
Chapter 2
CAP Localization

In this chapter, we will express the π-isotypic Lefschetz numbers of Hecke operators
acting on the cohomology of symmetric spaces SK(G) attached to reductive groups
G in terms of so-called elliptic traces Tell, provided the underlying representation
π is not a cuspidal representation associated with a parabolic subgroup (CAP rep-
resentation) of G(A). In the following two chapters we derive from these formulas
all the essential information required.

For a connected reductive group G over Q, let K∞ be a maximal compact sub-
group of G∞ = G(R) and let AG(R)0 be the topologically connected component
of the maximal Q-split componentAG of the centerZG ofG. ThenXG = G∞/K̃∞
for K̃∞ = K∞ ·AG(R)0 will be called the connected symmetric space attached to
G. For a compact open subgroupK ⊆ G(Afin)

SK(G) = G(Q) \ (XG ×G(Afin)/K
)

= G(Q) \ (XG ×G(Afin)
)
/K

is a disjoint union of arithmetic quotients of XG.

Example 2.1. For G = GSp(4,Q) we have XG = H ∪ −H for the Siegel upper
half-spaceH of genus 2. Hence, SK(G) does not coincide with the Shimura variety
SK(C), which is an unramified covering of SK(G).

Assumption Regarding Gder. In this chapter assume that the derived group Gder
of G is simply connected. This property is inherited by the Levi subgroups L of G.

Proof: G = GderZ(G) and Z(G) ⊆ L implies Lder = (Gder ∩ L)der. L ∩ Gder
is a Levi group of Gder , since this holds for the Lie algebras by characterizing Levi
subgroups as centralizers. So it is enough to consider the semisimple case to see
that Lder is simply connected. For this case see [99], Lemma 5.3 or Theorem 5.8,
p. 208, which proves the claim. Since all groups Lder are simply connected implies
that the centralizers Lγ of semisimple elements in the Levi groups L are connected
reductive groups.

Lefschetz Numbers. An irreducible complex representation of the group G∞ =
G(R) with highest weights λ restricts us to a representation ofG(Q), which defines
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20 2 CAP Localization

a coefficient system1 Vλ on SK(G). The cohomology groups Hν(SK(G), Vλ) are
modules under the Hecke algebra of K-bi-invariant functions on G(Afin) with
compact support. Assume K =

∏
vKv. Fix a finite set S of non-Archimedean

places such that for all non-Archimedean places v /∈ S the group Kv is a special,
good maximal compact subgroup of Gv. Let

πS = ⊗v/∈Sπv
be an irreducible spherical automorphic representation of G(AS

f ). The πS-isotypic
generalized eigenspace of the νth cohomology group

Hν(SK(G), Vλ)(πS)

is a module under the Hecke algebra HS,K ⊆ HS , defined by the locally constant
KS-bi-invariant functions on G(AS) with compact support. A simple formula for
the trace of Hecke operators fS ∈ HS = ⊗v∈SHv in the subspace HS,K of the
Hecke algebra (see Appendices 1 and 2) defined by

trs(fS) =
∑

ν

(−1)νtr
(

fS , H
ν(SK(G), Vλ)(πS)

)

is provided by the topological trace formula of Goresky and MacPherson. Assume
that the unramified automorphic spherical representation πS of G(AS

f ) is not iso-

morphic to a subquotient of an induced representation IndG
S

PS (σS) for all proper
parabolic subgroups P �= G with Levi component L, and all irreducible automor-
phic representations σS of L(AS

f ). In this case πS is cuspidal, and πS is not a CAP
representation in the sense of [69, 97]. With these assumptions, the formula for the
trace of fS is further simplified (Sects. 2.6, 2.8).

Of special interest is the case where G∞ has discrete series representations
(Sect. 2.9). In this case the formula for the trace becomes the following (see
Corollary 2.6): If the group K =

∏
vKv is small and πS is not CAP, the trace

Trs(fS) of fS is equal to

d(G) ·
′∑

γ∈G(Q)/∼
τ(Gγ)OG(A)

γ (fSfπSf∞).

The sum is over all strongly elliptic semisimple conjugacy classes in G(Q) (see
page 46); Gγ denotes the centralizer of γ in G, which by our assumptions is a con-

nected reductive group. The coefficients OG(A)
γ are adelic orbital integrals. Mea-

sures are such that voldgf
(K) = 1 and voldg∞dgf

(
G(Q) \ G(A)

)
= τ(G) is the

Tamagawa number. The function fπS is a suitable chosen good πS-projector de-
pending on the fixed fS (see Sect. 2.8), and f∞ is a suitable linear combination
of pseudocoefficients of discrete series representations with respect to the measure
dg∞ (see Sect. 2.9). The correspondingL-packet is determined by the representation

1 In this chapter we consider the dual Vλ of the coefficient system Eλ of Chap. 1.
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λ defining the coefficient system Vλ. d(G) denotes the number of discrete series rep-
resentations in this L-packet.

Remark 2.1. If K̃∞ is replaced by a subgroupU of finite index such thatG∞/U →
G∞/K̃ = XG is a finite unramified covering of degree d, then the trace formula
also holds for G(Q) \ (G∞/U × G(Afin)/K except that the formula above has
to be multiplied by the degree d of the covering. This applies for Shimura varieties
(G, h) attached to a reductive Q-group, for which Z(G)/AG is R-anisotropic, since
in this case the centralizer Z(h) of the structure homomorphism h of the Shimura
variety is a subgroup of finite index in K̃ = K∞ ·AG(R)0. See page 53.

2.1 Standard Parabolic Subgroups

Fix a minimal Q-parabolic subgroup P0. For a Q-rational parabolic subgroup
P = LN containing P0, and γ ∈ P (Q) let γL denote the image of γ under the
projection P (Q)→ L(Q) to the Levi component.

Contractive Elements. A semisimple element γ ∈ L(Q), which is contained in
a real torus T of L, which is R-anisotropic modulo AL is called P -contractive,
if |γσL|∞ > 1 holds for all simple roots σ (over the algebraic closure), which
occur in the Lie algebra of the nilpotent radical of P , restricted to the maximal
Q-split torus AL (in the center of L). In fact, it does not matter if we consider
the absolute root system or the Q-root system. Since γL = a∞ · x∞k∞x−1∞ for
a∞ ∈ AL(R)0, k∞ ∈ KL,∞, this implies |γσL|∞ = |aσ∞|∞ for all roots σ. Hence,
γL is P -contractive if and only if the central component a∞ is P -contractive and
this notion depends only on the L(Q)-conjugacy class of the element γ. Suppose
P = Pθ = LθNθ is a Q-rational standard parabolic subgroup defined by a subset θ
of the simple positive Q-roots. Then by definition |α(γL)|∞ = |aα∞|∞ = 1 holds
for all simple roots α ∈ θ. Since the roots in Lie(NP ) are the positive roots which
are not linear combinations of the roots in θ, the condition defining the notion
P -contractive may be replaced by the stronger condition: |γαL|∞ ≥ 1 holds for all
positive roots in Φ+, and |γαL|∞ = 1 holds if and only if α is a root which occurs in
Lie(LP ), or alternatively this could also be replaced by the condition |aα∞|∞ > 1
for all simple Q-roots α /∈ θ.

The Set W′. Let ΦG = Φ = Φ+ ∪ Φ− be the decomposition into the posi-
tive and negative roots of the absolute root system. Define W ′ as a subset of the
absolute Weyl group W (considered over the algebraic closure) to consist of the
elements w ∈ W for which Φ+ ∩ wΦ− ⊆ Φ(Lie(NP )) [33], p. 474, or equiva-
lently wΦ− ∩ Φ+

L = ∅ ⇔ w−1(Φ+
L) ⊆ Φ+

G. Then W ′ = WP is the set of all
w ∈W such that w−1(α) > 0 holds for all α ∈ θ. By a result obtained by Kostant,
W is the disjoint union of the cosets WL · w for representatives w ∈ WP ; hence
|WPθ | = |W |/|WLθ

|. Here WL denotes the absolute Weyl group of L, considered
as a subgroup of W = WG. The representatives w ∈ WP are uniquely character-
ized as the representatives of minimal length in the WL left cosets of WG.
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Inductivity. Notice the following inductive property of the sets WP ⊆ W . Let
P = Pθ1 ⊆ Q = Pθ2 ⊆ G be standard parabolic subgroups, corresponding to
θ1 ⊆ θ2. Let L = Lθ2 be the standard Levi component of Pθ2 . Then Pθ1 ∩ L = P ′

is a standard parabolic subgroup of L with Levi componentL′ = Lθ1 . In particular,
WP ′ ⊆WL is defined. Then

WP ′ ·WQ = WP .

In factw1 ·w2 = w′
1 ·w′

2 withw1, w
′
1 ∈WP ′

andw2, w
′
2 ∈WQ impliesWLθ2

w2 =
WLθ2

w′
2; hence, w2 = w′

2 and therefore also w1 = w′
1. By the above-mentioned

formula for the cardinalities it is enough to show that the product set on the left
side is contained in the right side. But this is clear. Every w−1

1 for w1 ∈ WP ′
maps

Φ(Lθ1)+ to Φ(Lθ2)+ and every w−1
2 for w2 ∈ WPθ2 maps Φ(Lθ2)+ to Φ+ =

Φ(G)+; thus, w1w2 ∈WPθ1 .

Characters. For a dominant weight λ of L let ψλ denote the character of the finite-
dimensional irreducible complex representation of L with highest weight λ. Let ρG
denote half of the sum of the roots in Φ+. Similarly define ρL for the reductive
group L. Put ρP = ρG − ρL as characters of L. If λ is a dominant weight for G,
then w(ρG +λ)− ρG is dominant for L (see [15], Sect. III.1.4 and Sect. III.3.1, and
[45]). Using the Coxeter lengths l(w), define

Ψ(γ, λ) =
∑

w∈WP

(−1)l(w)ψw(λ+ρG)−ρG
(γ−1
L ).

Since −ρG + ρP = −ρL, we have for γ ∈ L(Q)

|γ|−ρP∞ ·Ψ(γ, λ) =
∑

w∈WP

(−1)l(w)ψw(λ+ρG)−ρL
(γ−1
L ).

The Function r(γ). Let A denote the ring of adeles of Q andAfin the ring of finite
adeles. Let K =

∏
v finiteKv be a compact open subgroup of G(Afin). For a Q-

rational parabolic P = LN and for semisimple γ ∈ P (Q) define Γ = G(Q) ∩K ,
ΓN = Γ ∩N, Γ′ = Γ ∩ γ−1Γγ, Γ′

N = Γ′ ∩N . Then

r = r(γ) = [ΓN : Γ′
N ] = [ΓN : ΓN ∩ γ−1ΓNγ],

s = s(γ) = [γ−1ΓNγ : Γ′
N ] = [ΓN : γΓ′

Nγ
−1]

satisfy s(γ) = [ΓN : γ(ΓN ∩ γ−1ΓNγ)γ−1] = [ΓN : γΓNγ−1 ∩ ΓN ] = r(γ−1);
hence,

Lemma 2.1. s(γ) = r(γ−1), which only depends on γL.

Lemma 2.2. s(γ)/r(γ) = γ2ρP or |γρP |∞r(γ) = |γ−ρP |∞r(γ−1).
Proof. The quotient [ΓN : ΓN ∩γΓNγ−1]/[ΓN : ΓN ∩γ−1ΓNγ] is the virtual index

[ΓN ∩ γ−1ΓNγ:ΓN ∩ γΓNγ−1]=[ΓN ∩ γ−1ΓNγ:γ(ΓN ∩ γ−1ΓNγ)γ−1]=|γ2ρP |∞. �
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2.2 The Adelic Reductive Borel–Serre Compactification

As a set, the adelic reductive Borel–Serre compactification is

(SGK)+ = G(Q) \ [
⋃

P

XL × (G(Afin)/K)] = G(Q) \ [
⋃

P

XL ×G(Afin)]/K,

a disjoint union over all Q-rational parabolic subgroups P of G. XL = L∞/K̃L,∞
is the connected symmetric domain attached to L, i.e., K̃∞ = KL,∞AL(R)0, where
KL,∞ denotes a maximal compact subgroup of L∞ and AL(R)0 the topologically
connected component of the maximal Q-split subtorus AL in the center Z(L) of L.
Elements g ∈ G(Afin) act on the projective limit (SG)+ = limK(SGK)+ = G(Q)\
[
⋃
P XL×G(Afin)] by x 	→ xg−1. This defines a left action ofG(Afin) on (SG)+,

which induces a right action on cohomology groups. Now consider

T (g−1) : G(Q)x∞xfin 	→ G(Q)x∞(xfing−1).

Here x∞ ∈
⋃
P XL and xfin ∈ G(Afin). On the quotients (SGK)+ this defines

Hecke correspondences. Put

K ′ = K ∩ g−1Kg.

Then the induced Hecke correspondence is given by two maps c1 = T (1) and
c2 = T (g−1) (see Appendix 1)

(SGK′)+
c1 ��

c2
�� (SGK)+ .

The action of G(Q) on the Q-parabolic subgroups by conjugation is transitive
on the minimal Q-parabolic subgroups. Fixing a minimal parabolic P0, every Q-
parabolic is conjugate over Q to one and only one standard parabolic Q-subgroup
P with respect to P0. Since the stabilizer of P under conjugation with G(Q) is
P (Q), (SGK)+ is a union over the finitely many standard Q-parabolic subgroups
P = Pθ containing P0:

(SGK)+ =
⋃

P0⊆P
SPK , where SPK = P (Q) \ [XL ×G(Afin)]/K.

Goresky and MacPherson [33] deduced a formula for the alternating trace

trs(T (g−1);H•(SK(G), Vλ)
)

from the Grothendieck–Verdier–Lefschetz fixed-point formula which they applied
for the reductive Borel–Serre compactification (SGK)+ of SK(G). They used the
property that the cohomology groups H•(SK(G), Vλ) coincide with the coho-
mology groups H•((SGK)+, i∗Vλ) of the reductive Borel–Serre compactification
(SGK)+, where i : SK(G) ↪→ (SGK)+ is the inclusion. As in [33], Theorem
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(version 0), the Lefschetz fixed-point theorem of Grothendieck, Verdier, and Illusie
therefore expresses the Lefschetz number as a sum of “local” contributionsLC(F )

∑

P

∑

F

LC(F )

for the connected components F of the intersection of the fixed-point set of the cor-
respondence with the boundary strata SPK attached to the rational parabolic groupP .

Rational Hecke Correspondences. We say a double coset KgK or the corre-
sponding Hecke correspondence is rational if a representative g can be chosen to
be g = γfin for some γ = γ∞γfin ∈ G(Q). In this case the correspondence
T (g−1) defined on (SG)+ = G(Q) \ [

⋃
P XL × G(Afin)] satisfies G(Q)x∞ 	→

G(Q)x∞γ−1
fin = G(Q)γ∞x∞; hence, it induces the Hecke correspondence consid-

ered in [33], p. 467, defined by c1(Γ′y) = Γy and c2(Γ′y) = Γγ∞y.

2.2.1 Components

First consider the connected components of SPK . Since XL is topologically con-
nected, the topologically connected components h of the stratum SPK are the fibers
of the map

SPK = P (Q) \ [XL × (G(Afin)/K)] −→ π0(SPK) = P (Q) \G(Afin)/K.

For each component h = P (Q)xfinK in π0(SPK) put

ΓPh
= P (Q) ∩ xfinKx−1

fin and ΓNh
= N(Q) ∩ xfinKx−1

fin.

For KN(h) := N(Afin) ∩ xfinKx−1
fin and K ′

N(h) := N(Afin) ∩ xfinK ′x−1
fin

then obviously [KN(h) : K ′
N(h)] = [ΓNh

: Γ′
Nh

], where Γ′
Nh

:= K ′
N(h) ∩N(Q).

Fixed Components. Now consider the connected components F of the fixed-point
locus of a Hecke correspondence within SPK , for fixed P . Then

F ⊆ h
for some unique component h of SPK . If F is fixed, then h is also fixed. So we first
determine the fixed components h of the Hecke correspondence, and then the fixed
components F in h.

2.2.2 Fixed Components h

The component h = P (Q)(XL × {xfin})K is fixed

T (g−1)h = h,
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if and only if xfing−1K = γxfinK holds for some γ ∈ P (Q) and some k ∈ K .
Recall gK ′g−1 ⊆ K . Hence, γ−1xfing

−1 = xfink implies γ−1xfinK
′x−1
finγ ⊆

xfinKx
−1
fin. Thus,

γ−1Γ′
Ph
γ := P (Q) ∩ γ−1xfinK

′(γ−1xfin)−1 ⊆ P (Q) ∩ xfinKx−1
fin =: ΓPh

.

xfinK
′x−1
fin=xfinKx−1

fin∩xfing−1K(xfing−1)−1=xfinKx−1
fin∩γ(xfinKx−1

fin)γ
−1

again using xfing−1=γxfink. Hence, the intersection with P (Q) is Γ′
Ph

=ΓPh
∩

γΓPh
γ−1. In particular, Γ′

Nh
=(ΓNh

∩ γΓNh
γ−1). Hence, the fixed equation

T (g−1)h=h given by γ−1xfing
−1=xfink implies.

Lemma 2.3. [KN (h) : K ′
N(h)] = [ΓNh

: Γ′
Nh

] = [ΓNh
: (ΓNh

∩ γΓNh
γ−1)] =

r(γ−1). For fixed g,K this number only depends on P and the coset P (Afin)xfin.

Rationality. To simplify the notation we now replace K by xfinKx
−1
fin, and g−1

by xfing−1x−1
fin, which allows us to assume xfin = 1 without restriction of gen-

erality. Then the fixed-component equation becomes γ ∈ g−1K . Hence, the coset
g−1K ⊆ Kg−1K has a rational point, and the Hecke correspondence defined by
Kg−1K = KγK is rational. For a fixed component h one can thus reduce the lo-
cal computations of the local term LC(F ) for F to the classical setting considered
in [33].

2.2.3 Another Formulation

The action ofG(Q) on the Q-parabolic subgroups by conjugation is transitive on the
minimal Q-parabolic subgroups. Hence, choosing a minimal Q-parabolic P0, every
Q-parabolic is conjugate over Q to one and only one standard parabolic Q-subgroup
P with respect to P0. Since the stabilizer of P under conjugation with G(Q) is
P (Q), (SGK)+ is a union over the finitely many standard Q-parabolic subgroups
P = Pθ containing P0,

(SGK)+ =
⋃

P0⊆P
P (Q) \ [XL ×G(Afin)]/K.

Since gKg−1 ∩ NP (Afin) is open in NP (Afin) for P = LPNP , for the strata
SPK = P (Q) \ [XL ×G(Afin)]/K of

(SGK)+ =
⋃

P0⊆P
SPK

an easy density argument gives the formula SPK = LP (Q) \ [XL × (NP (Afin) \
G(Afin)/K)] or

SPK = LP (Q)NP (Afin) \ [L∞ ×G(Afin)]/K̃∞K.
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Hence, x ∈ (SGK)+ is a double coset represented by some x = x∞xfin ∈
L∞ × G(Afin). Iwasawa decomposition G(Afin) = P (Afin) · Ω for some
maximal compact group Ω containing the group K gives a finite decomposition
G(Afin) =

⋃
g P (Afin)gK . Therefore, the set π0(SPK) of the topologically con-

nected components is finite, since by a result obtained by Borel and Harish-Chandra
[14], M(Q) \M(Afin)/KM is finite for any reductive Q-group M and any com-
pact open group KM ⊆ M(Afin). Of course we may choose the representatives
elements

xfin = k ∈ Ω.

2.2.4 Small Groups

Consider compact open subgroups K ⊆ G(Af ) and K̃∞ = K∞Z0
G,∞, where K∞

is maximal compact in G∞. K ⊆ G(Afin) will be called small if

x−1nγx ∈ KK̃∞ZL,∞

for x ∈ G(A), n ∈ N(A), γ ∈ P (Q) and any Q-parabolic P = L · N with
unipotent radicalN implies γL ∈ ZL(Q) (image in the Levi component is contained
in the center) and in addition implies γL = 1 if γL is a torsion element.

Remark 2.2. Of course it is enough to demand this for all standard parabolic groups
containing a fixed P0.

Remark 2.3. “Small” implies “neat” in the sense that L(Q)tor ∩ (xKx−1 ∩
P )L = 1.

Small-level groups K exist: G(A) is a finite union of cosets P (A)kKK∞ for
k ∈ G(Afin). This allows us to replace K by some conjugate Kk, and x by some
p ∈ P (A), and gives equations p−1nγp ∈ Kk for p ∈ P (A) instead of x ∈ G(A).
Equivalently, m−1γLm ∈ (Kk ∩ P )L for m ∈ L(A), where the index L indicates
projection from P to the Levi component L. γL is semisimple since modulo the
center it is contained in a maximal compact subgroup of L∞. The groups L and
Lad = L/ZL are connected reductive groups; hence, by embedding Lad into some
linear group and using for Lad the argument at the beginning of the proof [44],
Proposition 8.2, one can show that only finitely many L(Q) conjugacy classes of
semisimple elements γL in Lad(Q) meet (Kk ∩ P )L. Shrinking K leaves us, con-
sidering eigenvalues, with the unique Q conjugacy class {1}. Thus, γL ∈ ZL(Q).
Finally, ZL(Q)tor is finite (consider a splitting field of ZL). Since it is enough to
consider the finitely many standard parabolic groups P and for each finitely many
cosets k, shrinkingK therefore allows us to assume ZL(Q)tor ∩ (Kk ∩P )L = {1}
for the finitely many relevant cases.
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2.3 Fixed Points

Now we want to determine the fixed points x of the Hecke correspondence T (g−1)
in the reductive Borel–Serre compactification (SGK′)+. They are described by the
equations c1(x) = T (1)x and c2(x) = T (g−1)x in (SGK)+. The unique component
h containing x is necessarily a fixed component. h is contained in a stratum SPK .
Now fix the standard parabolic P = LPNP , or P = LN for short.

Suppose x ∈ SPK′ is represented by x = x∞xfin ∈ L∞ ×G(Afin). Then x is a
fixed point of T (g−1) if and only if xg−1 = γ · x · k holds for some γ ∈ P (Q) and
k ∈ K̃L,∞K , or equivalently if and only if

x−1γx ∈ g−1KK̃L,∞.

We may replace x by another representative δ−1x, δ ∈ P (Q). Then instead of γ its
conjugate δγδ−1 appears in the fixed-point equation. Moreover

Lemma 2.4. The element γ is semisimple and R-elliptic. For small K the L(Q)-
conjugacy class of the image γL of γ in L(Q) is uniquely determined by the fixed
point x ∈ SPK′ .

Proof. The equation x−1
∞ γLx∞ ∈ K̃L,∞ implies that γL ∈ L(Q) is R-elliptic,

hence semisimple. Now choose an equivalent representative δnxk′ for x for
some n ∈ N(Afin), δ ∈ P (Q), k′ ∈ K̃L,∞K ′. Suppose xg−1 = γ1xk1 and
(δnxk′)g−1 = γ2(δnxk′)k2 holds for γi ∈ P (Q), ki ∈ K̃L,∞K . Replacing
k2 by k′k2(gk′g−1)−1 allows us to assume k′ = 1. Replacing γ2 by δ−1γ2δ al-
lows us to assume δ = 1. Hence, γ1xk1 = xg−1 = n−1γ2nxk2. Since K is
small, this implies γL ∈ ZL(Q) for γ = γ−1

1 γ2 and hence γ commutes with x∞,
which then implies γL ∈ K∞KL, where KL is the image of K ∩ P (Afin) in
L(Afin). Thus, γL ∈ ZL(Q) ∩ K̃L,∞KL. Looking at the Archimedean place
and the non-Archimedean places separately, this forces γL to be a torsion element.
Therefore, γL = 1, since K is small.

This lemma gives a decomposition of the fixed-point set in the stratum SPK′ ac-
cording to the conjugacy classes γL ∈ L(Q)/ ∼. �
Fixing γL/ ∼. We want to determine the set Fix(γL) of all fixed points x ∈ SPK′

of T (g−1), where in the fixed-point equation for some representative an element γ
appears whose projection to L(Q) belongs to the fixed conjugacy class γL/ ∼. To
unburden the notation we also write Fix(γ) instead of Fix(γL),

Fix(γ) ⊆ SPK′ = LP (Q) \ [(L∞/K̃L,∞)× (N(Afin) \G(Afin)/K ′)].

For x = x∞xfin ∈ L∞×G(Afin) the double coset x = L(Q)N(Afin)xK̃L,∞K ′

is in Fix(γ) if and only if there exist n ∈ N(Af ), δ ∈ P (Q), k ∈ K̃L,∞K, γ′ ∈
N(Q) such that n(δγ′γδ−1)xk = xg−1 holds, or equivalently if and only if there
exist n ∈ N(Af ), δ ∈ P (Q), k ∈ K̃L,∞K, such that

(∗) x−1nδγδ−1x ∈ g−1K̃L,∞K,

since we are free to replace n by nδγ′δ−1.
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By abuse of notation we do not distinguish between global elements γ, δ inG(Q)
and their images in Gv or G(Afin). Since x is considered in SPK′ = P (Q) \ [XL ×
G(Afin)]/K ′, we may replace x by δ−1x and n by δ−1nδ, which simplifies the
equations for Fix(γ). Hence, we get

Lemma 2.5. We have Fix(γ) ∼= L(Q) \
(

L(Q) ·∏v Solv(γ)
)

, where

Solv(γ) = {xv ∈ N(Qv) \ G(Qv)/K′
v | x−1

v nγxv ∈ g−1
v Kv holds for some n ∈ Nv}

at the non-Archimedean places v and K ′
v = Kv ∩ g−1

v Kvgv, and where

Sol∞(γ) = {x∞ ∈ L∞(R)/K̃L,∞ | x−1
∞ γLx∞ ∈ K̃L,∞ }

at the Archimedean place∞.

By abuse of notation we write Lγ for the centralizer LγL of the element γL in
L, which is a connected reductive group by the assumption that Gder is simply
connected.

Corollary 2.1. For small K we obtain Fix(γ) = Lγ(Q) \ Sol(γ) for Sol(γ) =∏
v Solv(γ).

Proof. L(Q)-equivalent solutions in Sol(γ), say, x−1n1γx and x−1n2δ
−1γδx in

g−1KK̃∞ for suitable n1, n2 ∈ N(Afin) and δ ∈ P (Q), satisfy x−1n2δ
−1γδγ−1

n1x ∈ KK̃∞ for some n ∈ N(A). We may then assume n1 = 1, and since K
is small, this implies δ−1

L γLδLγ
−1
L ∈ ZL(Q). Since the commutator δ−1

L γLδLγ
−1
L

is in Lder(Q), and since ZL(Q) ∩ Lder(Q) is finite, the commutator is a torsion
element, and hence is 1 since K is small. This implies δL ∈ Lγ(Q) and completes
the proof. �

2.3.1 Archimedean Place

Sol∞(γ) ∼= Lγ,∞/(Lγ,∞ ∩ K̃L,∞) by the corollary in Appendix 2, unless it is
empty. If it is nonempty, the Archimedean fixed-point condition shows that γL is
L∞-conjugate to a point in K̃L,∞. To determine Lγ,∞ we may therefore assume
γL ∈ K̃L,∞ without restriction of generality. Hence, the centralizer Lγ,∞ becomes
θ-stable for the Cartan involution θ (see Appendix 2). Therefore, K∞ ∩ Lγ,∞ is a
maximal compact subgroup KLγ ,∞ of Lγ,∞. Since AL(R)0 ⊆ Lγ,∞, Sol∞(γ) =
Lγ,∞/(KLγ ,∞AL(R)0) admits a smooth surjective map to the symmetric space
XLγ = Lγ,∞/(KLγ ,∞ALγ (R)0) of the centralizerLγ , which defines a trivial fibra-
tion by the Euclidean spaceALγ (R)0/AL(R)0, and hence a homotopy equivalence.
See the Remark 2.15 in Appendix 2.
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2.3.2 Non-Archimedean Places

Recall that T (g−1) and γ/ ∼ are now fixed. Let Ωv be the stabilizer of a special
point in the Bruhat–Tits building. Special points always exist, and Ωv is a maximal
compact subgroup of Gv. We now assume Kv ⊆ Ωv; hence, K ′

v ⊆ Ωv. Then by
the Iwasawa decomposition Gv = Pv · Ωv (see [103], Sect. 3.3.2). For k ∈ Ωv put
g−1
k = kg−1k−1, Kk = kKvk

−1, and K ′
k = kK ′

vk
−1. Elements xv ∈ Solv(γ)

may be written xv = p · k for p ∈ Pv and k ∈ Ωv. The coset (Pv ∩ Ωv)kK ′
v is

uniquely determined by xv , and G/K ′ =
⋃
k∈Pv∩Ωv\Ωv/K′

v
Pv/(Pv ∩ kK ′

vk
−1).

Therefore,
Solv(γ) =

⋃

k∈Pv∩Ωv\Ωv/K′
v

Solv(γ, k).

Here Solv(γ, k) = {p ∈ Nv \ Pv/(Pv ∩ kK ′
vk

−1) | p−1
L γLpL ∈ (g−1

k Kk ∩ P )L}
or

Solv(γ, k) ∼= Sv(γ, k)/K ′(k)v

for K ′(k)v := (Pv ∩ kK ′
vk

−1)L and

Sv(γ, k) =
{
m ∈ Lv

∣
∣
∣m−1γLm ∈ (g−1

k Kk ∩ Pv)L
}

=
⊎

ξv

(Lγ)v · ξv ·K ′(k)v.

This is a finite (possibly empty) union over representatives ξv ∈ Lv. From [53],
Propositions 7.1 and 8.2, there is only one representative ξv = 1 for almost all v.

2.3.3 Globally

With this notation

Sol(γ, k) = S(γ, k)/K ′(k)A for K ′
A(k) = K̃L,∞

∏

v fin

K ′(k)v,

where S(γ, k) =
{

m ∈ L(A) |m−1γLm ∈ K̃L,∞
(
g−1
k Kk∩P (Afin)

)
L

}

.Lγ(A)

acts on S(γ, k) from the left. Choose a decomposition

S(γ, k) =
⊎

ξ

Lγ(A) · ξ ·K ′(k)A

with representatives ξ ∈ L(A), where representatives ξ =
∏
v ξv are chosen to be

products of corresponding local non-Archimedean representatives ξv for Lγ(Qv) \
Sv(γ, k)/K ′(k)v , and ξ∞ = 1. Then
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Lemma 2.6. For small K the contribution of a fixed conjugacy class γ/∼ in L(Q)
to the fixed-point locus of T (g−1) is

Fix(γ) ∼=
⊎

k∈P (Afin)∩Ω\Ω/K′
Fix(γ, k),

F ix(γ, k) ∼=
⊎

ξ

Lγ(Q) \ Lγ(A)/(ξK ′(k)Aξ−1 ∩ Lγ(A)).

Of course Lγ(Q) \ Lγ(A)/(ξK ′(k)Aξ−1 ∩ Lγ(A)) =
⊎
Fν is a finite union of

arithmetic quotients Fν .

2.4 Lefschetz Numbers

The Lefschetz number becomes

∑

P

∑

γ/∼

∑

k

∑

ξ

∑

ν

LC(Fν),

where k ∈ P ∩ Ω \ Ω/K ′. Put F = Fν . For the local terms LC(F ) Goresky
and MacPherson gave an explicit description as a product χ(F )r(γF )Ψ(γF , λ) if
γF is P -contractive, and it vanishes otherwise. See [33], pp. 470–471 and Theorem
(version 3a), p. 474. Here γF = γ−1 is the characteristic element defined in [33],
p. 469, which is the inverse of the element γ defined in Lemma 2.4. Hence, if it is
nonvanishing, the local number LC(F ) is the product of:

• The Euler characteristic χ(F )
• |γF |ρP∞ · r(γF , k)
• |γF |−ρP∞ ·Ψ(γF , λ) =

∑
w∈WP (−1)l(w)ψw(λ+ρG)−ρL

(γ−1
F )

2.4.1 Euler Characteristics

We may sum the terms
∑
ν χ(Fν) for fixed P, γ/ ∼, k, ξ, which gives the Euler

characteristic

χ(Lγ(Q) \ Lγ(A)/(ξK ′(k)Aξ−1 ∩ Lγ(A))).

To compute it we may replace Lγ,∞/K̃L,∞ by XLγ = Lγ,∞/K̃Lγ ,∞. See page 44.
Notice Lγ(Q) ∩ ξK̃Lγ ,∞K ′(k)Aξ−1 is contained in the center of Lγ , since K is
small. Hence, the intersection is discrete and compact, and hence we have a finite
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group. By our assumption K is small; hence, the intersection is trivial. Thus, we
obtain

∑

ν

χ(Fν) =
χ(Lγ , dgfin)

voldgfin
(ξK ′(k)Afin

ξ−1 ∩ Lγ(Afin))

for a constant χ(Lγ) = χ(Lγ , dgfin) depending only on Lγ and on the choice of
the Haar measure dgfin on Lγ(Afin).

Remark 2.4. Observe that γ is R-elliptic, and hence is Q-elliptic. For the ambigu-
ity of this notion, see [44], p. 392. We show that in our situation this ambiguity does
not cause problems, since the Euler characteristic of the corresponding summands
in the trace formula vanishes unless both notions agree. Consider the groupL or bet-
ter L/AL. The center Z(Lγ) is Q-anisotropic modulo AL. If the quotient were not
anisotropic over R, the corresponding global quotient space X would be a nontriv-
ial torus fibration, whose Euler characteristic would therefore vanish. Similarly the
Euler characteristic vanishes for locally symmetric arithmetic quotients of semisim-
ple groups unless the R-rank of the maximal compact subgroup equals the R-rank
of the group. Considering the map Lder → L, we can assume that (Lγ/AL)(R)
contains an R-anisotropic torus of maximal rank, or otherwise the Euler charac-
teristic vanishes and the corresponding summand does not contribute to the trace
formula.

Definition 2.1. Call γ ∈ L(Q) strongly elliptic if γ is L(R)-conjugate to an element
in KL,∞ ·AL(R)0 such that the Euler characteristic χ(Lγ) does not vanish.

Remark 2.5. For connected reductive groups L over Q, for which the connected
component of the center modulo AL is anisotropic over R, one also wants to com-
pare χ(L, dgfin) with the Tamagawa number. At the moment we do not need to
carry through this comparsion. When we need it later, it can be obtained directly
from a comparison between the topological L2-trace formula and Arthur’s L2-trace
formula. On the other hand, it should not be difficult to obtain it by reduction to the
case of semisimple groups (Harder’s theorem [37]) adapting the argument of [68],
pp. 129–131, with a z-extension T ′ → L∗ → L replacing the sequence (V ), and
L̃ = (L∗)der → L∗ → T replacing the sequence (H) in [68].

Only (semisimple) strongly elliptic elements γ contribute to the Lefschetz num-
ber. Let χGP be the characteristic function of the P -contractive elements. We obtain
for the Lefschetz number the expression

∑

P

∑

γ/∼
χ(Lγ , dgfin)χGP (γ−1

∞ )
∑

w∈WP

(−1)l(w)ψw(λ+ρG)−ρL
(γ) ·Oγ

=
∑

P

∑

γ/∼
χ(Lγ , dgfin)χGP (γ∞)

∑

w∈WP

(−1)l(w)ψw(λ+ρG)−ρL
(γ−1) ·Oγ−1 ,

where

Oγ =
∑

k

∑

ξ

|γ−1|ρP∞ · r(γ−1, k)
voldgfin

(ξK ′(k)Afin
ξ−1 ∩ Lγ(Afin))

.
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Here we used r(γ, k) = r(δγδ−1, k) for δ ∈ L(Q). To show this, recall k = xfin
describes the componenth of the P -stratum, which contains F . Recall r(γ, xfin) =
r(δγδ−1, δxfin) for δ ∈ P (Q). Since r(γ, xfin) depends only on P and the coset
P (Afin)xfin (Lemmas 2.1 and 2.3), replacing γ by a conjugate does not change
r(γ, k).

2.4.2 Computation of Oγ

Notice |γ−1|ρP∞ r(γ−1) =
∏
v �=∞ |γ|ρP

v [Nv ∩Kk : Nv ∩K ′
v] by Lemma 2.3. Since

∑

k∈(Pv∩Ωv)\Ωv/K′
v

f(k) =
∑

k∈Ωv/K′
v

f(k)
[(Pv ∩ Ωv) : (Pv ∩K ′

k)]
,

this allows us to writeOγ as a product
∏
v �=∞Oγ,v of non-Archimedean local terms

Oγ,v =
∑

k∈Ωv/K′
v

∑

ξv

|γ|ρP
v · [Nv ∩Kk : Nv ∩K ′

v]
[(Pv ∩ Ωv) : (Pv ∩K ′

k)] · voldgv (ξvK ′(k)vξ−1
v ∩ Lγ,v)

.

Since
0→ Nv ∩K ′

k → Pv ∩K ′
k → K ′(k)v → 0

is exact, this gives

Oγ,v =
∑

k∈Ωv/K′
v

∑

ξv

|γ|ρP
v · volNv (Nv ∩Kk) · volLv (K ′(k)v)
voldgv (ξvK ′(k)vξ−1

v ∩ Lγ,v)
,

where measures are normalized such that vol(Ωv ∩Pv) = 1 and vol(Ωv ∩Nv) = 1.
In Sect. 2.5 we show that this expresses Oγ as an orbital integral

Oγ = OLγ (f
(P )

)

of the characteristic function f of the set Kg−1K up to a normalization factor.

2.4.3 Conclusion

The computations in Sects. 2.4.1 and 2.4.2 describe the right action of 1KgK/volΩ(K)
on the cohomology. Any K-bi-invariant function f is a linear combination of func-
tions f as above. However, we should keep in mind that so far we have used a left
action of G(Afin) on SG, where g ∈ G(Afin) acts by the formula on page 23;
hence, the cohomology becomes a right module under the Hecke algebra.
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Theorem 2.1. Assume the derived group of G is simply connected and K is small.
Then the Lefschetz number of the right action of a K-bi-invariant Hecke operator
f ∈ C∞

c (G(Afin)) on the cohomologyH•(SK(G), Vλ) is given by

L(f, Vλ) =
∑

P

∑

γ∈L(Q)/∼
χ(Lγ , dgfin)OLγ (f

(P )
) · |γ|−ρP∞ Ψ(γ, λ).

The sum extends over all standard Q-parabolic subgroups P = LN containing the
fixed minimal Q-parabolic P0 and all L(Q)-conjugacy classes γ ∈ L(Q)/ ∼ of
semisimple, strongly elliptic elements in L(Q) with P -contractive representatives.

Example 2.2. G = Gm for the representation x 	→ xr of weight λ = r on V = C,
andK maximal compact. Then SK is a single point. The element g = (gv) ∈ A∗

fin,
where gp = p and gv = 1 for v �= p, acts on Vλ by 1 × 1 	→ 1 × g−1 � pr × 1
in V ×A∗

fin. It acts on the cohomology via multiplication by p−r (right action on
cohomology) or pr (left action on cohomology).

Remark 2.6. Notice we used

OLγ−1(f
(P )

) = OLγ (f−(P )
).

For the comparison of trace formulas with those in [64] in Chap. 3, we may turn the
right action of the Hecke algebra on the cohomology groups into a left action by the
substitution f(x) 	→ f−(x) = f(x−1). This makes the formula compatible with
that in [64], p. 197.

Remark 2.7. The factor χ(Lγ , dgfin)OLγ (.) does not depend on the choice of the
fixed Haar measure dgfin on Lγ(Afin); therefore, we do not mention the choice of
dgfin in the following.

Remark 2.8. The condition imposed in Theorem 2.1 that γ ∈ L(Q)/ ∼ contains a
P -contractive representative γ ∈ P (Q) can be replaced by the stronger condition
that |α(γ)|∞ ≥ 1 holds for all positive roots α of G and |α(γ)|∞ = 1 holds if and
only if α is a root from L as explained after the definition of contractiveness. Of
course it is enough to consider Q-roots, sinceG and P are defined over Q and γ is a
Q-rational element. Therefore, the condition in Theorem 2.1 can be replaced by the
condition |α(γ)|fin ≤ 1 holds for all positive Q-roots α and |α(γ)|fin = 1 holds if
and only if α is a root from L.

Remark 2.9. For a standard Q-parabolic group P ⊇ P0 with Levi decomposition
P = LN let X∗(P )Q = X∗(L)Q = HomQ−alg(L,Gm) be the group of charac-
ters defined over Q. Then XL = Hom(X∗(L)Q ,R) can be canonically identified
with the Lie algebra of AL, and hence with AL(R)0 by the exponential map. One
defines the Harish-Chandra homomorphism

HP : L(A)→ XL
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by exp(〈HP (l), χ〉) = ‖χ(l)‖, where ‖.‖ : A∗ → R∗ is the idele norm, and χ ∈
X∗(L)Q . For the minimal Q-parabolic P = P0 we write XP = X . Let Δ be a
basis of the simple Q-roots. Then the standard Q-parabolic subgroups P = Pθ
correspond uniquely to the subsets θ ⊆ Δ. The roots in F are the roots of the
Levi componentLθ, and the simple roots in the Lie algebra of the unipotent radical
Nθ are the roots in Δ \ F . In fact, since γ is strongly elliptic, the condition for
γ ∈ L(Q) = Lθ(Q), given in Remark 2.8, could also be replaced by the condition

|α(HP (γ))|fin < 1

for all simple Q-roots α not in θ.

The Decomposition X = XL ⊕ X⊥
L [1]. Let βj denote the dual roots such that

〈βj , αi〉 = δij , both considered as elements of X . Then there exists a natural or-
thogonal decomposition X = XL ⊕ X⊥

L such that XL is the span
∑
j /∈F Rβj

and X⊥
L =

∑
i∈F Rαi. The projection prL : X → XL is pr(

∑
j /∈F xjβj +∑

i∈F yiαi) =
∑
j /∈F xjβj . The image under prL of the open positive Weyl

chamber X+ =
∑

j∈Δ R>0βj ⊆ X defines the open Weyl chamber X+
M in

XM ; the image of the obtuse Weyl chamber +X =
∑
iR>0αi ⊆ X defines

the obtuse open Weyl chamber in XL. Obviously +XL =
∑
j /∈F R>0αj . Then

X+
L = pr(X+) =

∑
j /∈F R>0βj , since 〈αi, αj〉 ≤ 0 for i �= j and 〈βi, βj〉 ≥ 0.

In fact
∑

j /∈F xjβj +
∑

i∈F yiαi ∈
∑
i∈F R>0βi therefore implies yi ≥ 0, i ∈ F ;

hence, xj > 0, j /∈ F . Also X+ ⊆ +X ; therefore, X+
L ⊆ +XL. Finally notice

X+ ∩ −+X = {0}.

2.5 Computation of an Orbital Integral

We write the termsOγ in the formula for the Lefschetz numbers as an orbital integral

OLγ (f
(P )

). This is done in steps 1–3. The final result is formulated in step 4.

Step 1. Assume measures are normalized by volG(Ω) = 1. RecallK ′ = K∩g−1Kg
and g ∈ G(Afin) is fixed. The characteristic function 1g−1K(y) of the set g−1K is
then K ′-bi-invariant. Furthermore, k−1xk ∈ g−1K ⇐⇒ x ∈ kg−1k−1kKk−1 =:
g−1
k Kk. Hence,

∫

Ω

1g−1K(k−1xk)dk = [Ω : K ′]−1 ·
∑

k∈Ω/K′
1g−1K(k−1xk)

= volΩ(K ′) ·
∑

k∈Ω/K′
1g−1

k
Kk

(x).

∫
K

1g−1K(k−1xk)dk =
∫
K

1g−1K(k−1x)dk = volΩ(g−1Kg ∩K)1Kg−1K(x) =
volΩ(K ′)1Kg−1K(x) holds for x ∈ G(Afin). Hence,

∫
Ω = volΩ(K)−1

∫
Ω

∫
K

implies
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∫

Ω

1g−1K(k−1xk)dk = volΩ(K)−1

∫

Ω

volΩ(K ′)1Kg−1K(k−1xk)dk.

Comparison of the right sides thus gives for the Ω-average

Definition 2.2. f(x) =
∫
Ω f(k−1xk)dk, x ∈ G(Afin), of the normalized

characteristic function.

Definition 2.3. f(x) = volΩ(K)−11Kg−1K(x) .

Lemma 2.7. f(x) =
∑

k∈Ω/K′ 1g−1
k Kk

(x).

Step 2. For x ∈ P (Afin) in a standard parabolic subgroup P = LN by Lemma 2.7
∫

N(Afin)

f(xn)dn =
∑

k∈Ω/K′

∫

N(Afin)

1g−1
k Kk

(xn)dn.

If xL is not in (g−1
k Kk ∩P (Afin))L, the corresponding integral on the right side is

zero. Otherwise xn0 = g−1
k k0 holds for some n0 ∈ N(Afin) and k0 ∈ Kk, and in

this case the integral becomes
∫
N(Afin)

1g−1
k Kk

(g−1
k k0n)dn = vol(N(Afin)∩Kk).

Hence, for x ∈ L(Afin) we get

Lemma 2.8. φ(x) :=
∫
N(Afin) f(xn)dn =

∑
k∈Ω/K′ vol

(
N(Afin) ∩ Kk

)·
1(g−1

k Kk∩P (Afin))L
(x).

Step 3. Next consider the orbital integral of the function φ defined on L(Afin)

OLγ (φ) =
∫

Lγ(Afin)\L(Afin)

φ(m−1γm)dm.

By the definition of φ the value of OLγ (φ) is

∑

k∈Ω/K′
vol
(
N(Afin) ∩Kk

)·
∫

Lγ(Afin)\L(Afin)

char
{
m
∣
∣
∣m−1γLm ∈

(
g−1
k Kk ∩ P (Afin)

)
L

}
dm,

or by Sect. 6.16 and the decomposition S(γ, k) =
⋃
Lγ(Afin) · ξfin ·K ′(k)Afin

∑

k∈Ω/K′
vol
(
N(Afin)∩Kk

) ·
∑

ξfin

volL(Afin)

(
K ′(k)Afin

)

volLγ(Afin)

(
ξfinK ′(k)Afin

ξ−1
fin ∩ Lγ(Afin)

) .

Step 4. To put things together. The function

f(x) =
∫

Ω

f(k−1xk)dk, f(x) = volΩ(K)−11Kg−1K(x)
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is K-bi-invariant on G(Afin). Define

f
(P )

(m) = |m|ρP

fin

∫

N(Afin)

f(mn)dn, m ∈ L(Afin)

OLγ (f
(P )

) =
∫

Lγ(Afin)\L(Afin)

f
(P )

(m−1γm)dm,

assuming that the integrals are normalized by the conventions volP (Afin)

(
Ω ∩

P (Afin)
)

= 1, vol(Ω) = 1, and volN(Afin)

(
Ω ∩ N(Afin)

)
= 1. See also [16],

p. 144. The measure on Lγ(Afin) is dgfin. Then the computation above proves that

OLγ (f
(P )

) = Oγ .

2.6 Elliptic Traces

Recall G is a connected reductive group over Q whose derived group is simply
connected. Define elliptic “traces”

TGell(f, τ) =
∑

γ∈G(Q)/∼ χ(Gγ)OGγ (f) · tr(τ(γ−1)
)

for a finite-dimensional complex representations τ ofG(Q) and f ∈ C∞
c (G(Afin)).

If τ is an irreducible complex representation defined by a highest weight λ, we
also write TGell(f, λ) instead of TGell(f, τ). Hence, we do not distinguish between
representations and their highest weights. The sum defining TGell(f, τ) extends over
theG(Q)-conjugacy classes of semisimple, strongly elliptic elements in G(Q). The
integrals OGγ (f) in this sum are orbital integrals with respect to the group of finite
adeles for functions f ∈ C∞

c (G(Afin)). The same definition defines elliptic traces
TLell for the Levi subgroups L of all standard Q-parabolic subgroups P = LNP
of G.

Let χGP = τGP ◦ HP be defined by the characteristic function τGP of the open
positive Weyl chamber of XL = X∗(AL)Q⊗R, lifted to a function on L(Afin) via
the Harish-Chandra homomorphismHL : L(Afin) → XL. Then Theorem 2.1 and
the remarks following it imply

Lemma 2.9.
L(f, Vλ) =

∑

P0⊆P⊆G
TPell(f

(P )
χGP , λ),

where
TPell(h, λ) =

∑

w∈WP

(−1)l(w) · TLell(h,w(λ + ρG)− ρL)

for h ∈ C∞
c (L(Afin)), and where P = LNP runs over the Q-rational standard

parabolic subgroups of G.
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Let χ̂GP = τ̂GP ◦ HP be the characteristic function τ̂GP of the open obtuse Weyl
chamber in XL, considered as a function on L(Afin). Notice χGP ≤ χ̂GP .

Lemma 2.10. Let the situation be as in Lemma 2.9. Then

TGell(f, λ) =
∑

P0⊆Q⊆G
(−1)rang(Q)−rang(G)LQ(f

(Q)
χ̂GQ, λ),

where the sum is over the standard Q-parabolic subgroups of G, where rang(Q)
denotes the Q-split rank of the Levi subgroup of Q, and the Lefschetz number LQ

for h ∈ C∞
c (L(Afin)) and the parabolic group Q is defined by

LQ(h, Vλ) =
∑

w∈WQ

(−1)l(w) · LL(h, Vw(λ+ρG)−ρL
),

and LL(h, .) is the Lefschetz number attached to coefficient systems for the symmet-
ric space attached to the Levi subgroup L of the (standard) parabolic subgroup Q.

Lemmas 2.9 and 2.10 were expected by Harder [39], pp. 144–145.

Proof of Lemma 2.10. Lemma 2.9 applied to the Levi subgroup L of Q = LN gives

LQ(f
(Q)
χ̂GQ, Vλ) =

∑

w∈WQ

(−1)l(w) · LL(f
(Q)
χ̂GQ, Vw(λ+ρG)−ρL

)

=
∑

w∈WQ

(−1)l(w)
∑

P0∩L⊆P ′=L′N ′⊆L
TP

′
ell

(

(f
(Q)
χ̂GQ)

(P ′)

χLP ′ , w(λ + ρG)− ρL
)

=
∑

P0∩L⊆P ′=L′N ′⊆L

∑

w′∈WP ′

∑

w∈WQ

(−1)l(w)+l(w′) ·

TL
′

ell

(

(f
(Q)

χ̂GQ)
(P ′)

χLP ′ , w′w(λ+ ρG)− ρL′

)

.

P ⊆ Q induces the parabolic group P ′ = P ∩ L in the Levi component L of Q,
and all standard Q parabolic groups P ′ are obtained in this way from the standard
Q-parabolic subgroups P ⊆ Q such that the Levi components L′ of P ′ and P co-
incide. Since sn(w) = (−1)l(w) satisfies sn(w′)sn(w) = sn(w′w), the inductivity

WP ′
WQ = WP and the formula f

(P )
χ̂GQ = (f

(Q)
χ̂GQ)

(P ′)

implies that the sum
simplifies to

LQ(f
(Q)
χ̂GQ, Vλ) =

∑

P0⊆P=L′NP ⊆Q
TPell(f

(P )
χ̂GQχ

L
P ′ , λ).

The sum is over all Q-rational standard parabolic subgroupsP ofG contained inQ.
Notice in the formula above χLP ′ is a function onXL′ , whereas χ̂GQ, which is defined
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as a function onXL, is tacitly considered as a function on XL′ via the canonical pro-
jection map pr : XL′ → XL. Summing these formulas over the standard parabolic
groupsQ, with the additional factors (−1)rang(G)−rang(Q),

∑

P0⊆Q
(−1)rang(Q)−rang(G) · LQ(f

(Q)
χ̂GQ, Vλ),

gives the desired result, by interchanging the order of summation. Fixing P , the sum
over all Q with P ⊆ Q ⊆ G gives zero except for P = G. Indeed for fixed P ⊆ G
the sum

∑
P⊆Q⊆G(−1)rang(G)−rang(Q)χ̂GQχ

L
L′ is zero except for P = L′NP = G,

where it is 1 instead. This is a well known result obtained by Arthur [1]. For the
convenience of the reader we include the argument. �
Proof. Let F ′ ⊆ F ⊆ Δ define P ′ ⊆ P ⊆ G. Since the support SuppF of
the characteristic function τ̂GQ τ

L
L′ of the subset

∑
i/∈F R>0αi +

∑
j∈F\F ′ R>0βj

of XL′ is contained in +XL′ =
∑

i/∈F ′ R>0αi (if F ′ �= Δ), SuppF = +XL′ ∩⋂
j∈F\F ′{H | αj(H) > 0} follows as an immediate consequence of the inequalities

(αi, αj) ≤ 0 for i �= j and (βi, βj) ≥ 0. For H ∈ X let ΔH denote the set of
αi /∈ F ′, for which 〈αi, H〉 > 0. ΔH is nonempty for H ∈ +X , since −X+ ∩
+X = {0}. Hence,

∑
P⊆Q⊆G(−1)rang(G)−rang(Q)τ̂GQ τ

L
L′(H) = 0 follows from

∑
T⊆ΔH

(−1)|T | = 0. �

Corollary 2.2. The elliptic trace TGell(f, λ) is

∑
P0⊆Q⊆G

∑
w∈W Q (−1)rang(Q)−rang(G)+l(w) · trs

(
f

(Q)
χ̂G

Q;H•(SLQ
, Vw(λ+ρG)−ρL

)
)
.

Corollary 2.3. The Lefschetz number L(f, Vλ) is

∑
P0⊆P⊆G

∑
w∈WP (−1)l(w) · TLell(f

(P )
χGP , w(λ+ ρG)− ρL) .

2.7 The Satake Transform

For a connected reductive groupG over a non-Archimedean local field Fv letA be a
maximal Fv-split torus in the center ofG. Let Gab be the maximal Abelian quotient
of G. Write Gv = G(Fv), etc.

ordG. There is a canonical homomorphism ordG : Gv → X∗(G) = HomFv−alg
(G,Gm) (see [16], p. 134). We also write ordG for the induced homomorphism
Gv → XGv = X∗(G) ⊗ R, and 0G for the kernel. The homomorphism ordG is
functorial inG and induces the field valuation in the caseG = Gm. It factorizes over
the quotient Gab, and is trivial on compact subgroups. The kernel of the canonical
map Av → Gabv is contained in the maximal compact subgroup 0Av. Hence, the
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quotient group Av/0Av , which can be identified with the Fv-rational cocharacter
lattice X∗(A) of the torus A, is injected into Gabv /

0Gabv as a subgroup of finite
index. Hence, the canonical maps XAv → XGv → XGab

v
induce isomorphisms,

which allows us to identify these vector spaces.

The Map S. Now assume Gv = G(Fv) to be quasisplit, and split over a finite
unramified extension field ofFv such that the derived group is simply connected. Let
Ωv be a good maximal compact subgroup and P = MN be a minimal Fv-rational
parabolic subgroup of G such that Gv = Pv · Ωv. To be precise, we demand Ωv to
be admissible relative to Mv in the sense of [7], p. 9. The Ωv-bi-invariant functions
on Gv with compact support define the spherical Hecke algebra H(Gv,Ωv) of Gv .

Put Λ = 0Mv \Mv. For fv ∈ C∞
c (Gv) define f

(Pv)

v (m) = |m|ρPv
v

∫
Nv
f(mn)dn

as on page 36 now locally for Fv . For elements fv in the spherical Hecke algebra of
Gv the Satake transform S is defined by (see [16], p. 146, formula (19))

fv 	→ S(fv) = f
(Pv)

v

and defines a function S(fv) on Mv(Qv)/Mv(Qv) ∩ Ωv = Λ. The group Λ is a
lattice, which contains and is commensurable with the cocharacter lattice X∗(A) of
the torusA (see [16], p. 135) inXAv = X∗(A)⊗R. The Satake transform defines an
isomorphism between the spherical Hecke algebra of the group Gv and the algebra
C[Λ]W (W -invariants in the group ring C[Λ] [16], Theorem 4.1). Furthermore, for
γ regular in Mv the Satake transform S is given by the orbital integral up to a
normalization factor

S(fv)(γ) = DG(γ)1/2OGv
γ (fv).

For an arbitrary function χ : XGv → R multiplication by χ determines a C-linear
endomorphism fv(x) 	→ χ(ordL(x))fv(x) of the Hecke algebra of Gv , which pre-
serves the spherical Hecke algebra such that for the orbital integral

OGv
γ (fvχ) = χ(ordG(γ)) ·OGv

γ (fv)

holds, and also for the Satake transform S(χfv)(m) = χ(ordG(γ)(m))S(fv)(m).

Standard Fv-parabolic Groups. Let Q be a Fv-rational standard parabolic sub-
group of G with Levi component L. Let AQ be the maximal Fv-split torus in Q.
The natural map Av → Lv → XL factorizes over the quotient Av/0Av , and hence
induces a canonical R-linear map

pr : XMv → XLv .

The following two properties characterize the projection pr. Firstly, the embedding
AQv ↪→ Av induces a canonical embedding i : XLv = X∗(AQ) ⊗ R ↪→ XMv =
X∗(A) ⊗ R such that pr : XMv → XLv restricts us to the identity map on the
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subspace XLv ⊆ XMv . Secondly pr is zero on the subspace X∗(A′
Q)⊗R ⊆ XMv ,

where A′
Q denotes the split torus Lder ∩A.

This gives the following formulation in terms of the Killing form. Let αi ∈
Δ(Gv, Av) denote the simple Fv-roots attached to Pv ⊆ Gv , let 〈 , 〉 denote the
Killing form, and let βj denote the dual basis 〈αi, βj〉 = δij . Use the Killing form
to identifyX∗(A)⊗R with its dualX∗(A)⊗R. The Fv-rational standard parabolic
subgroups are in one-to-one correspondence with the subsets F ⊆ Δ(Pv, Av). For
Q = QF the space XLv = X∗(AQ) ⊗ R is given in XMv = X∗(A) ⊗ R by the
equations 〈 ., αi〉 = 0, αi ∈ F (or i ∈ F by abuse of notation) for a subset F of
the simple roots. XMv splits into the orthogonal direct sum of the two subspaces
XLv =

∑
j /∈F Rβj and the orthocomplement

∑
i∈F Rαi. pr is the orthogonal pro-

jection defined by pr(
∑

j /∈F xjβj +
∑

i∈F yiαi) =
∑

j /∈F xjβj .

Transitivity. Let Q = LN be an Fv-rational parabolic subgroup of G. Let σv
be an irreducible admissible representation of Lv. The Hecke algebra C∞

c (Gv) of
locally constant functions with compact support on Gv acts by convolution on the
unitary normalized induced representation πv = IndGv

Qv
(σv) such that (for measures

suitably normalized) the adjunction formula (see, e.g., [44], Sect. 2, Lemma 1, the
slightly different definition involving f∗

v in the pairing in loc. cit. has no effect) holds

tr IndGv

Qv
(σv)(fv) = tr σv(f

(Q)

v ),

where fv ∈ C∞
c (Gv) and by definition f

(Q)

v (m) = |m|ρQv
v

∫
Nv
f(mn)dn.

The group Ωv ∩Lv = (Ωv ∩Qv)Lv is a good maximal compact subgroup of Lv,
i.e., admissible with respect to Mv (see [7], p. 9). Lv is again quasisplit and splits
over a unramified extension field. Hence, the spherical Hecke algebra H(Lv,Ωv ∩
Lv) is defined. For fv ∈ H(Gv,Ωv) the function SGL (fv) = f

(Q)

v is bi-invariant
under Ωv ∩ Lv, and hence the partial Satake transform S = SGM : H(Gv,Ωv) →
H(Mv,

0Mv) factorizes over the spherical Hecke algebraH(Lv,Ωv ∩ Lv)

S = SGM = SLM ◦ SGL .

Absolute Support. In the following, a cone C in Euclidean space is understood to
be an open submonoid stable under multiplication by R>0 which does not contain
a real line.

Lemma 2.11. Fix an arbitrary nonempty open cone C ⊆ XM , which is contained
in the positive Weyl chamber attached to Pv . Let πv = IndGv

Pv
(σv) be an unramified

induced representation attached to an unramified character σv ofMv with spherical
constituent π0

v . Choose x0 ∈ C. Then there exist spherical Hecke operators fv with
the properties:

1. tr πv(fv) = tr π0
v(fv) = 1.

2. The support of the Satake transform S(fv) of fv is contained in the Weyl group
orbit

⋃
w∈W w(x0 + C) of the translated cone x0 + C.
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Proof. It suffices to find fv ∈ H(Gv,Ωv) with tr πv(fv) �= 0 such that (2) holds.
tr πv, considered as a functional on the spherical Hecke algebra C[Λ]W , is a finite
sum of characters on the group Λ. Up to a twist by δ1/2(x) these characters are in the
W -orbit of the character σv . This character sum is conjugation-invariant, and hence
W -invariant. If the assertions of the lemma were false, there would exist finitely
many different characters χi, i = 1, . . . , r, of Λ and ni ∈ C such that

r∑

i=1

niχi(x) = 0, (n1, · · · , nr) �= 0

holds for all x ∈ Λ ∩ (x0 + C). To see that this is impossible we can assume
x0 = 0, changing the coefficients ni to niχi(x0), and then use induction on r.
Since x, y ∈ C implies x + y ∈ C we can lower the length r of such a nontrivial
character relation on C by considering

∑
i ni(χi(y) − χ1(y))χi(x) = 0, provided

there exists y ∈ C with χr(y) �= χ1(y) if, say, nr �= 0. Because χ = χr/χ1 is a
nontrivial character on Λ, such a y exists, since otherwise χ vanishes on C ∩Λ, and
hence on the generated group (C ∩Λ)− (C ∩Λ). However, (C ∩Λ)− (C ∩Λ) = Λ
holds for any nonempty open cone of X . This proves the lemma. �
Relative Support. For fv ∈ C∞

c (Gv) consider the support Σ of the orbital integral

OLγ (f
(Q)

v ) as a function of γ ∈ Lv. Notice the support of f
(Q)

v itself is contained
in Σ. The image of Σ in XL of the regular, semisimple subset of this support under
ordL : Lv → XLv will be called the relative support of fv with respect to Qv. The

relative support contains the image of the support of f
(Q)

v in XLv under the map
ordL. Since the regular semisimple elements are dense in Σ, and since the maximal
compact subgroup of Lv is in the kernel of ordL, one could replace the support Σ
by the regular, semisimple support ofOLγ (f

(Q)

v ) for the definition of relative support
above.

The relative support of fv with respect to Qv is a finite subset of the vector

space XL. Notice that f
(Q)

v has compact support on Lv, and ordL is invariant under
conjugation. Hence, the image ordL(Σ) is relatively compact in XLv . On the other
hand ordL(Lv) is contained in a sublattice of XLv .

Lemma 2.12. Let fv ∈ H(Gv,Ωv) be a spherical function. Let Q = LNQ be
an Fv-rational standard parabolic subgroup of G containing the minimal Fv-
parabolic subgroup P = MN . Then x ∈ XLv is in the relative support of

OLγ (f
(Q)

v ) if and only if x is in the image of the support of the Satake transform
S(fv) ∈ H(Mv,

0Mv) under the map pr ◦ ordM , where pr : XMv → XLv is the
canonical projection.

Proof. Let χx(λ) be the function on XL, which is not zero for λ = x and is zero
otherwise. Then by definition the following statements are equivalent. By abuse of
notation we consider χx as a function on Lv using the map ordL. Then x ∈ XL is
in the relative support of fv if and only if

χx(γ)OLv
γ (f

(Q)

v ) = OLv
γ (χx · f (Q)

v )
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does not vanish identically for all semisimple, regular elements γ ∈ Lv. Since fv is

a spherical function on Gv , f
(Q)

v = SGL (fv) is spherical on Lv; hence, χx · f (Q)

v =

χx ·SGL (fv) is again spherical onLv. IfOLv
γ (χxf

(Q)

v ) does not vanish identically for

all semisimple, regular elements γ ∈ Lv, then χxf
(Q)

v does not vanish identically on

Lv. Since χxf
(Q)

v is spherical, this implies SLM (χxf
(Q)

v ) �= 0; hence,OLv
γ (χxf

(Q)

v )
does not vanish identically for all semisimple, regular elements γ ∈ Mv ⊆ Lv. In

other words, x ∈ XL is in the relative support of fv if and only if SLv

Mv
(χxf

(Q)

v ) �= 0.

Obviously SLv

Mv
(χxf

(Q)

v ) = χxS
Lv

Mv
(f

(Q)
) = (χx ◦ pr ◦ ordM ) · SLM (SGL (fv)) =

(χx ◦ pr ◦ ordM ) · S(fv). This does not vanish identically if and only if x is in the
image of the support of S(fv) in XMv under pr. This proves the lemma. �

2.7.1 Subdivision of the Weyl Chambers

SupposeQ = LNQ is an Fv-rational standard parabolic subgroupQ = QF defined
byF ⊆ Δ(Gv, Av), containing the minimalFv-parabolic groupP = MN . Then an
element x =

∑
i∈Δ(Gv,Av) xiαi in XMv is contained in the support of the function

χ̂GQF
= τ̂GQF

◦ pr ◦ ordM
if and only if its projection pr(x) =

∑
i/∈F xiαi ∈ XLv is in the obtuse Weyl

chamber +XLv =
∑

i/∈F R>0αi, which means xi = 〈x, βi〉 > 0 for all i /∈ F .
The equations αi(x) = 0 and βi(x) = 0 for αi ∈ Δ(Gv, Av) define hyperplanes

in XMv . The images of these hyperplanes under the action of the Weyl group on
XMv define finitely many hyperplanes. The complement of these hyperplanes in
XMv is a union of open connected cones. Each of these cones is the image under
the Weyl group of a subcone of the open Weyl chamber X+

Mv
. Pick one of these

cones C.

Example 2.3. For Gv = Sl(3, Fv) the positive Weyl chamber contains two such
cones.
Support Conditions. Suppose fv is a spherical function onGv such that its Satake
transform is contained in the W -orbit of x0 + C ⊆ XMv for some x0 ∈ C, as in

Lemma 2.11. Then a regular semisimple element γ is in the support ofOLγ (f
(Q)

v χ̂GQ)
if and only if x = ordL(γ) is in pr(

⋃
w∈W (x0 + C)). If this is the case then

xi = βi(x) > 0 for all i /∈ F . But then moreover, by our specific choice of the
cone, we even get xi > const(x0) > 0 for all i /∈ F . Similarly, if γ is not in

the support of OLγ (f
(Q)

v χ̂GQ), then xi < −const(x0) holds for at least one i /∈ F .
The constant const(x0) which appears in these formulas of course depends on the
choice of x0 ∈ C. By a suitable choice of x0 it can be made arbitrarily large. A
similar statement holds for the condition that x = ord(γ) ∈ XL′

v
is in the support

of OL
′
(f

(P )
χ̂GQχ

L
L′) for L′ ⊆ L, P = L′NP , and Q = LNQ. In fact all values
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αi(w(x)) , βj(w(x)) w ∈ W, i, j ∈ Δ(Gv , Av)

are different from zero, and either > const(x0) or < −const(x0).

Preferred Places S′. These facts can now be used in the global context to concen-
trate the effect of the adelic cutoff functions χ̂GQ, as they appear in the formula of
Corollary 2.2, to a finite set S′ of “preferred” local non-Archimedean places in the
sense that

trs(f
(Q)

χ̂GQ;H•(SLQ , V )) = trs(f
(Q)

(χ̂GQ)S′ ;H•(SLQ , V ))

holds (in a suitable context). For this it would suffice to know that

TL
′

ell

(
f

(P )
χ̂GQχ

L
P ′ , .
)

= TL
′

ell

(
f

(P )
(χ̂GQχ

L
P ′)S′ , .

)

holds for all L′ ⊆ L, where L′ is a Levi component of P = L′NP ⊆ Q = LNQ
(Corollary 2.2). Alternatively (Corollary 2.3) it would be enough to know that

OL
′

γ

(
f

(P )
χ̂GQχ

L
P ′
)

= OL
′

γ

(
f

(P )
(χ̂GQχ

L
P ′)S′

)
.

Before we explain under which conditions this holds, we first recall certain
definitions.

2.7.2 Global Situation

For Q-rational parabolic subgroupsP andQ of T the global cutoff function χ̂GQχ
L
P ′

on L′(Q), which occurs in Corollary 2.3, was defined for P = L′NP using the
Harish-Chandra map HP via

L′(Q) � � �� L′(A)
HP �� XL′ .

In fact, by the product formula HP (γ) = log|γ∞|∞ −
∑

v �=∞ qv · ordL′(γv), the
global cutoff condition can be written as the condition on the point

∑

v �=∞
qv · ordL′ (γv) ∈ XL′

to lie in the support of τ̂GQ τ
L
P ′ .

Notation: γ = (γv)v ∈ L(Afin). qv denotes the cardinality of the residue field, and
ordL′(γv) the image of the local element ordL′(γv) ∈ XL′

v
in XL′ under the natural

projection map XL′
v
→ XL′ (notice that locally the maximal Fv-split torus may be

larger than the maximal Q-split torus AL′ ).
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Assumptions. To be more specific about the concentration at specific places, let us
assume f =

∏
v �=∞ fv. Furthermore, suppose there are two finite disjoint sets S

and S′ of non-Archimedean places such that fv is the unit element of the spherical
Hecke algebra for all v /∈ S ∪ S′. Suppose fS =

∏
v∈S fv has support in a fixed

compact subset of G(AS). Finally, suppose that all fv for v ∈ S′ are spherical such
that the Satake transform S(fv) has the following property.

Property (∗). For all roots α and all dual roots β in the set of Q-rational simple roots
of (G,P0) and all elements w ∈W the absolute value of the linear forms α ◦w and
β ◦ w on ∑

v∈S′
qv · ordL′(γv) ∈ XL′

is larger than a fixed constant c > 0.

If c is sufficiently large compared with the support of fS , we obviously get

Lemma 2.13. Under the assumptions above, if the constant c is large enough de-
pending only on the support of fS , the truncation condition concentrates on the
places in S′

OL
′

γ (f
(P )
χ̂GQχ

L
P ′) = OL

′
γ (f

(P )
(χ̂GQχ

L
P ′)S′).

Notation. Let Eν denote the set of irreducible constituents ρ = ρS′ ⊗ ρS′ ∈ Eν of
the admissible representation of G(Afin) on the cohomology group Hν(SL, V ).

Corollary 2.4. Let the situation be as in Lemma 2.13. Then the truncated Lefschetz

number trs(f
(Q)

χ̂GQ;H•(SL, V )) is given by trs(f
(Q)

S (χ̂GQ)S′ ;H•(SL, V )), or al-
ternatively by a sum

∑

ν

(−1)ν ·
∑

ρ∈Eν

tr
(
fS

′
; IndG(AS)

L(AS) (ρS)
)
· tr
(
f

(Q)

S′ (χ̂GQ)S′ ; ρS′
)
,

where now fS
′
= fS

∏
w/∈S′,w �=∞ 1w.

Proof. The first statement follows from Corollary 2.3 together with Lemma 2.13,
which implies TLell(fχ̂

G
Q, τ) = TLell(fS · (fS(χ̂GQ)S′), τ). The second formula then

follows from the first assertion via the adjunction formula. �

2.8 Automorphic Representations

Fix λ and a compact open subgroup K =
∏
v �=∞Kv ⊆ Ω of G(Afin),

which defines the “level,” the level group. The G(Afin)-module given by
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the limit H•(S(G), Vλ) is an admissible representation of G(Afin). Only
finitely many irreducible constituents π with the property πK �= 0 occur. The
same holds for the finitely many Levi subgroups L, the induced level groups
KL = (K ∩P (Afin)L, and the induced coefficient systems attached to the highest
weights λ′ = w(λ + ρG)− ρL. Thus, the admissible representation

Π(λ) =
⊕

P0⊆Q⊆G

⊕

w∈WQ

⊕

i

IndQ(Afin)G(Afin)(Hi(S(L), Vw(λ+ρG)−ρL)),

the “halo” of the G(Afin)-module H•(S(G), Vλ), again contains only finitely
many irreducible G(Afin)-constituents π with the property πK �= 0. Let P be
the set of equivalence classes of these representations of level K .

Remark 2.10. Π(λ) should be considered as a superspace whose grading is induced
by the sign defined by the parity of the sum of the number rank(G) − rank(Q),
the length l(w) for w ∈WP , and the degree i.

Let S0 be the set of places for which Kv �= Ωv (level primes). Outside S0 repre-
sentations in P are unramified. Fix a prime p /∈ S0, the “Frobenius” prime. For π
in P consider the representation πp of G(Ap

fin) defined by π = πp ⊗ πp. The set
of places S0 can be enlarged to a finite set S of places not containing p such that
πp1
∼= πp2 ⇐⇒ (π1)S ∼= (π2)S . There exists fS ∈ C∞

c (G(AS)), so tr πS(fS) = 0
holds for all representations π′ in P for which (π′)p is not isomorphic to πp, where
π is some fixed representation in P . Furthermore, we can assume tr πS(fS) = 1.
For a suitable choice of K (in a cofinal system, where KS is a product of special
good maximal compact open subgroups), one can assume in addition that fS is KS-
bi-invariant (see the Remark 4.3 on page 79). Now fix the πp-projector fS . For a
non-Archimedean place v /∈ S consider functions

f = fS · hp · fv ·
∏

w �=∞ else

1w

in C∞
c (G(Afin)), where hp and fv are suitable functions in the spherical Hecke

algebraH(Gp,Ωp), respectively,H(Gv,Ωv). fv is chosen subject to the conditions:

• Property (∗) (see the assumptions preceding Lemma 2.13) holds for S′ = {v}
with respect to the fixed function fS or more precisely its fixed support inG(AS).

• trπv(fv) = 1 holds for the unramified component πv of our fixed representation
πp = ⊗w �=p,∞ πw.

Such functions fv exist, as explained on page 42, as a consequence of Lemma 2.11
choosing x0 in the cone C to be sufficiently large. The function hp is chosen to be
either:

• hp = 1p (unit element ofH(Gp,Ωp)) or

• h
(n)
p = b(φn) (the local cyclic base change of the Kottwitz function φn onG(Ep)

of [51] under the unramified base change map homomorphism b of spherical
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Hecke algebras for some unramified local field extensionEp/Qp of degree [Ep :
Qp] = n) in the context where G is attached to a Shimura variety as in [51] with
reflex field Q (for simplicity)

We claim that either for hp = 1, S′ = {v}, or for hp = h
(n)
p , S′ = {p, v}, and for

sufficiently large n � 0, the assumptions preceding Lemma 2.13 are satisfied. For
hp = 1 this has already been explained. The case hp = h

(n)
p and n � 0 can be

reduced to the ensuing Lemma 2.14. We leave this as an exercise. So taking this for
granted, now assume n� 0 or hp = 1.

Then we get from Corollary 2.4 an expression for the truncated Lefschetz
numbers

trs(f
(Q)
χ̂GQ, H

•(SL, V ))

in terms of

∑

ν

∑

ρ∈Eν

(−1)ν · tr
(
fS

′
, Ind

G(AS)
L(AS) (ρ

S′
)
)
· tr
(
f

(Q)

S′ (χ̂GQ)S′ , ρS′
)
.

This allows us to apply a theorem of Franke [27] which states that all irreducible

representations ρ of L(Afin) which occur in Eν as constituents of the cohomology
group Hν(SL, V ) are automorphic representations of L(Afin). Hence, all induced
representations in

Ind
G(AS)
L(AS) (ρ

S′
)

are automorphic representations of G(AS′
), and are Eisenstein representations for

L �= G.
Therefore, if the fixed representation π ∈ P is cuspidal and not CAP, πp does not

occur as a constituent in P from these induced representations in the case L �= G.
Since f and f areKS-bi-invariant, the trace of f on Π(λ) involves only constituents
in P , i.e., for the fixed level K . Since fS is a projector for πp among the represen-
tations in P , this implies tr

(
fS , Ind

G(AS)
L(AS) (H

ν(SL, V ))
)

= 0. Hence, the truncated
Lefschetz numbers

trs

(
f

(Q)
χ̂GQ, H

•(SL, V )
)

all vanish except for the case G = Q, where the truncated Lefschetz number is the

trace trs(f,H•(SL, V )) of f on the cohomologyH•(SL, V ). Notice f = f
(G) �= f

in general. However, f and f have the same trace on every irreducible admissible
representation. This follows from OG(f) = OG(f), since vol(Ω) = 1. But then
we can replace f by f . Then, since f is KS-bi-invariant, the remaining Lefschetz
number is the trace of f on the finite-dimensional space H•(SK(G), V ) for fixed
level K , and it only involves the representations in P . Since fS is a πp-projector,
the trace of hpfv on this space is the trace of hpfv on the generalized πp-eigenspace
of the cuspidal cohomology. Since tr πv(fv) = 1, this simplifies the formula for
TGell(fSfvhp, λ) of Corollary 2.2, and leaves only the term for Q = G and w = 1.
This proves
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Theorem 2.2. Suppose π is an irreducible cuspidal representation of G(Afin) and
not CAP (see [69, 97]). Then for f = fSfvhp

∏
w �=∞ else 1w, where fS , fv, and

hp = 1 or hp = h
(n)
p and n � 0 is chosen as above, we get for the trace on the

πp-constituents

trs

(
hp, H

•(SK(G), Vλ)(πp)
)

= TGell

(
fSfvhp, λ

)
.

This theorem will be used in Chap. 3 for the “Frobenius” prime p.

Notice that fSfv again is a projector on πp among the representations in P . We
write fSfv = fπp , and call it a “good πp-projector.”

Lemma 2.14. Let C ⊆ V be a cone in Euclidean space, W a finite group acting
on V , and L1, . . . , Lr a W -stable set of linear forms in V ∗ nonvanishing on C.
For x0 ∈ C and x ∈ V and a bounded set M ⊆ V , there exists a integer m
depending on M and an integer N depending on m and M such that the following
holds. Suppose v = v1 + v2 + v3 for v1 ∈

⋃
w∈W {n · w(v) | n ≥ N}, v2 ∈⋃

w∈W w(m · x0 + C), and v3 ∈ M . Then Li(v) > 0 for some i = 1, . . . , r holds
if and only if Li(v1 + v2) > 0 holds.

Proof. Obvious. �

Remark 2.11. In the case hp = 1, we may also omit the auxiliary prime p or choose
p to be large so that the formula in Theorem 2.2 becomes

∑

ν

(−1)νdimC(Hν(SK(G), Vλ)(π)) = TGell(fπ, λ)

for a good π-projector fπ ∈ C∞
c (G(Afin)).

Remark 2.12. In the Hermitian symmetric case there exists a formula analogous to
Theorem 2.2 for the L2-cohomology instead of the Betti cohomology. In this case
the L2-cohomology is finite-dimensional, so one can define the traces of Hecke
operators on the L2-cohomology. Using the results in [33], one obtains a formula
for the L2-Lefschetz numbers analogous to the one of Corollary 2.3. The relevant
change in this case amounts to a subtler substitute of WP , which in the case of
L2-cohomology also depends on the elements γ. In fact one obtains the following
formula for the L2-Lefschetz number:

∑

P0⊆P=LN⊆G

∑

w∈WP

(−1)#I(w) · TLell(f
(P )
χGP (w), w(λ + ρG)− ρL),

where the cutoff functions χGP (w) now depend on w ∈ WP . They are defined as
follows: χGP (w) is the characteristic function of the set of all γ ∈ L(Q), which sat-
isfy I(γ) = I(w), for certain finite sets I(w) depending only on w, P , G, and λ
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(see [33], p. 474), and where I(γ) is the set of simple roots α of AP in NP such
that |α(γ)|−1

f = |α(γ)|∞ ≤ 1 (see [33], p. 471). Let χP,i denote the character-
istic function of the set of all γ ∈ L(R) such that |αi(γ)|∞ > 1 for the sim-
ple root αi. Then the characteristic function χGP (w) can be expressed in the form∏
i/∈I χP,i

∏
j∈I(1 − χP,j) for I = I(w). It can therefore be expanded into a finite

linear combination of the functions χK =
∏
i∈K χP,i for K ⊆ Δ(G,A). For these

finitely many global cutoff functions χK , which now appear in the L2-Lefschetz
formula, the effect of the cutoff can now be concentrated at some preferred non-
Archimedean places v ∈ S′ by the choice of a suitable good πS-projector, modified
at a single place S′ = {v} as in the discussion above using a variant of Lemma 2.13.
This implies

Corollary 2.5. Suppose G∞ is of Hermitian symmetric type. Suppose π is an irre-
ducible cuspidal representation of G(Afin) and not CAP. Then there exists a good
π-projector fπS such that the L2-Lefschetz number of the π-constituents is

trs(H•
(2)(S(G), Vλ)(π)) = TGell(fπ, λ).

In particular, the alternating sums of the π-multiplicities on the cohomology and the
L2-cohomology coincide.

2.9 The Discrete Series Case

This is the case considered in [4]. Suppose G is a connected reductive group over
Q, Gder is simply connected, and G contains a maximal R-torus B, for which
B(R)/AG(R)0 is compact (see [4], p. 262).

Notation. Let 2q(G) denote the real dimension of the symmetric domain attached
to G∞ and d(G) the cardinality of the packets of discrete series representations
of G∞. Let τ be an irreducible complex representation of G(Q) defined by the
highest weight λ ∈ X∗(B)C. λ defines a representation of G(C), and hence of
the compact inner form G of G over the field R. Let τ∗ denote the contragredient
representation. Attached to the representation τ ofG is a packet Πdisc(τ) of discrete
series representations π∞. Let π∗

∞ denote the contragredient. Attached to τ and λ is
the function

f∞ =
fλ
d(G)

,

where fλ ∈ Hac(G∞, ξ−1
λ ) (in the notation in [4], Lemma 3.1) is the stable cus-

pidal function (i.e., supported in discrete series, see [4], Sect. 4) defined by Clozel
and Delorme. f∞ is compactly supported modulo AG(R)0 and is K̃∞-invariant.
Then using the notation in [4], p. 271, formula (4.3), tr ρ∗(f∞) = tr ρ∗(f∞) =
(−1)q(G∞)tr π∗

∞( fλ

d(G) ) for π∞ ∈ Πdisc(ρ) becomes d(G)−1 if π∗
∞ ∈ Πdisc(τ)

and is zero otherwise (see [4], Lemma 3.1). Notice π∗
∞ ∈ Πdisc(τ) if and only if

ρ∗ ∼= τ . Hence,
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tr ρ∗(f∞) = d(G)−1

if ρ ∼= τ∗, and tr ρ∗(f∞) = 0 otherwise.
The orbital integral OGγ (f) =

∫
Gγ(R)\G(R) f(x−1gx)dx, considered for fixed

γ ∈ G(R) as a distribution onHac(G(R), ξ−1
λ ), is denoted ΦG(γ, f) in [4], p. 269,

and in [5], p. 325. Theorem 5.1 in [4] gives a formula valid for all γ ∈ G(R) which
expresses the orbital integral of stable cuspidal functions f∞ ∈ Hac(G∞, ξ−1

λ ) in
terms of the distributions ρ∗(f) discussed above,

OGγ (f∞) = (−1)q(G)d(Gγ)vol(Gγ,∞/AG(R)0)−1
∑

ρ

ΦG(γ, ρ) · tr ρ∗(f∞),

for certain coefficients ΦG(γ, ρ). The sum runs over irreducible representations ρ of
G(R) in Π(G(R), ξλ). In particular, OGγ (f) is zero unless γ is semisimple and γ ∈
T (R) for some maximal R-torus of G such that (R)/AG(R)0 is compact. Notice
T (R) ∼= B(R). On the regular part Treg(R) the function is ΦG(γ, ρ) = tr ρ(f)
(see [4], p. 271). Since ΦG(γ, ρ) extends to a continuous function on T (R) (see [4],
Lemma 4.2), this holds for all γ ∈ T (R). Hence, if OGγ (f) does not vanish a priori,
one has γ ∈ T (R), where T is a maximal R-torus in G such that T (R)/AG(R) is
compact. And for all γ ∈ T (R) one has the formula

OGγ (f∞) = (−1)q(G)d(Gγ)vol(Gγ,∞/AG(R)0)−1tr τ∗(γ)d(G)−1,

since only ρ ∼= τ∗ contributes to the sum over all ρ. Notice tr τ(γ−1) = tr τ∗(γ)
for the contragredient representation. Next, from the formula for the Euler numbers
(see, e.g., [4], p. 281, formula (6.3), and also p. 282)

χ(G, dgf ) = (−1)q(G) ·d(G)·vol(G(Q)AG(R)0\G(A))·vol(G(R)/AG(R)0)−1,

one obtains for ffin ∈ C∞
c (G(Afin))

χ(Gγ) · tr τ(γ−1) ·OGγ (ffin)

= (−1)q(Gγ)d(Gγ)vol(Gγ(R)/AG(R)0)−1τ(Gγ) · tr τ∗(γ) ·OGγ (ffin)

= d(G)τ(Gγ )OG∞
γ (f∞)OGγ (ffin)

= d(G)τ(Gγ )OG(A)
γ (ffinf∞),

provided the measure dg∞ is chosen such that dg∞dgfin is the Tamagawa measure
on G(A). Hence, from the definition of TGell(ffin) we obtain

Lemma 2.15.

TGell(ffin, τ) = d(G)
′∑

γ∈G(Q)/∼
τ(Gγ)OG(A)

γ (ffinf∞).
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The summation is over all semisimple, strongly elliptic conjugacy classes of G(Q).
Here τ(Gγ) is the Tamagawa number vol(GγAG(R)0\Gγ(A)), where the measure
dg∞ is chosen such that dg∞dgfin is the Tamagawa measure on G(A).

Corollary 2.6. With the assumptions and the notation used in Theorem 2.2 we get
for ffin = hpfπp

tr(hp, H•(SK(G), Vλ)(πp)) = d(G)
′∑

γ∈G(Q)/∼
τ(Gγ)OG(A)

γ (hpfπpf∞).

The summation is over all semisimple, strongly elliptic conjugacy classes of G(Q).
The measures defining the orbital integrals are assumed to be Tamagawa measures
on G(A) and Gγ(A).

Remark 2.13. The term OGγ (fSfπSf∞) is independent of the chosen measures dgf
and dg∞ provided dg∞dgf is the Tamagawa measure on G(A). This follows from
the definition of ffin and f∞. Hence, in applications we are now free to normalize
the measures dgf and dg∞, e.g., such that voldgf

(K) = 1 following the convention
of [51].

Remark 2.14. Assume that ZG/AG is anisotropic over R. If one considers a
Shimura variety attached to G (as in [51]) one replaces SK(G) = G(Q) \
G(A)/K̃∞K by G(Q) \ G(A)/Zentr(h)∞K , where h is the underlying struc-
ture homomorphism of the Shimura variety. For small K this multiplies the trace
by the index [K̃ : Zentr(h)∞]. See also the remark on page 21 In fact γε∞ ∈
KZentr(h)∞ for ε∞ ∈ K̃∞, and γ ∈ G(Q) implies γ ∈ ZG(Q) (K is small)
and γ ∈ KK̃∞. Hence, γ is finite, and hence is 1 (K is small). Therefore,
ε∞ ∈ Zentr(h)∞.

Appendix 1

Let G be a reductive connected group over Q. Let K ⊆ G(Afin) be a compact
open subgroup. For g ∈ G(Afin) put K ′ = Kg = g−1Kg ∩ K ⊆ K . Consider
M = G(Q)\G(A), or some compactification, with continuousG(Afin) left action
m 	→ mg−1, g ∈ G(Afin) together with the maps p(m) = m and p′(m) = mg−1

p : M/K ′ →M/K

p′ : M/K ′ →M/K.

The map p (or the map p′) is equivariant with respect to the map q (or the map q′)
from K ′ = Kg to K , defined by k 	→ k or k 	→ gkg−1. Two points mK and m′K
in M/K are related by the correspondence underlying p, p′ if there exists a point
m′′K ′ ∈M/K ′ such that
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p(m′′K ′) = mK and p′(m′′K ′) = m′K in M/K.

This means that there exist k, k′ ∈ K, k′′ ∈ K ′ such that mkk′′ = m′′ and
m′′g−1 = m′(k′)−1 holds. Hence, mkk′′g−1k′ = m′. Stated in other terms, m′ =
mx−1 for some x ∈ KgK . There exists a finite decomposition KgK =

⊎
j Kgj .

Hence,
m′K = mg−1

j K

for some j. Conversely, suppose m′K = mkg−1K for some k ∈ K . Then for
m′′ := mkKg, we tget p(m′′Kg) = mkK = mK and p′(m′′Kg) = mkg−1K =
m′K .

Put Γ = K ∩ G(Q). In general for γ ∈ G(Q) the double coset ΓγΓ =
⊎
i Γγi

decomposition gives KγΓ =
⊎
iKγi, again a disjoint union. Since k1γ1 = k2γ2

implies k−1
2 k1 = γ2γ

−1
1 ∈ G(Q) ∩ K = Γ, we get Γγ1 = Γγ2. Passing to the

closure defines the subset KγΓ =
⊎
iKγi of KγK =

⊎
j Kgj , which might be

smaller than KgK if Γ �= K . Therefore, to relate fixed points of the adelic cor-
respondence to its classical analogue, one has to ensure that fixed points belong to
cosets gK of the form γK for some γ ∈ G(Q) and in particular KgK = KγK .
However, this is the case (see page 24). Only rational cosets γK contribute to the
fixed points of the Goresky–MacPherson trace formula for the Lefschetz numbers.

Appendix 2

Let G∞ be the group of real points of a reductive group over R. Let K∞ be a
maximal compact group, and let V1 ⊆ Z∞ be a vector group in the center Z∞.

Claim 2.1. Then for every y ∈ K∞ ·V1, the set S of all x ∈ G∞, such that x−1yx ∈
K∞ · V1, is either empty or

S = Gy,∞ ·K∞.

Here Gy,∞ denotes the centralizer of y in G∞.

Proof. The proof of this assertion is easily reduced to the case V1 = 1. In fact,
G∞ = 0G · V , where V is the maximal vector group in the center of G∞ and 0G
is the normal subgroup of G∞ with 0G ∩ V = {e} chosen as in [98], p. 19. Notice
K∞ ⊆ 0G∞.

This allows us to reduce the proof to the case where y ∈ K∞ and x satisfies
the equation x−1yx ∈ K∞. In fact, if x−1

0 yx0 = k · v1 holds for some x = x0

and k ∈ K∞, v ∈ V1, we simply replace y by y1 = x0yv
−1
1 x−1

0 ∈ K∞ and x by
x1 = x−1

0 x. Then x−1
1 y1x1 ∈ K∞V1 is equivalent to x−1yx ∈ K∞ · V1. However

x−1
1 y1x1 ∈ K∞V1 if and only if x−1

1 y1x1 ∈ 0G∞∩(K∞V1) = K∞. So we assume
y ∈ K∞ and x−1yx ∈ K∞.

Choose a Cartan involution θ of G∞ such that g ∈ K∞ if and only if θ(g) = g
(see [98], Proposition 5). For x as above, the element z = θ(x)x−1 is in Gy,∞, and



52 2 CAP Localization

satisfies θ(z) = z−1. One can write x = s · κ for κ ∈ K∞ and s = exp(σ) and
θ(σ) = −σ ∈ Lie(G∞) (follows from [98], Proposition 5). Then z = exp(−2σ) ∈
Gy,∞. Since y ∈ K∞, y and hence also Gy,∞ is θ-stable. Therefore, there exists
a symmetric one-parameter subgroup in Gy,∞ passing through z. See, e.g., [98],
p. 20. In other words we find a symmetric root r = exp(−σ) ∈ Gy,∞, θ(r) = r−1

of z = r2 for θ(σ) = −σ ∈ Lie(Gy,∞). We conclude 1 = r−1θ(x)x−1r−1 =
θ(rx)(rx)−1 . Thus, rx = k ∈ K∞ and x = r−1k ∈ Gy,∞ ·K∞, which proves the
claim. �

Corollary 2.7. S/(K∞ · V1) is either empty or Gy,∞/(Gy,∞ ∩ K∞)V1, where
Gy,∞ ∩K∞.

Proof. Notice V1 ⊆ Gy,∞. �

Remark 2.15. Finally, there exists a diffeomorphism G∞/(K∞ · V1) ∼=
(0G∞/K∞) × V/V1. In particular for V1 ⊆ AG(R)0, we see that G∞/(K∞ · V1)
is homotopic to XG = G∞/(K∞ · AG(R)0).
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