Chapter 2
CAP Localization

In this chapter, we will express the m-isotypic Lefschetz numbers of Hecke operators
acting on the cohomology of symmetric spaces Sk (G) attached to reductive groups
G in terms of so-called elliptic traces T,;;, provided the underlying representation
7 is not a cuspidal representation associated with a parabolic subgroup (CAP rep-
resentation) of G(A). In the following two chapters we derive from these formulas
all the essential information required.

For a connected reductive group G over Q, let K, be a maximal compact sub-
group of G, = G(R) and let Ag(R)? be the topologically connected component
of the maximal Q-split component A of the center Z¢ of G. Then X = Goo/ Ko
for Koo = Koo - A (R)° will be called the connected symmetric space attached to
G. For a compact open subgroup K C G (A ¢;p,)

Sk(G) =G(Q)\ (Xg x G(Ayin)/K) = G(Q)\ (Xg x G(Ayin)) /K
is a disjoint union of arithmetic quotients of X¢.

Example 2.1. For G = GSp(4,Q) we have X = H U — H for the Siegel upper
half-space H of genus 2. Hence, Sk (G) does not coincide with the Shimura variety
Sk (C), which is an unramified covering of Sk (G).

Assumption Regarding G,,. In this chapter assume that the derived group Gge,
of G is simply connected. This property is inherited by the Levi subgroups L of G.

Proof: G = Guer Z(G) and Z(G) C L implies Lyer = (Gaer N L)der- L N Ger
is a Levi group of G4, since this holds for the Lie algebras by characterizing Levi
subgroups as centralizers. So it is enough to consider the semisimple case to see
that L., is simply connected. For this case see [99], Lemma 5.3 or Theorem 5.8,
p- 208, which proves the claim. Since all groups L4, are simply connected implies
that the centralizers L., of semisimple elements in the Levi groups L are connected
reductive groups.

Lefschetz Numbers. An irreducible complex representation of the group G, =
G(R) with highest weights A restricts us to a representation of G(Q), which defines
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20 2 CAP Localization

a coefficient system' V) on S (G). The cohomology groups H” (Sk (G), Vy) are
modules under the Hecke algebra of K'-bi-invariant functions on G(A ¢;,) with
compact support. Assume K = [[, K,. Fix a finite set S of non-Archimedean
places such that for all non-Archimedean places v ¢ S the group K, is a special,
good maximal compact subgroup of G,,. Let

S
™ = ®U¢S7T'U

be an irreducible spherical automorphic representation of G (A\? ). The 7°-isotypic
generalized eigenspace of the vth cohomology group

H"(Sk(G), Va)(n®)

is a module under the Hecke algebra Hg x € Hg, defined by the locally constant
K g-bi-invariant functions on G(Ag) with compact support. A simple formula for
the trace of Hecke operators fs € Hg = ®ycsH, in the subspace Hg i of the
Hecke algebra (see Appendices 1 and 2) defined by

ra(fs) = (- 1)"tr (fs, HY (S (@), morS))

v

is provided by the topological trace formula of Goresky and MacPherson. Assume
that the unramified automorphic spherical representation 7° of G (A? ) is not iso-

morphic to a subquotient of an induced representation ndgz (o) for all proper
parabolic subgroups P # G with Levi component L, and all irreducible automor-
phic representations o of L(A? ). In this case 7° is cuspidal, and 7 is not a CAP
representation in the sense of [69,97]. With these assumptions, the formula for the
trace of fg is further simplified (Sects. 2.6, 2.8).

Of special interest is the case where G, has discrete series representations
(Sect.2.9). In this case the formula for the trace becomes the following (see
Corollary 2.6): If the group K = [], K, is small and 7 is not CAP, the trace
Trs(fs) of fs is equal to

/

dG)- Y T(G)OTM (fsfrs foo)-
vEG(Q)/~

The sum is over all strongly elliptic semisimple conjugacy classes in G(Q) (see
page 46); G, denotes the centralizer of v in G, which by our assumptions is a con-

nected reductive group. The coefficients O.? ) are adelic orbital integrals. Mea-
sures are such that volgy, (K) = 1 and volgg_4q, (G(Q) \ G(A)) = 7(G) is the
Tamagawa number. The function f,.s is a suitable chosen good 7-projector de-
pending on the fixed fs (see Sect.2.8), and f is a suitable linear combination
of pseudocoefficients of discrete series representations with respect to the measure
dgo (see Sect. 2.9). The corresponding L-packet is determined by the representation

! In this chapter we consider the dual V) of the coefficient system E of Chap. 1.
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A defining the coefficient system V). d(G) denotes the number of discrete series rep-
resentations in this L-packet.

Remark 2.1. If K is replaced by a subgroup U of finite index such that G JU —
Goo/ K = Xg is a finite unramified covering of degree d, then the trace formula
also holds for G(Q) \ (Geo/U x G(As,)/K except that the formula above has
to be multiplied by the degree d of the covering. This applies for Shimura varieties
(G, h) attached to a reductive Q-group, for which Z(G)/A¢ is R-anisotropic, since
in this case the centralizer Z(h) of the structure homomorphism h of the Shimura
variety is a subgroup of finite index in K=K - Ag(R)Y. See page 53.

2.1 Standard Parabolic Subgroups

Fix a minimal Q-parabolic subgroup F,. For a Q-rational parabolic subgroup
P = LN containing Py, and v € P(Q) let v;, denote the image of v under the
projection P(Q) — L(Q) to the Levi component.

Contractive Elements. A semisimple element v € L(Q), which is contained in
a real torus T" of L, which is RR-anisotropic modulo Ay, is called P-contractive,
if 77| > 1 holds for all simple roots o (over the algebraic closure), which
occur in the Lie algebra of the nilpotent radical of P, restricted to the maximal
Q-split torus Ay, (in the center of L). In fact, it does not matter if we consider
the absolute root system or the Q-root system. Since v, = oo - ;vookooxgol for
o € AL(R)Y koo € K10, this implies |77|oc = |a%, |~ for all roots o. Hence,
vr, is P-contractive if and only if the central component a, is P-contractive and
this notion depends only on the L(Q)-conjugacy class of the element . Suppose
P = Py = Ly Ny is a Q-rational standard parabolic subgroup defined by a subset 6
of the simple positive Q-roots. Then by definition |a(vz )]s = [a%|c = 1 holds
for all simple roots a € 6. Since the roots in Lie(Np) are the positive roots which
are not linear combinations of the roots in 6, the condition defining the notion
P-contractive may be replaced by the stronger condition: | Y|~ > 1 holds for all
positive roots in @, and |y |o, = 1 holds if and only if « is a root which occurs in
Lie(Lp), or alternatively this could also be replaced by the condition |a% |, > 1
for all simple Q-roots « ¢ 6.

The Set W'. Let & = ® = & U &~ be the decomposition into the posi-
tive and negative roots of the absolute root system. Define W’ as a subset of the
absolute Weyl group W (considered over the algebraic closure) to consist of the
elements w € W for which @ N w®~ C ®(Lie(Np)) [33], p.474, or equiva-
lently w®~ N @ =0 < w () C ®f. Then W = W7 is the set of all
w € W such that w=!(a) > 0 holds for all o € 6. By a result obtained by Kostant,
W is the disjoint union of the cosets Wy, - w for representatives w € W’'; hence
|WPe| = |W|/|WrL,|. Here W, denotes the absolute Weyl group of L, considered
as a subgroup of W = W. The representatives w € W are uniquely character-
ized as the representatives of minimal length in the W, left cosets of W
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Inductivity. Notice the following inductive property of the sets W C W. Let
P =Py, € Q = Py, C G be standard parabolic subgroups, corresponding to
01 C 05. Let L = Ly, be the standard Levi component of Py,. Then Py, N L = P’
is a standard parabolic subgroup of L with Levi component L’ = Ly, . In particular,
WP C Wy is defined. Then

wr.we =wPr.

In fact wy -wy = w-wh with wy, w} € WF" and wy, wh € W implies W, wy =

2
Wr,,ws; hence, wa = wy and therefore also w; = wj. By the above-mentioned
formula for the cardinalities it is enough to show that the product set on the left
side is contained in the right side. But this is clear. Every w; Y for wy € W' maps
(Lo, )" to ®(Lg,)" and every wy ! for wy € WFo2 maps ®(Lg,)" to &+ =
O(G)F; thus, wyws € W,

Characters. For a dominant weight A of L let ¢/ denote the character of the finite-
dimensional irreducible complex representation of L with highest weight \. Let p¢
denote half of the sum of the roots in ®*. Similarly define p;, for the reductive
group L. Put pp = pg — pr as characters of L. If A is a dominant weight for G,
then w(pa + A) — pe is dominant for L (see [15], Sect. III.1.4 and Sect. I11.3.1, and
[45]). Using the Coxeter lengths {(w), define

\IJ('}/?)‘) = Z (_1)l(w)ww()\+pc)—/)c (’YL_l)'
weWwr
Since —pg + pp = —pr, we have for vy € L(Q)

V7T = D (D) " agpe) - (V0 )-
weW?F

The Functionr(vy). Let A denote the ring of adeles of Q and A f;,, the ring of finite
adeles. Let K =[], finite IS0 De @ compact open subgroup of G(Ay;p). Fora Q-
rational parabolic P = LN and for semisimple v € P(Q) defineI' = G(Q) N K,
I'y=INN, I"=Tny 'y, Iy =T N N. Then

r=r(y)=[n:Ty]=[Tn:Tnny Tyl
s=s(7)=[""Tny:Ty] =[x : 7Ty

satisfy s(7) = [[n : v(Cxy Ny 'Tvy)y 7] = [y : 90ny ' TN = (7Y
hence,

Lemma 2.1. s() = r(y~1), which only depends on vr..

Lemma 2.2. 5(7)/r(v) = 7?7 or |77 |1 (v) = [7 777 [cor(v )

Proof. The quotient [T : Ty Ny vy~ 1] /[T : Ty Ny~ 1T v] is the virtual index

[Cx Ny Ty Dy NAlny =[0n Ny Ty (Cy Ny Ty =0 . O
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2.2 The Adelic Reductive Borel-Serre Compactification

As a set, the adelic reductive Borel-Serre compactification is

(ST =G\ XL x (G(Asin)/K)] = GQ)\ XL x G(Asin)]/K,
P

P

a disjoint union over all Q-rational parabolic subgroups P of G. X, = L/ K Lo
is the connected symmetric domain attached to L, i.e., K oo = K1 o0 AL (]R)O, where
K|, ~ denotes a maximal compact subgroup of L., and Ay, (RR)° the topologically
connected component of the maximal Q-split subtorus Ay, in the center Z (L) of L.
Elements g € G(A ;) acton the projective limit (S¢)* = limx (SE)T = G(Q)\
Up X1 xG(A tin,)] by x +— g~ L. This defines a left action of G(A f;,,) on (S¢)*,
which induces a right action on cohomology groups. Now consider

T(g7") : G(Q)roctsin = G(Q)Too(Tfing ™).

Here o« € Jp Xr and xfi, € G(Aj,). On the quotients (Sﬁ)* this defines
Hecke correspondences. Put

K' =Kng 'Kg.

Then the induced Hecke correspondence is given by two maps ¢; = 7'(1) and
c2 = T(g™ ) (see Appendix 1)

(St 2SRt

C2

The action of G(Q) on the Q-parabolic subgroups by conjugation is transitive
on the minimal Q-parabolic subgroups. Fixing a minimal parabolic Py, every Q-
parabolic is conjugate over ( to one and only one standard parabolic Q-subgroup
P with respect to Py. Since the stabilizer of P under conjugation with G(Q) is
P(Q), (S$)* is a union over the finitely many standard Q-parabolic subgroups
P = Py containing Fy:

(ST = |J Sk. where SE=P(Q)\[XLx G(Afn)]/K.
PyCP

Goresky and MacPherson [33] deduced a formula for the alternating trace
trs(T(g™"); H* (Sk(G), V)

from the Grothendieck—Verdier—Lefschetz fixed-point formula which they applied
for the reductive Borel-Serre compactification (S%)* of Sk (G). They used the
property that the cohomology groups H®(Sk(G),Vy) coincide with the coho-
mology groups H*®((S$)*,i.V)) of the reductive Borel-Serre compactification
(SE)*, where i : Sk (G) — (S$)T is the inclusion. As in [33], Theorem
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(version 0), the Lefschetz fixed-point theorem of Grothendieck, Verdier, and Illusie
therefore expresses the Lefschetz number as a sum of “local” contributions LC'(F')

> > Lo

for the connected components F’ of the intersection of the fixed-point set of the cor-
respondence with the boundary strata S 112 attached to the rational parabolic group P.

Rational Hecke Correspondences. We say a double coset K gK or the corre-
sponding Hecke correspondence is rational if a representative g can be chosen to
be g = 7vpin for some v = Yooyrin € G(Q). In this case the correspondence
T(g™') defined on (S9) " = G(Q) \ [Up X1 x G(A ;)] satisfies G(Q)zoo —
G (Q):z:oo'yf_iiZ = G(Q)7YooTo; hence, it induces the Hecke correspondence consid-
ered in [33], p. 467, defined by ¢ (I"y) = Ty and c2(T"y) = T'yooy-

2.2.1 Components

First consider the connected components of S%. Since X, is topologically con-
nected, the topologically connected components & of the stratum S 112 are the fibers
of the map

Sk = P(Q\ [XL x (G(Afin)/K)] — m0(SK) = P(Q)\ G(Asin)/K.
For each component h = P(Q)x f;, K in mo(S%) put
Tp, = P(Q)NapinKay,, and Ty, = N(Q) Nz Kay),.

For Kn(h) := N(Ayin) NxpinKay,) and Kjy(h) :== N(Agin) N @pinK'z 7))
then obviously [Kn (h) : Kjy(h)] = [['n, : Ty, |, where Iy 1= K (h) N N(Q).

Fixed Components. Now consider the connected components F' of the fixed-point
locus of a Hecke correspondence within .S P for fixed P. Then

FCh

for some unique component h of SE. If F is fixed, then h is also fixed. So we first
determine the fixed components h of the Hecke correspondence, and then the fixed
components F' in h.

2.2.2 Fixed Components h

The component h = P(Q)(X1, x {xfin})K is fixed

T(g~')h =h,
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if and only if 2 f;,9 ' K = v f;, K holds for some v € P(Q) and some k € K.
Recall gK'g~* C K.Hence, Y ' ing~! = x4in k implies 7_1;vme’x;i1nw C
xmexJIiln. Thus,

7_1FIP;LFY = P(Q) N 7_1xfinKl(7_lein)_l g P(Q) N .Ifan.I?Zln = FPh-

xme’:z:;iln:xmex;ilnﬂxfmg_1K(xfmg‘1)‘1:xmex;ilnmy(xmex;iln)y—
again using z ¢, g~ '=vx ;, k. Hence, the intersection with P(Q) is F’Ph =I'p, N
/Tp,v~ 1. In particular, Iy, =N, N yT'n,7~!). Hence, the fixed equation
T(g~')h=h given by v~ "z fing~'=x fink implies.

Lemma 23. [Ky (1) : Kiy(h)] = [y, Ty, ] = [, (T, 14T, Y)] =
r(y~1). For fixed g, K this number only depends on P and the coset P(A fiy,)T fin.

Rationality. To simplify the notation we now replace K by i, K x;lln, and g~ !

by Z fin g_lx;iln, which allows us to assume z;, = 1 without restriction of gen-
erality. Then the fixed-component equation becomes v € g~ ' K. Hence, the coset
¢ 'K C Kg 'K has a rational point, and the Hecke correspondence defined by
Kg~'K = K~vK is rational. For a fixed component h one can thus reduce the lo-

cal computations of the local term LC(F) for F to the classical setting considered
in [33].

2.2.3 Another Formulation

The action of G(Q) on the Q-parabolic subgroups by conjugation is transitive on the
minimal Q-parabolic subgroups. Hence, choosing a minimal Q-parabolic Py, every
Q-parabolic is conjugate over QQ to one and only one standard parabolic Q-subgroup
P with respect to Py. Since the stabilizer of P under conjugation with G(Q) is
P(Q), (S$)* is a union over the finitely many standard Q-parabolic subgroups
P = Py containing P,

(ST = |J P@Q\I[XL x G(Asin)]/K.

P,CP

Since gKg~' N Np(Ay;y) is open in Np(Ay;,) for P = LpNp, for the strata
Sk =PQ)\ [Xr x G(Ayin)]/K of

sH = U sk

PyCP

an easy density argument gives the formula S = Lp(Q)\ [Xz x (Np(Afin) \
G(A fin)/K)] or

5112 = Lp(Q)Np(Agin) \ [Loo % G(Afin)]/KooK'

1
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Hence, z € (SIC‘}V)"' is a double coset represented by some ¥ = TooTfpiy €
Lo X G(Ay4y,). Iwasawa decomposition G(A ;) = P(Ayy,) -  for some
maximal compact group €2 containing the group K gives a finite decomposition
G(Afin) = U, P(Ayin)gK. Therefore, the set mo(SE) of the topologically con-
nected components is finite, since by a result obtained by Borel and Harish-Chandra
[14], M (Q) \ M (A in)/ K is finite for any reductive Q-group M and any com-
pact open group Kp; € M (A ;). Of course we may choose the representatives
elements
T fin = k € Q.

2.2.4 Small Groups

Consider compact open subgroups K C G(A ) and Ko, = Koo Zg)oo, where K
is maximal compact in Goo. K C G(A f4,,) will be called small if

oy € Kf(ooZL.,oo

forz € G(A),n € N(A),y € P(Q) and any Q-parabolic P = L - N with
unipotent radical N implies v;, € Z1,(Q) (image in the Levi component is contained
in the center) and in addition implies ;, = 1 if 7y, is a torsion element.

Remark 2.2. Of course it is enough to demand this for all standard parabolic groups
containing a fixed Fp.

Remark 2.3. “Small” implies “neat” in the sense that L(Q)ir N (zKz™1 N
P), =1

Small-level groups K exist: G(A) is a finite union of cosets P(A)kK K, for
k € G(Ay;y,). This allows us to replace ' by some conjugate Ky, and = by some
p € P(A), and gives equations p~'nyp € Ky, for p € P(A) instead of z € G(A).
Equivalently, m~tyym € (K N P)g form € L(A), where the index L indicates
projection from P to the Levi component L. ~;, is semisimple since modulo the
center it is contained in a maximal compact subgroup of L. The groups L and
Loq = L/Z, are connected reductive groups; hence, by embedding L, into some
linear group and using for L,q the argument at the beginning of the proof [44],
Proposition 8.2, one can show that only finitely many L(Q) conjugacy classes of
semisimple elements ~yz, in L,q(Q) meet (K} N P)r,. Shrinking K leaves us, con-
sidering eigenvalues, with the unique Q) conjugacy class {1}. Thus, v, € Z.(Q).
Finally, Z1,(Q)+or is finite (consider a splitting field of Z). Since it is enough to
consider the finitely many standard parabolic groups P and for each finitely many
cosets k, shrinking K therefore allows us to assume Z,(Q)or N (K NP = {1}
for the finitely many relevant cases.
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2.3 Fixed Points

Now we want to determine the fixed points z of the Hecke correspondence T'(g 1)
in the reductive Borel-Serre compactification (S%,)*. They are described by the
equations ¢y () = T(1)z and co(x) = T(g~ )z in (SE)*. The unique component
h containing x is necessarily a fixed component. h is contained in a stratum SZ.
Now fix the standard parabolic P = LpNp, or P = LN for short.

Suppose = € S};, is represented by & = TooZ fin € Loo X G(A ;). Thenzis a
fixed point of T'(g~!) if and only if zg~! = ~ - = - k holds for some v € P(Q) and
keK L,0o K<, or equivalently if and only if

z yx e g_le(L,OO.

We may replace x by another representative § 1z, § € P(Q). Then instead of 7 its
conjugate 65! appears in the fixed-point equation. Moreover

Lemma 2.4. The element -y is semisimple and R-elliptic. For small K the L(Q)-
conjugacy class of the image vy, of v in L(Q) is uniquely determined by the fixed
pointz € SE,.

Proof. The equation xgolexoo e K IL.co implies that v, € L(Q) is R-elliptic,
hence semisimple. Now choose an equivalent representative dnxk’ for x for
some n € N(Afi),0 € P(Q),k € KiK' Suppose zg~' = yzk; and
(6nzk')g™' = ~o(dnzk')ky holds for 4; € P(Q), ki € K ..oK. Replacing
ko by k'ko(gk’g1)~! allows us to assume k' = 1. Replacing 72 by 61724 al-
lows us to assume § = 1. Hence, y12k; = zg~! = n~'yonzks. Since K is
small, this implies v, € Z1(Q) for v = ~; '42 and hence y commutes with =,
which then implies v;, € KoKy, where K, is the image of K N P(Ay;,) in
L(Ay;y,). Thus, v € Zp(Q) N IN(L_,OOKL. Looking at the Archimedean place
and the non-Archimedean places separately, this forces vy, to be a torsion element.
Therefore, v, = 1, since K is small.

This lemma gives a decomposition of the fixed-point set in the stratum S%, ac-
cording to the conjugacy classes vz, € L(Q)/ ~. O

Fixing v, / ~. We want to determine the set Fiz(7,) of all fixed points z € SE,
of T'(g~1), where in the fixed-point equation for some representative an element -y
appears whose projection to L(Q) belongs to the fixed conjugacy class v,/ ~. To
unburden the notation we also write Fiiz(vy) instead of Fliz(vyr),

Fiz(7) € Sir = Lp(Q)\ [(Loo/KL.50) X (N(Agin) \ G(Agin)/K")].

FOr & = Zoo fin € Loo X G(A t4,,) the double coset z = L(Q)N (A fi, )2 K, oo K
is in Fiz(v) if and only if there exist n € N(A;),d € P(Q),k € K1 oK, €
N(Q) such that n(6y'v6~1)zk = xg~! holds, or equivalently if and only if there
existn € N(A;),d € P(Q),k € K1 oK, such that

(%) :13_171575_13: S g_lf(LyooK,

since we are free to replace n by nd~'6 1.
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By abuse of notation we do not distinguish between global elements 7, § in G(Q)
and their images in G, or G(A t;,,). Since x is considered in S, = P(Q) \ [X x
G(Atin)]/K', we may replace x by 1z and n by 6~ 'nd, which simplifies the
equations for F'iz(y). Hence, we get

Lemma 2.5. We have Fixz(y) =2 L(Q) \ (L(Q) -1, Sol, (7)) where

Soly(v) = {zv € N(Qu) \ G(Qu)/K,, | z, 'nyzy € gy ' K, holds for some n € Ny}
at the non-Archimedean places v and K!, = K,, N g; 1 K, g., and where
S0loo (V) = {Too € Loo(R)/ KL oo | 23 0%00 € K1 oo }
at the Archimedean place co.

By abuse of notation we write L., for the centralizer L., of the element «y7, in
L, which is a connected reductive group by the assumption that G, is simply
connected.

Corollary 2.1. For small K we obtain Fix(y) = Ly(Q) \ Sol(7) for Sol(y) =
[1, Solu(7).

Proof. L(Q)-equivalent solutions in Sol(v), say, z~'n;yx and x~'nd~1yéx in
g 'K K, for suitable ny,no € N(Ay;,) and § € P(Q), satisfy z ' nad~1ydy ="
nmaz € KK for some n € N(A). We may then assume n; = 1, and since K
is small, this implies 5;17L5L7L_1 € Z1,(Q). Since the commutator 5;17L5L7L_1
is in Lge,(Q), and since Z1,(Q) N Lge-(Q) is finite, the commutator is a torsion
element, and hence is 1 since K is small. This implies 67, € L,(Q) and completes
the proof. [J

2.3.1 Archimedean Place

Soloo(7) = Ly.oo/(Ly.co N K1.00) by the corollary in Appendix 2, unless it is
empty. If it is nonempty, the Archimedean fixed-point condition shows that vy, is
L ,-conjugate to a point in K L,0o- To determine L, o, we may therefore assume
YL € K L,00 Without restriction of generality. Hence, the centralizer L. ., becomes
@-stable for the Cartan involution 6 (see Appendix 2). Therefore, Koo N L o is a
maximal compact subgroup K o of L, . Since AL(R)? C Ly oo, Soloo(7y) =
Ly oo/(KL, s0AL(R)") admits a smooth surjective map to the symmetric space
X1, =Lyoo/(KL, AL, (R)?) of the centralizer L., which defines a trivial fibra-
tion by the Euclidean space A7, (R)°/AL(R)°, and hence a homotopy equivalence.
See the Remark 2.15 in Appendix 2.
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2.3.2 Non-Archimedean Places

Recall that T((g~!) and v/ ~ are now fixed. Let 2, be the stabilizer of a special
point in the Bruhat-Tits building. Special points always exist, and €2,, is a maximal
compact subgroup of G,,. We now assume K, C ,; hence, K| C ,. Then by
the Iwasawa decomposition G, = P, - Q,, (see [103], Sect. 3.3.2). For k € 2, put
9. = kg 'k, Ky = kK, k™', and K|, = kK/k~'. Elements z,, € Sol,(7)
may be written z, = p - k forp € P, and k € Q,,. The coset (P, N Q,)kK] is
uniquely determined by x,,, and G/K' = UkerQu\Qv/K; P,/(P, NkK!k™1).
Therefore,
Soly,(y) = U Soly, (7, k).

kEP,NQ,\Q, /K,

Here Sol,(v,k) = {p € No \ Po/(Py KK k™) [ prtyepr € (95 'Kk N P)L}
or
Soly (v, k) = Su(7, k)/Kl(k)v

for K'(k), := (P, NkK'k=1)r and

So(y, k) = {m €L,

mem € (g Kk P b = (L) &0 K/ (R).
v

This is a finite (possibly empty) union over representatives &, € L,. From [53],
Propositions 7.1 and 8.2, there is only one representative &, = 1 for almost all v.

2.3.3 Globally

With this notation

Sol(v,k) = S(7,k)/K' (k) for Ky (k) = Kp oo [ K'(k)o,

v fin

where S(v, k) = {m € L(A) |m~tyym € IN(L_,OO(gk_lKkﬂP(A\Afm))L}. L,(A)

acts on S(7, k) from the left. Choose a decomposition

S(v:k) =H Ly (A) - - K/ (k)a
13

with representatives { € L(A.), where representatives { = [], &, are chosen to be
products of corresponding local non-Archimedean representatives &, for L~ (Q.) \
So(v,k)/K'(k)y, and €5 = 1. Then
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Lemma 2.6. For small K the contribution of a fixed conjugacy class v/ ~ in L(Q)
to the fixed-point locus of T(g~1) is

Fia(y) = o Fia(, k),
KEP(A 5in)NQ\Q/K'

Fiz(y,k) = [H L,(Q) \ Ly (A)/(EK'(k)a&™" N Ly (A)).
¢

Of course L(Q) \ L(A)/((K'(k)a& N Ly(A)) = |4 F, is a finite union of
arithmetic quotients F,.

2.4 Lefschetz Numbers

The Lefschetz number becomes

2.2 0.0 > e,

P v/~ k€

where k € PN Q\ Q/K'. Put F = F,. For the local terms LC(F') Goresky
and MacPherson gave an explicit description as a product x(F)r(ve)¥ (yr, A) if
vr is P-contractive, and it vanishes otherwise. See [33], pp. 470—471 and Theorem
(version 3a), p.474. Here vp = ~~1 is the characteristic element defined in [33],
p-469, which is the inverse of the element v defined in Lemma 2.4. Hence, if it is
nonvanishing, the local number LC(F') is the product of:

e The Euler characteristic x(F')
o hrlie 7o, k) 1
° |7F|gopp : \I}(’YF7 )\) = ZweWP(_l)l(w)ww(A+pG)—PL (’71; )

2.4.1 Euler Characteristics

We may sum the terms ) x(F,) for fixed P,v/ ~, k, &, which gives the Euler
characteristic

X(Ly (Q)\ Ly (A) /(6K (k)a&™" N Ly (A))).

To compute it we may replace L%OO/IN(L,OO by Xp. = L%OO/IN{L%OO. See page 44.
Notice L~ (Q) N gkL,Y,OOK/(k)Ag_l is contained in the center of L, since K is
small. Hence, the intersection is discrete and compact, and hence we have a finite
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group. By our assumption K is small; hence, the intersection is trivial. Thus, we
obtain

X(L~,dgfin)
F,) =
2B = (€K )6 1 Ly (A)

for a constant x(L~) = x(L~,dgsin) depending only on L. and on the choice of
the Haar measure dg i, on L (A ¢;y,).

Remark 2.4. Observe that  is R-elliptic, and hence is Q-elliptic. For the ambigu-
ity of this notion, see [44], p. 392. We show that in our situation this ambiguity does
not cause problems, since the Euler characteristic of the corresponding summands
in the trace formula vanishes unless both notions agree. Consider the group L or bet-
ter L/Ar,. The center Z (L) is Q-anisotropic modulo Ay,. If the quotient were not
anisotropic over R, the corresponding global quotient space X would be a nontriv-
ial torus fibration, whose Euler characteristic would therefore vanish. Similarly the
Euler characteristic vanishes for locally symmetric arithmetic quotients of semisim-
ple groups unless the R-rank of the maximal compact subgroup equals the R-rank
of the group. Considering the map Lg., — L, we can assume that (L, /Ar)(R)
contains an R-anisotropic torus of maximal rank, or otherwise the Euler charac-
teristic vanishes and the corresponding summand does not contribute to the trace
formula.

Definition 2.1. Call v € L(Q) strongly elliptic if v is L(IR )-conjugate to an element
in K, - A (R) such that the Euler characteristic x(L~) does not vanish.

Remark 2.5. For connected reductive groups L over Q, for which the connected
component of the center modulo Ay, is anisotropic over R, one also wants to com-
pare x(L, dgtin) with the Tamagawa number. At the moment we do not need to
carry through this comparsion. When we need it later, it can be obtained directly
from a comparison between the topological L?-trace formula and Arthur’s L2-trace
formula. On the other hand, it should not be difficult to obtain it by reduction to the
case of semisimple groups (Harder’s theorem [37]) adapting the argument of [68],
pp. 129-131, with a z-extension 7’ — L* — L replacing the sequence (1), and
L= (L*)ger — L* — T replacing the sequence (H) in [68].

Only (semisimple) strongly elliptic elements 7 contribute to the Lefschetz num-
ber. Let X]GD be the characteristic function of the P-contractive elements. We obtain
for the Lefschetz number the expression

DO x(Eadgrin)xP(0) D (D) uagpe)—pn (1) - Oy

P v/~ weWwr
= Z ZX(L'W d/gfin)xg('yoo) Z (_1)l(w)"/}w(>\+PG)—PL (7_1) ' O'y*lu
P oy~ wew?®

where

YRS (v k)
0, = N '
! ; ; vOldgfrm (gK/(k)Afmg_l n L'V(A‘fi"))
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Here we used r(7, k) = r(6v6~1, k) for 6 € L(Q). To show this, recall k = z;,
describes the component i of the P-stratum, which contains F'. Recall 7(7y, Z 4, ) =
r(8v61, 0z ¢in) for 6 € P(Q). Since (7, 2 i) depends only on P and the coset
P(A¢in)2 fin, (Lemmas 2.1 and 2.3), replacing by a conjugate does not change

r(vy, k).

2.4.2 Computation of O

Notice [y~ [257(v™") = [T,z00 17197 [No N K : Ny N K] by Lemma 2.3. Since
(k)
kj =
2 W= D pnay:(pnKp)

ke(PyNQy)\Qy /K, keQ, /K],

this allows us to write O as a product [ [, 400 O, of non-Archimedean local terms
. Z Y157 - [No 0 K : Ny 0 K]
ke, /K, (P, N Q) : (Py N K})] - volag, (§0 K (k)o&o ™ N Ly )

Since
0—N,NK;, - P,NK}, — K'(k), =0

is exact, this gives

s S g DI ol (N 1 K -l (K8
Yoo = volgg, (§,K'(k)uéa N L.y )

)

keQ, /K] &

where measures are normalized such that vol (€2, N P,) = 1 and vol(Q, N N,,) = 1.
In Sect. 2.5 we show that this expresses O as an orbital integral

0, = o+

of the characteristic function f of the set K¢~ K up to a normalization factor.

2.4.3 Conclusion

The computations in Sects. 2.4.1 and 2.4.2 describe the right action of 1 x4k /volq (K)
on the cohomology. Any K -bi-invariant function f is a linear combination of func-
tions f as above. However, we should keep in mind that so far we have used a left
action of G(A f;,) on SY, where g € G(Ay;y) acts by the formula on page 23;
hence, the cohomology becomes a right module under the Hecke algebra.
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Theorem 2.1. Assume the derived group of G is simply connected and K is small.
Then the Lefschetz number of the right action of a K-bi-invariant Hecke operator
f € CX(G(Ayin)) on the cohomology H® (Sk (G), V) is given by

HEW=3 3 XL dgin)O% (1) - |27 W (3, 0).

P ~eL(Q)/

The sum extends over all standard Q-parabolic subgroups P = LN containing the
fixed minimal Q-parabolic Py and all L(Q)-conjugacy classes v € L(Q)/ ~ of
semisimple, strongly elliptic elements in L(Q) with P-contractive representatives.

Example 2.2. G = G, for the representation « +— z" of weight A\ = ronV = C,
and K maximal compact. Then Sk is a single point. The element g = (g,,) € A% Fins
where g, = pand g, = 1 forv # p,actson Vy by 1 x 1 — 1 x g7 ~ p" x 1
in V' x A%, . Itacts on the cohomology via multiplication by p~" (right action on
cohomology) or p” (left action on cohomology).

Remark 2.6. Notice we used

(P) (P)

OL . (f

~

)=0%(f~ )

For the comparison of trace formulas with those in [64] in Chap. 3, we may turn the
right action of the Hecke algebra on the cohomology groups into a left action by the
substitution f(x) — f~(x) = f(x~!). This makes the formula compatible with
that in [64], p. 197.

Remark 2.7. The factor x(L., dgsin)OZ (.) does not depend on the choice of the
fixed Haar measure dg i, on L~ (A f;,); therefore, we do not mention the choice of
dgin in the following.

Remark 2.8. The condition imposed in Theorem 2.1 that v € L(Q)/ ~ contains a
P-contractive representative v € P(Q) can be replaced by the stronger condition
that |« (y)|eo > 1 holds for all positive roots o of G and | (7y)|oc = 1 holds if and
only if « is a root from L as explained after the definition of contractiveness. Of
course it is enough to consider Q-roots, since GG and P are defined over Q and v is a
Q-rational element. Therefore, the condition in Theorem 2.1 can be replaced by the
condition |a(7)] sin < 1 holds for all positive Q-roots « and |« (y)| i, = 1 holds if
and only if «v is a root from L.

Remark 2.9. For a standard Q-parabolic group P O P, with Levi decomposition
P = LN let X*(P)q = X*(L)q = Homq—aig(L, Gp,) be the group of charac-
ters defined over Q. Then X7, = Hom(X*(L)q, R) can be canonically identified
with the Lie algebra of Ay, and hence with Az (R)" by the exponential map. One
defines the Harish-Chandra homomorphism

HPL(A) —>XL



34 2 CAP Localization

by exp((Hp(l),x)) = lIx(D)||, where ||| : A* — R* is the idele norm, and y €
X*(L)q. For the minimal Q-parabolic P = Py we write Xp = X. Let A be a
basis of the simple Q-roots. Then the standard Q-parabolic subgroups P = Py
correspond uniquely to the subsets § C A. The roots in F' are the roots of the
Levi component Ly, and the simple roots in the Lie algebra of the unipotent radical
Ny are the roots in A \ F. In fact, since ~ is strongly elliptic, the condition for
v € L(Q) = Ly(Q), given in Remark 2.8, could also be replaced by the condition

[a(Hp (7))l pin <1

for all simple Q-roots « not in 6.

The Decomposition X' = A} @ XLL [1]. Let 3; denote the dual roots such that
<6j, ;) = di;, both considered as elements of X. Then there exists a natural or-
thogonal decomposition X = X & XLJ- such that Xy, is the span ZMF RB;
and X7~ = >, Ray. The projection prp @ X — Xy is pr(3 qp 20, +
Y ier Yiti) = ngijﬂj. The image under prp of the open positive Weyl
chamber X+ = Zje AR>08; € X defines the open Weyl chamber X’ AJQ in
Xr; the image of the obtuse Weyl chamber TX = Zl Rsoa; C X defines
the obtuse open Weyl chamber in X7. Obviously Tx, = > i¢F R-oc;. Then
X =pr(xt) = r R>0/3;, since (a;,a;) < 0foré # jand (5;, 3;) > 0.
In fact ZﬂF :1:][3] + szF yici € Y ;e p R>o0; therefore implies y; > 0,7 € I
hence, z; > 0,5 ¢ F. Also X* C *X; therefore, X;7 C *X. Finally notice
Xt n—-+tx ={0}.

2.5 Computation of an Orbital Integral

We write the terms O, in the formula for the Lefschetz numbers as an orbital integral
O% (f (P)). This is done in steps 1-3. The final result is formulated in step 4.

Step 1. Assume measures are normalized by volg(2) = 1.Recall K’ = KNg~'Kg
and g € G(A ;) is fixed. The characteristic function 1,1 (y) of the set g7 K is
then K'-bi-invariant. Furthermore, k 12k € ¢7'K <= 2 € kg 'k 'kKk™! =
gk_lK;.C. Hence,

/ (Tl ak)dk = [Q: KT Y g (T k)
Q kEQ/K'
—’UOZQ Z 1 lKk
keQ/K’

Jie g1k (k™ ak)dk = [ 1g-1 i (k™ a)dk = vola(g7 ' Kg N K) g1k (z) =
volQ(K)lKg 1K( ) holds for z € G(Ayi,). Hence, [, = volo(K)™" [, [«
implies
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/1g—1K(k_1xk)dk':’UOZQ(K)_I/UOZQ(K/)lKg—lK(k'_lxk)dk'.
Q Q

Comparison of the right sides thus gives for the (2-average

Definition 2.2. f(z) = [, f(k~ zk)d x € G(Ayy), of the normalized
characteristic functlon

Definition 2.3. f(z) = volo(K) 'y ,-1x(z) .

Lemma 2.7. f(x) = ZkEQ/K/ L1k, (2).

Step 2. For © € P(A ;) in a standard parabolic subgroup P = LN by Lemma 2.7
/ f(zn)dn = Z / 11k, (xn)dn.
N(Afin) kEQ/K/ N(Afin)

If z7, isnot in (gk_lKk N P(Ayf;,)) L, the corresponding integral on the right side is
zero. Otherwise zng = gk_lko holds for some ng € N(Ay;,) and kg € Ky, and in
this case the integral becomes fN(Aﬁn) Lok, (95 Hkon)dn = vol (N (A i )NK}).
Hence, for z € L(Ay;,) we get

Lemma 28. 6(v) = [y, flan)dn = 3cq)k vol (N(Ayin) N Ky)-

1<g,:1KmP<Afm>)L($ :

Step 3. Next consider the orbital integral of the function ¢ defined on L(A f;,,)

o) = [ p(m=Lym)dm.
(Afin)\L(Afin)

By the definition of ¢ the value of O (¢) is

> wol(N(Agin) N Ky)- /

keQ/K' Ly(Apin \L(Ayin)

char{m ‘ m~lyrm € (91.:_1Kk N P(Aﬁn))L}dm,

or by Sect. 6.16 and the decomposition S(7, k) = (J L~ (A yin) - Epin - K'(K)a,,,

vol ) (K (K)ay,,
Z vol(N(Afm) ﬂKk) Z ! ?(A[é/ )k( iA1f m)L Agin))
keQ/K’ Erin VOLL, (Afin) (gfm ( )Afm 6fi" 'Y( jm))

Step 4. To put things together. The function

fx) = A f™ak)dk,  f(x) =volo(K) 1xy1x(z)
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is K -bi-invariant on G(A f;,, ). Define

(P)

m) = |ml|°? mn)dn m in
£ (m) = |ml%, /N o Jomdn e L)

(P) (P)

O7(f )= f (m™ ym)dm,

‘/I:’Y (Afin)\L(Af'in)
assuming that the integrals are normalized by the conventions volp(a ;) (Q N
P(Afin)) = 1,v0l(Q) = 1, and volN(Afm)(Q N N(Afm)) = 1. See also [16],
p. 144. The measure on L (A ;5 ) is dgin. Then the computation above proves that

(P)

ot(r") = o,

2.6 Elliptic Traces

Recall GG is a connected reductive group over Q whose derived group is simply
connected. Define elliptic “traces”

TG/(f,7) = 2 reG(Q)/~ X(GH)OS (f) - tr(r(v™1))

for a finite-dimensional complex representations 7 of G(Q) and f € C°(G(A f4n)).
If 7 is an irreducible complex representation defined by a highest weight A\, we
also write TG, (f, ) instead of TG,(f, 7). Hence, we do not distinguish between
representations and their highest weights. The sum defining Tgl (f, ) extends over
the G(Q)-conjugacy classes of semisimple, strongly elliptic elements in G(Q). The
integrals Og (f) in this sum are orbital integrals with respect to the group of finite
adeles for functions f € C°(G(A 4y, )). The same definition defines elliptic traces
TEL” for the Levi subgroups L of all standard Q-parabolic subgroups P = LNp
of G.

Let & = 75 o Hp be defined by the characteristic function 75 of the open
positive Weyl chamber of X7, = X, (Ar)q @ R, lifted to a function on L(A ¢;,,) via
the Harish-Chandra homomorphism Hy, : L(A fm) — X,. Then Theorem 2.1 and
the remarks following it imply

Lemma 2.9.

L= 3 ThNE,

P,CPCG

where
Th(A) = Y (=)' Th(hwh+ pe) - pr)
weWw?r
for h € C*(L(Avyip)), and where P = LNp runs over the Q-rational standard
parabolic subgroups of G.
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Let )A(IGD = %g o Hp be the characteristic function %g of the open obtuse Weyl
chamber in X7, considered as a function on L(A f;,,). Notice Y& < {&.

Lemma 2.10. Let the situation be as in Lemma 2.9. Then

ran —ran (Q)A
TGN = > (—1)rensl@mrens@LQ(£958 N,
PyCQCG

where the sum is over the standard Q-parabolic subgroups of G, where rang(Q)
denotes the Q-split rank of the Levi subgroup of ), and the Lefschetz number L9
for h € C°(L(Atip)) and the parabolic group Q) is defined by

LQ(ha V)x) = Z (_1)l(w) : LL(hvvw()\-l-pc)—PL)v
weW®

and L*(h, .) is the Lefschetz number attached to coefficient systems for the symmet-
ric space attached to the Levi subgroup L of the (standard) parabolic subgroup Q).

Lemmas 2.9 and 2.10 were expected by Harder [39], pp. 144—145.

Proof of Lemma 2.10. Lemma 2.9 applied to the Levi subgroup L of @) = LN gives

Q) . w Q) .
Le(FXG V) = Y (=DM LE(F 7RG, Vink pay—pr)

weWe
(P")
w 4 (Q)A
- Y Y Tefz"l((f £9) Xstuw(MLpG)—pL)
weWw® PoNLCP'=L/N'CL

— 3 S ().

PoNLCP'=L'N'CL wecWP weWe

(P
’ (@)
TS <(f X3)  xphwwh+pa) — pL/>-
P C @ induces the parabolic group P’ = P N L in the Levi component L of @,
and all standard Q) parabolic groups P’ are obtained in this way from the standard
Q-parabolic subgroups P C @ such that the Levi components L’ of P’ and P co-
incide. Since sn(w) = (—1)"") satisfies sn(w’)sn(w) = sn(w'w), the inductivity

(P
WP We = WP and the formula f(P)fcg = (f(Q)f(g) implies that the sum

simplifies to
(@) . P .
LQ(f ngv)\) = Z Tellgl(f XSX%HA)
PyCP=L'NpCQ

The sum is over all Q-rational standard parabolic subgroups P of G contained in ().
Notice in the formula above XILD, is a function on X7/, whereas )28, which is defined
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as a function on X, is tacitly considered as a function on X’ via the canonical pro-
jection map pr : Xz, — Xr. Summing these formulas over the standard parabolic
groups @, with the additional factors (—1)7"9(G)=rang(Q),

ran —ran, (Q) A
§ : (-1) 9(Q) 9(G) . Le(f Xg,VA),
PCQ

gives the desired result, by interchanging the order of summation. Fixing P, the sum
over all Q with P C ) C G gives zero except for P = (. Indeed for fixed P C G
the sum }pc g (—1)”"9(@_”"9(@))28)(%, is zero except for P = L'Np = G,
where it is 1 instead. This is a well known result obtained by Arthur [1]. For the
convenience of the reader we include the argument. [

Proof. Let F/ C F C A define P C P C G. Since the support Suppp of
the characteristic function %QG 7F of the subset Yigr Reoti + 3 icp pr Ro0B;
of X is contained in +XL/ = Zng’ Rsoa; Gf F’ # A), Suppp = +XL/ N
(jer r{H | o;(H) > 0} follows as an immediate consequence of the inequalities
(aviyaj) < 0fori # jand (8;,5;) > 0. For H € X let Ay denote the set of
«; ¢ F’, for which (a;, H) > 0. Ap is nonempty for H € X, since —X+ N
TX = {0}. Hence, 3 pe e (—1) (@ =rans( @78 L (H) = 0 follows from

ZTQAH(_l)m =0. O

Corollary 2.2. The elliptic trace TS, (f, \) is

rang(@)=rang(G)+1(w) . gr, (f V3G Ho (S,

EPOQQQG Pwewe (—1) V’w(/\+pc)7m)) :

Corollary 2.3. The Lefschetz number L(f, V) is

w (P)
S pcrca Ywewr (DM TE(FXE, wA + pa) — pr) -

2.7 The Satake Transform

For a connected reductive group GG over a non-Archimedean local field F), let A be a
maximal F,-split torus in the center of G. Let G%° be the maximal Abelian quotient
of G. Write G, = G(F},), etc.

ordg. There is a canonical homomorphism ordg : G, — X.(G) = Homp,—aiy
(G, G,,) (see [16], p. 134). We also write ordg for the induced homomorphism
Gy, — Xo, = X.(G) ® R, and °G for the kernel. The homomorphism ordc is
functorial in GG and induces the field valuation in the case G = G,,,. It factorizes over
the quotient G, and is trivial on compact subgroups. The kernel of the canonical
map A, — G is contained in the maximal compact subgroup °A,. Hence, the
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quotient group A,/ 0A,, which can be identified with the F),-rational cocharacter
lattice X.(A) of the torus A, is injected into G2 /%G as a subgroup of finite
index. Hence, the canonical maps X, — Xg, — Aga induce isomorphisms,
which allows us to identify these vector spaces.

The Map S. Now assume G, = G(F,) to be quasisplit, and split over a finite
unramified extension field of F, such that the derived group is simply connected. Let
Q, be a good maximal compact subgroup and P = M N be a minimal F;,-rational
parabolic subgroup of G such that G, = P, - €),. To be precise, we demand €2, to
be admissible relative to M, in the sense of [7], p. 9. The 2,-bi-invariant functions
on GG, with compact support define the spherical Hecke algebra H (G, Q) of G,.
Put A = °M, \ M,. For f, € C°(G,) define fipv)(m) = |m|2"™ [y f(mn)dn
as on page 36 now locally for F),. For elements f,, in the spherical Hecke algebra of
G, the Satake transform S is defined by ee [16], p. 146, formula (19))

(Py)

fv’_’S(fv):fv

and defines a function S(f,) on M,(Q,)/M,(Q,) N Q, = A. The group A is a
lattice, which contains and is commensurable with the cocharacter lattice X, (A) of
the torus A (see [16], p. 135)in X4, = X.(A)®R. The Satake transform defines an
isomorphism between the spherical Hecke algebra of the group G, and the algebra
C[A]W (W -invariants in the group ring C[A] [16], Theorem 4.1). Furthermore, for
~ regular in M, the Satake transform S is given by the orbital integral up to a
normalization factor

S(fo)(v) = Da(1)/205" (f.).

For an arbitrary function x : Xz, — R multiplication by x determines a C-linear
endomorphism f,(z) — x(ordr(x))f,(x) of the Hecke algebra of G,,, which pre-
serves the spherical Hecke algebra such that for the orbital integral

05" (fox) = x(orda (7)) - O (f.)
holds, and also for the Satake transform S(x f,)(m) = x(ordg(v)(m))S(fy)(m).

Standard F,-parabolic Groups. Let () be a F,-rational standard parabolic sub-
group of G with Levi component L. Let Ag be the maximal F;,-split torus in Q.
The natural map A, — L, — X, factorizes over the quotient A, /°A,, and hence
induces a canonical R-linear map

pr: X]w,u — XLU'
The following two properties characterize the projection pr. Firstly, the embedding

Ag, — A, induces a canonical embedding i : X, = X.(Ag) @ R — Xy, =
X.(A) ® R such that pr : Xy, — XL, restricts us to the identity map on the



40 2 CAP Localization

subspace X7, C Xy, . Secondly pr is zero on the subspace X*(A’Q) ® R C X,
where Ab denotes the split torus Lge, N A.

This gives the following formulation in terms of the Killing form. Let o; €
A(G,, A,) denote the simple F,-roots attached to P, C G,, let (, ) denote the
Killing form, and let 3; denote the dual basis {(c;, 3;) = d;;. Use the Killing form
to identify X, (A) @ R with its dual X*(A) @ R. The F,,-rational standard parabolic
subgroups are in one-to-one correspondence with the subsets ' C A(P,, A,,). For
Q = Qp the space X, = X.(4g) ® R is given in X, = X.(A4) @ R by the
equations ( .,«;) = 0,a; € F (or i € F by abuse of notation) for a subset F' of
the simple roots. Xy, splits into the orthogonal direct sum of the two subspaces
Xr, = Zj ¢F R3; and the orthocomplement ) -, - Rav;. pr is the orthogonal pro-
jection defined by pr(3_ o p 2;8; + Xicp Yicti) = 225 ;.

Transitivity. Let Q = LN be an F),-rational parabolic subgroup of G. Let o,
be an irreducible admissible representation of L,,. The Hecke algebra C°(G,,) of
locally constant functions with compact support on GG, acts by convolution on the
unitary normalized induced representation m,, = [ ndgz (o) such that (for measures
suitably normalized) the adjunction formula (see, e.g., [44], Sect.2, Lemma 1, the
slightly different definition involving f,; in the pairing in loc. cit. has no effect) holds

tr Indgz (00)(fo) =tr U'U(ff;Q))v

where f,, € C2°(G,,) and by definition fiQ)(m) = |m[s?" [y, f(mn)dn.

The group Q, N L, = (2, NQ,) 1, is a good maximal compact subgroup of L,,,
i.e., admissible with respect to M, (see [7], p.9). L, is again quasisplit and splits
over a unramified extension field. Hence, the spherical Hecke algebra H (L., 2, N

L,) is defined. For f, € H(G,,,) the function SE(f,) = fiQ) is bi-invariant
under €2, N L,, and hence the partial Satake transform .S = SAC;} 2 H(GY, Qy) —

H(M,, M,) factorizes over the spherical Hecke algebra H(L,,, 2, N L,)
S =S5 =Sy oSt

Absolute Support. In the following, a cone C'in Euclidean space is understood to
be an open submonoid stable under multiplication by R~ which does not contain
areal line.

Lemma 2.11. Fix an arbitrary nonempty open cone C C Xy, which is contained
in the positive Weyl chamber attached to P,. Let m, = I ndlc_-":v” (o) be an unramified
induced representation attached to an unramified character o, of M,, with spherical
constituent ™°. Choose xo € C. Then there exist spherical Hecke operators f, with
the properties:

1 tr my(fy) = tr 70(f,) = 1
2. The support of the Satake transform S(f,) of f, is contained in the Weyl group
orbit |, ey w(xo + C) of the translated cone xo + C.
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Proof. Tt suffices to find f, € H(G,,,) with ¢tr 7,(f,) # 0 such that (2) holds.
tr m,, considered as a functional on the spherical Hecke algebra (D[A]W, is a finite
sum of characters on the group A. Up to a twist by §'/2 () these characters are in the
W -orbit of the character o,,. This character sum is conjugation-invariant, and hence
W -invariant. If the assertions of the lemma were false, there would exist finitely
many different characters x;,7 = 1,...,r, of A and n; € C such that

mei(ar):@, (n1,-++,ne) #0
=1

holds for all z € AN (zg + C). To see that this is impossible we can assume
xo = 0, changing the coefficients n; to n;x;(xo), and then use induction on r.
Since x,y € C implies z + y € C we can lower the length 7 of such a nontrivial
character relation on C' by considering . n;(x:(y) — x1(y))xi(z) = 0, provided
there exists y € C with x,(y) # x1(y) if, say, n, # 0. Because x = x,/x1 is a
nontrivial character on A, such a y exists, since otherwise x vanishes on C' N A, and
hence on the generated group (CNA) — (CNA). However, (CNA)— (CNA) = A
holds for any nonempty open cone of &X'. This proves the lemma. [

Relative Support. For f, € C2°(G,) consider the support ¥ of the orbital integral

Oﬁ (f EJQ)) as a function of v € L,. Notice the support of f iQ) itself is contained
in . The image of ¥ in A, of the regular, semisimple subset of this support under
ordy, : L, — Xr,, will be called the relative support of f, with respect to @Q,,. The

relative support contains the image of the support of fiQ) in X7, under the map
ordy,. Since the regular semisimple elements are dense in ¥, and since the maximal

compact subgroup of L, is in the kernel of ordy,, one could replace the support
(%)

v

by the regular, semisimple support of O,ﬁ (f
above.
The relative support of f, with respect to (), is a finite subset of the vector

) for the definition of relative support

space X1 Notice that f UQ has compact support on L,, and ordy, is invariant under
conjugation. Hence, the image ordy,(X) is relatively compact in X7, . On the other
hand ordy, (L, ) is contained in a sublattice of X, .

Lemma 2.12. Ler f, € H(G,,$,) be a spherical function. Let Q = LNg be
an Fy-rational standard parabolic subgroup of G containing the minimal F,-

parabolic subgroup P = MN. Then x € Xp, is in the relative support of

O%( ff,Q)) if and only if x is in the image of the support of the Satake transform

S(f,) € H(M,,°M,) under the map pr o ordys, where pr : Xy;, — Xp, is the
canonical projection.

Proof. Let x5 () be the function on X7, which is not zero for A\ = x and is zero
otherwise. Then by definition the following statements are equivalent. By abuse of
notation we consider ., as a function on L, using the map ordy,. Then z € X7, is
in the relative support of f,, if and only if

Xe (O (£V) = 0L+ (- 119
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does not vanish identically for all semisimple, regular elements v € L,,. Since f,, is
@ _

a spherical function on G, f iQ) = S%(f,) is spherical on L,; hence, x. - f,
Xz SE (fv) is again spherical on L,,. If O,%v (Xaf iQ)) does not vanish identically for

all semisimple, regular elements v € L,, then x, f iQ) does not vanish identically on

L,. Since XzfiQ) is spherical, this implies S%; (meq(JQ)) # 0; hence, O,%” (XzfiQ))

does not vanish identically for all semisimple, regular elements v € M, C L,.In

other words, x € X7, is in the relative support of f,, if and only if Sf/;; Xz f iQ)) #0.

. Q Q
Obviously Sfjﬂ (wai )) = XIS]%; (f( )) = (xz oproordy) - 51%4(SLG(fv)) =

(xz o proordy) - S(f). This does not vanish identically if and only if « is in the
image of the support of S(f,) in Xz, under pr. This proves the lemma. [

2.7.1 Subdivision of the Weyl Chambers

Suppose = LNg is an F),-rational standard parabolic subgroup @) = Q) defined

by F C A(G,, A,), containing the minimal F,,-parabolic group P = M N. Then an

elementz =}, A, a,) Ti¢ in Xy, is contained in the support of the function
)ZSF = %SF oproordy

if and only if its projection pr(z) = > ,spx;c; € A, is in the obtuse Weyl

chamber X7, = 3., » R>oa;, which means ; = (z, ;) > 0 forall ¢ ¢ F.

The equations «; () = 0 and §;(z) = 0 for a; € A(G,, A,) define hyperplanes
in Xps,. The images of these hyperplanes under the action of the Weyl group on
X, define finitely many hyperplanes. The complement of these hyperplanes in
X, 1s a union of open connected cones. Each of these cones is the image under
the Weyl group of a subcone of the open Weyl chamber X ]\J/FIU. Pick one of these
cones C.

Example 2.3. For G, = SI(3, F,) the positive Weyl chamber contains two such
cones.

Support Conditions. Suppose f, is a spherical function on G,, such that its Satake
transform is contained in the W-orbit of xg + C C Xy, for some xo € C, as in
Lemma 2.11. Then a regular semisimple element y is in the support of O,% (f EJQ) )Zg)
if and only if x = ordr(y) is in pr(U,cw (o + C)). If this is the case then
x; = Bi(x) > 0forall i ¢ F.But then moreover, by our specific choice of the
cone, we even get x; > const(xg) > 0 for all ¢ ¢ F. Similarly, if -y is not in

the support of O%(f E,Q)Xg), then x; < —const(xo) holds for at least one ¢ ¢ F.
The constant const(xz) which appears in these formulas of course depends on the
choice of xyp € C. By a suitable choice of x( it can be made arbitrarily large. A
similar statement holds for the condition that = ord(v) € X7, is in the support

of OL/(f(P)f(gxf,) for L'’ C L, P = L'Np, and Q = LN,. In fact all values
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ai(w(z)) , Bi(w(x))  weW,ije Gy, Ay)
are different from zero, and either > const(xq) or < —const(xg).

Preferred Places S’. These facts can now be used in the global context to concen-
trate the effect of the adelic cutoff functions )28, as they appear in the formula of
Corollary 2.2, to a finite set S’ of “preferred” local non-Archimedean places in the
sense that

Q) . Q) /o o
tr (1 RG H (S0, V) = tro(f D (RG)srs HO (S1, V)
holds (in a suitable context). For this it would suffice to know that
1 p(P) o rrp(P) o
TeLu (f XSX}L% ) = TeLu (f (XSX}LD/)SH )
holds for all L’ C L, where L’ is a Levi component of P = L'Np C Q = LNg
(Corollary 2.2). Alternatively (Corollary 2.3) it would be enough to know that

P), .

O (£735x5) = OF (f7 (RGx5 )1 ).

Before we explain under which conditions this holds, we first recall certain
definitions.

2.7.2 Global Situation

For QQ-rational parabolic subgroups P and @) of T" the global cutoff function )Zg xE
on L'(Q), which occurs in Corollary 2.3, was defined for P = L'Np using the
Harish-Chandra map Hp via

Q)X =rAa) - xn

In fact, by the product formula Hp () = 10g|Yeoloo = 22yse0 @v = Ordrs (V0), the
global cutoff condition can be written as the condition on the point

D> q-ordy () € X

VF#00
to lie in the support of 75 75, .

Notation: v = ()v € L(Afin). q» denotes the cardinality of the residue field, and
ordy, (7y) the image of the local element ordy/ (7, ) € X L, in X7 under the natural
projection map Xz, — X (notice that locally the maximal F,-split torus may be
larger than the maximal Q-split torus Ay/).
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Assumptions. To be more specific about the concentration at specific places, let us
assume f = [], oo Jv- Furthermore, suppose there are two finite disjoint sets S
and S’ of non-Archimedean places such that f,, is the unit element of the spherical
Hecke algebra for all v ¢ S U S’. Suppose fs = [],cg fo has support in a fixed
compact subset of G(A ). Finally, suppose that all f, for v € S’ are spherical such
that the Satake transform S( f, ) has the following property.

Property (). For all roots « and all dual roots 3 in the set of Q-rational simple roots
of (G, P) and all elements w € W the absolute value of the linear forms a0 w and
([ owon

Z Qv - ordp (ve) € Xir
veS’

is larger than a fixed constant ¢ > 0.

If ¢ is sufficiently large compared with the support of fs, we obviously get

Lemma 2.13. Under the assumptions above, if the constant c is large enough de-
pending only on the support of fs, the truncation condition concentrates on the

places in S’
(P)

’ ’ (P) "
OF (f ' XGxp) = OF (f " (RGxH)s7)-

~y

Notation. Let &, denote the set of irreducible constituents p = pg ® pS/ €&, of
the admissible representation of G(A s;,,) on the cohomology group H” (S, V).

Corollary 2.4. Let the situation be as in Lemma 2.13. Then the truncated Lefschetz

number trs(f(Q)f(g; H*(S,V)) is given by trs(f(SQ) ()Zg)s/; H*(SL,V)), oral-

ternatively by a sum

Z (=" Z tr(fS/;Indf((ﬁj)) (Ps)) 'fT(f(sC?) (XS)S/;pS')7

v peEL

where now fs/ = fs Hw¢S/,w7éoo L.

Proof. The first statement follows from Corollary 2.3 together with Lemma 2.13,
which implies T, (f X, 7) = T (fs - (f°(X3)s:), 7). The second formula then
follows from the first assertion via the adjunction formula. [J

2.8 Automorphic Representations

Fix A and a compact open subgroup K = [[ .. K, C @ of G(Agn),
which defines the “level,” the level group. The G(Ay;,)-module given by
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the limit H*(S(G),Vy) is an admissible representation of G(Ayf;,). Only
finitely many irreducible constituents 7 with the property 7/ # 0 occur. The
same holds for the finitely many Levi subgroups L, the induced level groups
K1, = (K NP(Aj,)L, and the induced coefficient systems attached to the highest
weights \' = w(\ + pg) — pr. Thus, the admissible representation

I\ = P P PindoAsin) ) (H(S(L), Viirs par—pr)):

PoCQCGwewe i

the “halo” of the G(Ay;,)-module H*(S(G),Vy), again contains only finitely
many irreducible G(A y;,,)-constituents 7 with the property 7% # 0. Let P be
the set of equivalence classes of these representations of level K.

Remark 2.10. TI(\) should be considered as a superspace whose grading is induced
by the sign defined by the parity of the sum of the number rank(G) — rank(Q),
the length [ (w) for w € WF, and the degree i.

Let Sy be the set of places for which K, # €, (level primes). Outside Sy repre-
sentations in P are unramified. Fix a prime p ¢ Sy, the “Frobenius” prime. For 7
in P consider the representation 7” of G (A?in) defined by 7 = 7P ® m,. The set
of places Sy can be enlarged to a finite set S of places not containing p such that
) 2 b < (m1)s = (m2)s. There exists fs € C°(G(Ag)), sotr ms(fs) =0
holds for all representations " in P for which ()P is not isomorphic to 7”, where
7 is some fixed representation in P. Furthermore, we can assume tr wg(fs) = 1.
For a suitable choice of K (in a cofinal system, where K ° is a product of special
good maximal compact open subgroups), one can assume in addition that fg is Kg-
bi-invariant (see the Remark 4.3 on page 79). Now fix the 7P-projector fs. For a
non-Archimedean place v ¢ S consider functions

f=tshp-for ] Tw

w#oo else

in C°(G(Ay;p)), where hy, and f, are suitable functions in the spherical Hecke
algebra H(G)p, ), respectively, H(G,, ). fy is chosen subject to the conditions:

e Property (x) (see the assumptions preceding Lemma 2.13) holds for S’ = {v}
with respect to the fixed function fg or more precisely its fixed supportin G(Ag).

e {rm,(f,) = 1 holds for the unramified component 7, of our fixed representation
7 = @utp,0 Tu-

Such functions f, exist, as explained on page 42, as a consequence of Lemma 2.11
choosing z in the cone C' to be sufficiently large. The function h,, is chosen to be
either:

e h, =1, (unit element of H(G,, 2,)) or

° h,(,") = b(¢y,) (the local cyclic base change of the Kottwitz function ¢,, on G(E,)
of [51] under the unramified base change map homomorphism b of spherical
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Hecke algebras for some unramified local field extension F,/Q,, of degree [E), :
Qp] = n) in the context where G is attached to a Shimura variety as in [51] with
reflex field Q (for simplicity)

We claim that either for h, = 1, S’ = {v}, or for h,, = w5 = {p, v}, and for
sufficiently large n > 0, the assumptions preceding Lemma 2.13 are satisfied. For
h, = 1 this has already been explained. The case h, = hg") and n > 0 can be
reduced to the ensuing Lemma 2.14. We leave this as an exercise. So taking this for
granted, now assume n > 0 or by, = 1.

Then we get from Corollary 2.4 an expression for the truncated Lefschetz
numbers

tro(FVXE, H* (51, V)

in terms of
SO0t (15 a1 (05)) e (157 (RG)s ps)-
v pE&y

This allows us to apply a theorem of Franke [27] which states that all irreducible

representations p of L(A y;,) which occur in £, as constituents of the cohomology
group H” (S, V') are automorphic representations of L(A r;, ). Hence, all induced
representations in

G(A !
Indg(3 %) (0°)

are automorphic representations of G/(A° /), and are Eisenstein representations for
L+#G.

Therefore, if the fixed representation m € P is cuspidal and not CAP, 7” does not
occur as a constituent in P from these induced representations in the case L # G.
Since f and f are K g-bi-invariant, the trace of f on IT()) involves only constituents
in P, i.e., for the fixed level K. Since fg is a projector for 77 among the represen-
tations in P, this implies ¢r( fs, Indf((gss)) (H"(S1,V))) = 0. Hence, the truncated
Lefschetz numbers

Q) .
tr, (195G, 1 (51,V)
all vanish except for the case G = (), where the truncated Lefschetz number is the

trace try(f, H*(Sg,,V)) of f on the cohomology H® (S, V). Notice f = f(G) *f
in general. However, f and f have the same trace on every irreducible admissible
representation. This follows from O%(f) = OY(f), since vol(Q2) = 1. But then
we can replace f by f. Then, since f is Kg-bi-invariant, the remaining Lefschetz
number is the trace of f on the finite-dimensional space H®(Sk (G), V) for fixed
level K, and it only involves the representations in P. Since fg is a wP-projector,
the trace of hy, f,, on this space is the trace of h,, f,, on the generalized 7”-eigenspace
of the cuspidal cohomology. Since ¢r ,(f,) = 1, this simplifies the formula for
Tgl( fsfohp, A) of Corollary 2.2, and leaves only the term for Q = G and w = 1.
This proves
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Theorem 2.2. Suppose = is an irreducible cuspidal representation of G(A f,,) and
not CAP (see [69, 97]). Then for f = fsfohp]] 1y, where fs, f,, and

hy, = 1orh, = h]g,") and n > 0 is chosen as above, we get for the trace on the
wP-constituents

w#oo else

tr (B HO(Sx(G). VA) () ) = TG (FsFuhps A).

This theorem will be used in Chap. 3 for the “Frobenius” prime p.

Notice that fgf, again is a projector on 7P among the representations in P. We
write fsf, = fxp, and call it a “good ©P-projector.”

Lemma 2.14. Let C C V be a cone in Euclidean space, W a finite group acting
onV, and L, ..., L. a W-stable set of linear forms in V* nonvanishing on C.
For xg € C and x € V and a bounded set M C 'V, there exists a integer m
depending on M and an integer N depending on m and M such that the following
holds. Suppose v = v1 + v + v3 for vi € J,ein-w) |n > N}, vy €
Uwew w(m - xzo + C), and vz € M. Then L;(v) > 0 for some i = 1,...,r holds
if and only if L;(v1 + va2) > 0 holds.

Proof. Obvious. [

Remark 2.11. In the case h, = 1, we may also omit the auxiliary prime p or choose
p to be large so that the formula in Theorem 2.2 becomes

Y (=1 dime(H (S (G), Va)(r)) = TS (fx, A)

for a good m-projector fr € C°(G(Atip)).

Remark 2.12. In the Hermitian symmetric case there exists a formula analogous to
Theorem 2.2 for the L?-cohomology instead of the Betti cohomology. In this case
the L2-cohomology is finite-dimensional, so one can define the traces of Hecke
operators on the L2-cohomology. Using the results in [33], one obtains a formula
for the L2?-Lefschetz numbers analogous to the one of Corollary 2.3. The relevant
change in this case amounts to a subtler substitute of W, which in the case of
L?-cohomology also depends on the elements +. In fact one obtains the following
formula for the L2-Lefschetz number:

S 0T\ G w), wh + pe) - pr),

PyCP=LNCG weWP

where the cutoff functions x%(w) now depend on w € WP They are defined as
follows: x%(w) is the characteristic function of the set of all v € L(Q), which sat-
isfy I(y) = I(w), for certain finite sets I(w) depending only on w, P, G, and A
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(see [33], p.474), and where I(7) is the set of simple roots o of Ap in Np such
that |a(7)|;1 = |a(y)]leo < 1 (see [33], p.471). Let xp; denote the character-
istic function of the set of all v € L(R) such that |a;(y)|e > 1 for the sim-
ple root cv;. Then the characteristic function x%(w) can be expressed in the form
[Tigr xpillje;(1 — xp;) for I = I(w). It can therefore be expanded into a finite
linear combination of the functions X = [[;c; xp,i for K € A(G, A). For these
finitely many global cutoff functions x x, which now appear in the L2-Lefschetz
formula, the effect of the cutoff can now be concentrated at some preferred non-
Archimedean places v € S’ by the choice of a suitable good 7°-projector, modified
at a single place S’ = {v} as in the discussion above using a variant of Lemma 2.13.
This implies

Corollary 2.5. Suppose G~ is of Hermitian symmetric type. Suppose 7 is an irre-
ducible cuspidal representation of G(A t;y,) and not CAP. Then there exists a good
w-projector fs such that the L?-Lefschetz number of the T-constituents is

try(Hiy (S(G), VA)(T)) = TG (fr: A)-

In particular, the alternating sums of the w-multiplicities on the cohomology and the
L2-cohomology coincide.

2.9 The Discrete Series Case

This is the case considered in [4]. Suppose G is a connected reductive group over
Q, Gger is simply connected, and G contains a maximal R-torus B, for which
B(R)/Ac(R)? is compact (see [4], p. 262).

Notation. Let 2¢(G) denote the real dimension of the symmetric domain attached
to G and d(G) the cardinality of the packets of discrete series representations
of G. Let 7 be an irreducible complex representation of G(Q) defined by the
highest weight A € X*(B)¢. A defines a representation of G(C), and hence of
the compact inner form G of G over the field R. Let 7* denote the contragredient
representation. Attached to the representation 7 of G is a packet I ;. (7) of discrete
series representations 7. Let 7% denote the contragredient. Attached to 7 and A is
the function
Ix

foo = d(G)’

where f) € Hae(Goos 5;1) (in the notation in [4], Lemma 3.1) is the stable cus-
pidal function (i.e., supported in discrete series, see [4], Sect.4) defined by Clozel
and Delorme. f., is compactly supported modulo Ag(R)° and is K o-invariant.
Then using the notation in [4], p.271, formula (4.3), tr p*(feo) = tr p*(feo) =
(1) 2 tr 73, () for Too € Taise(p) becomes d(G) ™ if 75, € Maise(T)
and is zero otherwise (see [4], Lemma 3.1). Notice 7%, € Tlg;s.(7) if and only if
p* = 1. Hence,
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trp*(foo) = d(G)™"
if p= 7%, and tr p*(f) = 0 otherwise.
The orbital integral Og (f) = va ®RNG®R) S (v~ 1gx)dw, considered for fixed

v € G(R) as a distribution on H,.(G(R), 5 "), is denoted @ (7, f) in [4], p. 269,
and in [5], p. 325. Theorem 5.1 in [4] gives a formula valid for all v € G(R) which
expresses the orbital integral of stable cuspidal functions foo € Hae(Goos 5;1) in
terms of the distributions p*(f) discussed above,

O (foo) = (=1)1Dd(C )00l (G 00 /Ac(R)’) T Y @c(3.p) - tr p7 (foo),

for certain coefficients (v, p). The sum runs over irreducible representations p of
G(R) in II(G(R), &x). In particular, OS (f) is zero unless ~y is semisimple and v €
T(R) for some maximal R-torus of G such that (R)/Aq(R)° is compact. Notice
T(R) = B(R). On the regular part T,.,(R) the function is ®¢(v, p) = tr p(f)
(see [4], p.271). Since @ (7, p) extends to a continuous function on 7'(R) (see [4],
Lemma 4.2), this holds for all v € T'(R). Hence, if O? (f) does not vanish a priori,
one has v € T(R), where T is a maximal R-torus in G such that T'(R)/Ac(R) is
compact. And for all v € T(R) one has the formula

0Y (fso) = (1)1 d(G)v0l(Gr00/Ac(R)") ~Htr 7% (v)d(G) 2,

since only p = 7* contributes to the sum over all p. Notice tr 7(y~1) = tr 7%(7)
for the contragredient representation. Next, from the formula for the Euler numbers
(see, e.g., [4], p. 281, formula (6.3), and also p. 282)

X(G,dgys) = (=1)")-d(G)-vol (G(Q) Ac(R)*\ G(A)) - vol (G(R) /A (R)*) ~*,
one obtains for fri, € C°(G(A fin))
X(Gy) -t 7(y71) - OF (frin)
= (=1)")d(G, ol (G4 (R)/Ac(R)°) "' (G,) - tr 7 (7) - OF (frin)
= d(G)7(G4)05> (f)O (f5in)

= d(G)7(G)OS™ (frinfoo),

provided the measure dg is chosen such that dg.dg i, is the Tamagawa measure
on G(A\). Hence, from the definition of T (ff:n) we obtain

Lemma 2.15.

/

TG (Frins ) =d(G) > T(Gy)OF™ (frinfoo)-
v7EG(Q)/~
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The summation is over all semisimple, strongly elliptic conjugacy classes of G(Q).
Here 7(G.) is the Tamagawa number vol (G, A (R)°\ G~ (A)), where the measure
dgeo is chosen such that dgecdg¢in is the Tamagawa measure on G(A).

Corollary 2.6. With the assumptions and the notation used in Theorem 2.2 we get
Jfor frin = hy frr

/

tr(hp, H* (S (G), VA) (7)) = d(G) D 7(G)OS™ (hp frv foo).
vEG(Q)/~

The summation is over all semisimple, strongly elliptic conjugacy classes of G(Q).
The measures defining the orbital integrals are assumed to be Tamagawa measures

on G(A) and G (A).

Remark 2.13. The term O? (fsfxs o) is independent of the chosen measures dg
and dg.. provided dgo..dgy is the Tamagawa measure on G(A\). This follows from
the definition of f4, and f. Hence, in applications we are now free to normalize
the measures dgy and dg.., €.g., such that vol,, (K') = 1 following the convention
of [51].

Remark 2.14. Assume that Zg/A¢ is anisotropic over R. If one considers a
Shimura variety attached to G (as in [51]) one replaces Sk (G) = G(Q) \
G(A)/K.oK by G(Q) \ G(A)/Zentr(h)s K, where h is the underlying struc-
ture homomorphism of the Shimura variety. For small K this multiplies the trace
by the index [K : Zentr(h)s]. See also the remark on page 21 In fact ye,, €
K Zentr(h)oo for s, € Koo, and v € G(Q) implies v € Zg(Q) (K is small)
and v € K f{oo. Hence, v is finite, and hence is 1 (K is small). Therefore,
€00 € Zentr(h)oo-

Appendix 1

Let G be a reductive connected group over Q. Let K C G(Ay;,) be a compact
open subgroup. For g € G(Ay;,) put K/ = K, = g7'Kgn K C K. Consider
M = G(Q)\G(A), or some compactification, with continuous G(A f;,, ) left action
m— mg~1, g € G(Ay;,) together with the maps p(m) = m and p/(m) = mg~*

p: M/K'— M/K
pM/K' — M/K.

The map p (or the map p’) is equivariant with respect to the map ¢ (or the map ¢’)
from K’ = K, to K, defined by k — k or k +— gkg~'. Two points mK and m'K
in M/K are related by the correspondence underlying p, p’ if there exists a point
m” K’ € M/K' such that
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p(m"K') = mK and p'(m"K') = m'K in M/K.

This means that there exist k, k' € K,k” € K’ such that mkk” = m” and
m”g=t = m/(k’)~! holds. Hence, mkk” g='k' = m’. Stated in other terms, m' =
ma~* for some x € KgK. There exists a finite decomposition KgK = Hjj Kg;.
Hence,

mK = mgj_lK

for some j. Conversely, suppose m’K = mkg~ 'K for some k € K. Then for
m' = mkK,, we tget p(m”"Ky) = mkK = mK and p'(m"Ky) = mkg™ 'K =
m' K.

PutT' = K N G(Q). In general for v € G(Q) the double coset I'yI" = |4, I'y;
decomposition gives K~I" = |4, K;, again a disjoint union. Since k171 = k272
implies kz_lkl = 7271_1 € G(Q)N K =T, we get I'y; = T'vys. Passing to the
closure defines the subset K9I" = |4, Ky; of KvK = |4 ; K gj, which might be
smaller than KgK if I' # K. Therefore, to relate fixed points of the adelic cor-
respondence to its classical analogue, one has to ensure that fixed points belong to
cosets gK of the form vK for some v € G(Q) and in particular KgK = KyK.
However, this is the case (see page 24). Only rational cosets K contribute to the
fixed points of the Goresky—MacPherson trace formula for the Lefschetz numbers.

Appendix 2

Let G be the group of real points of a reductive group over R. Let K, be a
maximal compact group, and let V; C Z, be a vector group in the center Z.

Claim 2.1. Then forevery y € K- V1, the set S of all x € G, such that x_lyx S
Ko - V1, is either empty or
S=Gy00 K.

Here G denotes the centralizer of y in Go.

Proof. The proof of this assertion is easily reduced to the case V; = 1. In fact,
Go = °G -V, where V is the maximal vector group in the center of G, and G
is the normal subgroup of G, with °G' NV = {e} chosen as in [98], p. 19. Notice
Ko C%G.

This allows us to reduce the proof to the case where y € K., and z satisfies
the equation 7 'yz € K. In fact, if xalyxo = k - v1 holds for some z = xg
and k € Ko, v € Vi, we simply replace y by y; = xoyvflxgl € K and z by
T = xglx. Then ;vl_lylxl € K Vi is equivalent to " tyx € Ko - Vi. However
z7 yiry € Koo Vi ifandonly if 27 ' y121 € °GooN(KooVi) = Koo. So we assume
y€ Kooandz tyz € K.

Choose a Cartan involution § of G, such that g € K, if and only if 8(g) = ¢
(see [98], Proposition 5). For z as above, the element z = G(x)x_l isin Gy, 0, and
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satisfies (z) = 27! One can write 7 = s - k for k € K, and s = exp(c) and
0(0) = —o € Lie(Gw) (follows from [98], Proposition 5). Then z = exp(—20) €
Gy, Since y € K, y and hence also G, is -stable. Therefore, there exists
a symmetric one-parameter subgroup in G  passing through z. See, e.g., [98],
p. 20. In other words we find a symmetric root 7 = exp(—0) € Gy 0, 0(r) = 771
of z = r? for §(c) = —o € Lie(Gy,0). We conclude 1 = r~10(z)x=1r=! =
O(rz)(rz)~t. Thus,rz =k € Koo andz = r~ 'k € Gy, * K, which proves the
claim. 0

Corollary 2.7. S/ (Ko - V1) is either empty or Gy oo/ (Gy.co N Koo)Va, where
Gy.oo N K.

Proof. Notice Vi C Gy . U

1%

Remark 2.15. Finally, there exists a diffeomorphism Go /(Koo - Vi)
("G /Koo) x V/Vi. In particular for V; € Ag(R)?, we see that G /(Koo - V1
is homotopic to X¢ = Goo /(Koo - Ag(R)?).

~



2 Springer
http://www.springer.com/978-3-540-89305-9

Endoscopy for GSp(4) and the Cohomology of Siegel
Modular Threefolds

Weissauer, R,

2009, XV, 374 p., Softcover

ISBN: 278-3-540-89305-9



