
Chapter 2

Symmetric Objects and Functors

Introduction

In this chapter, we recall the definition of the category of Σ∗-objects and we
review the relationship betweenΣ∗-objects and functors. In short, a Σ∗-object
(in English words, a symmetric sequence of objects, or simply a symmetric
object) is the coefficient sequence of a generalized symmetric functor S(M) :
X �→ S(M,X), defined by a formula of the form

S(M,X) =
∞⊕

r=0

(M(r)⊗X⊗r)Σr .

In §2.1, we recall the definition of the tensor product of Σ∗-objects,
the operation which reflects the pointwise tensor product of functors and
which provides the category of Σ∗-objects with the structure of a symmetric
monoidal category over the base category.

Beside the tensor product, the category of Σ∗-objects comes equipped
with a composition product that reflects the composition of functors. The
definition of this composition structure is recalled in §2.2.

The map S : M �→ S(M) defines a functor S :M→ F , where M denotes
the category of Σ∗-objects and F denotes the category of functors F : E → E
on any symmetric monoidal category E over the base category C. The adjoint
functor theorem implies that this functor has a right adjoint Γ : F → M.
In §2.3 we give an explicit construction of this adjoint functor by using that
the symmetric monoidal category E is enriched over the base category C. In
addition, we prove that the map S : M �→ S(M) defines a faithful functor
in the enriched sense as long as the category E is equipped with a faithful
functor η : C → E . In the case E = C = k Mod, the category of modules over
a ring k, we use the explicit construction of the adjoint functor Γ : G �→ Γ(G)
to prove that the functor S : M �→ S(M) is bijective on object sets under
mild conditions on Σ∗-objects or on the ground ring k.
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In §§2.1-2.3, we deal with global structures of the category of Σ∗-objects.
In §2.4, we study the image of colimits under the functor S(M) : E → E associ-
ated to a Σ∗-object M . Explicitly, we record that the functor S(M) : E → E
preserves filtered colimits and reflexive coequalizers (but not all colimits).
This verification is required by our conventions on functors (see §0.1) and is
also used in §3.3, where we address the construction of colimits in categories
of algebras over operads.

2.1 The Symmetric Monoidal Category of Σ∗-Objects
and Functors

Formally, a Σ∗-object in a category C consists of a sequence M(n), n ∈ N,
where M(n) is an object of C equipped with an action of the symmetric
group Σn. A morphism of Σ∗-objects f : M → N consists of a sequence of
morphisms f : M(n) → N(n) that commute with the action of symmetric
groups.

Usually, we have a base category C, fixed once and for all, and we deal
tacitely with Σ∗-objects in that category C. Otherwise we specify explicitly
the category in which we define our Σ∗-object. We may use the notation
EΣ∗ to refer to the category of Σ∗-objects in a given category E , but we
usually adopt the short notation M for the category of Σ∗-objects in the
base category E = C.

In the introduction of the chapter, we recall that M forms a symmetric
monoidal category over C. In this section, we address the definition and appli-
cations of this categorical structure. More specifically, we use the formalism
of symmetric monoidal categories over a base category to express the rela-
tionship between the tensor product of Σ∗-objects and the pointwise tensor
product of functors on a symmetric monoidal category E over C. Formally,
the category F of functors F : E → E inherits the structure of a symmetric
monoidal category over C and the map S : M �→ S(M) defines a functor of
symmetric monoidal categories over C:

(M,⊗, 1) S−→ (F ,⊗, 1).

2.1.1 The Functor Associated to a Σ∗-Object. First of all, we recall the
definition of the functor S(M) : E → E associated to a Σ∗-object M , for E a
symmetric monoidal category over C. The image of an object X ∈ E under
this functor, denoted by S(M,X) ∈ E , is defined by the formula

S(M,X) =
∞⊕

r=0

(M(r)⊗X⊗r)Σr ,
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where we consider the coinvariants of the tensor products M(r)⊗X⊗r under
the action of the symmetric groups Σr. We use the internal tensor product
of E to form the tensor power X⊗r, the external tensor product to form
the object M(r) ⊗X⊗r in E , and the existence of colimits in E to form the
coinvariant object (M(r) ⊗X⊗r)Σr and S(M,X).

In §2.1.4, we introduce pointwise operations on functors F : E → E that
correspond to tensor operations on the target. In light of these structures on
functors, we have a functor identity

S(M) =
∞⊕

r=0

(M(r) ⊗ Id⊗r)Σr ,

where Id : E → E denotes the identity functor on E .
The construction S : M �→ S(M) is clearly functorial in E . Explicitly, for

a functor ρ : D → E of symmetric monoidal categories over C, the diagram
of functors

D
S(M)

��

ρ �� E
S(M)

��
D ρ

�� E
commutes up to natural isomorphisms. Equivalently, we have a natural func-
tor isomorphism S(M) ◦ ρ 	 ρ ◦ S(M), for every M ∈M.

In the point-set context, the element of S(M,V ) represented by the tensor
ξ⊗ (x1⊗ · · ·⊗xr) ∈M(r)⊗V ⊗r is denoted by ξ(x1, . . . , xr) ∈ S(M,V ). The
coinvariant relations read σξ(x1, . . . , xr) = ξ(xσ(1), . . . , xσ(r)), for σ ∈ Σr.

Clearly, the map S : M �→ S(M) defines a functor S : M → F , where
F = F(E , E) denotes the category of functors F : E → E . (Because of our con-
ventions on functor categories, we should check that S(M) : E → E preserves
filtered colimits, but we postpone the simple verification of this assertion
to §2.4.)

The category M is equipped with colimits and limits created termwise
in C. The category of functors F = F(E , E) is equipped with colimits as
well, inherited pointwise from the category E . By interchange of colimits, we
obtain immediately that the functor S :M→ F(E , E) preserves colimits.

2.1.2 Constant Σ∗-Objects and Constant Functors. Recall that a Σ∗-
object M is constant if we have M(r) = 0 for all r > 0. The base category
C is isomorphic to the full subcategory of M formed by constant objects.
Explicitly, to any object C ∈ C, we associate the constant Σ∗-object η(C)
such that η(C)(0) = C. This constant Σ∗-object is associated to the constant
functor S(C,X) ≡ C.

2.1.3 Connected Σ∗-Objects and Functors. The category embedding
η : C → M has an obvious left-inverse ε :M→ C defined by ε(M) = M(0).
The category of connected Σ∗-objectsM0 is the full subcategory ofM formed
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by Σ∗-objects M such that ε(M) = M(0) = 0, the initial object of C. Clearly,
connected Σ∗-objects are associated to functors S(M) : E → E such that
S(M, 0) = 0.

In the case of a connected Σ∗-object M ∈ M0, we can extend the con-
struction of §2.1.1 to reduced symmetric monoidal categories. To be explicit,
for objects X in a reduced symmetric monoidal category E0 over C, we set

S0(M,X) =
∞⊕

n=1

(M(n)⊗X⊗n)Σn

to obtain a functor S0(M) : E0 → E0.

2.1.4 The Symmetric Monoidal Category of Functors. Let F =
F(A, C) denote the category of functors F : A → C, where A is any cat-
egory (see §0.1). Recall that F = F(A, C) has all small colimits and limits,
inherited pointwise from the base category C.

Observe that the category F is equipped with an internal tensor product
⊗ : F ⊗F → F and with an external tensor product ⊗ : C ⊗F → F ,
inherited from the base symmetric monoidal category, so that F forms a
symmetric monoidal category over C. Explicitly: the internal tensor product
of functors F,G : A → C is defined pointwise by (F ⊗G)(X) = F (X)⊗G(X);
for all X ∈ A, the tensor product of a functor G : A → C with an object
C ∈ C is defined by (C⊗F )(X) = C⊗F (X); the constant functor 1(X) ≡ 1,
where 1 is the unit object of C, represents the unit object in the category of
functors.

The functor of symmetric monoidal categories

η : (C,⊗, 1)→ (F ,⊗, 1)
determined by this structure identifies an object C ∈ C with the constant
functor η(C)(X) ≡ C. If A is equipped with a base object 0 ∈ A, then we
have a natural splitting F = C ×F0, where F0 is the reduced symmetric
monoidal category over C formed by functors F such that F (0) = 0, the
initial object of C.

Obviously, we can extend the observations of this paragraph to a category
of functors F = F(A, E), where E is a symmetric monoidal category over the
base category C. In this case, the category F = F(A, E) forms a symmetric
monoidal category over E , and hence over the base category by transitivity.

We have:

2.1.5 Proposition (cf. [12, §1.1.3] or [14, §1.2] or [54, Lemma 2.2.4]). The
category M is equipped with the structure of a symmetric monoidal category
over C so that the map S : M �→ S(M) defines a functor of symmetric
monoidal categories over C

S : (M,⊗, 1)→ (F(E , E),⊗, 1),
functorially in E, for every symmetric monoidal category E over C. ��
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The functoriality claim asserts explicitly that, for any functor ρ : D → E of
symmetric monoidal categories over C, the tensor isomorphisms S(M ⊗N) 	
S(M) ⊗ S(N) and the functoriality isomorphisms S(M) ◦ ρ 	 ρ ◦ S(M) fit a
commutative hexagon

S(M ⊗N) ◦ ρ
�
��

� �� ρ ◦ S(M ⊗N)

�
��

(S(M)⊗ S(N)) ◦ ρ
= 		�

��
��

ρ ◦ (S(M)⊗ S(N))

�

��
��

�

S(M) ◦ ρ⊗ S(N) ◦ ρ �
�� ρ ◦ S(M)⊗ ρ ◦ S(N)

and similarly for the isomorphism S(1) 	 1.
We have further:

2.1.6 Proposition. The category M0 of connected Σ∗-objects forms a re-
duced symmetric monoidal category over C.

The category M admits a splittingM = C ×M0 and is isomorphic to the
symmetric monoidal category over C associated to the reduced category M0.
The functor S : M �→ S(M) fits a diagram of symmetric monoidal categories
over C

M S �� F(E , E)

C ×M0
Id× S

��

�

��

C ×F(E , E)0 ��
�
��

.

We refer to the literature for the proof of the assertions of proposi-
tions 2.1.5-2.1.6. For our needs, we recall simply the explicit construction
of the tensor product M ⊗N . This construction also occurs in the definition
of the category of symmetric spectra in stable homotopy (see [30, §2.1]).

2.1.7 The Tensor Product of Σ∗-Objects. The terms of the tensor prod-
uct of Σ∗-objects are defined explicitly by a formula of the form

(M ⊗N)(n) =
⊕

p+q=n

Σn ⊗Σp×Σq M(p)⊗N(q),

where we use the tensor product over the category of sets, defined explicitly
in §1.1.7. In the construction, we use the canonical group embedding Σp ×
Σq ⊂ Σp+q which identifies a permutation σ ∈ Σp (respectively, τ ∈ Σq) to a
permutation of the subset {1, . . . , p} ⊂ {1, . . . , p, p+1, . . . , p+q} (respectively,
{p+1, . . . , p+q} ⊂ {1, . . . , p, p+1, . . . , p+q}). The tensor productM(p)⊗N(q)
forms a Σp×Σq-object in C. The group Σp×Σq acts on Σn by translations on
the right. The quotient in the tensor product makes this right Σp×Σq-action
agree with the left Σp ×Σq-action on M(p)⊗N(q).
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The group Σn also acts on Σn by translation on the left. This left Σn-
action induces a left Σn-action on (M ⊗N)(n) and determines the Σ∗-object
structure of the collection M ⊗N = {(M ⊗N)(n)}n∈N.

The constant Σ∗-object 1 such that

1(n) =

{
1 (the unit object of C), if n = 0,
0, otherwise,

defines a unit for this tensor product. The associativity of the tensor product
of Σ∗-objects is inherited from the base category. Let τ(p, q) ∈ Σn be the
permutation such that:

τ(p, q)(i) = p+ i, for i = 1, . . . , q,
τ(p, q)(q + i) = i, for i = 1, . . . , p.

The symmetry isomorphism τ(M,N) : M ⊗N → N ⊗M is induced compo-
nentwise by morphisms of the form

Σn ⊗M(p)⊗N(q)
τ(p,q)∗⊗τ−−−−−−→ Σn ⊗N(q)⊗M(p)

where we use the symmetry isomorphism τ : M(p) ⊗ N(q) → N(q) ⊗M(p)
of the category C and a translation of the right by the block transposition
τ(p, q) on the symmetric group Σn.

The functor η : C → M which identifies the objects of C to constant
Σ∗-objects defines a functor of symmetric monoidal categories

η : (C,⊗, 1)→ (M,⊗, 1)

and makes (M,⊗, 1) into a symmetric monoidal category over C. By an im-
mediate inspection of definitions, we obtain that the external tensor product
of a Σ∗-object M with an object C ∈ C is given by the obvious formula
(C ⊗M)(r) = C ⊗M(r).

2.1.8 Tensor Powers. For the needs of §3.2, we make explicit the structure
of tensor powers M⊗r in the category of Σ∗-objects.

For all n ∈ N, we have obviously:

M⊗r(n) =
⊕

n1+···+nr=n

Σn ⊗Σn1×···×Σnr
(M(n1)⊗ · · · ⊗M(nr)).

In this formula, we use the canonical group embedding Σn1 × · · · × Σnr ↪→
Σn which identifies a permutation of Σni to a permutation of the subset
{n1+ · · ·+ni−1 +1, . . . , n1 + · · ·+ni−1+ni} ⊂ {1, . . . , n}. Again the quotient
in the tensor product makes agree the internal Σni-action on M(ni) with the
action of Σni by right translations on Σn.
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The tensor power M⊗r is equipped with a Σr-action, deduced from the
symmetric structure of the tensor product of Σ∗-objects. Let w ∈ Σr be
any permutation. For any partition n = n1 + · · · + nr, we form the block
permutation w(n1, . . . , nr) ∈ Σn such that:

w(n1, . . . , nr)(nw(1) + · · ·+ nw(i−1) + k) = n1 + · · ·+ nw(i)−1 + k,

for k = 1, . . . , nw(i), i = 1, . . . , r.

The tensor permutation w∗ : M⊗r → M⊗r is induced componentwise by
morphisms of the form

Σn ⊗M(n1)⊗ · · · ⊗M(nr)
w(n1,...,nr)⊗w∗
−−−−−−−−−−→ Σn ⊗M(nw(1))⊗ · · · ⊗M(nw(r))

where we use the tensor permutation w∗ : M(n1)⊗· · ·⊗M(nr)→M(nw(1))⊗
· · · ⊗ M(nw(r)) within the category C and a left translation by the block
permutation w(n1, . . . , nr) on the symmetric group Σn. This formula extends
obviously the definition of §2.1.7 in the case r = 2. To prove the general
formula, check the definition of associativity isomorphisms for the tensor
product of Σ∗-objects and observe that composites of block permutations are
still block permutations to determine composites of symmetry isomorphisms.

2.1.9 The Pointwise Representation of Tensors in Σ∗-Objects. In the
point-set context, we use the notation w · x ⊗ y ∈ M ⊗ N to represent the
element defined by w ⊗ x ⊗ y ∈ Σn ⊗M(p) ⊗ N(q) in the tensor product
of Σ∗-objects

M ⊗N(n) =
⊕

p+q=n

Σn ⊗Σp×Σq M(p)⊗N(q),

and the notation x ⊗ y ∈ M ⊗ N in the case where w = id is the identity
permutation.

By definition, the action of a permutationw onM⊗N maps the tensor x⊗y
to w·x⊗y. Accordingly, the tensor productM⊗N is spanned, as a Σ∗-object,
by the tensors x⊗ y ∈M(p)⊗N(q), where (x, y) ∈M(p)×N(q).

In our sense (see §§0.4-0.5), the tensor product of Σ∗-objects inherits a
pointwise representation from the base category. To justify our pointwise
representation, we also use the next assertion which identifies morphisms
f : M ⊗ N → T with actual multilinear maps on the set of generating
tensors.

The abstract definition of §2.1.7 implies that the symmetry isomorphism
τ(M,N) : M ⊗N �−→ N ⊗M maps the tensor x⊗ y ∈M ⊗N to a tensor of
the form τ(p, q) · y⊗ x ∈ N ⊗M , where τ(p, q) is a block permutation. Thus
the permutation rule of tensors in Σ∗-objects is determined by the mapping
x⊗ y �→ τ(p, q) · y ⊗ x.
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2.1.10 Fact. For any Σ∗-object T , a morphism f : M⊗N → T is equivalent
to a collection of morphisms

f : M(p)⊗N(q)→ T (p+ q)

which commute with the action of the subgroup Σp ×Σq ⊂ Σp+q.
This assertion is an obvious consequence of the definition of the tensor

product in §2.1.7.

2.1.11 Enriched Category Structures. In §1.1.12, we observe that any
symmetric monoidal category over C that satisfies the convention of §0.1 is
naturally enriched over C. An explicit construction of external hom-objects
for categories of functors F = F(A, E) and the category of Σ∗-objects M
can be derived from the existence of hom-objects in E (respectively, C)∗.

The external hom of the functor category F = F(A, E) is given by the end

HomF (F,G) =
∫

X∈A
HomE(F (X), G(X)).

The adjunction relation

MorF(C ⊗ F,G) = MorC(C,HomF(F,G)),

for C ∈ C, F,G ∈ F , is equivalent to the definition of an end.
The external hom of the category of Σ∗-objects is defined by a product of

the form

HomM(M,N) =
∞∏

n=0

HomC(M(n), N(n))Σn .

The hom-object HomC(M(n), N(n)) inherits a conjugate action of the
symmetric group from the Σn-objects M(n) and N(n). The expression
HomC(M(n), N(n))Σn refers to the invariant object with respect to this
action of Σn. The adjunction relation of hom-objects

MorM(C ⊗M,N) = MorC(C,HomM(F,G))

for C ∈ C, M,N ∈M, is immediate.

2.1.12 Generating Σ∗-Objects. The identity functor Id : E → E is identi-
fied with the functor S(I) = Id associated to a Σ∗-object I defined by:

I(n) =

{
1, if n = 1,
0, otherwise.

This object I represents the unit of the composition product of Σ∗-objects
defined next.
∗ But serious set-theoretic difficulties occur for the category of functors F = F(A, E) if
A does not satisfy the condition of §0.1, for instance when we take A = E = Top, the
category of topological spaces.
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For r ∈ N, let Fr = I⊗r be the rth tensor power of I inM. Since S(Fr) =
S(I)⊗r = Id⊗r, we obtain that S(Fr) : E → E represents the rth tensor power
functor Id⊗r : X �→ X⊗r.

The definition of the tensor product of Σ∗-objects (see §2.1.7) implies that
Fr = I⊗r satisfies

Fr(n) =

{
1[Σr], if n = r,

0, otherwise.

Recall that 1[Σr] denotes the Σr-object in C formed by the sum over Σr of
copies of the tensor unit 1 ∈ C.

The symmetric group Σr acts on Fr(r) = 1[Σr] equivariantly by trans-
lations on the right, and hence acts on Fr on the right by automorphisms
of Σ∗-objects. This symmetric group action corresponds to the action by
tensor permutations on tensor powers I⊗r.

The Σ∗-objects Fr, r ∈ N, are characterized by the following property:

2.1.13 Proposition. We have a natural Σr-equivariant isomorphism

ωr(M) : M(r) �−→ HomM(Fr ,M),

for all M ∈M.

Proof. Immediate: we have

HomM(Fr ,M) 	 HomC(1[Σr],M(r))Σr

and HomC(1[Σr],M(r))Σr 	 HomC(1,M(r)) 	M(r).

One checks readily that the Σr-action by right translations on 1[Σr] cor-
responds to the internal Σr-action of M(r) under the latter isomorphisms.
Hence we obtain a Σr-equivariant isomorphism

ωr(M) : M(r) �−→ HomM(Fr ,M),

as stated. ��

2.1.14 Canonical Generating Morphisms. Observe that

(M(r)⊗ Fr(n))Σr 	
{
M(r), if n = r,

0, otherwise.

Accordingly, for a Σ∗-object M , we have obvious morphisms

ιr(M) : (M(r) ⊗ Fr)Σr →M
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that sum up to an isomorphism

ι(M) :
∞⊕

r=0

(M(r)⊗ Fr)Σr

�−→M.

At the functor level, we have S((M(r) ⊗ Fr)Σr) 	 (M(r) ⊗ Id⊗r)Σr

and S(ιr(M)) represents the canonical morphism

(M(r)⊗ Id⊗r)Σr →
∞⊕

r=0

(M(r) ⊗ Id⊗r)Σr = S(M).

The morphism Hom(Fr,M) ⊗ Fr → M induces a natural morphism
(Hom(Fr,M)⊗Fr)Σr →M . We check readily that the isomorphism of propo-
sition 2.1.13 fits a commutative diagram

(M(r)⊗ Fr)Σr

� ��

ιr(M)
������������������������

(Hom(Fr,M)⊗ Fr)Σr

ε

��
M.

Equivalently, the isomorphism ωr(M) corresponds to the morphism ιr(M)
under the adjunction relation

MorM((M(r) ⊗ Fr)Σr ,M) 	 MorC(M(r),HomM(Fr,M))Σr .

To conclude, proposition 2.1.13 and the discussion of §2.1.14 imply:

2.1.15 Proposition. The objects Fr, r ∈ N, define small projective genera-
tors of M in the sense of enriched categories. Explicitly, the functors

HomM(Fr,−) : M �→ HomM(Fr,M)

preserve filtered colimits and coequalizers and the canonical morphism

∞⊕

r=0

HomM(Fr,M)⊗ Fr →M

is a regular epi, for all M ∈ M. ��
Note that the functors S(Fr) = Id⊗r do not generate F and do not form

projective objects in F in general.

2.1.16 Remark. Since Fr = I⊗r, the isomorphism of §2.1.14 can be identi-
fied with an isomorphism

S(M, I) =
∞⊕

r=0

(M(r) ⊗ I⊗r)Σr 	M
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between M and the Σ∗-object S(M, I) ∈ M associated to I ∈ M by the
functor S(M) : E → E for E =M. This observation can be used to recover a
Σ∗-object M from the associated collection of functors S(M) : E → E , where
E runs over all monoidal symmetric categories over C.

2.2 Composition of Σ∗-Objects and Functors

The category of functors F = F(E , E) is equipped with another (non-
symmetric) monoidal structure (F , ◦, Id) defined by the composition of
functors F,G �→ F ◦G, together with the identity functor Id as a unit object.
The category of Σ∗-objects has a (non-symmetric) monoidal structure that
reflects the composition structure of functors. Formally, we have:

2.2.1 Proposition (see [17, 56]). The category of Σ∗-objects M is equipped
with a monoidal structure (M, ◦, I) so that the map S : M �→ S(M) defines
a functor of monoidal categories

S : (M, ◦, I)→ (F(E , E), ◦, Id),

for all symmetric monoidal categories E over C. ��
The composition product of Σ∗-objects refers to the operation M,N �→

M ◦ N that yields this monoidal structure. For our purposes, we recall the
construction of [14, §1.3] which uses the symmetric monoidal structure of the
category of Σ∗-objects in the definition of the composition product M,N �→
M ◦N .

2.2.2 The Monoidal Composition Structure of the Category of Σ∗-
Objects. In fact, the composite M ◦N is defined by a generalized symmetric
tensor construction formed in the category E =M:

M ◦N = S(M,N) =
∞⊕

r=0

(M(r) ⊗N⊗r)Σr .

Since the functor S : M �→ S(M) preserves colimits and tensor products, we
have identities

S(M ◦N) =
∞⊕

r=0

S(M(r)⊗N⊗r)Σr =
∞⊕

r=0

(M(r) ⊗ S(N)⊗r)Σr .

Hence, we obtain immediately that this composition product M ◦N satisfies
the relation S(M ◦N) 	 S(M) ◦ S(N), asserted by proposition 2.2.1.

The unit of the composition product is the object I, defined in §2.1.12,
which corresponds to the identity functor S(I) = Id. The isomorphism
of §2.1.14, identified with
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S(M, I) =
∞⊕

r=0

(M(r) ⊗ I⊗r)Σr 	M

(see §2.1.16), is equivalent to the right unit relation M ◦ I 	M .

2.2.3 The Distribution Relation Between Tensor and Composition
Products. In the category of functors, the tensor product and the composi-
tion product satisfy the distribution relation (F ⊗G) ◦S = (F ◦S)⊗ (G ◦S).
In the category of Σ∗-modules, we have a natural distribution isomorphism

θ(M,N,P ) : (M ⊗N) ◦ P �−→ (M ◦ P )⊗ (N ◦ P )

which arises from the relation S(M ⊗ N,P ) 	 S(M,P ) ⊗ S(N,P ) yielded
by proposition 2.1.5. This distribution isomorphism reflects the distribution
relation at the functor level. Formally, we have a commutative hexagon

S(M ⊗ N) ◦ S(P )

�

��																

S((M ⊗ N) ◦ P )

�
����������������

�
��

(S(M) ⊗ S(N)) ◦ S(P )

=

��
S((M ◦ P ) ⊗ (N ◦ P ))

�


















(S(M) ◦ S(P )) ⊗ (S(N) ◦ S(P ))

S(M ◦ P ) ⊗ S(N ◦ P )

�

������������������

that connects the distribution isomorphism θ(M,N,P ) to the functor identity
(S(M)⊗ S(N)) ◦ S(P ) = (S(M) ◦ S(P )) ⊗ (S(N) ◦ S(P )).

To summarize, we obtain:

2.2.4 Observation. Let F = F(E , E). For any functor S ∈ F , the composi-
tion product F �→ F ◦ S defines a functor of symmetric monoidal categories
over C

− ◦ S : (F ,⊗, 1)→ (F ,⊗, 1).
For any N ∈ M, the composition product M �→ M ◦N defines a functor

of symmetric monoidal categories over C

− ◦N : (M,⊗, 1)→ (M,⊗, 1)

and the diagram of functors

M S ��

−◦N
��

F
−◦S(N)

��
M

S
�� F



2.3 Adjunction and Embedding Properties 47

commutes up to a natural equivalence of symmetric monoidal categories
over C.

Besides, we check readily:

2.2.5 Observation. The distribution isomorphisms θ(M,N,P ) satisfy

θ(M,N, I) = id

for the unit object C = I and make commute the triangles

(M ⊗N) ◦ P ◦Q θ(M,N,P◦Q) ��

θ(M,N,P )◦Q 

���������������
(M ◦ P ◦Q)⊗ (N ◦ P ◦Q)

((M ◦ P )⊗ (N ◦ P )) ◦Q
θ(M◦P,N◦P,Q)

��















,

for all M,N,P,Q ∈ M.

These coherence relations are obvious at the functor level since all isomor-
phisms are identities in this case.

2.3 Adjunction and Embedding Properties

In the context of a module category E = C = k Mod, where k is an infinite
field, we recall in [14, §1.2] that the functor S : M �→ S(M) is full and faithful.
To prove this assertion, one can observe that the functor S : M �→ S(M) has a
right adjoint Γ : G �→ Γ(G) so that the adjunction unit η(M) : M → Γ(S(M))
forms an isomorphism (see proposition 1.2.5 in loc. cit.). In the general case
of a module category E = C = k Mod, where k is any ground ring, we obtain
further that η(M) : M → Γ(S(M)) forms an isomorphism if M is a projective
Σ∗-module (see proposition 2.3.12).

The aim of this section is to review these properties in the context of a
symmetric monoidal category E over C. For short, we set F = F(E , E).

Since we observe that the functor S :M→ F preserves colimits, we obtain
that this functor has a right adjoint Γ : F → M. In a first part, we give an
explicit construction of this adjoint functor Γ : G �→ Γ(G). For this purpose,
we assume that C has an internal hom, E is enriched over C, and we generalize
a construction of [14, §1.2]. In a second part, we observe that S : M �→ S(M)
extends to a functor of enriched categories and we prove that this functor
S : M �→ F is faithful in an enriched sense, at least if the category E is
equipped with a faithful functor η : C → E . Equivalently, we obtain that the
adjunction unit η(M) : M → Γ(S(M)) defines a monomorphism.

This account is motivated by the subsequent generalization of §8 in the
context of right modules over operad. The results and constructions of this
section are not used anywhere else in the book.
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2.3.1 The Endomorphism Module of a Pair. Observe first that the
functor M �→ S(M,Y ), for a fixed object Y ∈ E , has a right adjoint. For this
aim, form, for X,Y ∈ E , the Σ∗-object EndX,Y such that

EndX,Y (r) = HomE(X⊗r, Y ).

In §8.1.1, we observe that this Σ∗-object defines naturally a right module
over EndX , the endomorphism operad of X , and we call this structure the
endomorphism module of the pair (X,Y ).

For the moment, observe simply:

2.3.2 Proposition (cf. [54, Proposition 2.2.7]). We have a natural isomor-
phism

MorE(S(M,X), Y ) 	 MorM(M,EndX,Y )

for all M ∈M and X,Y ∈ E.
Proof. This adjunction relation arises from the canonical isomorphisms:

MorE(
∞⊕

r=0

(M(r) ⊗X⊗r)Σr , Y ) 	
∞∏

r=0

MorE((M(r) ⊗X⊗r)Σr , Y )

	
∞∏

r=0

MorC(M(r),MorE(X⊗r, Y ))Σr

= MorM(M,EndX,Y ).

��

2.3.3 Observation. Next (see observation 3.2.15) we observe that the map
S(N) : X �→ S(N,X) defines a functor S(N) : E → PE to the category PE of
algebras over an operad P when N is equipped with the structure of a left
P-module. One can observe that the endomorphism module EndX,Y forms a
left module over the endomorphism operad of Y . As a corollary, if Y = B
is a P-algebra, then we obtain that EndX,B forms a left module over P by
restriction of structures. In the context of P-algebras, we have an adjunction
relation

Mor
PE(S(N,X), B) 	 Mor

P M(N,EndX,B)

for all N ∈ PM, X ∈ E and B ∈ PE , where PM refers to the category of left
P-modules (see §§3.2.9-3.2.10).

2.3.4 Definition of the Adjoint Functor Γ : F → M. We apply the
pointwise adjunction relation of proposition 2.3.2 to the category of func-
tors F .

In §2.1.1, we notice that the functor S(M) satisfies

S(M) =
∞⊕

r=0

(M(r)⊗ Id⊗r)Σr = S(M, Id),
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where Id is the identity functor on E . According to this relation, if we set
Γ(G) = End Id,G for G ∈ F , then proposition 2.3.2 returns:

2.3.5 Proposition. The functor Γ : F → M defined by the map G �→
End Id,G is right adjoint to S :M→ F . ��

By proposition 1.1.16, we have as well:

2.3.6 Proposition. The functors S : M � F : Γ satisfy an enriched ad-
junction relation

HomM(S(M), G) 	 HomF(M,Γ(G)),

where morphism sets are replaced by hom-objects over C. ��
Proposition 1.1.15 implies that any functor of symmetric monoidal cate-

gories over C, like S : M → F , defines a functor in the enriched sense. Ac-
cordingly, the map f �→ S(f), defined for morphisms of Σ∗-objects, extends
to a morphism on hom-objects:

HomM(M,N) S−→ HomF(S(M), S(N)).

By proposition 1.1.16, we obtain further:

2.3.7 Proposition. The diagram

HomM(M,N) S ��

η(N)∗ 
















HomF (S(M), S(N))

HomM(M,Γ(S(N)))

�

��

















commutes. ��
According to this assertion, we can use the adjunction unit η(N) : N →

Γ(S(N)) and the adjunction relation between S :M→ F and Γ : F →M to
determine S : HomM(M,N) → HomF (S(M), S(N)). In the converse direc-
tion, we can apply the morphism S : HomM(M,N) → HomF(S(M), S(N))
to the generating Σ∗-objects M = Fr = I⊗r, r ∈ N, in order to determine
the adjunction unit:

2.3.8 Proposition. The component η(N) : N(r) → HomF(Id⊗r, S(N)) of
the adjunction unit η(N) : N → Γ(S(N)) coincides with the morphism

N(r) �−→ HomM(Fr, N) S−→ HomF (S(Fr), S(N)) �−→ HomF (Id⊗r, S(N))

formed by the composite of the isomorphism ωr(N) : N(r) �−→ HomM(Fr , N)
of proposition 2.1.13, the morphism induced by the functor S : M → F on
hom-objects, and the isomorphism induced by the relation S(Fr) 	 Id⊗r.
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Proof. This proposition is a consequence of proposition 2.3.7. In the case
M = Fr, we obtain a commutative diagram:

N(r) � ��

η(N)

��

HomM(Fr, N)

η(N)∗
��

S

��																

Γ(S(N))(r) �
�� HomM(Fr ,Γ(S(N))) �

�� HomM(S(Fr), S(N)).

One proves by a straightforward verification that the composite

Γ(S(N))(r) � �� HomM(Fr,Γ(S(N))) � �� HomM(S(Fr), S(N))

�
��

HomM(Id⊗r, N)

is the identity morphism of Γ(S(N))(r) = HomM(Id⊗r, S(N)) and the propo-
sition follows. ��

In the remainder of this section, we check that the morphism S :
HomM(M,N) → HomF (S(M), S(N)) is mono under the assumption that
the symmetric monoidal category E is equipped with a faithful functor
η : C → E . The proof of this observation is based on the next lemma:

2.3.9 Lemma. Let 1⊕r = 11⊕ · · · ⊕ 1r be the sum of r copies of the unit
object 1 ∈ C. For M ∈M, we have a canonical isomorphism

S(M, 1⊕r) 	
⊕

n1+···+nr=n

M(n1 + · · ·+ nr)Σn1×···×Σnr
.

Proof. We have Σn-equivariant isomorphisms

(11⊕ · · · ⊕ 1r)⊗n 	
⊕

(i1,...,in)

1i1 ⊗ · · · ⊗ 1in

	
⊕

(i1,...,in)

1

where the symmetric group Σn acts on n-tuples (i1, . . . , in) by permutations
of terms. We have an identification

⊕

(i1,...,in)

1 =
⊕

n1+···+nr=n

1[Σn1 × · · · ×Σnr\Σn],
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from which we deduce the splitting

(M(n) ⊗ (11 ⊕ · · · ⊕ 1r)
⊗n)Σn �

⊕

n1+···+nr=n

(M(n) ⊗ 1[Σn1 × · · · × Σnr\Σn])Σn

�
⊕

n1+···+nr=n

M(n1 + · · · + nr)Σn1×···×Σnr

and the lemma follows. ��
We deduce from lemma 2.3.9:

2.3.10 Proposition. The functor S :M→ F(E , E) is faithful for all sym-
metric monoidal categories over C equipped with a faithful functor η : C → E.

Moreover, the functor S : M → F(E , E) is faithful in an enriched sense.
Explicitly, the morphism induced by S on hom-objects

HomM(M,N) S−→ HomF (S(M), S(N))

is mono in C, for all M,N ∈M.

Proof. The object M(r) is isomorphic to the component n1 = · · · = nr = 1
in the decomposition of lemma 2.3.9. As a byproduct, lemma 2.3.9 implies
the existence of a natural monomorphism σ(M) : M(r) → S(M, 1⊕r), for
all M ∈ M. From this assertion we deduce that S induces an injection on
hom-sets

MorM(M,N) S−→ MorC(S(M, 1⊕r), S(N, 1⊕r)),

for all M,N ∈ M. If E is a symmetric monoidal category equipped with a
faithful functor η : C → E , then the map

MorC(S(M, 1⊕r), S(N, 1⊕r))→ MorE(S(M, 1⊕r), S(N, 1⊕r))

is injective as well. Hence we conclude readily that S induces an injection on
hom-sets

MorM(M,N) S−→
∫

X∈E
MorC(S(M,X), S(N,X)) = MorF (S(M), S(N)),

for all M,N ∈M, and defines a faithful functor S :M→ F .
In the context of enriched categories, we obtain that the map on hom-sets

MorM(C ⊗M,N) S−→MorF (S(C ⊗M), S(N)) 	 MorF(C ⊗ S(M), S(N))

is injective for all C ∈ C,M,N ∈M. By adjunction, we conclude immediately
that

HomM(M,N) S−→ HomF (S(M), S(N))

is mono. ��
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By proposition 2.3.7 and proposition 2.3.8, we have equivalently:

2.3.11 Proposition. The adjunction unit

η(N) : N → Γ(S(N))

is mono in M, for all N ∈M. ��
We record stronger results in the case E = C = k Mod:

2.3.12 Proposition. In the case E = C = k Mod, the category of modules
over a ring k, the adjunction unit η(M) : M → Γ(S(M)) is an isomorphism
as long as M is a projective Σ∗-module or the ground ring is an infinite field.

Proof. The case of an infinite ground field, recalled in the introduction of
this section, is stated explicitly in [14, Proposition 1.2.5]. In the other case,
one can check directly that the adjunction unit η(M) : M → Γ(S(M)) forms
an isomorphism for the generating projective Σ∗-modules M = Fr, r ∈ N.
This implies that η(M) : M → Γ(S(M)) forms an isomorphism if M is a
projective Σ∗-module. ��

2.4 Colimits

In §2.1.1, we observe that the functor S : M �→ S(M) preserves colimits. Since
colimits in functor categories are obtained pointwise, we obtain equivalently
that the bifunctor (M,X) �→ S(M,X) preserves colimits in M , for any fixed
object X ∈ E .

In contrast, one can observe that the functor S(M) : E → E associated to
a fixed Σ∗-object does not preserve all colimits. Equivalently, the bifunctor
(M,X) �→ S(M,X) does not preserve colimits in X in general.

Nevertheless:

2.4.1 Proposition (cf. [54, Lemma 2.3.3]). The functor S(M) : E → E
associated to a Σ∗-object M ∈ M preserves filtered colimits and reflexive
coequalizers.

Proof. In proposition 1.2.1 we observe that the tensor power functors Id⊗r :
X �→ X⊗r preserves filtered colimits and reflexive coequalizers. By assump-
tion, the external tensor products Y �→M(r)⊗Y preserves these colimits. By
interchange of colimits, we deduce readily from these assertions that the func-
tor S(M,X) =

⊕∞
r=0(M(r)⊗X⊗r)Σr preserves filtered colimits and reflexive

coequalizers as well. ��
As regards reflexive coequalizers, a first occurrence of proposition 2.4.1

appears in [51, §B.3] in the particular case of the symmetric algebra V �→
S(V ) on dg-modules.
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