
Preface

This volume grew out of a series of preprints which were written and circulated be-
tween 1993 and 1994. Around the same time, related work was done independently
by Harder [40] and Laumon [62]. In writing this text based on a revised version of
these preprints that were widely distributed in summer 1995, I finally did not pur-
sue the original plan to completely reorganize the original preprints. After the long
delay, one of the reasons was that an overview of the results is now available in
[115]. Instead I tried to improve the presentation modestly, in particular by adding
cross-references wherever I felt this was necessary. In addition, Chaps. 11 and 12
and Sects. 5.1, 5.4, and 5.5 were added; these were written in 1998.

I will give a more detailed overview of the content of the different chapters below.
Before that I should mention that the two main results are the proof of Ramanujan’s
conjecture for Siegel modular forms of genus 2 for forms which are not cuspidal
representations associated with parabolic subgroups (CAP representations), and the
study of the endoscopic lift for the group GSp(4). Both topics are formulated and
proved in the first five chapters assuming the stabilization of the trace formula. All
the remaining technical results, which are necessary to obtain the stabilized trace
formula, are presented in the remaining chapters.

Chapter 1 gathers results on the cohomology of Siegel modular threefolds that
are used in later chapters, notably in Chap. 3. At the beginning of Chap. 1, impor-
tant facts from [19] on the Hodge structure and l-adic cohomology of the Siegel
modular varieties SK(C) are reviewed. In the case of genus 2, the Siegel modular
varieties SK(C) define algebraic varieties of dimension 3. They are the Shimura
varieties attached to the group of symplectic similitudes G = GSp(4,Q). One can
define coefficient systems Eλ on these threefolds associated with irreducible finite-
dimensional algebraic representations λ of the group GSp(4), which are defined
over Q. The most interesting cohomology groups of these coefficient systems are
the cohomology groups Hi(SK(C), Eλ) in the middle degree i = 3. The group
G(Afin) acts on the direct limit of the cohomology groupsHi(SK(C), Eλ), where
the limit is over the adelic compact open level groups K ⊆ G(Afin), and this
defines an admissible automorphic representation of the group GSp(4,A) for the
adele ring A = R × Afin. Since the Siegel moduli spaces are not proper, the

v



vi Preface

cohomology of these varieties is not pure. Besides the interior cohomology, which
is the image of the cohomology with compact supports in the ordinary cohomol-
ogy, there occur representations of Eisenstein type. The automorphic representa-
tions ofG(Afin) defined by the Eisenstein constituents are by definition isomorphic

to constituents of induced representations IndG(Afin)

P (Afin)(σ), where σ is an automor-
phic representation of the Levi group of a Q-rational parabolic subgroup of G. It
is well known that the Eisenstein cohomology is rarely pure. But also some part
of the cuspidal cohomology, which is a subspace of the interior cohomology, fails
to be pure. In fact, some of the irreducible cuspidal automorphic representations
behave similarly to Eisenstein representations. These are called CAP representa-
tions π. By definition, an irreducible automorphic representation π = ⊗vπv is a
CAP representation if there exists some global automorphic representation σ of a
Levi group of some proper Q-rational parabolic subgroup of G such that πv and
IndGv

Pv
(σv) have the same spherical constituent for almost all non-Archimedean

places v. For the group GSp(4) the CAP representations were completely clas-
sified by Piatetski-Shapiro [69] and Soudry [95], and the Ramanujan conjecture
(purity) does not hold for them. The main result obtained in Chap. 1 (Sect. 1.3),
Theorem 1.1, states that except for the cohomology degree i = 3 all the irreducible
automorphic representations, which occur as irreducible constituents of the repre-
sentations limK H

i(SK(C), Eλ), are either CAP representations or belong to the
Eisenstein cohomology. This, in principle, allows a complete description of the cus-
pidal part of the cohomology representations in degree i �= 3 by the classification
of CAP representations. Even for the degree i = 3 the CAP representations oc-
cur, indeed those defined by the Saito–Kurokawa lift. Sections 1.3–1.7 contain the
proof of Theorem 1.1, which is based on the study of the Lefschetz map and a weak
form of the Ramanujan conjecture. This eventually shows that for irreducible auto-
morphic cuspidal representations π, which occur as constituents in degree i �= 3, a
certain L-function must have poles at specific points, which forces π to be a CAP
representation.

In Chap. 2, we consider the topological trace formula of Goresky and
MacPherson for general reductive groups G. We do not consider this for the
spaces SK(C) themselves, but for spaces SK(G) with a slightly better behavior
with respect to “parabolic induction.” This suffices for our purposes, since SK(C)
is a finite unramified covering of SK(G):

SK(C) � SK(G).

For a Hecke operator f the topological trace formula computes the alternating sum∑
i(−1)itr(f ;Hi(SK(G), Eλ) of its traces. Its computation is considerably simpli-

fied if one discards all contributions from CAP representations and Eisenstein repre-
sentations, which we abbreviate by the notion “CAP localization.” The correspond-
ing simplified formula obtained by CAP localization still allows us to compute the
alternating sum of the dimensions of generalized eigenspaces Hi(SK(G), Eλ)(π)
for an irreducible cuspidal automorphic representation π, which is not CAP (see
page 47). To do this for a single fixed π, we construct suitable Hecke operators f
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in Sects. 2.7 and 2.8, called good projectors, whose elliptic trace TGell(f) computes
the alternating sum of these virtual dimensions (Theorem 2.1). For the construc-
tion of good projectors, it is essential that all the irreducible representations of
GSp(4,Afin), which arise as constituents of the cohomology, are automorphic.
This was shown by Schwermer for the group GSp(4) and by Franke in the gen-
eral case. In Sect. 2.9, we compare the formula thus obtained with Arthur’s L2-trace
formula, which has the property that these elliptic traces coincide with the elliptic
part of the geometric side of the Selberg trace formula. Now assume π is a cuspidal
irreducible representation of G(Afin), which are not CAP. For a prime p, let us de-
note πp = ⊗v �=∞,pπv . Then the results obtained in Chap. 2 in the special case G =
GSp(4) combined with the results obtained in Chap. 1 give a simple trace formula
for the action of Hecke operators on generalized eigenspaces limK H

3(X,Eλ)(πp)
of the middle cohomology for either X = SK(G) or X = SK(C) for large enough
primes p. Furthermore, this simple formula also allows us to compute the action
of the nth powers of the geometric Frobenius substitution Frobp at the prime p in

terms of certain Hecke operators hp = h
(n)
p . See Theorem 2.2 and its applications

in Chap. 4.
In Chap. 3, the simple localized topological trace formula forGSp(4,Q) is com-

pared with the Grothendieck–Verdier–Lefschetz trace formula for SK(Fp), which
computes the traces of the Frobenius homomorphism attached for certain l-adic
sheaves attached to the coefficient systems Eλ. But unlike the CAP localized form
of the topological trace formula, this other trace formula, studied by Langlands,
Kottwitz, and Milne, is not a stable trace formula. To compare both trace formu-
las, one has to stabilize it [53, 59]. This requires certain local identities at the non-
Archimedean places – the so-called fundamental lemma and certain variants of it.
More precisely, since the Grothendieck–Verdier–Lefschetz trace formula can only
be explicitly computed for sufficiently high powers Frobnp of the Frobenius Frobp,
one needs for each such n a twisted version of the fundamental lemma [51]. With
use of these local assumptions, which are considered in the later chapters, one ob-
tains without effort the main formula (Corollary 3.4) which expresses the Frobenius
traces as a sum of two terms. One of these two terms is the trace of a suitably defined
Hecke operator on the cohomology. The other term is the so-called endoscopic term,
which is related to an automorphic lift. This lift is implicitly defined by the trace for-
mula; however, it is not yet properly understood at this point of the discussion. This
lift will eventually be constructed in several steps by a bootstrap argument using re-
peated comparison of traces. At this stage of the discussion we are therefore content
with the following weak characterization: a cuspidal automorphic representation is a
weak endoscopic lift if its L-functions are the L-function of an irreducible automor-
phic form σ = (σ1, σ2) for Gl(2,A) × Gl(2,A) at almost all places, provided σ1

and σ2 are cuspidal automorphic representations ofGl(2,A) such that they have the
same central character. In fact σ can be viewed as an irreducible cuspidal automor-
phic representation of the nontrivial elliptic endoscopic group M ∼= Gl(2)2/Gm
of G. In the situation of Corollary 3.4, a preliminary condition at the Archimedean
place has also been added. This temporarily relevant definition of a weak lift, in-
volving some technical conditions, can be found at the beginning of Chap. 3. At
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the end of Chap. 3, we prove the Ramanujan conjecture (purity) for the cuspidal
representations π (at the spherical places), which are neither CAP nor a weak lift,
and which occur as constituents in the cohomology of degree i = 3. We then indi-
cate why this should yield four-dimensional Ql-adic representations of the absolute
Galois group of Q attached to such irreducible automorphic representations. In fact,
the trace formula stated in Sect. 3.6 finally leads to this [115]. We neglect the discus-
sion of the cohomology in degree different from 3. In fact, only CAP representations
contribute in these degrees, and the CAP representations have all been classified for
the group GSp(4); hence, it is not difficult to determine their contributions to the
Hasse–Weil zeta function by weight considerations. So there is no need to exploit
the trace formula in these cases. Nevertheless this is still worthwhile since it gives
refined formulas for the local automorphic representations of CAP representations
(see the notion of “Arthur packets” in Sect. 4.11), and it can be done using the for-
mulas of Chap. 2. However, we have not included this discussion.

In Chap. 4, we take up the study of weak lifts. For this discussion we fix a cus-
pidal irreducible representation σ = (σ1, σ2) of M(A) for the unique nontrivial
elliptic endoscopic group M of G = GSp(4,Q). In Chap. 4, we then consider ir-
reducible cuspidal automorphic representations π, which are weak lifts attached to
σ but which are not CAP. This is the general assumption of Chap. 4. Since only the
group G(Afin) acts on the cohomology, it is natural to ask for the Archimedean
component π∞ of the automorphic representations π = π∞ ⊗ πfin. For this we
fix some coefficient system Eλ. Then π∞ necessarily must belong to the discrete
series of GSp(4,R), and π∞ is almost determined by the condition that πfin de-
fines a nontrivial generalized eigenspace on the direct limit limK H

3(SK(C), Eλ).
More precisely, this means that π∞ belongs to a local L-packet of discrete se-
ries representations in the sense of Shelstad [91]. This L-packet is uniquely de-
termined by the irreducible representation λ, which defines the coefficient system.
This L-packet contains two equivalence classes of irreducible representations. One
of the representations, π−,∞ = πH∞(λ), of this L-packet belongs to the holomor-
phic/antiholomorphic discrete series; the other representation, π+,∞ = πW∞ (λ), has
a Whittaker model. Let m1(πfin) and m2(πfin) be the automorphic multiplicities
of the cuspidal representationsπ = π−,∞⊗πfin and π = π+,∞⊗πfin, respectively.
The multiplicity of πfin in the generalized eigenspace limK H

3(SK(C), Eλ)(πfin)
is 2m1(πfin) + 2m2(πfin). In fact, the semisimplification of the Ql-adic represen-
tations of the absolute Galois group of Q on the corresponding eigenspace defined
for the l-adic cohomology ism1ρ1⊕m2ρ2. Here, ρ1 and ρ2 are the two-dimensional
irreducible Ql-representations attached to σi, i = 1, 2, by Deligne. Indeed, if some
weak lift π of σ contributes nontrivially to the cohomology in degree 3, then the
two cuspidal representations σ1 and σ2 are irreducible automorphic representations
of Gl(2,A), whose Archimedean component again belongs to the discrete series.
Such automorphic representations σi are related to elliptic holomorphic new forms
of weights ri. The weights are not arbitrary. They must be different, so we can as-
sume r1 > r2. This being said, there is the finer result (Lemma 4.2)

lim
K
H3(SK(C), Eλ)(πfin)ss ∼= m1 · ρ1 ⊕ m2 · (νk2−2

l ⊗ ρ2),
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where νl denotes the cyclotomic character and k2 is an integer determined by the un-
derlying coefficient system Eλ. The trace formula comparison of Chap. 3 provides
a formula which expresses

m1(πfin)−m2(πfin)

in terms of local data, but in which only the local non-Archimedean components πv
of the representations πfin =

∏
v �=∞ πv enter. More precisely, this formula is

m1(πfin)−m2(πfin) = −
∏

v �=∞
n(σv, πv),

where the coefficients n(σv, πv) are complex numbers obtained by a distribution
formula

χGσv
=
∑

πv

n(σv, πv)χπv .

Here, χσv and χπv denote characters of admissible irreducible representations, and
χGσv

is the endoscopic distribution lift of the character χσv (see page 83). The defi-
nition of this local lift for distributions requires the existence of matching functions,
where certain transfer factors have been fixed. Transfer factors will be discussed
in Chaps. 6 and 7. It should be mentioned that for the group GSp(4, Fv) the ex-
istence of matching functions was established by Hales [36]. The existence of a
character expansion χGσv

=
∑
πv
n(σv, πv)χπv is then derived from the trace com-

parisons studied in Chap. 3 and the first sections of Chap. 4. Most of the content
of Sects. 4.5–4.12 are devoted to proving that this sum is finite and that the trans-
fer coefficients n(σv, πv) are integers. In fact this finally defines the endoscopic
lift r : RZ[Mv] → RZ[Gv] between the integral Grothendieck groups of irre-
ducible admissible representations of G = GSp(4) and M = Gl(2)2/Gm for
non-Archimedean p-adic fields. In the real case such formulas are known in gen-
eral from the work of Shelstad [90, 91]. The final result is stated in Sect. 4.11. With
use of the classification of representations, the results obtained by Moeglin, Rodier,
Sally, Shahidi, Soudry, Tadic, Vigneras, and Waldspurger, this is reduced to establish
the existence of r for local non-Archimedean admissible irreducible representations
σv of Mv, which belong to the discrete series. For these representations, it turns out
that the local character lift has the form

r(σv) = π+(σv)− π−(σv)

for two irreducible admissible representations π±(σv) of the groupGv. We further-
more show that π+(σv) does have a Whittaker model, whereas π−(σv) does not.
Finally, we use global theta series to describe π±(σv) in terms of local theta lifts
similarly to the case of the group Sp(4) studied by Howe and Piatetski-Shapiro [41].
In fact this study is continued in Chap. 5. Indeed, some results obtained in Chap. 5
are already used in Sect. 4.12. Besides these local results, studied in Sects. 4.5–4.12,
we consider in Sect. 4.4 rationality questions, i.e., questions concerning the field of
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definition. Using some properties of the endoscopic transfer factor, defined in the
later chapters, we can describe the numbers m1(πfin) and m2(πfin) in terms of
Hodge theory. In fact 2m1(πfin) turns out to be the multiplicity of πfin in the holo-
morphic/antiholomorphic part and 2m2(πfin) turns out to be the nonholomorphic
contribution.

In Chap. 5, we continue the discussion of Chap. 4, but return to global questions.
The main result obtained in this chapter is Theorem 5.2, which is the final version of
the preliminary multiplicity formula for weak lifts given in Sects. 4.1–4.3. We obtain
the formula m1(πfin) + m2(πfin) = 1; hence, one of the global multiplicities
mi(πfin) is 1 and the other is 0. Which of them does not vanish depends only on
the non-Archimedean components of πfin. The essential argument is the principle
of exchange, which controls exchange in ⊗vπv of a representation πv within its
local packet at one specific place v. The final formula is, of course, a special case
of Arthur’s conjecture [3], which originated from considering the special case of
the group GSp(4,Q). However we only consider this formula in the case of weak
lifts, which are not CAP. Nevertheless, the multiplicity formula for the cohomology
groups in the case of the Saito–Kurokawa lift can be derived along the same line of
arguments (although this is not carried through explicitly).

Chapter 5 also contains sections in which the global results on the endoscopic
lift are extended to the case G = ResF/Q(GSp(4)) for an arbitrary totally real
number field F , and also applies to representations which do not necessarily appear
in the cohomology of Shimura varieties. This is contained in Sects. 5.4 and 5.5. The
arguments here use Arthur’s trace formula instead of the topological trace formula,
and they are subtler and more technical than the arguments involving the topological
trace formula. The analogous local results, which extend those obtained in Chap. 4
to arbitrary local fields of characteristic 0, are considered in Sect. 5.1.

In Chaps. 6 and 7, the fundamental lemma for the group GSp(4, Fv) over a lo-
cal non-Archimedean field Fv of residue characteristic different from 2 is proved.
This fundamental lemma (Theorems 6.1 and 7.1) is an identity between local or-
bital integrals OGv

η (fv) and OMv
t (fMv ) for the groups Mv and Gv. This iden-

tity involves a transfer factor Δ(η, t). Here, the elements η ∈ GSp(4, Fv) and
t ∈ M(Fv) are sufficiently regular semisimple elements and η and t are related
by a norm mapping. η is an element whose conjugacy class over the algebraic
closure is determined by the conjugacy class of t in M(Fv). This does not deter-
mine the G(Fv)-conjugacy class of η uniquely. In the case under consideration,
there are one or two such conjugacy classes in the stable conjugacy class. The
κ-orbital integral is the difference OGv ,κ

η (fv) = OGv
η (fv) − OGv

η′ (fv) of orbital
integrals OGv

η (fv) =
∫
Gη,v\Gv

fv(g−1ηg)dg/dgη in the case where there are two

such classes. Since there is no canonical choice, which might privilege η or η′, one
has to make a choice for the definition ofOGv ,κ

η (fv). The dependence on this choice
is compensated for by a transfer factor Δ(η, t), which depends on the class of η cho-
sen. Then the fundamental lemma is the statement that there exists a homomorphism
b : fv 	→ fMv

v between the spherical Hecke algebras (prescribed by the principles
of Langlands functoriality) with the matching condition
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Δ(η, t)OGv ,κ
η (fv) = SOMv

t (fMv
v )

for all sufficiently regular t and the corresponding η. Here, SO denotes the stable
orbital integral on Mv. A couple of remarks are in order. First, although the funda-
mental lemma is later used for (G,M)-regular elements t, it is enough to prove the
fundamental lemma for sufficiently regular elements by a degeneration argument.
Second, it is enough to prove the fundamental lemma for the unit elements of the
Hecke algebras, and for almost all primes (see Hales [35] for the case of ordinary
endoscopy). See also Chap. 10, where the reduction to the case of the unit element
fv = 1 of the spherical Hecke algebra is discussed in the slightly greater general-
ity of twisted base change. Third, for our purposes it is important that the transfer
factors have certain nice properties. One of these properties is the product formula
(global property) ∏

v

Δ(ηv, tv) = 1

for global elements η and t, where the product is over all Archimedean and Non-
archimedean places. For the product formula above, it is essential for us that the
formula holds precisely with the Archimedean transfer factor Δ(η∞, t∞) used by
Shelstad. Concerning this, we show in Chap. 8 that for our choice of transfer factor
the product formula holds, and that our chosen Archimedean transfer factor is the
same as the one defined by Langlands and Shelstad over the field R. Unfortunately,
already in the case of the group GSp(4), this amounts to a lengthy and tedious un-
raveling of the definitions, which are based on the cohomological reciprocity pair-
ings of local class field theory [60]. The proof of the fundamental lemma is done
by an explicit calculation. We distinguish two cases dealt with in Chaps. 6 and 7,
respectively. In fact, the computation gives the local orbital integrals explicitly, not
only the κ-orbital integral. This turned out to be useful for later computations in the
twisted case done by Flicker [26]. The explicit calculation of the orbital integrals
hinges on an approach which in the case of the group Gl(2) is used in the book by
Jaquet and Langlands [42] onGl(2) and which in an implicit form is based on some
double coset computations in the groupG(Fv) for the groupG = Gl(2). For me, an
analogous double coset decomposition for the groupG = GSp(4), due to Schröder,
suggested this approach. A special case was been carried out by Schröder [81]. It
seems that nice representatives for double cosets H(Fv)\G(Fv)/K of this type ex-
ist for reductive, hyperspecial maximal compact subgroups K and maximal proper
reductive Fv-subgroupsH of G quite generally, in the sense that they should define
a generalization of the classical theory of genera of quadratic forms. In classical
genus theory, H is the orthogonal group contained in the linear group G. The max-
imal subgroups of reductive groups are well known, and new types of genus theory
mainly arise from considering the inclusions H ↪→ G of centralizers H = Gs
of semisimple elements s in reductive groups G. In Chap. 12 we consider this sit-
uation for the group G = GSp(2n), where we generalize the result obtained by
Schröder to the case n = 2. Similar computations can be made in the case of
classical groups [116]. The case of the exceptional case group G of type G2 was
considered by Weselmann [117].
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Chapter 9 considers the fundamental lemma for twisted base change endoscopy.
This type of fundamental lemma is needed for the trace comparison theorems in
Chap. 3. We show that these twisted endoscopic fundamental lemmas can be re-
duced to the ordinary fundamental lemmas of standard endoscopy. Such a reduction
can be carried out quite generally, except that we consider the global trace formula
arguments only in the case of the group GSp(4). However, the argument can be
extended to the general case, and this will be considered elsewhere. As a side result,
one gets a variant of the fundamental lemma (see Lemma 9.7) where the transfer
factors are defined in a slightly different form, which is needed for Chap. 3. This
is based on some explicit formulas for the Langlands reciprocity map as given in
Kottwitz [48] or Schröder and Weissauer [82]. An entirely local proof was given
later by Kaiser [43].

In Chap. 10, we verify that the twisted endoscopic fundamental lemma is a con-
sequence of the special case of the fundamental lemma for unit elements, as one
expects from the untwisted case [35], and that it is enough to know it for almost all
primes. This reduces the fundamental lemmas needed for Chap. 3 to the statements
given in Chaps. 6 and 7. The argument uses the method of Labesse [57]; hence, it is
based on elementary functions and can be further generalized [113] to the twisted
adjoint cases. For standard endoscopy this reduction was proved in Hales [35] by
a different argument. Finally, Chaps. 11 and 12 contain some prerequisite material
needed in Chaps. 6–10.
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