,

Y k
h,n+1 −Yk

h,n = − 1
2We

FY (Xk
h,n,Y

k
h,n)δ t +

1√
We

(
W k

h,tn+1
−Wk

h,tn

)
.

(160)

The index n is the timestep and the index k is the realization number in the SDE
(1 ≤ k ≤ K where K is the number of dumbbells in each cell). Finally, Vh is a finite
element space. We suppose in the following that Vh = P1 is the finite element space
of continuous piecewise linear functions so that Xh,n, Yh,n and τh,n are piecewise
constant functions in space (they belong to the functional space P0). We refer to
Fig. 13.

Convergence of the CONNFFESSIT method

In the CONNFFESSIT method, three numerical parameters are to be chosen: the
timestep δ t, the spacestep h and the number of dumbbells (or realizations) K. It is
expected that the method converges in the limit δ t → 0, h → 0 and K → ∞.

and the work [63] by B. Jourdain, C. Le Bris and T. Lelièvre). The discretization of
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τ
U0 = 1

u

u : P1
τ : P0

yI = 1

y0 = 0

UI = 0

h
τh,n = ε

We
1
K ∑K

k=1(X
k
h,nFY (Xk

h,n,Y
k

h,n))

Fig. 13. The CONNFFESSIT method in a shear flow.

T. Li and P.W. Zhang [38] for Hookean dumbbells in a shear flow.

Theorem 4. Assuming u0 ∈ H2
y , fext ∈ L1

t (H
1
y ), ∂ fext

∂ t ∈ L1
t (L

2
y) and δ t < 1

2 , we have
(for Vh = P1): ∀n < T

δ t ,

∣∣∣∣

∣∣∣∣u(tn)− un
h

∣∣∣∣

∣∣∣∣
L2

y(L2
ω )
+

∣∣∣∣

∣∣∣∣E(XtnYtn)−
1
K

K

∑
k=1

X
k
h,nY

k
n

∣∣∣∣

∣∣∣∣
L1

y(L1
ω )

≤ C

(
h + δ t +

1√
K

)
.

∣∣∣∣

∣∣∣∣u(tn)− un
h

∣∣∣∣

∣∣∣∣
L2

y(L2
ω )

≤ C

(
h2 + δ t +

1√
K

)
.

The main difficulties in the proof of Theorem 4 originate from the following
facts:

• The velocity un
h is a random variable. The energy estimate at the continuous level

cannot be directly translated into an energy estimate at the discrete level (which
would yield the stability of the scheme).

• The end-to-end vectors (Xk
h,n,Y

k
n)1≤k≤K are coupled random variables (even

though the driving Brownian motions (V k
h,t ,W

k
h,t)1≤k≤K are independent).

This has been proven in B. Jourdain, C. Le Bris and T. Lelièvre [67] and W. E,

Lelièvre [81]):
Remark 11. It can be shown that the convergence in space is optimal (see T. 
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• The stability of the numerical scheme requires an almost sure bound on the Y k
n :

δ t
1
K

K

∑
k=1

(Y k
n )2 < 1.

To prove convergence, a cut-off procedure on Y k
n is employed:

Y
k
n+1 = max(−A,min(A,Y k

n+1)) (161)

with 0 < A <
√

3
5δ t . In Theorem 4, un

h, X
k
n Y

k
n denotes random variables obtained by

the CONNFFESSIT scheme (160) with the cutoff procedure (161). It can be checked
that for sufficiently small δ t or sufficiently large K, this cut-off procedure is not used.

For a result without cut-off, we refer to B. Jourdain, C. Le Bris and

discretization by a finite difference scheme, we refer to T. Li and P.W. Zhang [84].

M. Picasso [14].

Variance of the results and dependency of the Brownian motions in space

of the result. If the variance is too large, the numerical method is basically useless.
We already mentioned above (see Sect. 5.5) variance reduction methods. It is also
interesting to investigate how the variance of the results depends upon the numerical
parameters. In the framework of the CONNFFESSIT method, this variance is partic-
ularly sensitive to the dependency of the Brownian motion on the space variable.

One can check (at least for regular solutions) that the dependency of the Brow-
nian motion on the space variable does not influence the macroscopic quantities
(uuu, p,τττ p) at the continuous level. This can be rigorously proved for Hookean dumb-
bells in a shear flow. It can also be checked that the convergence result of Theorem 4
is insensitive to the dependency of the Brownian motion on the space variable. How-
ever, at the discrete level, this dependency strongly influences the variance of the
results. It is observed that using Brownian motions independent from one cell of
the mesh to another rather than Brownian motions not depending on space increases
the variance of the velocity, but reduces the variance on the stress (see P. Halin,
G. Lielens, R. Keunings, and V. Legat [57], J.C. Bonvin and M. Picasso [16] and

This can be precisely analyzed for the case of Hookean dumbbells in a shear flow.

a) The variance on the velocity is minimal for a Brownian motion not depending on
space.

b) Using Brownian motions independent from one cell to another is not the best
method to reduce the variance on τ .

c) It is possible to reduce the variance on τ with the same computational cost as
when using a Brownian motion not depending on space. It consists in using a
Brownian motion alternatively multiplied by +1 or −1 on nearest-neighbour
cells.

T. Lelièvre [67]. For an extension of these results to a more general geometry and

One important practical quantity when using Monte Carlo methods is the variance

B. Jourdain, C. Le Bris and T. Lelièvre [63]).

It can be shown that (see B. Jourdain, C. Le Bris and T. Lelièvre [63]):

For a convergence result in space and time, we refer to A. Bonito, Ph. Clément and
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7 Other types of complex fluids

7.1 Liquid crystals

So far, we have only considered dilute solutions of flexible polymers. Some other
polymers behave more like rigid rods. This introduces anisotropy in the system. So-
lutions of such rigid polymers are called polymeric liquid crystals. One of the major
aspect to account for in the modelling of solutions of rod-like polymers is that the
interaction of the polymers becomes important at much a lower concentration than
with flexible polymers.

Modelling of liquid crystals, along with mathematical and numerical studies, is
today a very lively and active field of research. The present short section does not
reflect the variety of scientific enterprises dealing with liquid crystals. It is just a brief
incursion in this world to see, once, the basic models. One adequate model is the Doi
model (see M. Doi and S.F. Edwards [36] and H.C. Öttinger [102]). It describes the
evolution for a configuration vector RRRt by a stochastic differential equation:

dRRRt + uuu ·∇RRRt dt

=
(

Id− RRRt ⊗ RRRt

‖RRRt‖2

)((
∇uuuRRRt −

1
2

B2∇V (RRRt)
)

dt + BdWWWt

)

−
d − 1

2
B2 RRRt

‖RRRt‖2 dt, (162)

where B is a positive constant and d = 2 or 3 is the dimension of the ambient space.
Notice that B may also be a function B(RRRt) in some models (with then an additional
term involving ∇(B2) in the drift term). Notice also that we assume that all the ini-
tial conditions RRR0(xxx) have a fixed length L so that ∀(t,xxx), ||RRRt(xxx)|| = ||RRR0(xxx)|| = L.
The potential V accounts for the mean-field interaction between the polymers. For
example, the Maier-Saupe potential is:

V (RRR) = − 1
L4 E(RRRt ⊗ RRRt) : RRR ⊗ RRR. (163)

The stress tensor is then given by:

τττ p(t) = E(uuut ⊗ uuut)+E

(
uuut ⊗

(
(Id− uuut ⊗ uuut)∇V (uuut)

))
− Id (164)

where uuut =
RRRt

L
is the rod orientation. We have neglected the viscous contribution

in (164). The fully coupled system then consists in the first two equations of (49)
with (162)–(164). Notice that the main differences with the equations seen so far in
this article are the nonlinearity in the sense of MacKean due to the presence of the
expectation value in the potential V and the fact that the diffusion term depends on
the process RRRt .

For an analysis of the coupled system with the Fokker-Planck version of (162)–
(164) in the special case of shear flow, we refer to H. Zhang and P.W. Zhang [122].
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The longtime behavior of the Fokker-Planck equation has been studied by P. Con-
stantin, I. Kevrekidis and E.S. Titi in [30] (see also [29]). A thorough analysis of the
variety of possible steady states and their stability is studied by G. Forest, Q. Wang
and R. Zhou in [45]. Some numerical methods to solve the stochastic differential
equation (162) are proposed by H.C. Öttinger in [102]. On the other hand, we are not
aware of any rigorous numerical analysis of numerical methods to solve this system
without closure approximation.

7.2 Suspensions

We now slightly change the context. Multiscale modelling of complex fluids is very
advanced for polymer flows. It is a well established scientific activity. However, it is
also a growing activity for some other types of fluids, far from polymer flows. We
give here the illustrative example of civil engineering fluids, with muds and clays. It
is not forbidden to believe that other materials of civil engineering, like cement, will
benefit a lot from multiscale modelling approaches in a near future.

For concentrated suspensions (such as muds or clays), one model available in
the literature is the Hebraud-Lequeux model [62]. This model describes the rheology
of the fluid in terms of a Fokker-Planck equation ruling the evolution in time of
the probability of finding, at each point, the fluid in a given state of stress. To date,
although current research is directed toward constructing multidimensional variants,
the model is restricted to the one-dimensional setting, that is, the Couette flow. The
stress at the point y and at time t is thus determined by one scalar variable σ :






∂ p
∂ t

(t,y,σ) = −∂u
∂y

(t,y)
∂ p
∂σ

(t,y,σ)+ D(p)
∂ 2 p
∂σ2 (t,y,σ)

−H(|σ |− 1)p(t,y,σ)+ D(p)δ0,

D(p) =
∫

|σ |≥1
p(t,y,σ)dσ .

(165)

In the above system, where we have on purpose omitted all physical constants, the
function H denotes the Heaviside function. It aims at modelling the presence of a
threshold constraint (here set to one): when the constraint is above the threshold, the
stress relaxes to zero, which translates into the two last terms of the Fokker-Planck
equation. The diffusion in the stress space is also influenced nonlinearly by the com-
plete state of stress, as indicated by the definition of D(p). On the other hand, the

function
∂u
∂y

(t,y) accounts for a shear rate term, here provided by the macroscopic

flow. The contribution to the stress at the point y under consideration is then given
by the average

τ(t,y) =
∫

R

σ p(t,y,σ)dσ . (166)

The fully coupled system consisting of the Fokker-Planck equation (165), the
expression (166) of the stress tensor, and the macroscopic equation for the Couette
flow (first line of (104)) has been studied mathematically in a series of work by
E. Cancès, I. Catto, Y. Gati and C. Le Bris [21, 22, 23].
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Alternately to a direct attack of the Fokker-Planck equation (165), one might
wish to simulate the associated stochastic differential equation with jumps that reads

dσt =
∂u
∂y

dt +
√

2P(|σt | ≥ 1) dWt − 1{|σt−|≥1}σt− dNt , (167)

where Wt is a Brownian motion and Nt is an independent Poisson process with unit
intensity. Note that, in addition to the jumps, equation (167) is nonlinear in the sense
of MacKean, as the diffusion coefficient depends on the marginal law of the solution
at time t.

The coupled system to simulate then reads





∂u
∂ t

(t,u)− ∂ 2u
∂y2 (t,y) =

∂τ
∂y

(t,y)

∀y,






τ(t,y) = E(σt(y))

dσt(y) =
∂u
∂y

dt +
√

2P(|σt(y)| ≥ 1) dWt − 1{|σt− (y)|≥1}σt−(y)dNt ,

(168)
where one should note that the stochastic differential equation has jumps.

Numerical simulations of this system have been carried out successfully (see
Y. Gati [49]). For the numerical analysis of the particle approximation, we refer to
M. Ben Alaya and B. Jourdain [9].

7.3 Blood flows

Blood is a complex fluid consisting of a suspension of cells in plasma. These cells are
mainly red blood cells or erythrocytes, white blood cells or leucocytes, and platelets.
Red blood cells constitute 98% of the cells in suspension. These microstructures
are mostly responsible for the non-Newtonian behavior of blood. A red blood cell
is a biconcave disk of diameter 8.5µm and thickness 2.5µm. It consists of a highly
flexible membrane which is filled with a solution (haemoglobin). The ambient flow
modifies the shape of the membrane. This phenomenon allows storage and release of
energy in the microstructures, like for polymeric fluids. At low shear rates, red blood
cells agglomerate into long structures called rouleaux.

It is observed that at high shear rates (like for pulsatile flow in healthy arteries,
see for example J.F. Gerbeau, M. Vidrascu and P. Frey [50] or A. Quarteroni and
L. Formaggia [107]), blood behaves essentially as a Newtonian fluid. At low shear
rates (in arterioles, venules, recirculatory regions in aneurysms and stenoses), blood
is a non-Newtonian fluid: it exhibits shear-thining, viscoelastic and thixotropic ef-
fects. This can be interpreted as follows: in flows with high shear rates, red blood
cells cannot agglomerate, and the rheology is not influenced by the microstructures,
while in flows with low shear rates, red blood cells agglomerate and this influences
the rheology. Notice that we here discuss simple mechanical properties, neglecting
important biochemical factors (like in clot formation for example).

In [41, 103], R.G. Owens and J. Fang propose a micro-macro model for blood,
which is very similar to the model presented in Sect. 4. This model applies in some
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sufficiently large flow domains, so that statistics on the configurations of red blood
cells at each macroscopic point make sense. In other context, it may be important to
consider each red blood cell as a separated entity like in the work [80] by A. Lefebvre
and B. Maury.

Let us first suppose that the velocity field is given and homogeneous. The micro-
scopic variables used to describe the microstructure (namely the red blood cells) are
a vector XXX (similar to the end-to-end vector for polymeric fluids) and an integer k ≥ 1
which measures the size of the aggregate the red blood cell belongs to. Consider then
the non-negative function ψk(t,XXX) such that ψk(t,XXX)dXXX is the number of red blood
cells (per unit volume of fluid) belonging to an aggregate of size k having end-to-end
vector between XXX and XXX + dXXX . We denote by Nj = 1

j

∫
ψ j(t,XXX)dXXX the number of

aggregates of k red blood cells per unit volume.
The following Fokker-Planck equation rules the evolution of (ψk(t,XXX))k≥1:

∂ψk

∂ t
= −divXXX

((
∇uuuXXX − 2

ζk
FFF(XXX)

)
ψk

)
+

2kT
ζk

∆XXX ψk

+ hk(γ̇)ψeq
k − gk(γ̇)ψk. (169)

In Equation (169),

hk(γ̇) =
a(γ̇)
2Neq

k

k−1

∑
i=1

NiNk−i +
b(γ̇)
Neq

k

∞

∑
j=1

Nk+ j

is an aggregation rate coefficient and

gk(γ̇) =
b(γ̇)

2
(k − 1)+ a(γ̇)

∞

∑
j=1

Nj

is a fragmentation rate coefficient. Both depend on the shear rate γ̇ =
√

1
2 γ̇γγ : γ̇γγ with

γ̇γγ = ∇uuu+∇uuuT . At equilibrium (namely for zero shear rate: γ̇ = 0), the number of ag-
gregates of k red blood cells per unit volume is Neq

k . An analytical expression for Neq
k

can be derived, in terms of a(0), b(0) and the total number of red blood cells per unit
volume N0 (which is a conserved quantity). The function ψeq

k = Z−1 exp(−Π)kNeq
k

describes the statistics of the red blood cells at equilibrium (Π is the potential of the
force FFF). Notice that by integrating (169) with respect to XXX (and dividing by k), the
following Smoluchowski equation on (Nk(t))k≥1 is obtained:

dNk

dt
= hk(γ̇)Neq

k − gk(γ̇)Nk.

The parameters of the model are N0, the friction coefficient ζk (which is typically
chosen as ζk = kζ1) and the functions a and b which can be calibrated using experi-
ments (see R.G. Owens and J. Fang [103, 41]).

In complex flows (for which ∇uuu depends on the space variable xxx), the functions
ψk also depend on xxx and the derivative ∂

∂ t in (169) is replaced by a convective deriva-

tive ∂
∂ t + uuu ·∇. The micro model is coupled to the momentum equations through the

Kramers expression for the extra stress tensor:
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τττ =
∞

∑
k=1

τττk,

τττk(t,xxx) =
∫

FFF(XXX)⊗ XXXψk(t,xxx,XXX)dXXX − kNk(t,xxx)kBT Id.

Let us mention one modelling challenge: it is observed that the distribution of red
blood cells is not uniform across a vessel (cell-depleted region near the vessel walls),
and it is not clear how to account for this phenomenon in the micro-macro model. In
the case of a Hookean force, it is possible to derive a macro-macro version of this
model, which can then be further simplified (see R.G. Owens and J. Fang [41, 103]).
Only this macro-macro version has been used so far in simulations for comparisons
with experimental data (see again R.G. Owens and J. Fang [41, 103]).
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82. T. Lelièvre. Problèmes mathématiques et numériques posés par la simulation
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