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Recursion and trees

The cow shown laughing on the Laughing 
Cow box holds, as if for earrings, two 
Laughing Cow boxes each featuring a 
cow shown laughing and presumably — I 
say “presumably” because here my 
eyesight fails me, I don’t know about yours 
— holding, as if for earrings, two Laughing 
Cow boxes each featuring a cow shown 
laughing and presumably holding… (you 
get the idea).

This 1921 advertising gimmick, still 
doing very well, is an example of a structure defined recursively, in the 
following sense:

“Recursion” — the use of recursive definitions — has applications throughout 
programming: it yields elegant ways to define syntax structures; we will also see 
recursively defined data structures and routines.

We may say “recursive” as an abbreviation for “recursively defined”: 
recursive grammar, recursive data structure, recursive routine. But this is only a 
convention, because we cannot say that a concept or a structure is by itself 
recursive: all we know is that we can describe it recursively, according to the 
above definition. Any particular notion — even the infinite Laughing Cow 
structure — may have both recursive and non-recursive definitions.

When proving properties of recursively defined concepts we will use 
recursive proofs, which generalize inductive proofs as performed on integers.

Recursive definition

A definition for a concept is recursive if it involves one or more instances of 
the concept itself.

www.bel-group.com. 
Picture credit: 
page 847.

http://www.bel-group.com
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Recursion is direct when the definition of A cites an instance of A; it is 
indirect if for 1 ≤ i < n (for some n ≥ 2) the definition of every Ai cites an instance 
of Ai+1, and the definition of An cites an instance of A1.

In this chapter we are interested in notions for which a recursive definition 
is elegant and convenient. The examples include recursive routines, recursive 
syntax definitions and recursive data structures. We will also get a glimpse of 
recursive proofs.

One class of recursive data structures, the tree in its various guises, appears 
in many applications and embodies the very idea of recursion. This chapter 
covers the important case of binary trees.

14.1  BASIC EXAMPLES

At this point you may be wondering whether a recursive definition makes any 
sense at all. How can we define a concept in terms of itself? Does such a 
definition mean anything at all, or is it just a vicious circle?

You are right to wonder. Not all recursive definitions define anything at all. 
When you ask for a description of someone and all you get is “Sarah? She is just 
Sarah, what else can I say?” you are not learning much. So we will have to look 
for criteria that guarantee that a definition is useful even if recursive.

Before we do this, however, let us convince ourselves in a more pragmatic 
way by looking at a few typical examples where recursion is obviously useful 
and seems, just as obviously, to make sense. This will give us a firm belief — 
little more than a belief indeed, based on hope and a prayer — that recursion is 
a practically useful way to define grammars, data structures and algorithms. 
Then it will be time to look for a proper mathematical basis on which to 
establish the soundness of recursive definitions.

Recursive definitions

With the introduction of genericity, we were able to define a type as either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T ], where C is a generic class and T is 
a .

This is a recursive definition; it simply means, using the generic classes ARRAY 
and LIST, that valid classes are:

• INTEGER, STATION and such: non-generic classes, per case T1.

• Through case T2, direct generic derivations: ARRAY [INTEGER], 
LIST [STATION] etc.

• Applying T2 again, recursively: ARRAY [LIST [INTEGER]], ARRAY [ARRAY 
[LIST [STATION]]] and so on: generic derivations at any level of nesting.

→ “Making sense of 
recursion”,  14.7, 
page 473.

← “Definitions: Class 
type, generically 
derived, base class”,  
page 370.

type
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You may consider using a similar technique to answer the exercise which, in the 
first chapter, asked you to define “alphabetical order”.

Recursively defined grammars

Consider an Eiffel subset with just two kinds of instruction:

• Assignment, of the usual form variable := expression, but treated here as a 
terminal, not specified further.

• Conditional, with only a then part (no else) for simplicity.

A grammar defining this language is:

For our immediate purposes Condition is, like Assignment, a terminal. This 
grammar is recursive, since the definition of Instruction involves Conditional as 
one of the choices, and Conditional in turn involves Instruction as part of the 
aggregate. But since there is a non-recursive alternative, Assignment, the 
grammar productions clearly imply what an instruction may look like:

• Just an assignment.

• A Conditional containing an assignment: if c then a end.

• The same with any degree of nesting: if c1 then if c2 then a end end, 
if c1 then if c2 then if c3 then a end end end and so on.

Recursive grammars are indeed an indispensable tool for any language that — 
like all significant programming languages — supports nested structures.   

Recursively defined data structures

The class STOP represented the notion of stop in a metro line:

A naïve interpretation would deduce that every instance of STOP contains an 
instance of STOP, which itself contains another ad infinitum, as in the Laughing 
Cow scheme. This would indeed be the case if STOP were an expanded type:

Instruction =Δ  Assignment  | 

Conditional =Δ  if Condition then  end

class STOP create
 …

feature
next: 

-- Next stop on same line.
 … Other features omitted (see page 123) …

end

← 1-E.3, page 14.

← This discussion 
was previewed in 
“Recursive gram-
mars”,  page 307.

Conditional

Instruction

← Page 123.

STOP
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This is impossible, however, and STOP is in any case a reference type, like any 
type defined as class X … with no other qualification. So the real picture is the 
one originally shown:

Recursion in such a data structure definition simply indicates that every instance 
of the class contains a reference to a potential instance of the same class — 
“potential” because the reference may be void, as for the last stop in the figure.

In the same chapter we encountered another example of self-referential 
class definition: a class PERSON with an attribute spouse of type PERSON.

This is a very common case in definitions of useful data structures. From 
linked lists to trees of various kinds (such as the binary trees studied later in this 
chapter), the definition of a useful object type often includes references to objects 
of the type being defined, or (indirect recursion) a type that depends on it.

Recursively defined algorithms and routines

The famous Fibonacci sequence, enjoying many beautiful properties and many 
app l ica t ions  to  mathemat ics  and  the  na tura l  sc iences ,  has  the  
following definition:

F0 = 0
F1 = 1
Fi = Fi–1 + Fi–2 -- For i > 1

Touch of History:
Fibonacci’s rabbits

Leonardo Fibonacci from Pisa (1170-1250) played a key role in making Indian and 
Arab mathematics known to the West and, through many contributions of his own, 
helping to start modern mathematics. He stated like this the problem that leads to 
his famous sequence (which was already known to Indian mathematicians):

Nested fields 
(not the correct 
interpretation)

(STOP)

next

(STOP)

next
(STOP)

next …

Other fields

← Page 116.

A linked line

(STOP)

next

(STOP) (STOP)

nextnext

About Fibonacci: 
www.mcs.surrey.ac.uk/ 
Personal/R.Knott/ 
Fibonacci/fib.html; 
about the sequence: 
www-gap.dcs.st-and. 
ac.uk/~history/Mathema
ticians/Fibonacci.html.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html
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The answer is that the pairs at month i include those already present at 
month i – 1 (no rabbits die), numbering Fi–1, plus those begot by pairs 
already present at month i – 2 (since pairs are fertile starting the second 
month), numbering Fi–2. This gives the above formula; successive values 
are 0, 1, 1, 2, 3, 5, 8 and so on, each the sum of the previous two.

The formula yields a recursive routine computing Fn for any n:

The function includes two recursive calls, highlighted. That it works at all may 
look a bit mysterious (that’s why it is good to check it for a few values); as you 
progress through this chapter, the legitimacy of such recursively defined 
routines should become increasingly convincing.

The principal argument in favor of writing the function this way is that it 
elegantly matches the original, mathematical definition of the Fibonacci 
sequence. On further look it is not that exciting, because a non-recursive version 
is also easy to obtain.

A man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if 
every month each pair begets a new pair, which becomes productive 
from the second month on?

fibonacci (n: INTEGER): INTEGER
-- Element of index n in the Fibonacci sequence.

require
non_negative: n >= 0

do
if n = 0 then

Result := 0
elseif n = 1 then

Result := 1
else

Result :=  + 
end

end

Programming Time!
Recursive Fibonacci

Write a small system that includes the above recursive routine and prints out 
its result. Try it for a few values of n — including 12, as in Fibonacci’s original 
riddle — and verify that the results match the expected values.

Programming Time!
Non-recursive Fibonacci

Can you write (without first turning the page) a function that computes any 
Fibonacci number, using a loop rather than recursion?

Fibonacci

fibonacci (n – 1) fibonacci (n – 2)
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The following function indeed yields the same result as the above fibonacci (try 
it for a few values too):

For convenience this version assumes n ≥ 1 rather than n ≥ 0. Thanks to the 
initialization rules previous starts out as zero, ensuring the initial satisfaction of the 
invariant since F0 = 0. The variable second_previous is set anew in each loop 
iteration and does not need specific initialization.           

This version, just a trifle more remote from the original mathematical definition, 
is still simple and clear; note in particular the loop invariant (which, however, 
refers for convenience to the recursive function, which it takes as the official 
mathematical definition). Some may prefer the recursive version anyway, but 
this is largely a matter of taste. Depending on the compiler, that version may (as 
we will see) be less efficient at run time.

Taste and efficiency aside, if it were only for such examples we would have 
a hard time convincing ourselves of the indispensability of recursive routines. 
We need cases in which recursion provides a definite plus, for example because 
any non-recursive competitor is significantly more abstruse. 

Such problems indeed abound. One that concentrates many of the 
interesting properties of recursion, with the smallest amount of irrelevant detail, 
arises from a delightful puzzle: the Tower of Hanoi.                                

fibonacci1 (n: INTEGER): INTEGER
-- Element of index n in the Fibonacci sequence.
-- (Non-recursive version.)

require
positive: n >= 

local
i, previous, second_previous: INTEGER

do
from

i := 1 ; Result := 1
invariant

Result = fibonacci (i )
previous = fibonacci (i – 1)

until i = n loop
i := i + 1
second_previous := previous
previous := Result

 
variant

n – i
end

end

1

Result := previous + second_previous
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14.2  THE TOWER OF HANOI

In the great temple of Benares, under the dome that marks the center of the 
world, three needles of diamond are set on top of a brass plate. Each needle is 
a cubit high, and thick as the body of a bee. On one of these needles God strung,
at the beginning of ages, sixty-four disks of pure gold. The largest disk rests on 
the brass and the others, ever smaller, rest over each other all the way to the top.
That is the sacred tower of Brahma.

Night and day the priests, following one another on the steps of the altar,
work to transfer the tower from the first diamond needle to the third, without 
deviating from the rules just stated, set by Brahma. When all is over, the tower 
and the Brahmins will fall, and it will be the end of the worlds.

In spite of its oriental veneer, this story is the creation of the French 
mathematician Édouard Lucas (signing as “N. Claus de Siam”, anagram of 
“Lucas d’Amiens”, after his native city). On a market in Thailand — Siam 
indeed — I bought the above rendition of his tower. The labels A, B and C are 
my addition. I will not expand on why I chose a model made of wood rather than 
diamond, gold and brass, but it is legitimate, since I did have a large suitcase, to 
ask why it has only nine disks:

Quiz time!
Hanoi tower size

Why do commercially available models of the Towers of Hanoi puzzle have 
far fewer than 64 disks?
(Hint: the game comes with a small sheet of paper listing a solution to the 
puzzle, in the form of a sequence of moves: A to C, A to B etc.)

Tower of Hanoi 
(or should it be 
Benares?) with 9 
disks, initial state
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To answer this question, we may assess the minimum number Hn of individual 
“move” operations required — if there is a solution — to transfer n disks from 
needle A to needle B, using needle C as intermediate storage and following the 
rules of the game; n is 64 in the original version and 9 for the small model. 

We observe that any strategy for moving n disks from A to B must at some 
point move the largest disk from A to B. This is only possible, however, if 
needle B is free of any disks at all, and A contains only the largest disk, all others 
having been moved to C — since there is no other place for them to go:

What is the minimum number of moves to reach this intermediate situation? We 
must have transferred n – 1 disks (all but the largest) from A to C, using B as 
intermediate storage; the largest disk, which must stay on A, plays no role in this 
operation. The problem is symmetric between B and C; so the minimum number 
of moves to achieve the intermediate situation is Hn-1.

Once we have reached that situation, we must move the largest disk from A
to B; it remains then to transfer the n – 1 smaller disks from C to B. In all, the 
minimum number of moves Hn for transferring n disks, for n > 0, is

(Hn–1 moves to transfer n – 1 disks from A to C, one move to take the largest 
disk from A to B, and Hn–1 again to transfer the n – 1 smaller disks from A to C). 
Since H0 = 0, this gives

and, as a consequence, the answer to our quiz: remembering that 210 (that is, 

1024) is over 103, we note that 264 is over 1.5∗1019; that’s a lot of moves.

Hn = 2 ∗ Hn–1 + 1

Hn = 2n – 1

Intermediate 
state
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A year is around 30 million seconds. At one second per move — very efficient 
priests — the world will collapse in about 500 billion years, over 30 times the 
estimated age of the universe. As to the paper for printing the solution to a 64-disk 
game, it would require cutting down the forests of a few planets.

This reasoning for the evaluation of Hn was constructive, in the sense that it also 
gives us a practical strategy for moving n disks (for n > 0) from A to B using 
C as intermediate storage:
• Move n – 1 disks from A to C, using B as intermediate storage, and 

respecting the rules of the game.
• Then B will be empty of any disk, and A will only have the largest disk; 

transfer that disk from A to B. This respects the rules of the game since we 
are moving a single disk, from the top of a needle, to an empty needle.

• Then move n – 1 disks from C to B, using A as intermediate storage, 
respecting the rules of the game; B has one disk, but it will not cause any 
violation of the rules of the game since it is larger than all the ones we want 
to transfer.                   

This strategy turns the number of moves Hn = 2n – 1 from a theoretical minimum 
into a practically achievable goal. We may express it as a recursive routine, part 
of a class NEEDLES:

The discussion of contracts for recursive routines will add other precondition 
clauses and a postcondition.

By convention, we represent the needles as characters: 'A', 'B' and 'C'. Another 
convention for this chapter (already used in previous examples) is to  
recursive branches; hanoi contains two such calls.

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as
-- intermediate storage, according to the rules of the
-- Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source /= target
different2: target /= other
different3: source /= other

do
if n > 0 then

 (n–1, source, other, target)
move (source, target)

 (n–1, other, target, source)
end

end

 213 sheets per tree 
(tinyurl.com/6azaht); 
210 moves per page 
(very small print); 
double-sided since we 
are environmentally 
conscious; maybe 400 
billion (over 238) 

usable trees on earth 
(tinyurl.com/yfppyd): 
adding three similar 
planets will get 
us started.

hanoi

hanoi

→ “Contracts for 
recursive routines”,  
14.8, page 485.

highlight

http://tinyurl.com/6azaht
http://tinyurl.com/yfppyd
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The basic operation move (source, target) moves a single disk, the top one 
on needle source, to needle target; its precondition is that there is at least one 
disk on source, and that on target either there is no disk or the top disk is larger 
than the top disk on source. If you have access to the wireless network of the 
Great Temple of Benares you can program move to send an instant message to 
the cell phone of the appropriate priest or an email to her Blackberry, directing 
her to move a disk from source to target. For the rest of us you can write move
as a procedure that displays a one-disk-move instruction in the console:

For example executing the call

will print out the sequence of fifteen (24 – 1) instructions

which indeed moves four disks successfully from A to B, respecting the rules of 
the game.

move (source, target: CHARACTER)
-- Prescribe move from source to target.

do
io.put_character (source)
io.put_string (" to ")
io.put_character (target)
io.put_new_line

end

Programming Time!
The Tower of Hanoi

Write a system with a root class NEEDLES including the procedures hanoi
and move as shown. Try it for a few values of n.

hanoi (4, 'A', 'B', 'C')

A to C
A to B
C to B
A to C
B to A

B to C
A to C

C to B
C to A

B to A
C to B
A to C
A to B
C to B

Shown here split into 
three columns; read it 
column by column, 
top to bottom in each 
column. The move of 
the biggest disk has 
been highlighted.A to B
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One way to look at the recursive solution — procedure hanoi — is that it 
works as if we were permitted to move the top n–1 disks all at once to a needle 
that has either no disk, or the biggest disk only. In that case we would start by 
performing this operation from source to other (here A to C):

Then we would move the biggest disk from A to B, our final target; this 
single-disk move is clearly legal since there is nothing on B. Finally we would 
again perform a global move of n–1 disks from C, where we have parked them, 
to B, which is OK because they are in order and the largest of them is smaller 
than the disk now on B.

Of course this is a fiction since we are only permitted to move one disk at a 
time, but to move n–1 disks we may simply apply the same technique 
recursively, knowing that the target needle is either empty or occupied by a disk 
larger than all those we manipulate in this recursive application. If n = 0, we 
have nothing to do.

Do not be misled by the apparent frivolity of the Tower of Hanoi example. 
The solution serves as a model for many recursive programs with important 
practical applications. The simplicity of the algorithm, resulting from the use of 
two recursive calls, makes it an ideal testbed to study the properties of recursive 
algorithms, as we will do when we return to it later in this chapter.

Fictitious initial 
global move
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14.3  RECURSION AS A PROBLEM-SOLVING STRATEGY

In earlier chapters we saw control structures as problem-solving techniques:
• A compound (sequence) solution means “I know 

someone who can get me from here to B and someone else 
who can get me from B to C, so let me ask them one then 
the other and that will get me to C ”.

• A conditional solution means “I know someone who can 
solve the problem in one case and someone else for the 
other possible case, so let me ask them separately ”.

• A loop solution means “I do not know how to get to C, but 
I know a region I (the invariant) that contains C, someone 
(the initialization) to take me into I, and someone else 
(the body) who whenever I am in I and not yet in C can take 
me closer to C, decreasing the distance (the variant) in such 
a way that I will need her only a finite number of times; so 
let me ask my first friend once to get into I, then bug my 
other friend as long as I have not reached C   yet ”.

• A routine solution means “I know someone who has solved this problem in 
the general case, so let me just phrase my special problem in his terms and 
ask him to solve it for me”.

What about a recursive solution? Whom do I ask?
I ask myself.
Possibly several times! (As in the Hanoi case and many to follow.)
Why rely on someone else when I trust myself so much more? (At least I 

think I do.)
By now we know that this strategy is not as silly as it might sound at first. I 

ask myself to solve the same problem, but on a subset of the original data, or 
several such subsets. Then I may be able to pull it off, if I have a way to extend 
these partial solutions into a solution to the entire problem.

Such is the idea of recursion viewed as a general problem-solving strategy. 
It is related to some of the earlier strategies:
• Recursion resembles the routine strategy, since it relies on an existing 

solution, but in this case we use a solution to the same problem — not only 
that, the same solution to that problem: the solution that we are currently 
building and that we just pretend, by a leap of faith, already exists.

• Recursion also shares properties with a loop solution: both techniques 
approximate the solution to the whole problem by solutions covering part of 
the data. But recursion is more general, since each step may combine more 
than one such partial solution. Later in this chapter we will have the 
opportunity of comparing the loop and recursion strategies in detail.        

A CB

Nn = CN2N1

conditioncondition
 holds

(Figure from page 147.)

(Figure from page 174.)

(Figure from page 155.)

does not hold

Ni

I

← Chapter 8.

← “The loop strat-
egy”,  page 155.

← “From loops to recur-
sion”,  14.6, page 471.
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14.4  BINARY TREES

If the Tower of Hanoi solution is the quintessential recursive routine, the binary 
tree is the quintessential recursive data structure. We may define it as follows:

It is easy to express this as a class skeleton, with no routines yet:

where a void reference indicates an empty binary tree. We may illustrate a 
binary tree — here over INTEGER — as follows:

This “branching” form is the most common style of representing a binary tree, 
but not the only one; as in the case of abstract syntax trees, we might opt for a 
nested representation, which here would look like the following.

Definition: binary tree 

A binary tree over G, for an arbitrary data type G, is a finite set of items called 
nodes, each containing a value of type G, such that the nodes, if any, are 
divided into three disjoint parts:
• A single node, called the root of the binary tree.

• (Recursively) two  over G, called the left subtree and 
right subtree.

class BINARY_TREE [G] feature
item: G
left, right: 

end

binary trees

BINARY_TREE [G]

35

23 54

41 7818

12 60

Right subtreeLeft subtree

67

A binary tree 
(“branching” 
representation)

90

item

left right

Convention:

← “Nesting and the 
syntax structure”,  
page 40.
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The definition explicitly allows a binary tree to be empty (“the nodes, if any”). 
Without this, of course, the recursive definition would lead to an infinite 
structure, whereas our binary trees are, as the definition also prescribes, finite.

If not empty, a binary tree always has a root, and may have: no subtree; a 
left subtree only; a right subtree only; or both.

Any node n of a binary tree B itself defines a binary tree Bn . The association 
is easy to see in either of the last two figures: for the node labeled 35, Bn is the 
full tree; for 23 it is the left subtree; for 54, the right subtree; for 78, the tree rooted 
at that node (right subtree of the right subtree); and so on. This allows us to talk 
about the left and right subtrees of a node — meaning, of its associated subtree. 
We can make the association formal through another example of recursive 
definition, closely following the structure of the definition of binary trees:

A recursive routine on a recursive data structure

Many routines of a class that defines a data structure recursively will follow the 
definition’s recursive structure. A simple example is a routine computing the 
number of nodes in a binary tree. The node count of an empty tree is zero; the 
node count of a non-empty tree is one — corresponding to the root — plus 
(recursively) the  of the left and right subtrees, if any. We may turn 
this observation into a recursive function of the class BINARY_TREE:

Definition: Tree associated with a node

Any node n of a binary tree B defines a binary tree Bn as follows:

• If n is the root of B, then Bn is simply B.

• Otherwise we know from the preceding definition that n is in one of the 
two subtrees of B. If B’ is that subtree, we define Bn as B’n (the node 
associated with n, recursively, in the corresponding subtree).

35

23

18

12

54

41

78

60 90

67

A binary tree 
in nested 
representation

Left subtree

Right subtree

Convention:

node counts
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Note the similarity of the recursive structure to procedure Hanoi.                  

Children and parents

The children of a node — nodes themselves — are the root nodes of its left and 
right subtrees:

If C is a child of B, then B is a parent of C. We may say more precisely that B
is “the” parent of C thanks to the following result:

The theorem seems obvious from the picture, but we have to prove it; this gives 
us an opportunity to encounter recursive proofs.

Recursive proofs

The recursive proof of the Single Parent theorem mirrors once more the 
structure of the recursive definition of binary trees.

If a binary tree BT is empty, the theorem trivially holds. Otherwise BT 
consists of a root and two disjoint binary trees, of which we assume — this is 
the “recursion hypothesis” — that they both satisfy the theorem. It follows from 
the definitions of “binary tree”, “child” and “parent” that a node C may have a 
parent P in BT only through one of the following three ways:
P1 P is the root of BT, and C is the root of either its left or right subtree.
P2 They both belong to the left subtree, and P is the parent of C in that subtree.
P3 They both belong to the right subtree, and P is the parent of C in that subtree.

count: INTEGER
-- Number of nodes.

do
Result := 1
if left /= Void    then Result := Result +     end
if right /= Void  then Result := Result +  end

end

Theorem: Single Parent

Every node in a binary tree has exactly one parent, except for the root which 
has no parent.

left.count
right.count

Right childLeft child

A binary tree 
(“branching” 
representation)

Parent
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In case P1, C has, from the recursion hypothesis, no parent in its subtree; so it 
has one parent, the root, in BT as a whole. In cases P2 and P3, again by the 
recursion hypothesis, P was the single parent of C in their respective subtree, 
and this is still the case in the whole tree.

Any node C other than the root falls into one of these three cases, and hence 
has exactly one parent. In none of these cases can C be the root which, as a 
consequence, has no parent. This completes the proof.

Recursive proofs of this kind are useful when you need to establish that a 
certain property holds for all instances of a recursively defined concept. The 
structure of the proof follows the structure of the definition:
• For any non-recursive case of the definition, you must prove the property 

directly. (In the example the non-recursive case is an empty tree.)
• A case of the definition is recursive if it defines a new instance of the 

concept in terms of existing instances. For those cases you may assume that 
the property holds of these instances (this is the recursion hypothesis) to 
prove that it holds of the new one.

This technique applies to recursively defined concepts in general. We will see
its application to recursively defined routines such as hanoi.                  

A binary tree of executions

An interesting example of a binary tree is the one we obtain if we model an 
execution of the hanoi procedure, for example with three disks on needles A, B, 
C. Each node contains the arguments to the given call; the left and right subtrees 
correspond to the first and second recursive calls.

By adding the move operations you may reconstruct the sequence of operations; 
we will see this formally below.

This example illustrates the connection between recursive algorithms and 
recursive data structures. For routines that have a variable number of recursive 
calls, rather than exactly two as hanoi, the execution would be modeled by a 
general tree rather than a binary tree.                             

3 A B C An execution of 
Hanoi viewed as 
a binary tree

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

→ Page 454.
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More binary tree properties and terminology

As noted, a node of a binary tree may have:
• Both a left child and a right child, like the top node, labeled 

35, of our example.

• Only a left child, like all the nodes of the left subtree, 
labeled 23, 18, 12.

• Only a right child, like the node labeled 60.

• No child, in which case it is called a leaf. In the example 
the leaves are labeled 12, 41, 67 and 90.

 
We define an upward path in a binary tree as a sequence of zero or more nodes, 
where any node in the sequence is the parent of the previous one if any. In our 
example, the nodes of labels 60, 78, 54 form an upward path. We have the 
following property, a consequence of the Single Parent theorem:

Proof: consider an arbitrary node C and the upward path starting at C and 
obtained by adding the parent of each node on the path, as long as there is one; 
the Single Parent theorem ensures that this path is uniquely defined. If the path 
is finite, its last element is the root, since any other node has a parent and hence 
would allow us to add one more element to the path; so to prove the theorem it 
suffices to show that all paths are finite.

The only way for a path to be infinite, since our binary trees are finite sets 
of nodes, would be to include a cycle, that is to say if a node n appeared twice 
(and hence an infinite number of times). This means the path includes a 
subsequence of the form n … n. But then n appears in its own left or right 
subtree, which is impossible from the definition of binary trees.

Considering downward rather than upward paths gives an immediate 
consequence of the preceding theorem:

The height of a binary tree is the maximum number of nodes on a downward path 
from the root to a leaf (or the reverse upward path). In the example (see figure 
above) the height is 5, obtained through the path from the root to the leaf labeled 67.

Theorem: Root Path

From any node of a binary tree, there is a single upward path to the root.

Theorem: Downward Path

For any node of a binary tree, there is a single downward path connecting the 
root to the node through successive applications of left and right links.

(From the figure on page 447.)

35

23 54

41 7818

12 60

67

90
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It is possible to define this notion recursively, following again the recursive 
structure of the definition of binary trees: the height of an empty tree is zero; the 
height of a non-empty tree is one plus the maximum of (recursively) the heights of 
its two subtrees. We may add the corresponding function to class BINARY_TREE:

This adapts the recursive definition to the convention used by the class, which 
only considers non-empty binary trees, although either or both subtrees, left and 
right, may be empty. Note again the similarity to hanoi.

Binary tree operations

Class BINARY_TREE as given so far has only three features, all of them queries: 
item, left and right. We may add a creation procedure

and commands for changing the subtrees and the root value:

height: INTEGER
-- Maximum number of nodes on a downward path.

local
lh, rh: INTEGER

do
if left /= Void     then lh :=       end
if right /= Void then rh :=  end
Result := 1 + lh.max (rh)

end

make (x: G)
-- Initialize with item value x.

do
item := x

ensure
set: item = x

end

add_left (x: G)
-- Create left child of value x.

require
no_left_child_behind: left = Void

do
create left.make (x)

end

add_right … Same model as add_left …
replace (x: G) 

-- Set root value to x.
do item := x end

left.height
right.height

x.max (  y) is the maxi-
mum of x and y.

← Page 447.

Note the precondition, 
which prevents over-
writing an existing 
child. It is possible to 
add procedures 
put_left and put_right, 
which replace an exist-
ing child and do not 
have this precondition.



§14.4   BINARY TREES 453

In practice it is convenient to specify replace as an assigner command for the 
corresponding query, by changing the declarations of this query to

item: G  
making it possible to write bt.item := x rather than bt.put (x).

Traversals

Being defined recursively, binary trees lead, not surprisingly, to many recursive 
routines. Function height was one; here is another. Assume that you are 
requested to print all the item values associated with nodes of the tree. The 
following procedure, to be added to the class, does the job:

This uses the procedure print (available to all classes through their common 
ancestor ANY) which prints a suitable representation of a value of any type; here the 
type is G, the generic parameter in BINARY_TREE [G].

Remarkably, the structure of print_all is identical to the structure of hanoi.

Although the business of print_all is to print every node item, the algorithm 
scheme is independent of the specific operation, here print, that we perform on 
item. The procedure is an example of a binary tree traversal: an algorithm that 
performs a certain operation once on every element of a data structure, in a 
precisely specified order. Traversal is a case of iteration.

For binary trees, three traversal orders are often useful:

In these definitions, “visit” means performing the individual node operation, 
such as print in the print_all example; “  ” means a recursive 
application of the algorithm to a subtree, or no action if the subtree is empty. 

Preorder and other traversals that always go as deep as possible into a 
subtree before trying other nodes are known as depth-first.

print_all
-- Print all node values.

do
if left /= Void    then       end
print (item)
if right /= Void then  end

end

Binary tree traversal orders

• Inorder:  left subtree, visit root,  right subtree.

• Preorder: visit root,  left,  right.

• Postorder:  left,  right, visit root.

← “Bracket notation 
and assigner com-
mands”,  page 384.assign replace

print_all (left)

print_all (right)

→ “Overall inherit-
ance structure”,  16.10, 
page 586.

← “Definition: Iterat-
ing”,  page 397. For 
further study see 
“Agents for iteration”,  
17.3, page 627.

traverse traverse

traverse traverse

traverse traverse

traverse
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The procedure print_all is an illustration of inorder traversal. We may easily 
express the other two variants in the same recursive form; for example, a routine 
post for postorder traversal will have the routine body

where visit is the node operation, such as print.

In the quest for software reuse, it is undesirable to write a different routine for 
variants of a given traversal scheme just because the visit operation changes. To 
avoid this, we may use the operation itself as an argument to the traversal routine. 
This will be possible through the notion of agent in a later chapter.

As another illustration of inorder traversal, consider again the binary tree of 
executions of hanoi, for n = 3, with the nodes at level 0 omitted since nothing 
interesting happens there:

Procedure hanoi is the mother of all inorder traversals: traverse the left subtree 
if any; visit the root, performing move (source, target), as  for each 
node (source and target are the first two needle arguments); traverse the right 
subtree if any. The inorder traversal, as illustrated by the bold line, produces the 
required sequence of moves A B, A C, B C, A B, C A, C B, A B.

Binary search trees

For a general binary tree, procedure print_all, implementing inorder traversal, 
prints the node values in an arbitrary order. For the order to be significant, we 
must move on from binary trees to binary search trees.

The set G over which a general binary tree is defined can be any set. For 
binary search trees, we assume that G is equipped with a total order relation
enabling us to compare two arbitrary elements of G through the boolean 

if left /= Void   then        end

if right /= Void then    end

visit (item)

post (left)

post (right)

→ “Writing an itera-
tor”,  page 631.

3 A B C Hanoi 
execution as 
inorder 
traversal
(From the figure on 
page 450)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C Traversal
(inorder)

highlighted

→ We will learn more 
about total orders in 
the study of topologi-
cal sort: “Total 
orders”,  page 514.
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expression a < b, such that exactly one of a < b, b < a and a ~ b (object equality) 
is true. Examples of such sets include INTEGER and REAL, with the usual <
relation, but G could be any other set on which we know a total order.

As usual we write a <= b for (a < b) or (a ~ b), and a > b for b < a. Over 
such totally ordered sets we may define binary search trees:

The node values in the left subtree are less than the value for the root, and those 
in the right subtree are greater; this property must apply not only to the tree as a 
whole but also, recursively, to any of its immediate or indirect subtrees. We will 
call it the Binary Search Tree Invariant.                   

This definition implies that all the item values of the tree’s node are 
different. We will use this convention for simplicity. It is also possible 
to accept duplications; then the conditions in the definitions become 
le <= r and r <= ri. An exercise asks you accordingly to adapt the binary 
search tree algorithms that we are going to see.

Our example binary tree of integers is a binary search tree: all 
the values in the left subtree are less than the root value, 35, all 
those in the right subtree are greater, and the same properties 
hold recursively in every subtree.

The procedure print_all, applied to a binary search tree, 
will print all the node items in order, from smallest to greatest.

Performance

Let us look more closely at why binary search trees are useful as container 
structures — a potential competitor to hash tables. Indeed they usually provide 
much better performance than sequential lists. Assuming random data, a 
sequential list provides us, n being the number of items, with
• O (1) insertion (if we keep the items in the order of insertion).
• O (n) search.

Definition: binary search tree

A binary search tree over a totally ordered set G is a binary tree over G such 
that, for any subtree of root item value r:
• The item value le of any node in the left subtree satisfies le < r.
• The item value ri of any node in the right subtree satisfies ri > r.

Programming Time!
Printing values in order

Using the procedures given so far, write a program that builds the example tree, 
then prints the node items using print_all. Check that the values are in order.

The EiffelBase class is 
BINARY_SEARCH_TREE.

→ Exercise 14-E.3, 
page 500.

35

23 54

41 7818

12 60

67

90

← Second performance 
table on page 407.
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With a binary search tree, both operations can be O (log n), much better than O (n)
for large n. (Remember that in big-O notation it does not matter what base we 
choose for the logarithms.) Here is the analysis for a full binary tree, that is to say 
one in which both subtrees of any given node have exactly the same height h:

It is clear, by induction on h, that the number of nodes n in a full tree of height 

h is 2h – 1 (in the above figure, h is 3 and n is 7). This implies that for a given 
number of nodes n the height is log2 (n + 1), which is O (log n). In a full tree, 

both a search and an insertion — using algorithms given below, which you can 
already guess — will start from the root and follow a downward path to a leaf, 
taking O (log n) time. This is the major attraction of binary search trees.

Of course most practical binary trees are not full; if you are out of luck with 
the order of insertion, the performance can be as bad as with sequential lists, 
O (n) — with added storage costs since each node has both a left field and a 
right field where a linked list cell has just one. The following figure shows such 
cases: insertions in descending order (A), ascending order (B), greatest then 
smallest then second greatest and so on (C).

With a random enough order of insertions, however, the binary search tree will 
remain sufficiently close to full to ensure O (log n) behavior. You can actually 
guarantee O (log n) insertions, searches and deletions by using the AVL or 
“red-black” variants of binary search trees, which remain near-full.

Inserting, searching, deleting

Here is a recursive routine for searching a binary search tree (this routine and 
the following ones are to be added to the binary search tree class):

A full binary tree

← “Theorem: Down-
ward Path”,  page 451.

Some binary 
search tree 
schemes causing 
O (n) behavior

(A) (B) (C)

On these techniques, 
see the bibliographic 
references of the previ-
ous chapter, for exam-
ple Cormen et al. 
(page 433).
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The algorithm is O (h) where h is the height of the tree, meaning O (log n) for 
full or near-full trees. 

In this case there is a reasonably simple non-recursive version, using a loop:

has (x: G): BOOLEAN
-- Does x appear in any node?

require
argument_exists: x /= Void

do
if x ~ item then

Result := True

elseif x < item then
Result := (left /=Void) and then 

else -- x > item
Result := (right /= Void) and then 

end
end

has1 (x: G): BOOLEAN
-- Does x appear in any node?

require
argument_exists: x /= Void

local
node: BINARY_TREE [G]

do
from

node := Current
until

Result or node = Void
invariant

-- x does not appear above node on downward path from root
loop

if x < item then
node := left

elseif x > item then
node := right

else
Result := True

end
variant

-- (Height of tree) – (Length of path from root to node)
end

end

~ is object equality.

left.has (x)

right.has (x)

← The variant and 
invariant are 
pseudocode; see 
“Touch of Style: High-
lighting pseudocode”,  
page 109.
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For inserting an element, we may use the following recursive procedure:

The absence of an else clause for the outermost if reflects the decision to ban 
duplicate information. As a consequence, a call to put with an already present 
value will have no effect. This is correct behavior (“not a bug but a feature”), 
since the header comment is clear. Some users might, however, prefer a different 
API with a precondition stating not has (x).

The non-recursive version is left as an exercise.

The next natural question is how to write a deletion procedure remove (x: G).
This is less simple because we cannot just remove the node containing x (unless 
it is a leaf and not the root, in which case we make the corresponding left or right
reference void); we also cannot leave an arbitrary value there since it would 
destroy the Binary Search Tree Invariant.             

More precisely we could put a special boolean attribute in every node, indicating 
whether the item value is meaningful, but that makes things too complicated, wastes 
space and affects the other algorithms.

What we should do is reorganize the node values, moving up some of those 
found in subtrees of the node where we find x to reestablish the Binary Search 
Tree Invariant.

put (x: G)
-- Insert x if not already present.

require
argument_exists: x /= Void

do
if x < item then

if left = Void then
add_left (x)

else

end

elseif x > item then
if right = Void then

add_right (x)
else

end
end

end

← About add_left and 
add_right see page 452.

left.put (x)

right.put (x)

← See page 455.

→ 14-E.5, page 502.
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In the example binary search tree, a call remove (35), 
affecting the value in the root node, might either:

• Move up all the values from the left subtree (where 
each node has a single child, on the left). 

• Move up the value in the right child, 54, then 
recursively apply a similar choice to move values 
up in one of its subtrees.

Like search and insertion, the process should be O (h)
where h is the height of the tree, in favorable cases.

The deletion procedure is left as an exercise; I 
suggest you try your hand at it now, following the inspiration of the 
preceding routines:

14.5  BACKTRACKING AND ALPHA-BETA

Before we explore the theoretical basis of recursive programming, it is useful to 
look into one more application, or rather a whole class of applications, for which 
recursion is the natural tool: backtracking algorithms.

The name carries the basic idea: a backtracking algorithm looks for a 
solution to a certain problem by trying successive paths and, whenever a path 
reaches a dead end, backing up to a previous path from which not all possible 
continuations have been tried. The process ends successfully if it finds a path 
that yields a solution, and otherwise fails after exhausting all possible paths, or 
hitting a preset termination condition such as a search time limit.

A problem may be amenable to backtracking if every potential solution can 
be defined as a sequence of choices.

The plight of the shy tourist

You may have applied backtracking, as a last resort, to reach a travel destination. 
Say you are at position A (Zurich main station) and want to get to B (between the 
main buildings of ETH and the University of Zurich):

Programming Time!
Deletion in a binary search tree

Write a procedure remove (x: G ) that removes from a binary search tree the 
node, if any, of item value x, preserving the Binary Search tree Invariant.

35

23 54

41 7818

12 60

67

90

(From the figure on page 447.)
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Not having a map and too shy to ask for directions, you are reduced to trying out 
streets and checking, after each try, if you have arrived (you do have a photo of 
the destination). You know that the destination is towards the East; so, to avoid 
cycles, you ignore any westward street segment. 

At each step you try street segments starting from the north, clockwise: the 
first attempt takes you to position 1. You realize that it is not your destination; 
since the only possible segment from there goes west, this is a dead end: you 
backtrack to A and try the next choice from there, taking you to 2. From there 
you try 3, again a dead end as all segments go west. You backtrack to the 
previous position, 2.

If all valid (non-westward) positions had been tried, 2 would be a dead-end 
too, and you would have to go back to A, but there remains an unexplored 
choice, leading to 4.

The process continues like this; you can complete the itinerary on the map 
above. While not necessarily the best technique for traveling, it is sometimes the 
only possible one, and it is representative of the general trial-and-error scheme 
of backtrack programming. This scheme can be expressed as a recursive routine:

Trying and 
backtracking

B

A
2

4

Intermediate

1

Dead-end

state

3
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This uses the following conventions: the choices at every step are described by 
a type CHOICE (in many cases you may be able to use just INTEGER); there 
is also a type PATH, but a path is simply a sequence of choices, and p + c is 
the path obtained by appending c to p. We identify a solution with the path 
that leads to it, so find returns a PATH; by convention that result is void if find
finds no solution. To know if a path yields a solution we have the query 
is_solution. The list of choices available from p — an empty list if p is a dead 
end — is p.choices.

To obtain the solution to a problem it suffices to use find (  p0 ) where p0 is 
an initial, empty path.

As usual, Result is initialized to Void, so that if in a call to find (  p) none of 
the recursive calls on possible extensions p + c of p yields a solution — in 
particular, if there are no such extensions as p.choices is empty — the loop will 
terminate with c.after; then find ( p) itself will return Void. If this was the 
original call find (  p0 ), the process terminates without producing a solution; but 
if not, it is a recursively triggered call, and the parent call will simply resume by 
trying the next remaining choice if any (or returning Void too if none are left).

find ( p: PATH): PATH
-- Solution, if any, starting at p.

require
meaningful: p /= Void

local
c: LIST [CHOICE]

do
if p.is_solution then

Result := p
else

c := p.choices
from c.start until

(Result /= Void) or c.after
loop

Result := 
c.forth

end
end

end

find ( p + c)
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If, on the other hand, the call finds p to be a solution, it returns p as its result, 
and all the callers up the chain will return it as well, terminating their list 
traversals through the Result /= Void clause of the exit condition.

Recursion is clearly essential to handle such a scheme. It is a natural way to 
express the trial-and-error nature of backtracking algorithms; the machinery of 
recursion takes care of everything. To realize its contribution, imagine for a 
second how you would program such a scheme without recursion, keeping track 
of previously visited positions. (I am not suggesting you actually write out the 
full non-recursive version, at least not until  you have read about 
derecursification techniques further in this chapter.)

The later discussion also shows how to improve the efficiency of the given 
algorithm by removing unnecessary bookkeeping. For example it is not really 
necessary to pass the path p as an explicit argument, taking up space on the call 
stack; p can instead be an attribute, if we add p := p + x before the recursive call and 
p := p.head after it (where head yields a copy of a sequence with its last element 
removed). We will develop a general framework allowing us to carry out such 
optimizations safely.

Getting backtracking right

The general backtracking scheme requires some tuning for practical use. First, 
as given, it is not guaranteed to terminate, as it could go on exploring ever longer 
paths. To ensure that any execution terminates, you should either:

• Have a guarantee (from the problem domain) that there are no infinite paths; 
in other words, that repeatedly extending any path will eventually yield a 
path with an empty choices list.

• Define a maximum path length and adapt the algorithm so that it treats any 
path as a dead-end when it reaches that limit. Instead of the path length you 
may also limit the computation time. Either variant is a simple change to the 
preceding algorithm.

In addition, a practical implementation can usually detect that a path is 
equivalent to another; for example, with the situation pictured 

→ “Implementation of 
recursive routines”,  
14.9, page 486.

→ “Preserving and 
restoring the context”,  
page 488.

→ Exercise “Back-
tracking curtailed”,  
14-E.8, page 503.

Path with a cycle
1

3

2

4
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the paths [1 2 3 4], [1 2 3 4   ], [1 2 3 4 2      ] etc. are all equivalent. 
The example of finding an itinerary to a destination avoided this problem through 
an expedient — never go west, young man — but this is not a generalizable 
solution. To avoid running into such cycles, the algorithm should keep a list of 
previously visited positions, and ignore any path leading to such a position.

Backtracking and trees

Any problem that lends itself to a backtracking solution also lends itself to 
modeling by a tree. In establishing this correspondence, we use trees where a 
node may have any number of children, generalizing the concepts defined 
earlier for binary trees. A path in the tree (sequence of nodes) corresponds to a 
path in the backtracking algorithm (sequence of choices); the tree of the 
itinerary example, limited to the choices that we tried, is:

We can represent the entire town map in this way: nodes for locations, 
connected by edges representing street segment. The result is a graph. A graph 
only yields a tree if it has no cycles. Here this is not the case, but we can get a 
tree, called a spanning tree for the graph, containing all of its nodes and some 
of its edges, through one of the techniques mentioned earlier: using a 
cycle-avoiding convention such as never going west, or building paths from a 
root and excluding any edge that leads to a previously encountered node. The 
above tree is a spanning tree for the part of our example that includes nodes A, 
1, 2, 3 and 4.

With this tree representation of the problem:

• A solution is a node that satisfies the given criterion (the property earlier 
called is_solution, adapted to apply to nodes rather than paths).

• An execution of the algorithm is simply a preorder (depth-first) traversal 
of the tree.

In the example, our preorder traversal visited nodes A, 1, 2, 3 and 4 in this order.

2 3 4 2 3 4 2 3 4

→ Exercise “Cycles 
despised”,  14-E.9, 
page 503.

← “Binary trees”,  
14.4, page 447.

→ “Trying and back-
tracking”,  page 460.

Backtrack treeA

2

4

1

3

← About this adapta-
tion see “Definition: 
Tree associated with a 
node”,  page 448.
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This correspondence indicates that “Preorder” and “backtracking” are 
essentially the same idea : the rule that whenever we consider a possible path 
we exhaust all its possible extensions — all the subtrees of its final node — 
before we look at any of the alternative choices at the same level, represented 
by siblings of its node. For example if A in the previous figure has a third child, 
the traversal will not consider it before it has exhausted all the subtrees of 2.

The only property distinguishing a backtracking algorithm from an ordinary 
preorder traversal is that it stops as soon as it finds a node satisfying the given criterion.

“Preorder” was defined for binary trees as root first, then left subtree, then right 

subtree. The left-to-right order — generalized to arbitrary trees by assuming that the 

children of each node are ordered — is not essential here; “depth-first” does not 

imply any such ordering. It is just as simple, however, to assume that the choices 

open to the algorithm at every stage are numbered, and tried in order.

Minimax

An interesting example of the backtracking strategy, also modeled naturally as 
a tree, is the “minimax” technique for games such as chess. It is applicable if 
you can make the following assumptions about the game:

• It is a two-player game. We assume two players called Minnie and 
Maximilian, the latter familiarly known as Maxi.

• To evaluate the situation at any time during a game, you have an evaluation
function with a numerical value, devised so that a lower value is better for 
Minnie and a higher one for Maxi.

A primitive evaluation function in checkers, assuming Maxi is Black, would be 

(mb – mw) + 3 ∗ (kb – kw) where mb, mw are the numbers of black and white “men” 

and kb, kw the corresponding numbers of “kings”; the evaluation function considers 

a king to be worth three times as much as a man. Good game-playing programs use 

far more sophisticated functions. 

Minnie looks for a sequence of moves leading to a position that minimizes the 
evaluation function, and Maxi for one that maximizes it.
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Each player uses the minimax strategy to choose, from a game position, one of 
the legal moves. The tree model represents possible games; successive levels of 
the tree alternatively represent the moves of each player.

In the figure, we start from a position where it is Minnie’s turn to play. The 
goal of the strategy is to let Minnie choose, among the moves available from the 
current position (three in the figure), the one that guarantees the best outcome 
— meaning, in her case, the minimal guaranteed evaluation function value in 
leaves of the tree. The method is symmetric, so Maxi would rely on the same 
mechanism, maximizing instead of minimizing.

This assumption of symmetry is essential to the minimax strategy, which 
performs a depth-first traversal of the tree of moves to assign a value to 
every node:

M1 The value of a leaf is the result of applying the evaluation function to the 
corresponding game position.

M2 The value of an internal node from which the moves are Maxi’s is the 
maximum of the  of the node’s children.

M3 In Minnie’s case it is the minimum of the children’s .

The value of the game as a whole is the value associated with the root node. To 
obtain a strategy we must retain for each internal node, in cases M2 and M3, not 
only the value but also the child choice that leads to this value. Here is an 
illustration of the strategy obtained by assuming some values for the evaluation 
function (shown in color) in the leaves of our example tree:

Game treeMinnie 

Minnie

Maxi

values

values
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You can see that the value at each node is the minimum (at levels 1 and 3) or 
maximum (at level 2) of the values of the children. The desirable move for 
Minnie, guaranteeing the minimum value , is choice C.

Backtracking is appropriate for minimax since the strategy must obtain the 
values for every node’s children before it can determine the value for the node 
itself, requiring a depth-first traversal.

The following algorithm, a variation on the earlier general backtracking 
scheme, implements these ideas. It is expressed as a function minimax returning 
a pair of integers: guaranteed value from a starting position p, initial choice 
leading to that value. The second argument l is the level at which position p 
appears in the overall game tree; the first move from that position, returned as part 
of the result, is Minnie’s move as in the figures if l is odd, and Maxi’s if l is even.

minimax ( p: POSITION; l: INTEGER):   TUPLE [value, choice: INTEGER]
-- Optimal strategy (value + choice) at level l starting from p.

local
next: TUPLE [value, choice: INTEGER]

do
if p.is_terminal (l ) then

Result := [value: p.value; choice: 0]
else

c := p.choices
from

Result := worst (l  )
c.start

until c.after loop
next := 
Result := better (next, Result, l )

end
end

end

Game tree with 
valuations

Minnie (level 1)

Minnie (level 3)

Maxi (level 2)

124 –96 59 –78 3

–7548 –9

–78 5

–7

A B C

10 2

2

20–1

–1

–7

minimax (p.moved (c.item), l + 1)
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To represent the result, we use a tuple of integers representing the value and 
the choice.

The auxiliary functions worst and better are there to switch between 
Minnie’s and Maxi’s viewpoints: the player is minimizing for any odd level l
and maximizing for any even l.

To determine the worst possible value for either player we assume constants 
Max, with a very large value, and Min, with a very small value, for example the 
largest and smallest representable integers.

Function minimax assumes the following features from class POSITION:

• is_terminal indicates that no moves should be explored from a position.

• In that case value gives the value of the evaluation function. (The query 
value may have the precondition is_terminal.)

• For a non-terminal position choices yields the list of choices, each 
represented by an integer, leading to a legal moves.

• If i is such a choice, moved (i ) gives the position resulting from applying the 
corresponding move to the current position.

worst (l: INTEGER): INTEGER
-- Worst possible value for the player at level l.

do
if l \\ 2 = 1 then Result := Max else Result := Min end

end

better (a, b: TUPLE [value, choice: INTEGER]; l: INTEGER):
TUPLE [value, choice: INTEGER]

-- The better of a and b, according to their value, for player at level l.
do

if l \\ 2 = 1 then
Result := (a.value < b.value)

else
Result := (a.value > b.value)

end
end

\\ is integer remainder.

To avoid the repeated 
use of the TUPLE 
type, you may instead 
define a small class 
GAME_RESULT with 
integer attributes 
value and choice.
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The simplest way to ensure that the algorithm terminates is to limit the depth of 

the exploration to a set number of levels Limit. This is why is_terminal as given 

includes the level l as argument; it can then be written as just

In practice a more sophisticated cutoff criterion is appropriate; for example the 

algorithm could keep track of CPU time and stop exploration from a given 

position when the exploration time reaches a preset maximum.

To run the strategy we call minimax (initial, 1) where initial is the initial 

game position. Level 1, odd, indicates that the first move is Minnie’s.

Alpha-beta

The minimax strategy as seen so far always performs a full backtracking 

traversal of the tree of relevant moves. An optimization known as alpha-beta 

pruning can significantly improve its efficiency by skipping the exploration of 

entire subtrees. It is a clever idea, worth taking a look at not just because it is 

clever but also as an example of refining a recursive algorithm.

Alpha-beta is only meaningful if, as has been our assumption for minimax, 

the game strategy for each of the two players assumes that the other player’s 

strategy is reversed (one minimizes, the other maximizes) but otherwise identical.

The insight that can trim entire subtrees in the exploration is that it is not 

necessary for a player at level l + 1 to continue exploring a subtree if it finds that 

this could only deliver a result better for the player itself, and hence worse for 

its adversary, than what the adversary has already guaranteed at level l: the 

adversary, which uses the reversed version of the strategy, would never select 

that subtree.

is_terminal (l: INTEGER): BOOLEAN
-- Should exploration, at level l, stop at current position?

do
Result := (l = Limit) or choices.is_empty

end

This discussion refers 
to a player as “it” 
since our players are 
program elements.
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The previous example provides an illustration. Consider the situation after 
the minimax algorithm has explored some of the initial nodes:

We are in the process of computing the value (a maximum) for node Ma1, and 
as part of this goal the value (a minimum) for node Mi2. From exploring the first 
subtree of Ma1, rooted at Mi1, we already have a tentative maximum value for 
Ma1: 8, signaled by a question mark since it is only temporary. This means a 
guarantee for Maxi that he will not do, at Ma1, worse than 8. For Maxi, “worse” 
means lower. In exploring the Mi2 subtree we come to Ma2, where the value — 
obtained in this case from the evaluation function since Ma2 is a leaf, but the 
reasoning would apply to any node — is 6. So at node Mi2 Minnie will not do 
worse (meaning, in her case, higher) than 6. But then Maxi would never, from 
node Ma2, take choice B leading to Mi2, since he already has a better result from 
choice A. Continuing to explore the subtree rooted at Mi2, part of choice B, 
would just be a waste of time. So as soon as it has found value 6 at Ma2 the 
alpha-beta strategy discards the rest of the Mi2 subtree.

In the figure’s example there is only one node left in the Mi2 subtree after Ma2 and 
we are at the leaf level, but of course Ma2 could have many more right siblings with 
large subtrees.

Not only is this optimization an interesting insight; it also provides a good 
opportunity to hone our recursive programming skills. Indeed do not wait for the 
solution (that is to say, refrain from turning the page just now!) and try first to 
devise it by yourself:

Programming time!
Adding Alpha-beta to Minimax

Adapt the minimax algorithm, as given earlier, so that it will use the alpha-beta 
strategy to avoid exploring useless subtrees. 

Trimming barren 
subtrees

98

8

8?

–7

10

Minnie

Maxi
Mi2

Ma1

Mi1

Ma2

6?

A B

Minnie

6

← Function minimax, 
page 466.
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The extension is simple. (Well, as you will have noted if you did try, it requires 
some care to get the details right, in particular to avoid getting our better
comparisons upside down.) The routine needs one more argument to denote 
the value, if any, already guaranteed for the adversary at the level immediately 
above. Here is minimax updated for Alpha-beta, additions highlighted:

Each player now stops exploring its alternatives whenever it finds a result that 
is “better” for the adversary than the “guarantee” the adversary may already 
have assured.

Since better was defined without a precondition it will accept a zero level, so it is 
acceptable to pass it l – 1. We might equivalently pass l + 1. In fact a slightly simpler 
variant of better (guarantee, Result, l – 1) is better (Result, guarantee, l ); it is 
equivalent thanks to the symmetric nature of the strategy.

The recursive call passes as a “guarantee” to the next level the best Result
obtained so far for the current level. As a consequence, alpha-beta’s trimming, 
which stops the traversal of a node’s children when it hits the new exit trigger 

, will never occur when the node itself is the 
first child of its own parent; this is because the loop initializes Result to the worst
value for the player, so the initial guarantee is useless. Only when the traversal 
moves on to subsequent children does it get a chance to trigger the optimization.

Minimax and alpha-beta provide a representative picture of backtracking 
algorithms, which have widespread applications to problems defined by large 
search spaces. The key to successful backtracking strategies is often — as 
illustrated by alpha-beta — to find insights that avoid exhaustive search.             

alpha_beta ( p: POSITION; l: INTEGER; ):
TUPLE [value, choice: INTEGER]

-- Optimal strategy (value + choice) at level l, starting from p.
-- Even level minimizes, odd level maximizes.

local
next: TUPLE [value, choice: INTEGER]

do
if p.is_terminal (l ) then

Result := [value: p.value; choice: 0]
else

c := p.choices
from

Result := worst (l  )
c.start

until c.after  loop
next := minimax ( p.moved (c.item), l + 1), )
Result := better (next, Result, l )

end
end

end

← The parts not high-
lighted are unchanged 
from minimax, page 
466 (departing from 
the convention of the 
rest of this chapter, 
which highlights 
recursive branches).

guarantee: INTEGER

or better (guarantee, Result, l  – 1)
Result

better (guarantee, Result, l  – 1)
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14.6  FROM LOOPS TO RECURSION

Back to the general machinery of recursion.

We have seen that some recursive algorithms — Fibonacci numbers, search 
and insertion for binary search trees — have a loop equivalent. What about the 
other way around?

It is indeed not hard to replace any loop by a recursive routine. Consider an 
arbitrary loop, given here without its invariant and variant (although we will see 
their recursive counterparts later):

We may replace it by

with the procedure

In functional languages (such as Lisp, Scheme, Haskell, ML), the recursive 
form is the preferred style, even if loops are available. We could use it too in our 
framework, replacing for example the first complete example of the discussion 
of loops, which animated a Metro line by moving a red dot, with

from Init until Exit loop Body end

Init
loop_equiv

loop_equiv
--Emulate a loop of exit condition Exit and body Body.

do
if not Exit then

Body

end
end

Line8.start
animate_rest (Line8)

Loop_equiv

← “Functional pro-
gramming and func-
tional languages”,  
page 324.

← Page 168.
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relying on the auxiliary routine

(A more complete version should restore the cursor to its original position.)

The recursive version is elegant, but there is no particular reason in our 
framework to prefer it to the loop form; indeed we will continue to use loops.

The conclusion might be different if we were using functional programming 
languages, where systematic reliance on recursive routines is part of a distinctive 
style of programming.

Even if just for theoretical purposes, it is interesting to know that loops are 
conceptually not needed if we have routines that can be recursive. As an 
example, recursion gives us a more concise version of the loop-based routine
paradox demonstrating the unsolvability of the Halting Problem:

Knowing that we can easily emulate loops with recursion, it is natural to ask 
about the reverse transformation. Do we really need recursive routines, or could 
we use loops instead?

We have seen straightforward cases: Fibonacci as well as has and put for 
binary search trees. Others such as hanoi, height, print_all do not have an 
immediately obvious recursion-free equivalent. To understand what exactly 
can be done we must first look more closely into the meaning and properties 
of recursive routines.

animate_rest (line: LINE)
-- Animate stations of line from current cursor position on

do
if not line.after then

show_spot (line.item.location)
line.forth

end
end

recursive_paradox
-- Terminate if and only if not.

do
if terminates ("C:\your_project") then

end
end

animate_rest (line)

← “An application: 
proving the undecid-
ability of the halting 
problem”,  page 223.

recursive_paradox
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14.7  MAKING SENSE OF RECURSION

The experience of our first few recursive schemes allows us to probe a bit deeper 
into the meaning of recursive definitions.

Vicious circle?

First we go back to the impolite but inevitable question: does the recursive 
emperor have any clothes? That is to say, does a recursive definition mean 
anything at all? The examples, especially those of recursive routines, should by 
now be sufficiently convincing to suggest a positive answer, but we should still 
retain a healthy dose of doubt. After all we keep venturing dangerously close to 
definitions that make no sense at all — vicious circles. With recursion we try to 
define a concept in terms of itself, but we cannot just define it as itself. If I say

I have not defined anything at all, just stated a tautology; not one of those 
tautologies of logic, which are things to prove and hence possibly interesting, 
just a platitude. If I refine this into

I have added some usable elements but still not produced a satisfactory 
definition. Recursive routines can, similarly, be obviously useless, as:

which for any value of the argument would execute forever, never producing 
any result.

“Forever” in this case means, for a typical compiler’s implementation of recursion 
on an actual computer, “until the stack overflows and causes the program to crash”. 
So in practice, given the speed of computers, “forever” does not last long. — you 
can try the example for yourself.

How do we avoid such obvious misuses of recursion? If we attempt to 
understand why the recursive definitions seen so far seem intuitively to make 
sense, we can nail down three interesting properties:

“Computer science is the study of computer science”

“Computer science is the study of programming, data structures, algorithms, 
applications, theories and other areas of computer science”

p (x: INTEGER)
-- What good is this?

do  end

← “Definition: Tau-
tology”,  page 78.

p (x)

→ You can see an 
example of the result 
on page 665.



RECURSION AND TREES  §14.7474

For a recursive routine, the change of “context” (R2) may be that the call 

uses a different argument, as will a call r (n–1) in a routine r (n: INTEGER); 

that it applies to a different target, as in a call x.r (n) where x is not the 

current object; or that it occurs after the routine has changed at least one field 

of at least one object.

The recursive routines seen so far satisfy these requirements:

• The body of Hanoi (n, …) is of the form if n > 0 then … end where the 

recursive calls are in the then part, but there is no else part, so the routine 

does nothing for n = 0 (R1). The recursive calls are of the form 

Hanoi (n–1, …), changing the first argument and also switching the order 

of the others (R2). Replacing n by n–1 brings the context closer to the 

non-recursive case n = 0 (R3).

• The recursive has for binary search trees has non-recursive cases for 

x = item, as well as for x < item if there is no left subtree, and x > item if there 

is no right subtree (R1). It calls itself recursively on a different target, left or 

right rather than the current object (R2); every such call goes to the left or 

right subtree, closer to the leaves, where the recursion terminates (R3). The 

same scheme governs other recursive routines on binary trees, such 

as height.

• The recursive version of the metro line traversal, animate_rest, has a 

non-recursive branch (R1), doing nothing, for a cursor that is after. The 

recursive call does not change the argument, but it is preceded by a call 

line.forth which changes the state of the line list (R2), moving the cursor 

closer to a state satisfying after and hence to the non-recursive case (R3).

Touch of Methodology:
Well-formed recursive definition

A useful recursive definition should ensure that:
R1 There is at least one non-recursive branch.
R2 Every recursive branch occurs in a context that differs from the original.
R3 For every recursive branch, the change of context (R2) brings it closer to 

at least one of the non-recursive cases (R1).

← Page 443.

← Page 457.

← Page 452.

← Page 472.
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R1, R2 and R3 also hold for recursive definitions of concepts other than routines:

• The mini-grammar for Instruction has the non-recursive case Assignment. 

• All our recursively defined data structures, such as STOP, are recursive 
through references (never through expanded values), and references can be 
void; in linked structures, void values serve as terminators.

In the case of recursive routines, combining the above three rules suggests a 
notion of variant similar to the loop variants through which we guarantee that 
loops terminate:

The variant may involve the arguments of the routine, as well as other parts of 
its environment such as attributes of the current object or of other objects. In the 
examples just reviewed:

• For Hanoi (n, …), the variant is n.

• For has, height, print_all and other recursive traversals of binary trees, the 
variant is node_height, the longest length of a path from the current node to 
a leaf.

• For animate_rest, the variant is, as for the corresponding loop, Line8.count 
– Line8.index + 1.

There is no special syntax for recursion variants, but we will use a comment of 
the following form, here for hanoi:

Touch of Methodology:
Recursion Variant

Every recursive routine should be declared with an associated recursion 
variant, an integer quantity associated with any call, such that:
• The routine’s precondition implies that the variant is non-negative.

• If an execution of the routine starts with a value v for the variant, the value 
v’ of the variant for any recursive call satisfies 0 ≤ v’ < v.

-- variant n                                   

← Page 437.

← Page 437.

← “Loop termination 
and the halting prob-
lem”,  page 161.

← Page 168.
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Boutique cases of recursion

The well-formedness rules seem so reasonable that we might think they are 
necessary, not just sufficient, to make a recursive definition meaningful. Such is 
indeed the case with the first two properties:

• R1: if all branches of a definition are recursive, it cannot ever yield any instance 
we do not already know. In the case of a recursive routine, execution will not 
terminate, except in practice through a crash following memory exhaustion.

• R2: if a recursive branch applies to the original context, it cannot ever yield 
an instance we do not already know. For a recursive routine — say p (x: T)
with a branch that calls p (x) for the same x with nothing else changed — 
this means that the branch, if taken, would lead to non-termination. For 
other recursive definitions, it means the branch is useless.

The story is different for R3, if we take this rule as requiring a clearly visible 
recursion variant such as the argument n for Hanoi. Some recursive routines which 
do terminate violate this property. Here are two examples. They have no practical 
application, but highlight general properties of which you must be aware.

McCarthy’s 91 function was devised by John McCarthy, a professor at 
Stanford University, designer of the Lisp programming language (where 
recursion plays a prominent role) and one of the creators of Artificial 
Intelligence. We may write it as follows:

The value for n > 100 is clearly n – 10, but it is far less obvious — from a 
computation shrouded in two nested recursive calls — that for any integer up to 
99, including negative values, the result will be 91, explaining the function’s 
name. The computation indeed terminates on every possible integer value. Yet 
it has no obvious variant; mc_carthy (mc_carthy (n + 11)) actually uses as 
argument of the innermost recursive call a higher value than the original!

mc_carthy (n: INTEGER): INTEGER
-- McCarthy’s 91 function.

do
if n > 100 then

Result := n – 10
else

Result := mc_carthy (mc_carthy (n + 11))
end

end

← See “Functional 
programming and 
functional lan-
guages”,  page 324 
(with photograph of 
McCarthy).
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Here is another example, also a mathematical oddity:

This uses the operator // for rounded down integer division (5 // 2 and 4 // 2 are 
both 2), and a boolean expression even (n) to denote whether n is an even 
integer; even (n) can also be expressed as n \\ 2 = 0, using the integer remainder 
operator \\. The two occurrences of a // division in the algorithm apply to even 
numbers, so they are exact.

Clearly, if this function gives any result at all, that result can only be 1, the 
value produced by the sole non-recursive branch. Less clear is whether it will 
give this result — that is to say, terminate — for any possible argument. The 
answer seems to be yes; if you write the program, and try it on sample values, 
including large ones, you will be surprised to see how fast it converges. Yet there 
is no obvious recursion variant; here too the change seems to go in the wrong 
direction: the new argument in the second recursive branch, (3  ∗  n + 1) // 2, is 
actually larger than n, the previous value.

These are boutique examples, but we must take their existence into account 
in any general understanding of recursion. They mean that some recursive 
definitions exist that do not satisfy the seemingly reasonable methodological 
rules discussed above — and still yield well-defined results.

Note that such examples, if they terminate for every possible argument, do 
have a variant: since for any execution of the routine the number of remaining 
recursive calls is entirely determined by the program’s state at the time of the 
call; it is a function of the state, and can serve as a variant. Rather, it could serve 
as a variant if we knew how to express it. If we don’t, its theoretical existence 
does not help us much.

bizarre (n: INTEGER): INTEGER
-- A function that can yield only a 1.

require
positive: n >= 1

do
if n = 1 then

Result := 1
elseif even (n) then

Result := bizarre (n // 2)
else -- i.e. for n odd and n > 1

Result := bizarre ((3 ∗ n + 1) // 2)
end

end

n / 2, using the other 
division operator /, 
would give a REAL 
result; for example 5 /2 
is 2.5.
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You will have noted that it is not possible to determine automatically — through 
compilers or any other program analysis tools — whether a routine has a recursive 
variant, even less to derive such a variant automatically: that would mean that we 
can solve the Halting Problem.

In practice we dismiss such examples and limit ourselves to recursive 
definitions that possess properties R1, R2 and R3, guaranteeing that they are 
safe. In particular, whenever you write a recursive routine, you must always — 
as in the examples of the rest of this chapter — explicitly list a recursive variant.

Keeping definitions non-creative

Even with well-formedness rules and recursion variants, we are not yet off the 
hook in our attempts to use recursion and still sleep at night. The problem is that 
a recursive “definition” is not a definition in the usual sense because it can 
be creative.

An axiom in mathematics is creative: it tells us something that we cannot 
deduce without it, for example (in the standard axioms for integers) that n < n’
holds for any integer n, where n’ is the next integer. The basic laws of natural 
sciences are also creative, for example the rule that nothing can travel faster than 
the speed of light.

Theorems in mathematics, and specific results in physics, are not creative: 
they state properties that can be deduced from the axioms or laws. They are 
interesting on their own, and may start us on the path to new theorems; but they 
do not add any assumptions, only consequences of previous assumptions.

A definition too should be non-creative. It gives a new name for an object 
of our world, but all statements we can express with the definition could be 
expressed without it. We do not want to express them without it — otherwise 
we would not introduce the definition — but we trust that in principle we could. 
If I say

I have not added anything to mathematics; I am just allowing myself to use the 

new notation e2, for any expression e, in lieu of the multiplication. Any property 
that can be proved using the new form could also be proved — if more clumsily 
— using the form that serves to define it.

The symbol , which we have taken to mean “is defined as” (starting with 
BNF productions), assumes this principle of non-creativity of definitions. But 
now consider a recursive definition, of the form

Define x2, for any x, as x ∗ x

f   some_expression [1]

← “An application: 
proving the undecid-
ability of the halting 
problem”,  page 223.

=Δ

← From page 298 on.

=Δ
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where some_expression involves f. It does not satisfy the principle any more! If 
it did we could replace any occurrence of f by some_expression; this involves f
itself, so we would have to do it again, and so on ad infinitum. We have not 
really defined anything.

Until we have solved this issue — by finding a convincing, non-creative 
meaning for “definitions” such as [1] — we must be careful in our terminology. 
We will reserve the  symbol for non-recursive definitions; a property such as 
[1] will be expressed as an equality

which simply states a property of the left and right sides. (We may also view it 
as an equation, of which f must be a solution.) To be safe when talking about 
recursive “definitions”, we will quarantine the second word in quotes.

The bottom-up view of recursive definitions

To sanitize recursion and bring it out of the quarantined area, it is useful to take 
a bottom-up view of recursive routines and, more generally, recursive 
“definitions”. I hope this will remove any feeling of dizziness that you may still 
experience when seeing concepts or routines defined — apparently — in terms 
of themselves.

In a recursive “definition”, the recursive branches are written in a top-down
way, defining the meaning of a concept in terms of the meaning of the same 
concept for a “smaller” context — smaller in the sense of the variant. For 
example, Fibonacci for n is expressed in terms of Fibonacci for n – 1 and n – 2; 
the moves of Hanoi for n are expressed in terms of those for n – 1; and the syntax 
for Instruction involves a Conditional that contains a smaller Instruction.

The bottom-up view is a different interpretation of the same definition, 
treating it the other way around: as a mechanism that, from known values, gives 
new ones. Here is how it works, first on the example of a function. For any 
function f we may build the graph of the function: the set of pairs [x, f (x)] for 
every applicable x. The graph of the Fibonacci function is the set

consisting of all pairs [n, Fibonacci (n)] for all non-negative integers n. This 
graph contains all information about the function. You may prefer to think of it 
in the following visual representation:

f    some_expression [2]

F =Δ  {[0, 0], [1, 1], [2, 1], [3, 2], [4, 3], [5, 5], [6, 8], [7, 13] …} [3]

=Δ

=

The quarantine ends 
on page 482.
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The top row lists possible arguments to the function; for each of them, the 
bottom row gives the corresponding fibonacci number.

To give the function a recursive “definition” is to say that its graph F — as 
a set of pairs — satisfies a certain property

for a certain function h applicable to such sets of pairs. This is like an equation 
that F must satisfy, and is known as a fixpoint equation. A fixpoint equation 
expresses that a certain mathematical object, here a function, remains invariant 
under a certain transformation, here h.

For example to “define” the Fibonacci function recursively as

is to state that its graph F — the above set of pairs [3] — satisfies the fixpoint 
equation F = h (F  ) [4] where h is the function that, given such a set of pairs, 
yields a new one containing the following pairs:

G1 Every pair already in F.

G2 [0, 0]. -- The pair for n = 0: [0, fib (0)]

G3 [0, 1]. -- The pair for n = 0: [1, fib (1)]

G4 Every pair of the form [i, a + b] for some i such that F contains both a pair 
of the form [i – 1, a] and another of the form [i – 2, b].

We can use this view to give any recursive “definition” a clear meaning, free of 
any recursive mystery. We start from the function graph F0 that is empty (it 
contains no pair). Next we define

F = h (F  ) [4]

fib (0) = 0
fib (1) = 1
fib (i) = fib (i – 1) + fib (i – 2)-- For i > 1

F1 =Δ  h (F0)

INTEGER …

INTEGER …

0 1 1 3 82 5 13

0 1 2 4 63 5 7 A function graph 
(for the Fibonacci 
function)
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meaning, since G1 and G4 are not applicable in this case (as F0 has no pair), that 
F1 is simply {[0, 0], [1, 1]}, with the two pairs given by G2 and G3. Next we 
apply h once more to get

Here and in subsequent steps G2 and G3 give us nothing new, since the pairs 
[0, 0] and [1, 1] are already in F1, but G4, applied to these two pairs from F1, 
adds to F2 the pair [2, 1]. Continuing like this, we define a sequence of graphs: 
F0 is empty, and each Fi+1 for i > 0 is defined as h (Fi). Now consider the infinite 
union F of all the Fi for every natural integer i: F0 ∪ F1 ∪ F2 ∪ …, more 
concisely written

where N is the set of natural integers. It is easy to see that this F satisfies the 
property F = h (F ) [4].

This is the non-recursive interpretation — the semantics — we give to the 
recursive “definition” of Fibonacci.

In the general case, a fixpoint equation of the form [4] on function graphs, 
stating that F must be equal to h (F  ), admits as a solution the function graph

where Fi is a sequence of function graphs defined as above:

This fixpoint approach is the basis of the bottom-up interpretation of recursive 
computations. It removes the apparent mystery from these definitions because 
it no longer involves defining anything “in terms of itself”: it simply views a 
recursive “definition” as a fixpoint equation, and admits a solution obtained as 
the union (similar to the limit of a sequence in mathematical analysis) of a 
sequence of function graphs.

F2 =Δ  h (F1)

F =Δ  

F0 =Δ  { } -- Empty set of pairs

Fi =
Δ  h (Fi – 1) -- For i > 0

∪
i ∈N

Fi

∪
i ∈N

Fi

The empty set can, of 
course, be written also 
as ∅. The notation {  } 
emphasizes that it is a 
set of pairs.
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This immediately justifies the requirement that any useful recursive “definition” 
must have a non-recursive branch: if not, the sequence, which starts with the empty 
set of pairs F0 = { }, never gets any more pairs, because all the cases in the definition 
of h are like G1 and G4 for Fibonacci, giving new pairs deduced from existing ones, 
but there are no pairs to begin with.

This technique reduces recursive “definitions”, with all the doubts they raise as 
to whether they define anything at all, to the well-known, traditional notion of 
defining a sequence by induction.

The Fibonacci function is a good example for understanding the concepts, 
but perhaps not sufficient to get really excited: after all, its usual definition in 
mathematics textbooks already involves induction; only computer scientists 
look at the function in a recursive way. What we saw is that we can treat its 
recursive “definition” as an inductive definition — a good old definition, 
without the quotes — of the function’s graph. We did not learn anything about 
the function itself, other than a new viewpoint. Let us see whether the bottom-up 
view can teach us something about a few of our other examples.

Bottom-up interpretation of a construct definition

Understood in a bottom-up spirit, the recursive definition of “type” has a clear 
meaning. As you will remember, it said that a  is either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T ], where C is a generic class and T
a .

T1 is the non-recursive case. The bottom-up perspective enables us to 
understand the definition as building the set of types as a succession of layers. 
Limiting for simplicity the number of possible generic parameters to one:

• Layer L0 has all the types defined by non-generic classes: INTEGER, 
STATION and so on.

• Layer L1 has all the types of the form C [X ], where C is a generic class and 
X is at level L0: LIST [INTEGER], ARRAY [STATION ] etc.

• More generally, layer Ln for any n > 0, has all the types of the form C [X ], 

where X is at level Li for i < n.

This way we get all possible types, generically derived or not.            

← R1, page 474.

This is the end of the 
“quarantine” decreed 
on page 479.

← “Definitions: Class 
type, generically 
derived, base class”,  
page 370.

type

type
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The towers, bottom-up

Now consider the Tower of Hanoi solution from a bottom-up perspective. We 
may understand the routine as recursively defining a sequence of moves. Let’s 
denote such a sequence — move a disk from the top of needle A to B, then one 
from C to A and so on — as <A → B, C → Α, …>. The empty sequence of 
moves will be < > and the concatenation of sequences will use a simple “+”, so 
that <A → B, C → Α> + <B → A> is <A → B, C → Α, B → A>.

Then we may express the recursive solution to the Towers of Hanoi problem 
as a function han with four arguments (an integer and three needles), yielding 
sequences of moves, and satisfying the fixpoint equation

defined only when the values of s, t, o (short for source, target, other) are 
different — we take them as before to range over 'A', 'B', 'C' — and n is positive.

The bottom-up construction of the function that solves this equation is simple. 
[5] lets us initialize the function’s graph to all pairs for n = 0, each of the form

for s, t, o ranging over all permutations of 'A', 'B', 'C'. Let us call H0 this first part 
of the graph, made of six pairs. 

Now we may use [6] to obtain the next part H1, containing all the values for 
n = 1; they are all of the form

since for any sequence x the concatenation < > + x or x + < > is x itself. The next 
iteration of [6] gives us H2, whose pairs are of the form

for all s, t, o such that H1 contains both a pair of the form [(1, s, o, t), f1] and one 
of the form [(1, o, t, s), g1].

han (n, s, t, o) = 
< >  -- If n = 0 [5]

han (n – 1, s, o, t) +  + han (n – 1, o, t, s) -- If n > 0 [6]

[( , s, t, o), ]

[( , s, t, o), ]

[( , s, t, o),    f1 +  + g1]

<s → t>

0 < >

1 <s → t>

2 <s → t>
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Iterating again will give us H3 and subsequent elements of the graph. The 
complete graph — infinite of course, since it includes pairs for all possible 
values of n — is the set of all pairs in all elements of the sequence, .

Here I strongly suggest that you get a concrete grasp of the bottom-up view 
of recursive computation by writing a program that actually builds the graph:

A related exercise asks you to determine (without programming) the 
mathematical properties of the graph.                          

Another important exercise directs you to apply a similar analysis to binary 
tree traversals. You will have to devise a model for representing the solution, 
similar to the one we have used here; instead of sequences of moves you will 
simply use sequences of nodes.

Grammars as recursively defined functions

The bottom-up view is particularly intuitive for a recursive grammar, as in our 
small example:

distilled even further here: ifc represents “if Condition then” and ast represents 
Assignment, both treated as terminals for this discussion.

It is easy to see how to generate successive sentences of the language by 
interpreting these productions in a bottom-up, fixpoint-equation style:

and so on. You can also look again, in light of the notion of bottom-up recursive 
computation, at the earlier discussion of the little Game language.

It is possible to generalize this approach to arbitrary grammars by taking a 
matrix view of a BNF description.                                 

Programming time:
Producing the graph of a function

Write a program (not using recursion) that produces successive elements H0, 
H1, H2 … of the function graph for the recursive Hanoi solution.

Instruction =Δ  ast  | Conditional

Conditional =Δ  ifc Instruction end

ast
ifc ast end
ifc ifc ast end end
ifc ifc ifc ast end end end

∪
i ∈N

Hi

→ Details in exercise 
14-E.11, page 503.

→ 14-E.10, page 503.

→ 14-E.12, page 503.

← Actual version 
on page 437.

← “Recursive gram-
mars”,  page 307.

→ Exercise 14-E.17, 
page 504.
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14.8  CONTRACTS FOR RECURSIVE ROUTINES

We have learned to equip our classes and their features with contracts stating 
their correctness properties: routine preconditions, routine postconditions, class 
invariants; the same concerns applied to algorithms gave us loop variants and 
loop invariants. How does recursion affect the picture?

We have already seen the notion of recursion variant. If a routine is 
recursive directly or indirectly, you should include a mention of its variant. As 
noted, we do not have specific language syntax for this but add a clause

to the routine’s header comment.

A recursive routine may have a precondition and postcondition like any 
other routine. Because ensuring a precondition is always the responsibility of 
the caller, and here the routine is its own caller, the novelty is that you must 
ensure that all calls within the routine (or, for indirect recursion, in associated 
routines) satisfy the precondition.

Here is the Towers of Hanoi routine with more complete contracts; the new 
clauses, expressed as comments, are highlighted.

-- variant: integer_expression

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as intermediate
-- storage, according to rules of Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source /= target
different2: target /= other
different3: source /= other

do
if n > 0 then

hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end
ensure

end

← “Touch of Method-
ology: Recursion Vari-
ant”,  page 475.

← The original was on 
page 443.

-- invariant: disks on each needle are piled in decreasing size.
-- variant: n

-- source has n disks; any disks on target and other are all
-- larger than all the disks on source.

-- Disks previously on source are now on target, in same order, 
-- on top of those previously there if any; other is as before.
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A properly specified recursive routine has a recursion invariant: a set of 
properties that must hold both before and after each execution. In the absence 
of a specific language mechanism they will just appear twice, in the 
precondition as well as in the postcondition; for clarity you may also, as here, 
include them in the header comment under the form

This is not a language construct but relies on the following convention:

• If the recursion invariant is just pseudocode expressed as a comment, as in 
this example, do not repeat it in the precondition and postcondition; here 
this means omitting from the precondition and postcondition the property 
that any disks on the affected needles are piled up in decreasing size.

• Any recursion invariant clause that is formal (a boolean expression) should 
be included in the precondition and postcondition, since there is no other 
way to express it formally.                                   

14.9  IMPLEMENTATION OF RECURSIVE ROUTINES

Recursive programming works well in certain problem areas, as illustrated by 
the examples in this chapter. When recursion facilitates your job you should not 
hesitate to use it, since in modern programming languages you can take 
recursion for granted.

Since there is usually no direct support for recursion in machine code, 
compilers for high-level languages must map a recursively expressed algorithm 
into a non-recursive one. The applicable techniques are obviously important for 
compiler writers, but even if you do not expect to become one it is useful to 
know the basic ideas, both to gain further insight into recursion (complementing 
the perspectives opened by previous sections) and to understand the potential 
performance cost of using recursive algorithms.

We will look at some recursive schemes and ask ourselves how, if the 
language did not permit recursion, we could devise non-recursive versions, also 
called iterative, achieving the same results.

-- invariant: integer_expression
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A recursive scheme

Consider a routine r that calls itself:

There might be several recursive calls, but we look at just one. What does it 
mean — if we revert to a top-down view — to execute that call?

The presence of recursion implies that neither the beginning of the routine’s 
code nor its end are just what they pretend to be:

• When code_before executes, this is not necessarily the beginning of a call 
a.r ( y) or r ( y) executed by some client routine: it could result from an 
instance of r calling itself recursively.

• When code_after terminates, this is not necessarily the end of the r story: it 
may simply be the termination of one recursively called instance; execution 
should resume for the last instance started and not terminated.

Routines and their execution instances

The key novelty in the last observation is the concept of instance (also called 
activation) of a routine. We know that classes have instances — the “objects” 
of object-oriented program execution — but we have not yet thought of routines 
in a similar way.

At any moment during a program’s execution, the state of the computation is 
characterized by a call chain as pictured above: the root procedure p has called 
q which has called r… When an execution of a routine in the chain, say r, 
terminates, the suspended execution of the calling routine, here q, resumes just 
after the place where it had called r.

r (x: T)
do

code_before

code_after
end

r (y)

p
A call chain, 
without recursion

calls

q
calls

r
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In the absence of recursion, we did not need to make the concept of routine 
instance explicit since any routine had, at any time, at most one active instance. 
With recursion, the call chain may include two or more instances of the same 
routine. Under direct recursion they will be contiguous:

For example a call hanoi (2, s, t, o) immediately starts a call hanoi (1, s, o, t)
which starts a call hanoi (0, s, t, o); at that stage we have three instances of the 
procedure in the call chain.

A similar situation arises with indirect recursion:

Preserving and restoring the context

All instances of a routine share their program code; what distinguishes them is 
their execution context. We have seen that in a useful case of recursion the 
context of every call must differ by at least one element. The context elements 
characterizing a routine instance (rather than object states) are:

• The values of the actual routine arguments, if any, for the particular call.

• The values of the local variables, if any.

• The location of the call in the text of the calling routine, defining where 
execution should continue once the call completes.

As we saw when studying how stacks support the execution of programs in 
modern languages, a data structure representing such a routine execution 
context is called an activation record.

p
Call chain with 
direct recursionq

r
r

r

p
Call chain with 
indirect recursionq

s
q

s
q

s

← R2, page 474.

← “Using stacks”,  
page 421.
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Assume a programming language that does not support recursion. Since at 
any time during execution there is at most one instance of any routine, the 
compiler-generated program can use a single activation record per routine. This 
is known as static allocation, meaning that the memory for all activation 
records can be allocated once and for all at the beginning of execution.

With recursion each activation of the routine needs its own context. This 
leaves two possibilities for implementation:

I1 We can resort to dynamic allocation: whenever a routine instance starts, 
create a fresh activation record to hold the routine’s context. Use this 
activation record whenever the routine execution needs to access an 
argument or local variable; use it too on instance termination, to determine 
where execution must continue in the caller’s code. Resuming the caller’s 
execution implies going back to its own activation record.

I2 To save space, we may note that the reason for keeping context information 
in an activation record is to be able to restore it when an execution resumes 
after a recursive call. An alternative to saving that information is to 
recompute it. This is possible when the change performed by the recursive 
call is invertible. The recursive calls in procedure hanoi ( , …) are of the 
form hanoi ( , …); rather than storing the value of n into an activation 
record, creating a new record holding the value n – 1, then restoring the 
previous record on return, we may use a single location for n in all recursive 
instances, as with static allocation: at call time, we decrease the value by 
one; at return time, we increase the value by one.

The two techniques are not exclusive: you can save space by using I2 for values 
whose transformation in calls (such as replacing n by n – 1) admits an easily 
implemented inverse, and retain an activation record for the rest of the context. 
The decision may involve a space-time tradeoff if the inverse transformation, 
unlike the n := n + 1 example, is computationally expensive. 

Using an explicit call stack

Of the two strategies for handling routine contexts let us look first at I1, which 
relies on explicit activation records.

Like activation records, objects are created dynamically, as a result of 
create instructions. The program memory area devoted to dynamically 
allocated objects is known as the heap. But for activation records of routines we 
do not need to use the heap since the patterns of activation and deactivation are 
simple and predictable:

n
n – 1

← “Creating simple 
objects”,  6.4, page 118.
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• A call to a routine requires a new activation record.
• On returning from that call, we may forget this activation record (it will 

never be useful again, since any new call will need its own values), and we 
must restore the caller’s activation record.

This is a last-in, first-out pattern for which we have a ready-made data structure: 
stacks. The stack of activation records will reflect the call chain, pictured here 
going up:

We have encountered the stack of activation records before: it is the call stack
which keeps track of routine calls during execution. If you are programming in 
a language supporting recursion, the call stack is the responsibility of the code 
generated by the compiler. Here we are looking at how to manage it ourselves.

You can use an explicit stack of activation records to produce an iterative
equivalent of a recursive routine:
• To access local variables and arguments of the current routine: always use 

the corresponding positions in the activation record at the top of the stack.
• Instead of a recursive call: create a new activation record; initialize it with 

the value of the call’s arguments and the position of the call; push it on the 
stack; and branch back (goto) to the beginning of the routine’s code.

• Instead of a return: return only if the stack is empty (no suspended call is 
pending); otherwise, restore the arguments and local variables from the 
activation record at the top of the stack, pop the stack, and branch to the 
appropriate instruction based on the call position information found in the 
activation record.

Note that both translation schemes involve goto instructions. That is fine if we 
are talking about the machine code to be generated by a compiler; but when it 
is a manual simulation of recursion in a high-level language we have learned to 
avoid the goto and in fact Eiffel has no such instruction. We will have to write 
gotos temporarily, then replace them by appropriate control structures.       

← “Stacks”,  13.11, 
page 420.

Call chain and the 
corresponding call 
stack

Top of stack

Activation record for p

Activation record (1) for q

Activation record (2) for s

Activation record (2) for q

Activation record (1) for s

p

q

q

s

s

← “Using stacks”,  
page 421.

“Iterative”, defined 
on page 486, means 
non-recursive.

← “The goto instruc-
tion”,  page 183.
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Recursion elimination essentials

Let us see how the scheme works for the body of hanoi with its two recursive 
calls. We use a stack of activation records, called just stack:

with a small auxiliary class RECORD to describe activation records:

(Instead of a full-fledged class we could also just use tuples.) An instance of the 
class represents the context of a call: the number of disks being moved (count), 
the three needles in the order used by the call, and call telling us whether this 
execution, if coming from a recursive call, came from the first or second call in

We use the stack of activation records to provide a non-recursive version of the 
procedure, temporarily relying on gotos, as shown on the following page.

stack: STACK [RECORD]

note
description: "Data associated with a routine instance"

class RECORD create
make

feature -- Initialization
make (n: INTEGER; c: INTEGER; s, t, o: CHARACTER)

-- Initialize from count n, call c, source s, target t, intermediary o.
do

count := n ; call := c; source := s ; target := t ; other := o
end

feature -- Access
count: INTEGER.

-- Number of disks.

call: INTEGER
-- Identifies a recursive call: 1 for the first, 2 for the second.

source, target, other: CHARACTER -- First call
-- Needles.

end

hanoi (n: INTEGER; source, target, other: CHARACTER)
do

if n > 0 then
hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end
end

-- First call

-- Second call



RECURSION AND TREES  §14.9492

iterative_hanoi (n: INTEGER; source, target, other: CHARACTER)
local -- We need locals representing arguments to successive calls:

count: INTEGER
x, y, z, t: CHARACTER
call: INTEGER
top: RECORD

do -- Initialize locals to values of arguments in original call:
count := n; x := source; y := target; z := other

start: if count > 0 then
-- Translation of hanoi (n–1, source, other, target):

after_1: move ( , )

-- Translation of hanoi (n–1, other, target, source):

end

-- Translation of routine return:

end

Warning: because of 
the goto instructions 
and labels this is not 
legal Eiffel. The gotos 
will be removed next.

This block is referred to 
below as 
SAVE_AND_ADAPT_1

stack.put (create {RECORD}. make (count, 1, x, y, z))
count := count – 1
t := y ; y := z ; z := t
goto start

Referred to below as 
MOVE

x y

Referred to below as 
SAVE_AND_ADAPT_2

stack.put (create {RECORD}. make (count, 2, x, y, z))
count := count – 1
t := x ; x := z ; z := t
goto start

Referred to below as 
RETRIEVE

after_2: if not stack.is_empty then
top := stack.item    -- Top of stack
count := top.count 
x := top.source ; y := top.target ; z := top.other
call := top.call ; stack.remove
if call = 2 then

goto after_2
else

goto after_1
end

end
-- No else clause: the routine terminates when
-- (and only when) the stack is empty.
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The body of iterative_hanoi derives from hanoi through systematic application 
of recursion elimination techniques:

D1 For every argument, introduce a local variable. The example uses a simple 
naming convention: x for source and so on.

D2 Assign on entry the value of the argument to the local variable, then work 
exclusively on that variable. This is necessary because a routine may not 
change the value of its arguments (n := some_new_value is invalid).

D3 Give a label, here start, to the routine’s original first instruction (past the 
local variable initializations added by D2).

D4 Introduce another local variable, here call, with values identifying the 
different recursive calls in the body. Here there are two recursive calls, so 
call will have two possible values, arbitrarily chosen as 1 and 2.

D5 Give a label, here after_1 and after_2, to the instructions immediately 
following each recursive call.

D6 Replace every recursive call by instructions which:

• Push onto the stack an activation record containing the values of the 
local variables.

• Set the values of the locals representing arguments to the values of the 
call’s actual arguments; here the recursive call replaces n by n – 1 and 
swaps the values of other and target, using the local variable swap for 
that purpose.

• Branch to the first instruction.

D7 At the end of the routine, add instructions which terminate the routines’ 
execution only if the stack is empty, and otherwise:

• Restore the values of all local variables from the activation record at the 
top of the stack.

• Also from that record, obtain the call identification

• Branch to the appropriate post-recursive-call label among those set in D5.

This is the general scheme applicable to the derecursification of any recursive 
routine, whether a programmer is carrying it out manually, as we are now doing, 
or — the more common situation — compilers include it in the code they 
generate for routine calls.

We will see next how to simplify it — including goto removal — with the 
help of some deeper understanding of the program structure; in the meantime, 
make sure you fully understand this example of brute-force derecursification.
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If, as I hope, you do find the transformation (if not the result) 
simple and clear, you may enjoy, as a historical aside, an anecdote 
reminding us that what is standard today was not always obvious. It is 
told by Jim Horning, a computer scientist well known for his own 
contributions, in particular to the area of formal methods:

The reference to independent inventions of the notion of call stack is 
probably to Friedrich Bauer from Munich, who used the term Keller
(cellar), and Edsger Dijkstra from Holland, when implementing his 
own Algol 60 compiler.

Simplifying the iterative version

The code given above looks formidable, especially against the simplicity 
of the original recursive version. Indeed, with a truly recursive algorithm 
like this one an iterative version will never reach the same elegance. But 
we can get close by reviewing the sources of complication:
• We may replace the gotos by structured programming constructs.
• By identifying invertible operations, we may limit the amount of information 

to be stored into and retrieved from the stack.
• In some cases (tail recursion) we may bypass the stack altogether.

Touch of History:
When recursion was thought impossible

(as told by Jim Horning)

In the summer of 1961 I attended a lecture in Los Angeles by a little-known 
Danish computer scientist. His name was Peter Naur and his topic was the 
new language Algol 60. In the question period, the man next to me stood up.
“It seems to me that there is an error in one of your slides.”
Peter was puzzled, “No, I don’t think so. Which slide?”
“The one that shows a routine calling itself. That’s impossible to implement.”
Peter was even more puzzled: “But we have implemented the whole language, 
and run all the examples through our compiler.”
The man sat down, still muttering to himself, “Impossible! Impossible!”. I 
suspect that much of the audience agreed with him.
At the time it was fairly common practice to allocate statically the memory for 
a routine’s code, its local variables and its return address. The call stack had 
been independently invented at least twice in Europe, under different names,
but was still not widely understood in America.

Naur & Horning 
(2006)

Slightly abridged from 
Jim Horning’s blog at 
horningtales.blogspot. 
com/2006/07/recur-
sion.html. Reproduced 
with permission.

Bauer (2005)

← See I2, page 489.

http://horningtales.blogspot.com/2006/07/recursion.html
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The last two kinds of simplification can also be important for performance, 
since all this pushing and popping takes time, as well as space on the stack.

On the Hanoi example let us start by getting rid of the goto eyesores. To 
abstract from the details of the code we express the body of iterative_hanoi as

with SAVE_AND_ADAPT_1 representing the storing of information into the 
stack and change of values before the first call, SAVE_AND_ADAPT_2 the same 
for the second call, RETRIEVE the retrieval from the stack of local variables 
including call, MOVE the basic move operation, and INIT the initialization of 
local variables from the arguments.

This is the example of goto structure that served (with abstract names for 
the instructions and conditions, I1, C1 etc.) as illustration in the discussion of 
goto removal. The result was

which we can immediately simplify, getting rid in particular of the stop
boolean variable:

INIT
start: if count > 0 then

SAVE_AND_ADAPT_1
goto start

end
after_2: if not stack.is_empty then

RETRIEVE
if call = 2 then goto after_2 else goto after_1 end

end

from INIT until over loop
from until count <= 0 loop

SAVE_AND_ADAPT_1
end
from stop := stack.is_empty until stop loop

RETRIEVE
stop := (stack.is_empty or (call /= 2))

end
over := (stack.is_empty and (call = 2))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

← From page 492.

count is an integer 
variable; the instruc-
tions I0, I1 and I2 can 
change its value.

after_1: MOVE 
SAVE_AND_ADAPT_2
goto start

← “Appendix: an 
example of goto 
removal”,  page 205. 
The resulting goto-less 
structure appears on 
page 206. The local 
variable over is initial-
ized to False.
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The simplifications result from an analysis of possible changes to the values of 
the variables:

• Since count can never become negative because of the precondition of 
hanoi and the test conditioning recursive calls, it is legitimate to replace that 
test, count <= 0, by count = 0.

• To get rid of stop we note that any value call gets out of RETRIEVE can only 
be 1 or 2, since these are the possible values stored onto the stack; so we can 
replace call /= 2 by call = 1, then set call to 2 the first time around so that 
this particular condition is only taken into account for the second and later 
iterations if any.                              

Tail recursion

A standard technique that helps reduce the overhead of stack pushing and 
popping relies on the observation that it is not necessary to store context 
information, and later retrieve it, if the algorithm does not need this information 
any more; this is the case in particular for a recursive call that is the last
operation executed by an instance of the recursive routine.

This simplification applies to the hanoi example. The second recursive call 
is the last instruction executed by an activation of the routine. This means that 
SAVE_AND_ADAPT_2 is not necessary, or more precisely that the only 
information it must preserve is call, since in getting back from a call you need 
to know whether it was an instance of the first or the second one: in the first case 
you need to pop the other values (count, x, y, z), in the second you don’t.

A good compiler can detect tail recursion and apply this optimization to 
improve the performance of a recursive algorithm.

In the hanoi case it is superseded by another optimization, which almost 
entirely gets rid of the stack and which we will now see. You should, however, 
practice tail recursion elimination by implementing the above algorithm and 
removing the unneeded push operations.                        

from INIT until over loop
from until count = 0 loop SAVE_AND_ADAPT_1 end
from call := 2 until stack.is_empty or call = 1 loop RETRIEVE end
over := (stack.is_empty and (call = 0))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

→ Exercise 14-E.14, 
page 504.
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Taking advantage of invertible functions

Using a stack to store the values before a call and retrieve them afterwards is the 
default technique and always works, but we saw earlier that an alternative 
exists: reverting the transformation of arguments. In the hanoi case this turns out 
to be possible for all arguments:

• The transformation of count prior to each call, count := count  1, has an 
obvious inverse: count := count  1.

• For the other arguments, representing needles, the transformation is swap23

for the first call and swap12 for the second, if we call swapij the operation 

that swaps the variables representing the i-th and j-th needles (for example 
swap23 is t := y ; y := z ; z := t). But every swapij is its own inverse: applying 

it a second time restores the original values.

So we do not actually need to store any of count, x, y and z on the stack: it 
suffices, at the time of a RETRIEVE, to apply the appropriate inverse operation. 
Specifically, RETRIEVE becomes:

A stack remains necessary, but only to record and retrieve the values of call. The 
simplification becomes even more dramatic if we notice that call only has two 
possible values, 1 and 2, which were just a convention to identify the two 
recursive calls. Let us instead call them 1 and 0. There is a simple representation 
for a stack of 0/1 (or boolean) values: if you know for certain that the stack’s 
height plus one cannot exceed the bit size of an integer — typically 64 on 
modern computers, until recently 32 —, just use a single integer, say s, for the 
stack. It is a matter of considering the 0s and the 1s of the binary representation, 
even if you do not know the details of number representation on your computer. 
The operations are:

“Retrieve the value of call”
count := count + 1
if call = 1 then swap23 else swap13 end

s = 1 -- Is the stack empty?
s := 1 -- Initialize to an empty stack
s := 2 ∗ s -- Push a 0
s := 2 ∗ s + 1 -- Push a 1
b := s \\ 2 -- Obtain (into b) the top of the stack (\\ is remainder)
s:= s // 2 -- Pop the stack (// is integer division)

← I2, page 489.

–
+

The first is a boolean 
expression, the others 
are instructions.
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Here is the result of a typical sequence of such instructions:

The binary representation of integers, shown in the last column, has the largest 
weights on the left (“big-endian” convention). The top of a non-empty stack is 
0 if the number is even, 1 if it is odd.

This technique of using a single integer to represent a stack of boolean 
values can be used safely whenever you have a guaranteed limit on the stack 

size. In the hanoi example this is not a problem since 263 or even 231 are more 
moves than can be handled in any reasonable time. 

Combining the previous observations leads to a simpler and more efficient 
form of the iterative_hanoi algorithm with arguments n, source, target, other:

Instruction Goal Result Binary representation of s 
(leftmost zeroes omitted)

s := 1

s := 2 ∗ s

s := 2 ∗ s + 1

s := 2 ∗ s + 1

s := 2 ∗ s

s:= s // 2

b := s \\ 2

-- Start empty

-- Push a 0

-- Push a 1

-- Push a 1

-- Push a 0

-- Pop

-- Get top

s = 1

s = 2

s = 5

s = 11

s = 22

s = 11

b = 1

from 
count := n ; x := source ; y := target ; z := other ; s := 1

until over loop

end

1

0

0

1

1
1

01

101

1101
1101

 over is initialized to 
False as usual.

-- Go down left 
-- (H1, see next page)

-- Go back up
-- (H2)

-- Visit node, 
-- go down right
-- (H3)

from until count = 0 loop
swap23 ; s := 2 ∗ s + 1 ; count := count – 1

end

from call := 0 until s = 1 or call = 1 loop
call := s \\ 2 ; s := s // 2 ; count := count + 1
if call = 1 then swap23 else swap13 end

end
over := ((s = 1) and (call = 0))

if not over then
move (x, y)
swap13 ; s := 2 ∗ s ; count := count – 1

end
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Although this is the result of a systematic transformation and not the kind of 
program that you would normally write (recursion is simpler and clearer), it is 
interesting to follow the execution on this form too, relating it to the original 
recursive version and specifically to the binary execution tree from the 
beginning of this chapter, showing the execution as an inorder traversal:

As noted next to the algorithm, it has three components:

H1 Go down left, as far as possible, until you reach a leaf. The leaves are at 
n = 0 (count = 0 in this version), although earlier figures showing this tree 
stopped at 1 since nothing visible from the outside happens at level 0.

H2 Go back up. As long as you are coming from the right just continue going 
up, since this corresponds to the second recursive call and there is nothing 
more to do with this instance of the routine.

H3 Having gone up one left branch, perform the visiting operation (move one 
disk from x to y, and go down one right branch).

This is repeated until, coming up from the right (H2), you find the stack empty.

When going down (H1, H3), you decrement count and swap y and z if going 
left (H1), x and z if going right (H3); when coming back up (H2), you restore 
the original values by incrementing count and doing the appropriate swap 
depending on whether you are coming back from the left or from the right — 
which you find out by looking at the top of the stack, meaning the parity of s as 
given by call.                                                                           

3 A B C Hanoi binary 
tree traversal
(From pages 450 and 
454)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

Go down left

Go

Go down right,
one step

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

back up

The last step
(H1)

(H3)

(H2)

(H2)

H2 H1
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14.10  KEY CONCEPTS LEARNED IN THIS CHAPTER

• It is often convenient to define a concept recursively, meaning that the 
definition uses one or more other instances of the concept itself.

• For the definition to be useful, any occurrence of the concept in its definition 
must apply it to a smaller target, and there must be at least one case for 
which the definition is non-recursive, so that any application of the 
definition reduces in the end to a combination of elementary cases.

• Recursive definitions can be useful in particular for routines, data structures 
and grammars.

• Any loop can be expressed in an equivalent recursive form, through a 
simple transformation.

• The other way around, any recursive algorithm has a recursion-free 
equivalent, but the transformation is more delicate; it requires changing the 
control flow, and recording the value of local information prior to every 
recursive call so as to retrieve it later, either by using a stack or by spotting 
invertible transformations.

New vocabulary

14-E  EXERCISES

14-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

14-E.2 Too much recursion?

Is the definition of “recursive definition” a recursive definition?

14-E.3 Binary search trees with repetitions

For every binary search tree routine in this chapter, rewrite the declaration (if 
needed) to permit multiple occurrences of a given item value in a tree as 
discussed after the initial definition.

Activation Activation record Alpha-beta 
Backtracking     Binary tree      Call chain 
Depth-first           Direct recursion Indirect recursion 
Inorder       Iterative                 Instance (of a routine) 
Minimax      Non-creative         Postorder 
Preorder        Recursion            Recursive 
Recursive definition         Traversal

← Page 435.

← Page 455.
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14-E.4 A programming language without program texts

This exercise addresses language processing techniques seen in an earlier 
chapter; the solution requires recursion.

The goal is to write an interpreter and a compiler for an elementary 
programming language. To avoid dealing with concrete syntax, the tools will 
directly manipulate data structures rather than texts.

Our little language is called WASO (acronym for With Abstract Syntax 
Only) and has the following properties:

• The only data type is “integer”.

• Variables, all of integer type, do not need to be declared. A variable name is 
an arbitrary string.

• Integer constants can be used, such as 1.

• Integer expressions can be formed with addition, subtraction, multiplication 
and integer division.

• There are two kinds of instruction: assigning an expression to a variable, 
and printing the value of a variable.

• A WASO program consists of a sequence of assignments and a sequence of 
print instructions, either or both of which can be empty.

• The execution of a program consists of initializing all variables to zero, 
executing the assignments in sequence, and executing the print instructions 
in sequence.

So a typical program — written out here as if WASO had a textual 
representation (concrete syntax), although this is not part of the language 
definition — is:

The execution of this program prints the single value 8.

The concrete syntax is only one of many possible choices. Another would use the 
keyword print instead of then and in the second clause list only the variables to be 
printed, without repeating print.

assign
x := 3
y := 5
x := 2 ∗ (x + (y // 3))

then
print x
print z

end

→ See also exercises 
16-E.4, page 617 to 
16-E.6, page 618 in the 
inheritance chapter.

This is only one possi-
ble concrete syntax.
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The assignment:
1 Write a set of classes, including PROGRAM, ASSIGNMENT, PRINT and 

EXPRESSION, with the associated features including creation procedures, 
to build abstract syntax trees representing WASO programs.

2 Add a class with a procedure that uses these classes and features to create 
an abstract syntax tree representing the above example program.

3 Add to class PROGRAM a procedure write_out that produces a textual 
(concrete) representation of a WASO program, as given out for the example. 
Run it on the example tree from step 2 and check that the output is the above 
text. Hint: you need a recursive procedure performing a traversal, similar to 
those introduced for binary trees in this chapter.

4 Write a WASO interpreter, in the form of a procedure interpret in class 
PROGRAM which executes the program and produces the expected output. 
Run it on the example and check the result (which as noted should be the 
single value 8).

5 Write a WASO-to-Eiffel compiler, in the form of a procedure compile in class 
PROGRAM which produces an Eiffel system implementing the semantics of 
the source WASO program: a root class with an appropriate creation 
procedure, and any other classes needed. Run it on the example; use Eiffel 
Studio to Eiffel-compile the output; run it on the example and check the result.

Terminology note: the result of step 5 is an unparser, producing a text 
representation from an internal representation such as an abstract syntax tree — 
the reverse of what a parser does.           

14-E.5 Non-recursive insertion

Write a version of put for binary search trees using a loop rather than recursion. 
(Hint: you may use for inspiration the non-recursive version of the search 
function has.)

14-E.6 Recursive reversal

Retaining the same assumptions (a list of stops is known through its first cell, of 
type STOP, giving access to the rest through repeated application of next), 
rewrite the function reversed from the discussion of references so that it uses 
recursion rather than a loop. (See also the next exercise.)

14-E.7 Reversing a list, functional style

Write a recursive function that produces the reverse of a linked list (the 
argument and the result should be of type LINKED_LIST [G], from EiffelBase). 
Keep pointer manipulations to a minimum and remain as close as possible to the 
style of the reversed function given as an example of Haskell programming. 
Analyze the time and space complexity of your solution.

← Page 458.

← Page 261.

← “Functional pro-
gramming and func-
tional languages”,  
page 324.
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14-E.8 Backtracking curtailed

Adapt the general backtracking algorithm so that it keeps track of previously 
explored positions and discards any path leading to such a position. You may 
assume that PATH has a query position defining a path’s terminal position.

14-E.9 Cycles despised

Adapt the general backtracking algorithm so that it does not explore paths 
longer than path_cutoff, a given integer value.

14-E.10 Properties of a function graph

(This exercise calls for mathematical analysis, not a programming solution.) In 
the successive approximations Hi of the graph of the Towers of Hanoi function, 
assuming three needles 'A', 'B', 'C':
1 What is the number of pairs in Hi?
2 Give a mathematical formula for Hi.

14-E.11 Programming a function graph bottom-up

1 Devise a class of which every instance represents an arguments-result pair, 
of the form [(n, s, t, o], <…>], for the Towers of Hanoi function graph.

2 Based on the preceding class, devise another to represent the function graph 
as a whole.

3 From this class and the rules [5] and [6] defining the function graph in the 
bottom-up interpretation of recursion, write a program that produces the i-th 
approximation of the graph, Hi, for any i. The algorithm may use loops, but 
it may not use recursion.

4 Use this program to print out sequences of moves (with source 'A' and target 
'B’) for a few values of i; check that the results coincide with those of the 
recursive procedure.

14-E.12 Bottom-up view of binary tree algorithms

Consider a recursive algorithm for binary tree traversal; you may choose 
preorder, inorder or postorder.
1 Taking inspiration from the bottom-up analysis of the Towers of Hanoi 

solution, devise a model to interpret the traversal as a function returning a 
sequence of nodes.

2 Write a recursive “definition” of this function.
3 Express this “definition” as a fixpoint equation on the function graph, using 

Ti as the name of the graph for binary trees of height i.
4 Use the definition to produce (either manually or by writing a small 

program) H5 for the example binary tree, and the resulting traversal order.

← Page 461.

← Page 461.

← “The towers, bot-
tom-up”,  page 483.

← “The towers, bot-
tom-up”,  page 483.

← “The towers, bot-
tom-up”,  page 483.

← From the figure on 
page 447.
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14-E.13 Recursion without optimization

(This exercise requires access to a compiler for a programming language such 
as C or C++ with support for goto instructions.) Implement and test the direct 
iterative translation of the hanoi procedure, in its initial version using gotos and 
a stack without optimization.

14-E.14 Saving on stack saving

1 Implement and test the goto-free iterative, stack-based version of the Tower 
of Hanoi problem.

2 Improve the solution through tail recursion optimization, avoiding 
unnecessary saves in the second call.

3 (Only if you have solved the previous exercise.) Apply the same 
optimization to the version using goto instructions.

14-E.15 Traversal without a stack

We saw that implementing recursion only requires a technique to invert the 
transformation of arguments in recursive calls; a stack is just one possible way to 
satisfy this requirement. Using a suitable inversion technique, implement binary 
tree traversal, for example inorder, non-recursively and without any stacks except 
possibly a stack of boolean values (or, equivalently, a bit in every node).

Hint: temporarily overwrite tree links to remember where you came from.
Counter-hint: you could find a solution by running Web searches for the words 

Deutsch, Schorr and Waite (names of authors of a famous algorithm based on this 
idea). Don’t; rather, design an algorithm, then look up existing references if you wish.

14-E.16 Transitive closure

(This exercise refers to a later chapter.) Restate the definition of transitive 
closure as a recursive definition.

14-E.17 Matrix algebra on BNF productions

(This exercise requires basic knowledge of linear algebra.) Consider a BNF 
production, such as the small example used in this chapter, or more extensive ones 
from earlier chapters, involving only Concatenation and Choice productions (no 
Repetition, as it can be replaced by combinations of the other two).
1 Treating concatenation of tokens as “multiplication” and alternative choices 

as “addition”, show that it is possible to express the grammar as a matrix 
equation X = A ∗ X + B, where X is the vector of nonterminals, A is a matrix 
of terminals and nonterminals, and B is a vector.

2 Discuss ways of solving this equation by following the model discussed for 
fixpoint equations.     

← iterative_hanoi, 
page 492.

← Algorithm on page 
495.

← “Implementation of 
recursive routines”,  
14.9, page 486.

→ Page 513.
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