
14

Recursion and trees

The cow shown laughing on the Laughing
Cow box holds, as if for earrings, two
Laughing Cow boxes each featuring a
cow shown laughing and presumably — I
say “presumably” because here my
eyesight fails me, I don’t know about yours
— holding, as if for earrings, two Laughing
Cow boxes each featuring a cow shown
laughing and presumably holding… (you
get the idea).

This 1921 advertising gimmick, still
doing very well, is an example of a structure defined recursively, in the
following sense:

“Recursion” — the use of recursive definitions — has applications throughout
programming: it yields elegant ways to define syntax structures; we will also see
recursively defined data structures and routines.

We may say “recursive” as an abbreviation for “recursively defined”:
recursive grammar, recursive data structure, recursive routine. But this is only a
convention, because we cannot say that a concept or a structure is by itself
recursive: all we know is that we can describe it recursively, according to the
above definition. Any particular notion — even the infinite Laughing Cow
structure — may have both recursive and non-recursive definitions.

When proving properties of recursively defined concepts we will use
recursive proofs, which generalize inductive proofs as performed on integers.

Recursive definition

A definition for a concept is recursive if it involves one or more instances of
the concept itself.

www.bel-group.com.
Picture credit:
page 847.

http://www.bel-group.com

RECURSION AND TREES §14.1436

Recursion is direct when the definition of A cites an instance of A; it is
indirect if for 1 ≤ i < n (for some n ≥ 2) the definition of every Ai cites an instance
of Ai+1, and the definition of An cites an instance of A1.

In this chapter we are interested in notions for which a recursive definition
is elegant and convenient. The examples include recursive routines, recursive
syntax definitions and recursive data structures. We will also get a glimpse of
recursive proofs.

One class of recursive data structures, the tree in its various guises, appears
in many applications and embodies the very idea of recursion. This chapter
covers the important case of binary trees.

14.1 BASIC EXAMPLES

At this point you may be wondering whether a recursive definition makes any
sense at all. How can we define a concept in terms of itself? Does such a
definition mean anything at all, or is it just a vicious circle?

You are right to wonder. Not all recursive definitions define anything at all.
When you ask for a description of someone and all you get is “Sarah? She is just
Sarah, what else can I say?” you are not learning much. So we will have to look
for criteria that guarantee that a definition is useful even if recursive.

Before we do this, however, let us convince ourselves in a more pragmatic
way by looking at a few typical examples where recursion is obviously useful
and seems, just as obviously, to make sense. This will give us a firm belief —
little more than a belief indeed, based on hope and a prayer — that recursion is
a practically useful way to define grammars, data structures and algorithms.
Then it will be time to look for a proper mathematical basis on which to
establish the soundness of recursive definitions.

Recursive definitions

With the introduction of genericity, we were able to define a type as either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T], where C is a generic class and T is
a .

This is a recursive definition; it simply means, using the generic classes ARRAY
and LIST, that valid classes are:

• INTEGER, STATION and such: non-generic classes, per case T1.

• Through case T2, direct generic derivations: ARRAY [INTEGER],
LIST [STATION] etc.

• Applying T2 again, recursively: ARRAY [LIST [INTEGER]], ARRAY [ARRAY
[LIST [STATION]]] and so on: generic derivations at any level of nesting.

→ “Making sense of
recursion”, 14.7,
page 473.

← “Definitions: Class
type, generically
derived, base class”,
page 370.

type

§14.1 BASIC EXAMPLES 437

You may consider using a similar technique to answer the exercise which, in the
first chapter, asked you to define “alphabetical order”.

Recursively defined grammars

Consider an Eiffel subset with just two kinds of instruction:

• Assignment, of the usual form variable := expression, but treated here as a
terminal, not specified further.

• Conditional, with only a then part (no else) for simplicity.

A grammar defining this language is:

For our immediate purposes Condition is, like Assignment, a terminal. This
grammar is recursive, since the definition of Instruction involves Conditional as
one of the choices, and Conditional in turn involves Instruction as part of the
aggregate. But since there is a non-recursive alternative, Assignment, the
grammar productions clearly imply what an instruction may look like:

• Just an assignment.

• A Conditional containing an assignment: if c then a end.

• The same with any degree of nesting: if c1 then if c2 then a end end,
if c1 then if c2 then if c3 then a end end end and so on.

Recursive grammars are indeed an indispensable tool for any language that —
like all significant programming languages — supports nested structures.

Recursively defined data structures

The class STOP represented the notion of stop in a metro line:

A naïve interpretation would deduce that every instance of STOP contains an
instance of STOP, which itself contains another ad infinitum, as in the Laughing
Cow scheme. This would indeed be the case if STOP were an expanded type:

Instruction =Δ Assignment |

Conditional =Δ if Condition then end

class STOP create
 …

feature
next:

-- Next stop on same line.
 … Other features omitted (see page 123) …

end

← 1-E.3, page 14.

← This discussion
was previewed in
“Recursive gram-
mars”, page 307.

Conditional

Instruction

← Page 123.

STOP

RECURSION AND TREES §14.1438

This is impossible, however, and STOP is in any case a reference type, like any
type defined as class X … with no other qualification. So the real picture is the
one originally shown:

Recursion in such a data structure definition simply indicates that every instance
of the class contains a reference to a potential instance of the same class —
“potential” because the reference may be void, as for the last stop in the figure.

In the same chapter we encountered another example of self-referential
class definition: a class PERSON with an attribute spouse of type PERSON.

This is a very common case in definitions of useful data structures. From
linked lists to trees of various kinds (such as the binary trees studied later in this
chapter), the definition of a useful object type often includes references to objects
of the type being defined, or (indirect recursion) a type that depends on it.

Recursively defined algorithms and routines

The famous Fibonacci sequence, enjoying many beautiful properties and many
app l ica t ions to mathemat ics and the na tura l sc iences , has the
following definition:

F0 = 0
F1 = 1
Fi = Fi–1 + Fi–2 -- For i > 1

Touch of History:
Fibonacci’s rabbits

Leonardo Fibonacci from Pisa (1170-1250) played a key role in making Indian and
Arab mathematics known to the West and, through many contributions of his own,
helping to start modern mathematics. He stated like this the problem that leads to
his famous sequence (which was already known to Indian mathematicians):

Nested fields
(not the correct
interpretation)

(STOP)

next

(STOP)

next
(STOP)

next …

Other fields

← Page 116.

A linked line

(STOP)

next

(STOP) (STOP)

nextnext

About Fibonacci:
www.mcs.surrey.ac.uk/
Personal/R.Knott/
Fibonacci/fib.html;
about the sequence:
www-gap.dcs.st-and.
ac.uk/~history/Mathema
ticians/Fibonacci.html.

http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html

§14.1 BASIC EXAMPLES 439

The answer is that the pairs at month i include those already present at
month i – 1 (no rabbits die), numbering Fi–1, plus those begot by pairs
already present at month i – 2 (since pairs are fertile starting the second
month), numbering Fi–2. This gives the above formula; successive values
are 0, 1, 1, 2, 3, 5, 8 and so on, each the sum of the previous two.

The formula yields a recursive routine computing Fn for any n:

The function includes two recursive calls, highlighted. That it works at all may
look a bit mysterious (that’s why it is good to check it for a few values); as you
progress through this chapter, the legitimacy of such recursively defined
routines should become increasingly convincing.

The principal argument in favor of writing the function this way is that it
elegantly matches the original, mathematical definition of the Fibonacci
sequence. On further look it is not that exciting, because a non-recursive version
is also easy to obtain.

A man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if
every month each pair begets a new pair, which becomes productive
from the second month on?

fibonacci (n: INTEGER): INTEGER
-- Element of index n in the Fibonacci sequence.

require
non_negative: n >= 0

do
if n = 0 then

Result := 0
elseif n = 1 then

Result := 1
else

Result := +
end

end

Programming Time!
Recursive Fibonacci

Write a small system that includes the above recursive routine and prints out
its result. Try it for a few values of n — including 12, as in Fibonacci’s original
riddle — and verify that the results match the expected values.

Programming Time!
Non-recursive Fibonacci

Can you write (without first turning the page) a function that computes any
Fibonacci number, using a loop rather than recursion?

Fibonacci

fibonacci (n – 1) fibonacci (n – 2)

RECURSION AND TREES §14.1440

The following function indeed yields the same result as the above fibonacci (try
it for a few values too):

For convenience this version assumes n ≥ 1 rather than n ≥ 0. Thanks to the
initialization rules previous starts out as zero, ensuring the initial satisfaction of the
invariant since F0 = 0. The variable second_previous is set anew in each loop
iteration and does not need specific initialization.

This version, just a trifle more remote from the original mathematical definition,
is still simple and clear; note in particular the loop invariant (which, however,
refers for convenience to the recursive function, which it takes as the official
mathematical definition). Some may prefer the recursive version anyway, but
this is largely a matter of taste. Depending on the compiler, that version may (as
we will see) be less efficient at run time.

Taste and efficiency aside, if it were only for such examples we would have
a hard time convincing ourselves of the indispensability of recursive routines.
We need cases in which recursion provides a definite plus, for example because
any non-recursive competitor is significantly more abstruse.

Such problems indeed abound. One that concentrates many of the
interesting properties of recursion, with the smallest amount of irrelevant detail,
arises from a delightful puzzle: the Tower of Hanoi.

fibonacci1 (n: INTEGER): INTEGER
-- Element of index n in the Fibonacci sequence.
-- (Non-recursive version.)

require
positive: n >=

local
i, previous, second_previous: INTEGER

do
from

i := 1 ; Result := 1
invariant

Result = fibonacci (i)
previous = fibonacci (i – 1)

until i = n loop
i := i + 1
second_previous := previous
previous := Result

variant

n – i
end

end

1

Result := previous + second_previous

§14.2 THE TOWER OF HANOI 441

14.2 THE TOWER OF HANOI

In the great temple of Benares, under the dome that marks the center of the
world, three needles of diamond are set on top of a brass plate. Each needle is
a cubit high, and thick as the body of a bee. On one of these needles God strung,
at the beginning of ages, sixty-four disks of pure gold. The largest disk rests on
the brass and the others, ever smaller, rest over each other all the way to the top.
That is the sacred tower of Brahma.

Night and day the priests, following one another on the steps of the altar,
work to transfer the tower from the first diamond needle to the third, without
deviating from the rules just stated, set by Brahma. When all is over, the tower
and the Brahmins will fall, and it will be the end of the worlds.

In spite of its oriental veneer, this story is the creation of the French
mathematician Édouard Lucas (signing as “N. Claus de Siam”, anagram of
“Lucas d’Amiens”, after his native city). On a market in Thailand — Siam
indeed — I bought the above rendition of his tower. The labels A, B and C are
my addition. I will not expand on why I chose a model made of wood rather than
diamond, gold and brass, but it is legitimate, since I did have a large suitcase, to
ask why it has only nine disks:

Quiz time!
Hanoi tower size

Why do commercially available models of the Towers of Hanoi puzzle have
far fewer than 64 disks?
(Hint: the game comes with a small sheet of paper listing a solution to the
puzzle, in the form of a sequence of moves: A to C, A to B etc.)

Tower of Hanoi
(or should it be
Benares?) with 9
disks, initial state

RECURSION AND TREES §14.2442

To answer this question, we may assess the minimum number Hn of individual
“move” operations required — if there is a solution — to transfer n disks from
needle A to needle B, using needle C as intermediate storage and following the
rules of the game; n is 64 in the original version and 9 for the small model.

We observe that any strategy for moving n disks from A to B must at some
point move the largest disk from A to B. This is only possible, however, if
needle B is free of any disks at all, and A contains only the largest disk, all others
having been moved to C — since there is no other place for them to go:

What is the minimum number of moves to reach this intermediate situation? We
must have transferred n – 1 disks (all but the largest) from A to C, using B as
intermediate storage; the largest disk, which must stay on A, plays no role in this
operation. The problem is symmetric between B and C; so the minimum number
of moves to achieve the intermediate situation is Hn-1.

Once we have reached that situation, we must move the largest disk from A
to B; it remains then to transfer the n – 1 smaller disks from C to B. In all, the
minimum number of moves Hn for transferring n disks, for n > 0, is

(Hn–1 moves to transfer n – 1 disks from A to C, one move to take the largest
disk from A to B, and Hn–1 again to transfer the n – 1 smaller disks from A to C).
Since H0 = 0, this gives

and, as a consequence, the answer to our quiz: remembering that 210 (that is,

1024) is over 103, we note that 264 is over 1.5∗1019; that’s a lot of moves.

Hn = 2 ∗ Hn–1 + 1

Hn = 2n – 1

Intermediate
state

§14.2 THE TOWER OF HANOI 443

A year is around 30 million seconds. At one second per move — very efficient
priests — the world will collapse in about 500 billion years, over 30 times the
estimated age of the universe. As to the paper for printing the solution to a 64-disk
game, it would require cutting down the forests of a few planets.

This reasoning for the evaluation of Hn was constructive, in the sense that it also
gives us a practical strategy for moving n disks (for n > 0) from A to B using
C as intermediate storage:
• Move n – 1 disks from A to C, using B as intermediate storage, and

respecting the rules of the game.
• Then B will be empty of any disk, and A will only have the largest disk;

transfer that disk from A to B. This respects the rules of the game since we
are moving a single disk, from the top of a needle, to an empty needle.

• Then move n – 1 disks from C to B, using A as intermediate storage,
respecting the rules of the game; B has one disk, but it will not cause any
violation of the rules of the game since it is larger than all the ones we want
to transfer.

This strategy turns the number of moves Hn = 2n – 1 from a theoretical minimum
into a practically achievable goal. We may express it as a recursive routine, part
of a class NEEDLES:

The discussion of contracts for recursive routines will add other precondition
clauses and a postcondition.

By convention, we represent the needles as characters: 'A', 'B' and 'C'. Another
convention for this chapter (already used in previous examples) is to
recursive branches; hanoi contains two such calls.

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as
-- intermediate storage, according to the rules of the
-- Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source /= target
different2: target /= other
different3: source /= other

do
if n > 0 then

 (n–1, source, other, target)
move (source, target)

 (n–1, other, target, source)
end

end

 213 sheets per tree
(tinyurl.com/6azaht);
210 moves per page
(very small print);
double-sided since we
are environmentally
conscious; maybe 400
billion (over 238)

usable trees on earth
(tinyurl.com/yfppyd):
adding three similar
planets will get
us started.

hanoi

hanoi

→ “Contracts for
recursive routines”,
14.8, page 485.

highlight

http://tinyurl.com/6azaht
http://tinyurl.com/yfppyd

RECURSION AND TREES §14.2444

The basic operation move (source, target) moves a single disk, the top one
on needle source, to needle target; its precondition is that there is at least one
disk on source, and that on target either there is no disk or the top disk is larger
than the top disk on source. If you have access to the wireless network of the
Great Temple of Benares you can program move to send an instant message to
the cell phone of the appropriate priest or an email to her Blackberry, directing
her to move a disk from source to target. For the rest of us you can write move
as a procedure that displays a one-disk-move instruction in the console:

For example executing the call

will print out the sequence of fifteen (24 – 1) instructions

which indeed moves four disks successfully from A to B, respecting the rules of
the game.

move (source, target: CHARACTER)
-- Prescribe move from source to target.

do
io.put_character (source)
io.put_string (" to ")
io.put_character (target)
io.put_new_line

end

Programming Time!
The Tower of Hanoi

Write a system with a root class NEEDLES including the procedures hanoi
and move as shown. Try it for a few values of n.

hanoi (4, 'A', 'B', 'C')

A to C
A to B
C to B
A to C
B to A

B to C
A to C

C to B
C to A

B to A
C to B
A to C
A to B
C to B

Shown here split into
three columns; read it
column by column,
top to bottom in each
column. The move of
the biggest disk has
been highlighted.A to B

§14.2 THE TOWER OF HANOI 445

One way to look at the recursive solution — procedure hanoi — is that it
works as if we were permitted to move the top n–1 disks all at once to a needle
that has either no disk, or the biggest disk only. In that case we would start by
performing this operation from source to other (here A to C):

Then we would move the biggest disk from A to B, our final target; this
single-disk move is clearly legal since there is nothing on B. Finally we would
again perform a global move of n–1 disks from C, where we have parked them,
to B, which is OK because they are in order and the largest of them is smaller
than the disk now on B.

Of course this is a fiction since we are only permitted to move one disk at a
time, but to move n–1 disks we may simply apply the same technique
recursively, knowing that the target needle is either empty or occupied by a disk
larger than all those we manipulate in this recursive application. If n = 0, we
have nothing to do.

Do not be misled by the apparent frivolity of the Tower of Hanoi example.
The solution serves as a model for many recursive programs with important
practical applications. The simplicity of the algorithm, resulting from the use of
two recursive calls, makes it an ideal testbed to study the properties of recursive
algorithms, as we will do when we return to it later in this chapter.

Fictitious initial
global move

RECURSION AND TREES §14.3446

14.3 RECURSION AS A PROBLEM-SOLVING STRATEGY

In earlier chapters we saw control structures as problem-solving techniques:
• A compound (sequence) solution means “I know

someone who can get me from here to B and someone else
who can get me from B to C, so let me ask them one then
the other and that will get me to C ”.

• A conditional solution means “I know someone who can
solve the problem in one case and someone else for the
other possible case, so let me ask them separately ”.

• A loop solution means “I do not know how to get to C, but
I know a region I (the invariant) that contains C, someone
(the initialization) to take me into I, and someone else
(the body) who whenever I am in I and not yet in C can take
me closer to C, decreasing the distance (the variant) in such
a way that I will need her only a finite number of times; so
let me ask my first friend once to get into I, then bug my
other friend as long as I have not reached C yet ”.

• A routine solution means “I know someone who has solved this problem in
the general case, so let me just phrase my special problem in his terms and
ask him to solve it for me”.

What about a recursive solution? Whom do I ask?
I ask myself.
Possibly several times! (As in the Hanoi case and many to follow.)
Why rely on someone else when I trust myself so much more? (At least I

think I do.)
By now we know that this strategy is not as silly as it might sound at first. I

ask myself to solve the same problem, but on a subset of the original data, or
several such subsets. Then I may be able to pull it off, if I have a way to extend
these partial solutions into a solution to the entire problem.

Such is the idea of recursion viewed as a general problem-solving strategy.
It is related to some of the earlier strategies:
• Recursion resembles the routine strategy, since it relies on an existing

solution, but in this case we use a solution to the same problem — not only
that, the same solution to that problem: the solution that we are currently
building and that we just pretend, by a leap of faith, already exists.

• Recursion also shares properties with a loop solution: both techniques
approximate the solution to the whole problem by solutions covering part of
the data. But recursion is more general, since each step may combine more
than one such partial solution. Later in this chapter we will have the
opportunity of comparing the loop and recursion strategies in detail.

A CB

Nn = CN2N1

conditioncondition
 holds

(Figure from page 147.)

(Figure from page 174.)

(Figure from page 155.)

does not hold

Ni

I

← Chapter 8.

← “The loop strat-
egy”, page 155.

← “From loops to recur-
sion”, 14.6, page 471.

§14.4 BINARY TREES 447

14.4 BINARY TREES

If the Tower of Hanoi solution is the quintessential recursive routine, the binary
tree is the quintessential recursive data structure. We may define it as follows:

It is easy to express this as a class skeleton, with no routines yet:

where a void reference indicates an empty binary tree. We may illustrate a
binary tree — here over INTEGER — as follows:

This “branching” form is the most common style of representing a binary tree,
but not the only one; as in the case of abstract syntax trees, we might opt for a
nested representation, which here would look like the following.

Definition: binary tree

A binary tree over G, for an arbitrary data type G, is a finite set of items called
nodes, each containing a value of type G, such that the nodes, if any, are
divided into three disjoint parts:
• A single node, called the root of the binary tree.

• (Recursively) two over G, called the left subtree and
right subtree.

class BINARY_TREE [G] feature
item: G
left, right:

end

binary trees

BINARY_TREE [G]

35

23 54

41 7818

12 60

Right subtreeLeft subtree

67

A binary tree
(“branching”
representation)

90

item

left right

Convention:

← “Nesting and the
syntax structure”,
page 40.

RECURSION AND TREES §14.4448

The definition explicitly allows a binary tree to be empty (“the nodes, if any”).
Without this, of course, the recursive definition would lead to an infinite
structure, whereas our binary trees are, as the definition also prescribes, finite.

If not empty, a binary tree always has a root, and may have: no subtree; a
left subtree only; a right subtree only; or both.

Any node n of a binary tree B itself defines a binary tree Bn . The association
is easy to see in either of the last two figures: for the node labeled 35, Bn is the
full tree; for 23 it is the left subtree; for 54, the right subtree; for 78, the tree rooted
at that node (right subtree of the right subtree); and so on. This allows us to talk
about the left and right subtrees of a node — meaning, of its associated subtree.
We can make the association formal through another example of recursive
definition, closely following the structure of the definition of binary trees:

A recursive routine on a recursive data structure

Many routines of a class that defines a data structure recursively will follow the
definition’s recursive structure. A simple example is a routine computing the
number of nodes in a binary tree. The node count of an empty tree is zero; the
node count of a non-empty tree is one — corresponding to the root — plus
(recursively) the of the left and right subtrees, if any. We may turn
this observation into a recursive function of the class BINARY_TREE:

Definition: Tree associated with a node

Any node n of a binary tree B defines a binary tree Bn as follows:

• If n is the root of B, then Bn is simply B.

• Otherwise we know from the preceding definition that n is in one of the
two subtrees of B. If B’ is that subtree, we define Bn as B’n (the node
associated with n, recursively, in the corresponding subtree).

35

23

18

12

54

41

78

60 90

67

A binary tree
in nested
representation

Left subtree

Right subtree

Convention:

node counts

§14.4 BINARY TREES 449

Note the similarity of the recursive structure to procedure Hanoi.

Children and parents

The children of a node — nodes themselves — are the root nodes of its left and
right subtrees:

If C is a child of B, then B is a parent of C. We may say more precisely that B
is “the” parent of C thanks to the following result:

The theorem seems obvious from the picture, but we have to prove it; this gives
us an opportunity to encounter recursive proofs.

Recursive proofs

The recursive proof of the Single Parent theorem mirrors once more the
structure of the recursive definition of binary trees.

If a binary tree BT is empty, the theorem trivially holds. Otherwise BT
consists of a root and two disjoint binary trees, of which we assume — this is
the “recursion hypothesis” — that they both satisfy the theorem. It follows from
the definitions of “binary tree”, “child” and “parent” that a node C may have a
parent P in BT only through one of the following three ways:
P1 P is the root of BT, and C is the root of either its left or right subtree.
P2 They both belong to the left subtree, and P is the parent of C in that subtree.
P3 They both belong to the right subtree, and P is the parent of C in that subtree.

count: INTEGER
-- Number of nodes.

do
Result := 1
if left /= Void then Result := Result + end
if right /= Void then Result := Result + end

end

Theorem: Single Parent

Every node in a binary tree has exactly one parent, except for the root which
has no parent.

left.count
right.count

Right childLeft child

A binary tree
(“branching”
representation)

Parent

RECURSION AND TREES §14.4450

In case P1, C has, from the recursion hypothesis, no parent in its subtree; so it
has one parent, the root, in BT as a whole. In cases P2 and P3, again by the
recursion hypothesis, P was the single parent of C in their respective subtree,
and this is still the case in the whole tree.

Any node C other than the root falls into one of these three cases, and hence
has exactly one parent. In none of these cases can C be the root which, as a
consequence, has no parent. This completes the proof.

Recursive proofs of this kind are useful when you need to establish that a
certain property holds for all instances of a recursively defined concept. The
structure of the proof follows the structure of the definition:
• For any non-recursive case of the definition, you must prove the property

directly. (In the example the non-recursive case is an empty tree.)
• A case of the definition is recursive if it defines a new instance of the

concept in terms of existing instances. For those cases you may assume that
the property holds of these instances (this is the recursion hypothesis) to
prove that it holds of the new one.

This technique applies to recursively defined concepts in general. We will see
its application to recursively defined routines such as hanoi.

A binary tree of executions

An interesting example of a binary tree is the one we obtain if we model an
execution of the hanoi procedure, for example with three disks on needles A, B,
C. Each node contains the arguments to the given call; the left and right subtrees
correspond to the first and second recursive calls.

By adding the move operations you may reconstruct the sequence of operations;
we will see this formally below.

This example illustrates the connection between recursive algorithms and
recursive data structures. For routines that have a variable number of recursive
calls, rather than exactly two as hanoi, the execution would be modeled by a
general tree rather than a binary tree.

3 A B C An execution of
Hanoi viewed as
a binary tree

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

→ Page 454.

§14.4 BINARY TREES 451

More binary tree properties and terminology

As noted, a node of a binary tree may have:
• Both a left child and a right child, like the top node, labeled

35, of our example.

• Only a left child, like all the nodes of the left subtree,
labeled 23, 18, 12.

• Only a right child, like the node labeled 60.

• No child, in which case it is called a leaf. In the example
the leaves are labeled 12, 41, 67 and 90.

We define an upward path in a binary tree as a sequence of zero or more nodes,
where any node in the sequence is the parent of the previous one if any. In our
example, the nodes of labels 60, 78, 54 form an upward path. We have the
following property, a consequence of the Single Parent theorem:

Proof: consider an arbitrary node C and the upward path starting at C and
obtained by adding the parent of each node on the path, as long as there is one;
the Single Parent theorem ensures that this path is uniquely defined. If the path
is finite, its last element is the root, since any other node has a parent and hence
would allow us to add one more element to the path; so to prove the theorem it
suffices to show that all paths are finite.

The only way for a path to be infinite, since our binary trees are finite sets
of nodes, would be to include a cycle, that is to say if a node n appeared twice
(and hence an infinite number of times). This means the path includes a
subsequence of the form n … n. But then n appears in its own left or right
subtree, which is impossible from the definition of binary trees.

Considering downward rather than upward paths gives an immediate
consequence of the preceding theorem:

The height of a binary tree is the maximum number of nodes on a downward path
from the root to a leaf (or the reverse upward path). In the example (see figure
above) the height is 5, obtained through the path from the root to the leaf labeled 67.

Theorem: Root Path

From any node of a binary tree, there is a single upward path to the root.

Theorem: Downward Path

For any node of a binary tree, there is a single downward path connecting the
root to the node through successive applications of left and right links.

(From the figure on page 447.)

35

23 54

41 7818

12 60

67

90

RECURSION AND TREES §14.4452

It is possible to define this notion recursively, following again the recursive
structure of the definition of binary trees: the height of an empty tree is zero; the
height of a non-empty tree is one plus the maximum of (recursively) the heights of
its two subtrees. We may add the corresponding function to class BINARY_TREE:

This adapts the recursive definition to the convention used by the class, which
only considers non-empty binary trees, although either or both subtrees, left and
right, may be empty. Note again the similarity to hanoi.

Binary tree operations

Class BINARY_TREE as given so far has only three features, all of them queries:
item, left and right. We may add a creation procedure

and commands for changing the subtrees and the root value:

height: INTEGER
-- Maximum number of nodes on a downward path.

local
lh, rh: INTEGER

do
if left /= Void then lh := end
if right /= Void then rh := end
Result := 1 + lh.max (rh)

end

make (x: G)
-- Initialize with item value x.

do
item := x

ensure
set: item = x

end

add_left (x: G)
-- Create left child of value x.

require
no_left_child_behind: left = Void

do
create left.make (x)

end

add_right … Same model as add_left …
replace (x: G)

-- Set root value to x.
do item := x end

left.height
right.height

x.max (y) is the maxi-
mum of x and y.

← Page 447.

Note the precondition,
which prevents over-
writing an existing
child. It is possible to
add procedures
put_left and put_right,
which replace an exist-
ing child and do not
have this precondition.

§14.4 BINARY TREES 453

In practice it is convenient to specify replace as an assigner command for the
corresponding query, by changing the declarations of this query to

item: G
making it possible to write bt.item := x rather than bt.put (x).

Traversals

Being defined recursively, binary trees lead, not surprisingly, to many recursive
routines. Function height was one; here is another. Assume that you are
requested to print all the item values associated with nodes of the tree. The
following procedure, to be added to the class, does the job:

This uses the procedure print (available to all classes through their common
ancestor ANY) which prints a suitable representation of a value of any type; here the
type is G, the generic parameter in BINARY_TREE [G].

Remarkably, the structure of print_all is identical to the structure of hanoi.

Although the business of print_all is to print every node item, the algorithm
scheme is independent of the specific operation, here print, that we perform on
item. The procedure is an example of a binary tree traversal: an algorithm that
performs a certain operation once on every element of a data structure, in a
precisely specified order. Traversal is a case of iteration.

For binary trees, three traversal orders are often useful:

In these definitions, “visit” means performing the individual node operation,
such as print in the print_all example; “ ” means a recursive
application of the algorithm to a subtree, or no action if the subtree is empty.

Preorder and other traversals that always go as deep as possible into a
subtree before trying other nodes are known as depth-first.

print_all
-- Print all node values.

do
if left /= Void then end
print (item)
if right /= Void then end

end

Binary tree traversal orders

• Inorder: left subtree, visit root, right subtree.

• Preorder: visit root, left, right.

• Postorder: left, right, visit root.

← “Bracket notation
and assigner com-
mands”, page 384.assign replace

print_all (left)

print_all (right)

→ “Overall inherit-
ance structure”, 16.10,
page 586.

← “Definition: Iterat-
ing”, page 397. For
further study see
“Agents for iteration”,
17.3, page 627.

traverse traverse

traverse traverse

traverse traverse

traverse

RECURSION AND TREES §14.4454

The procedure print_all is an illustration of inorder traversal. We may easily
express the other two variants in the same recursive form; for example, a routine
post for postorder traversal will have the routine body

where visit is the node operation, such as print.

In the quest for software reuse, it is undesirable to write a different routine for
variants of a given traversal scheme just because the visit operation changes. To
avoid this, we may use the operation itself as an argument to the traversal routine.
This will be possible through the notion of agent in a later chapter.

As another illustration of inorder traversal, consider again the binary tree of
executions of hanoi, for n = 3, with the nodes at level 0 omitted since nothing
interesting happens there:

Procedure hanoi is the mother of all inorder traversals: traverse the left subtree
if any; visit the root, performing move (source, target), as for each
node (source and target are the first two needle arguments); traverse the right
subtree if any. The inorder traversal, as illustrated by the bold line, produces the
required sequence of moves A B, A C, B C, A B, C A, C B, A B.

Binary search trees

For a general binary tree, procedure print_all, implementing inorder traversal,
prints the node values in an arbitrary order. For the order to be significant, we
must move on from binary trees to binary search trees.

The set G over which a general binary tree is defined can be any set. For
binary search trees, we assume that G is equipped with a total order relation
enabling us to compare two arbitrary elements of G through the boolean

if left /= Void then end

if right /= Void then end

visit (item)

post (left)

post (right)

→ “Writing an itera-
tor”, page 631.

3 A B C Hanoi
execution as
inorder
traversal
(From the figure on
page 450)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C Traversal
(inorder)

highlighted

→ We will learn more
about total orders in
the study of topologi-
cal sort: “Total
orders”, page 514.

§14.4 BINARY TREES 455

expression a < b, such that exactly one of a < b, b < a and a ~ b (object equality)
is true. Examples of such sets include INTEGER and REAL, with the usual <
relation, but G could be any other set on which we know a total order.

As usual we write a <= b for (a < b) or (a ~ b), and a > b for b < a. Over
such totally ordered sets we may define binary search trees:

The node values in the left subtree are less than the value for the root, and those
in the right subtree are greater; this property must apply not only to the tree as a
whole but also, recursively, to any of its immediate or indirect subtrees. We will
call it the Binary Search Tree Invariant.

This definition implies that all the item values of the tree’s node are
different. We will use this convention for simplicity. It is also possible
to accept duplications; then the conditions in the definitions become
le <= r and r <= ri. An exercise asks you accordingly to adapt the binary
search tree algorithms that we are going to see.

Our example binary tree of integers is a binary search tree: all
the values in the left subtree are less than the root value, 35, all
those in the right subtree are greater, and the same properties
hold recursively in every subtree.

The procedure print_all, applied to a binary search tree,
will print all the node items in order, from smallest to greatest.

Performance

Let us look more closely at why binary search trees are useful as container
structures — a potential competitor to hash tables. Indeed they usually provide
much better performance than sequential lists. Assuming random data, a
sequential list provides us, n being the number of items, with
• O (1) insertion (if we keep the items in the order of insertion).
• O (n) search.

Definition: binary search tree

A binary search tree over a totally ordered set G is a binary tree over G such
that, for any subtree of root item value r:
• The item value le of any node in the left subtree satisfies le < r.
• The item value ri of any node in the right subtree satisfies ri > r.

Programming Time!
Printing values in order

Using the procedures given so far, write a program that builds the example tree,
then prints the node items using print_all. Check that the values are in order.

The EiffelBase class is
BINARY_SEARCH_TREE.

→ Exercise 14-E.3,
page 500.

35

23 54

41 7818

12 60

67

90

← Second performance
table on page 407.

RECURSION AND TREES §14.4456

With a binary search tree, both operations can be O (log n), much better than O (n)
for large n. (Remember that in big-O notation it does not matter what base we
choose for the logarithms.) Here is the analysis for a full binary tree, that is to say
one in which both subtrees of any given node have exactly the same height h:

It is clear, by induction on h, that the number of nodes n in a full tree of height

h is 2h – 1 (in the above figure, h is 3 and n is 7). This implies that for a given
number of nodes n the height is log2 (n + 1), which is O (log n). In a full tree,

both a search and an insertion — using algorithms given below, which you can
already guess — will start from the root and follow a downward path to a leaf,
taking O (log n) time. This is the major attraction of binary search trees.

Of course most practical binary trees are not full; if you are out of luck with
the order of insertion, the performance can be as bad as with sequential lists,
O (n) — with added storage costs since each node has both a left field and a
right field where a linked list cell has just one. The following figure shows such
cases: insertions in descending order (A), ascending order (B), greatest then
smallest then second greatest and so on (C).

With a random enough order of insertions, however, the binary search tree will
remain sufficiently close to full to ensure O (log n) behavior. You can actually
guarantee O (log n) insertions, searches and deletions by using the AVL or
“red-black” variants of binary search trees, which remain near-full.

Inserting, searching, deleting

Here is a recursive routine for searching a binary search tree (this routine and
the following ones are to be added to the binary search tree class):

A full binary tree

← “Theorem: Down-
ward Path”, page 451.

Some binary
search tree
schemes causing
O (n) behavior

(A) (B) (C)

On these techniques,
see the bibliographic
references of the previ-
ous chapter, for exam-
ple Cormen et al.
(page 433).

§14.4 BINARY TREES 457

The algorithm is O (h) where h is the height of the tree, meaning O (log n) for
full or near-full trees.

In this case there is a reasonably simple non-recursive version, using a loop:

has (x: G): BOOLEAN
-- Does x appear in any node?

require
argument_exists: x /= Void

do
if x ~ item then

Result := True

elseif x < item then
Result := (left /=Void) and then

else -- x > item
Result := (right /= Void) and then

end
end

has1 (x: G): BOOLEAN
-- Does x appear in any node?

require
argument_exists: x /= Void

local
node: BINARY_TREE [G]

do
from

node := Current
until

Result or node = Void
invariant

-- x does not appear above node on downward path from root
loop

if x < item then
node := left

elseif x > item then
node := right

else
Result := True

end
variant

-- (Height of tree) – (Length of path from root to node)
end

end

~ is object equality.

left.has (x)

right.has (x)

← The variant and
invariant are
pseudocode; see
“Touch of Style: High-
lighting pseudocode”,
page 109.

RECURSION AND TREES §14.4458

For inserting an element, we may use the following recursive procedure:

The absence of an else clause for the outermost if reflects the decision to ban
duplicate information. As a consequence, a call to put with an already present
value will have no effect. This is correct behavior (“not a bug but a feature”),
since the header comment is clear. Some users might, however, prefer a different
API with a precondition stating not has (x).

The non-recursive version is left as an exercise.

The next natural question is how to write a deletion procedure remove (x: G).
This is less simple because we cannot just remove the node containing x (unless
it is a leaf and not the root, in which case we make the corresponding left or right
reference void); we also cannot leave an arbitrary value there since it would
destroy the Binary Search Tree Invariant.

More precisely we could put a special boolean attribute in every node, indicating
whether the item value is meaningful, but that makes things too complicated, wastes
space and affects the other algorithms.

What we should do is reorganize the node values, moving up some of those
found in subtrees of the node where we find x to reestablish the Binary Search
Tree Invariant.

put (x: G)
-- Insert x if not already present.

require
argument_exists: x /= Void

do
if x < item then

if left = Void then
add_left (x)

else

end

elseif x > item then
if right = Void then

add_right (x)
else

end
end

end

← About add_left and
add_right see page 452.

left.put (x)

right.put (x)

← See page 455.

→ 14-E.5, page 502.

§14.5 BACKTRACKING AND ALPHA-BETA 459

In the example binary search tree, a call remove (35),
affecting the value in the root node, might either:

• Move up all the values from the left subtree (where
each node has a single child, on the left).

• Move up the value in the right child, 54, then
recursively apply a similar choice to move values
up in one of its subtrees.

Like search and insertion, the process should be O (h)
where h is the height of the tree, in favorable cases.

The deletion procedure is left as an exercise; I
suggest you try your hand at it now, following the inspiration of the
preceding routines:

14.5 BACKTRACKING AND ALPHA-BETA

Before we explore the theoretical basis of recursive programming, it is useful to
look into one more application, or rather a whole class of applications, for which
recursion is the natural tool: backtracking algorithms.

The name carries the basic idea: a backtracking algorithm looks for a
solution to a certain problem by trying successive paths and, whenever a path
reaches a dead end, backing up to a previous path from which not all possible
continuations have been tried. The process ends successfully if it finds a path
that yields a solution, and otherwise fails after exhausting all possible paths, or
hitting a preset termination condition such as a search time limit.

A problem may be amenable to backtracking if every potential solution can
be defined as a sequence of choices.

The plight of the shy tourist

You may have applied backtracking, as a last resort, to reach a travel destination.
Say you are at position A (Zurich main station) and want to get to B (between the
main buildings of ETH and the University of Zurich):

Programming Time!
Deletion in a binary search tree

Write a procedure remove (x: G) that removes from a binary search tree the
node, if any, of item value x, preserving the Binary Search tree Invariant.

35

23 54

41 7818

12 60

67

90

(From the figure on page 447.)

RECURSION AND TREES §14.5460

Not having a map and too shy to ask for directions, you are reduced to trying out
streets and checking, after each try, if you have arrived (you do have a photo of
the destination). You know that the destination is towards the East; so, to avoid
cycles, you ignore any westward street segment.

At each step you try street segments starting from the north, clockwise: the
first attempt takes you to position 1. You realize that it is not your destination;
since the only possible segment from there goes west, this is a dead end: you
backtrack to A and try the next choice from there, taking you to 2. From there
you try 3, again a dead end as all segments go west. You backtrack to the
previous position, 2.

If all valid (non-westward) positions had been tried, 2 would be a dead-end
too, and you would have to go back to A, but there remains an unexplored
choice, leading to 4.

The process continues like this; you can complete the itinerary on the map
above. While not necessarily the best technique for traveling, it is sometimes the
only possible one, and it is representative of the general trial-and-error scheme
of backtrack programming. This scheme can be expressed as a recursive routine:

Trying and
backtracking

B

A
2

4

Intermediate

1

Dead-end

state

3

§14.5 BACKTRACKING AND ALPHA-BETA 461

This uses the following conventions: the choices at every step are described by
a type CHOICE (in many cases you may be able to use just INTEGER); there
is also a type PATH, but a path is simply a sequence of choices, and p + c is
the path obtained by appending c to p. We identify a solution with the path
that leads to it, so find returns a PATH; by convention that result is void if find
finds no solution. To know if a path yields a solution we have the query
is_solution. The list of choices available from p — an empty list if p is a dead
end — is p.choices.

To obtain the solution to a problem it suffices to use find (p0) where p0 is
an initial, empty path.

As usual, Result is initialized to Void, so that if in a call to find (p) none of
the recursive calls on possible extensions p + c of p yields a solution — in
particular, if there are no such extensions as p.choices is empty — the loop will
terminate with c.after; then find (p) itself will return Void. If this was the
original call find (p0), the process terminates without producing a solution; but
if not, it is a recursively triggered call, and the parent call will simply resume by
trying the next remaining choice if any (or returning Void too if none are left).

find (p: PATH): PATH
-- Solution, if any, starting at p.

require
meaningful: p /= Void

local
c: LIST [CHOICE]

do
if p.is_solution then

Result := p
else

c := p.choices
from c.start until

(Result /= Void) or c.after
loop

Result :=
c.forth

end
end

end

find (p + c)

RECURSION AND TREES §14.5462

If, on the other hand, the call finds p to be a solution, it returns p as its result,
and all the callers up the chain will return it as well, terminating their list
traversals through the Result /= Void clause of the exit condition.

Recursion is clearly essential to handle such a scheme. It is a natural way to
express the trial-and-error nature of backtracking algorithms; the machinery of
recursion takes care of everything. To realize its contribution, imagine for a
second how you would program such a scheme without recursion, keeping track
of previously visited positions. (I am not suggesting you actually write out the
full non-recursive version, at least not until you have read about
derecursification techniques further in this chapter.)

The later discussion also shows how to improve the efficiency of the given
algorithm by removing unnecessary bookkeeping. For example it is not really
necessary to pass the path p as an explicit argument, taking up space on the call
stack; p can instead be an attribute, if we add p := p + x before the recursive call and
p := p.head after it (where head yields a copy of a sequence with its last element
removed). We will develop a general framework allowing us to carry out such
optimizations safely.

Getting backtracking right

The general backtracking scheme requires some tuning for practical use. First,
as given, it is not guaranteed to terminate, as it could go on exploring ever longer
paths. To ensure that any execution terminates, you should either:

• Have a guarantee (from the problem domain) that there are no infinite paths;
in other words, that repeatedly extending any path will eventually yield a
path with an empty choices list.

• Define a maximum path length and adapt the algorithm so that it treats any
path as a dead-end when it reaches that limit. Instead of the path length you
may also limit the computation time. Either variant is a simple change to the
preceding algorithm.

In addition, a practical implementation can usually detect that a path is
equivalent to another; for example, with the situation pictured

→ “Implementation of
recursive routines”,
14.9, page 486.

→ “Preserving and
restoring the context”,
page 488.

→ Exercise “Back-
tracking curtailed”,
14-E.8, page 503.

Path with a cycle
1

3

2

4

§14.5 BACKTRACKING AND ALPHA-BETA 463

the paths [1 2 3 4], [1 2 3 4], [1 2 3 4 2] etc. are all equivalent.
The example of finding an itinerary to a destination avoided this problem through
an expedient — never go west, young man — but this is not a generalizable
solution. To avoid running into such cycles, the algorithm should keep a list of
previously visited positions, and ignore any path leading to such a position.

Backtracking and trees

Any problem that lends itself to a backtracking solution also lends itself to
modeling by a tree. In establishing this correspondence, we use trees where a
node may have any number of children, generalizing the concepts defined
earlier for binary trees. A path in the tree (sequence of nodes) corresponds to a
path in the backtracking algorithm (sequence of choices); the tree of the
itinerary example, limited to the choices that we tried, is:

We can represent the entire town map in this way: nodes for locations,
connected by edges representing street segment. The result is a graph. A graph
only yields a tree if it has no cycles. Here this is not the case, but we can get a
tree, called a spanning tree for the graph, containing all of its nodes and some
of its edges, through one of the techniques mentioned earlier: using a
cycle-avoiding convention such as never going west, or building paths from a
root and excluding any edge that leads to a previously encountered node. The
above tree is a spanning tree for the part of our example that includes nodes A,
1, 2, 3 and 4.

With this tree representation of the problem:

• A solution is a node that satisfies the given criterion (the property earlier
called is_solution, adapted to apply to nodes rather than paths).

• An execution of the algorithm is simply a preorder (depth-first) traversal
of the tree.

In the example, our preorder traversal visited nodes A, 1, 2, 3 and 4 in this order.

2 3 4 2 3 4 2 3 4

→ Exercise “Cycles
despised”, 14-E.9,
page 503.

← “Binary trees”,
14.4, page 447.

→ “Trying and back-
tracking”, page 460.

Backtrack treeA

2

4

1

3

← About this adapta-
tion see “Definition:
Tree associated with a
node”, page 448.

RECURSION AND TREES §14.5464

This correspondence indicates that “Preorder” and “backtracking” are
essentially the same idea : the rule that whenever we consider a possible path
we exhaust all its possible extensions — all the subtrees of its final node —
before we look at any of the alternative choices at the same level, represented
by siblings of its node. For example if A in the previous figure has a third child,
the traversal will not consider it before it has exhausted all the subtrees of 2.

The only property distinguishing a backtracking algorithm from an ordinary
preorder traversal is that it stops as soon as it finds a node satisfying the given criterion.

“Preorder” was defined for binary trees as root first, then left subtree, then right

subtree. The left-to-right order — generalized to arbitrary trees by assuming that the

children of each node are ordered — is not essential here; “depth-first” does not

imply any such ordering. It is just as simple, however, to assume that the choices

open to the algorithm at every stage are numbered, and tried in order.

Minimax

An interesting example of the backtracking strategy, also modeled naturally as
a tree, is the “minimax” technique for games such as chess. It is applicable if
you can make the following assumptions about the game:

• It is a two-player game. We assume two players called Minnie and
Maximilian, the latter familiarly known as Maxi.

• To evaluate the situation at any time during a game, you have an evaluation
function with a numerical value, devised so that a lower value is better for
Minnie and a higher one for Maxi.

A primitive evaluation function in checkers, assuming Maxi is Black, would be

(mb – mw) + 3 ∗ (kb – kw) where mb, mw are the numbers of black and white “men”

and kb, kw the corresponding numbers of “kings”; the evaluation function considers

a king to be worth three times as much as a man. Good game-playing programs use

far more sophisticated functions.

Minnie looks for a sequence of moves leading to a position that minimizes the
evaluation function, and Maxi for one that maximizes it.

§14.5 BACKTRACKING AND ALPHA-BETA 465

Each player uses the minimax strategy to choose, from a game position, one of
the legal moves. The tree model represents possible games; successive levels of
the tree alternatively represent the moves of each player.

In the figure, we start from a position where it is Minnie’s turn to play. The
goal of the strategy is to let Minnie choose, among the moves available from the
current position (three in the figure), the one that guarantees the best outcome
— meaning, in her case, the minimal guaranteed evaluation function value in
leaves of the tree. The method is symmetric, so Maxi would rely on the same
mechanism, maximizing instead of minimizing.

This assumption of symmetry is essential to the minimax strategy, which
performs a depth-first traversal of the tree of moves to assign a value to
every node:

M1 The value of a leaf is the result of applying the evaluation function to the
corresponding game position.

M2 The value of an internal node from which the moves are Maxi’s is the
maximum of the of the node’s children.

M3 In Minnie’s case it is the minimum of the children’s .

The value of the game as a whole is the value associated with the root node. To
obtain a strategy we must retain for each internal node, in cases M2 and M3, not
only the value but also the child choice that leads to this value. Here is an
illustration of the strategy obtained by assuming some values for the evaluation
function (shown in color) in the leaves of our example tree:

Game treeMinnie

Minnie

Maxi

values

values

RECURSION AND TREES §14.5466

You can see that the value at each node is the minimum (at levels 1 and 3) or
maximum (at level 2) of the values of the children. The desirable move for
Minnie, guaranteeing the minimum value , is choice C.

Backtracking is appropriate for minimax since the strategy must obtain the
values for every node’s children before it can determine the value for the node
itself, requiring a depth-first traversal.

The following algorithm, a variation on the earlier general backtracking
scheme, implements these ideas. It is expressed as a function minimax returning
a pair of integers: guaranteed value from a starting position p, initial choice
leading to that value. The second argument l is the level at which position p
appears in the overall game tree; the first move from that position, returned as part
of the result, is Minnie’s move as in the figures if l is odd, and Maxi’s if l is even.

minimax (p: POSITION; l: INTEGER): TUPLE [value, choice: INTEGER]
-- Optimal strategy (value + choice) at level l starting from p.

local
next: TUPLE [value, choice: INTEGER]

do
if p.is_terminal (l) then

Result := [value: p.value; choice: 0]
else

c := p.choices
from

Result := worst (l)
c.start

until c.after loop
next :=
Result := better (next, Result, l)

end
end

end

Game tree with
valuations

Minnie (level 1)

Minnie (level 3)

Maxi (level 2)

124 –96 59 –78 3

–7548 –9

–78 5

–7

A B C

10 2

2

20–1

–1

–7

minimax (p.moved (c.item), l + 1)

§14.5 BACKTRACKING AND ALPHA-BETA 467

To represent the result, we use a tuple of integers representing the value and
the choice.

The auxiliary functions worst and better are there to switch between
Minnie’s and Maxi’s viewpoints: the player is minimizing for any odd level l
and maximizing for any even l.

To determine the worst possible value for either player we assume constants
Max, with a very large value, and Min, with a very small value, for example the
largest and smallest representable integers.

Function minimax assumes the following features from class POSITION:

• is_terminal indicates that no moves should be explored from a position.

• In that case value gives the value of the evaluation function. (The query
value may have the precondition is_terminal.)

• For a non-terminal position choices yields the list of choices, each
represented by an integer, leading to a legal moves.

• If i is such a choice, moved (i) gives the position resulting from applying the
corresponding move to the current position.

worst (l: INTEGER): INTEGER
-- Worst possible value for the player at level l.

do
if l \\ 2 = 1 then Result := Max else Result := Min end

end

better (a, b: TUPLE [value, choice: INTEGER]; l: INTEGER):
TUPLE [value, choice: INTEGER]

-- The better of a and b, according to their value, for player at level l.
do

if l \\ 2 = 1 then
Result := (a.value < b.value)

else
Result := (a.value > b.value)

end
end

\\ is integer remainder.

To avoid the repeated
use of the TUPLE
type, you may instead
define a small class
GAME_RESULT with
integer attributes
value and choice.

RECURSION AND TREES §14.5468

The simplest way to ensure that the algorithm terminates is to limit the depth of

the exploration to a set number of levels Limit. This is why is_terminal as given

includes the level l as argument; it can then be written as just

In practice a more sophisticated cutoff criterion is appropriate; for example the

algorithm could keep track of CPU time and stop exploration from a given

position when the exploration time reaches a preset maximum.

To run the strategy we call minimax (initial, 1) where initial is the initial

game position. Level 1, odd, indicates that the first move is Minnie’s.

Alpha-beta

The minimax strategy as seen so far always performs a full backtracking

traversal of the tree of relevant moves. An optimization known as alpha-beta

pruning can significantly improve its efficiency by skipping the exploration of

entire subtrees. It is a clever idea, worth taking a look at not just because it is

clever but also as an example of refining a recursive algorithm.

Alpha-beta is only meaningful if, as has been our assumption for minimax,

the game strategy for each of the two players assumes that the other player’s

strategy is reversed (one minimizes, the other maximizes) but otherwise identical.

The insight that can trim entire subtrees in the exploration is that it is not

necessary for a player at level l + 1 to continue exploring a subtree if it finds that

this could only deliver a result better for the player itself, and hence worse for

its adversary, than what the adversary has already guaranteed at level l: the

adversary, which uses the reversed version of the strategy, would never select

that subtree.

is_terminal (l: INTEGER): BOOLEAN
-- Should exploration, at level l, stop at current position?

do
Result := (l = Limit) or choices.is_empty

end

This discussion refers
to a player as “it”
since our players are
program elements.

§14.5 BACKTRACKING AND ALPHA-BETA 469

The previous example provides an illustration. Consider the situation after
the minimax algorithm has explored some of the initial nodes:

We are in the process of computing the value (a maximum) for node Ma1, and
as part of this goal the value (a minimum) for node Mi2. From exploring the first
subtree of Ma1, rooted at Mi1, we already have a tentative maximum value for
Ma1: 8, signaled by a question mark since it is only temporary. This means a
guarantee for Maxi that he will not do, at Ma1, worse than 8. For Maxi, “worse”
means lower. In exploring the Mi2 subtree we come to Ma2, where the value —
obtained in this case from the evaluation function since Ma2 is a leaf, but the
reasoning would apply to any node — is 6. So at node Mi2 Minnie will not do
worse (meaning, in her case, higher) than 6. But then Maxi would never, from
node Ma2, take choice B leading to Mi2, since he already has a better result from
choice A. Continuing to explore the subtree rooted at Mi2, part of choice B,
would just be a waste of time. So as soon as it has found value 6 at Ma2 the
alpha-beta strategy discards the rest of the Mi2 subtree.

In the figure’s example there is only one node left in the Mi2 subtree after Ma2 and
we are at the leaf level, but of course Ma2 could have many more right siblings with
large subtrees.

Not only is this optimization an interesting insight; it also provides a good
opportunity to hone our recursive programming skills. Indeed do not wait for the
solution (that is to say, refrain from turning the page just now!) and try first to
devise it by yourself:

Programming time!
Adding Alpha-beta to Minimax

Adapt the minimax algorithm, as given earlier, so that it will use the alpha-beta
strategy to avoid exploring useless subtrees.

Trimming barren
subtrees

98

8

8?

–7

10

Minnie

Maxi
Mi2

Ma1

Mi1

Ma2

6?

A B

Minnie

6

← Function minimax,
page 466.

RECURSION AND TREES §14.5470

The extension is simple. (Well, as you will have noted if you did try, it requires
some care to get the details right, in particular to avoid getting our better
comparisons upside down.) The routine needs one more argument to denote
the value, if any, already guaranteed for the adversary at the level immediately
above. Here is minimax updated for Alpha-beta, additions highlighted:

Each player now stops exploring its alternatives whenever it finds a result that
is “better” for the adversary than the “guarantee” the adversary may already
have assured.

Since better was defined without a precondition it will accept a zero level, so it is
acceptable to pass it l – 1. We might equivalently pass l + 1. In fact a slightly simpler
variant of better (guarantee, Result, l – 1) is better (Result, guarantee, l); it is
equivalent thanks to the symmetric nature of the strategy.

The recursive call passes as a “guarantee” to the next level the best Result
obtained so far for the current level. As a consequence, alpha-beta’s trimming,
which stops the traversal of a node’s children when it hits the new exit trigger

, will never occur when the node itself is the
first child of its own parent; this is because the loop initializes Result to the worst
value for the player, so the initial guarantee is useless. Only when the traversal
moves on to subsequent children does it get a chance to trigger the optimization.

Minimax and alpha-beta provide a representative picture of backtracking
algorithms, which have widespread applications to problems defined by large
search spaces. The key to successful backtracking strategies is often — as
illustrated by alpha-beta — to find insights that avoid exhaustive search.

alpha_beta (p: POSITION; l: INTEGER;):
TUPLE [value, choice: INTEGER]

-- Optimal strategy (value + choice) at level l, starting from p.
-- Even level minimizes, odd level maximizes.

local
next: TUPLE [value, choice: INTEGER]

do
if p.is_terminal (l) then

Result := [value: p.value; choice: 0]
else

c := p.choices
from

Result := worst (l)
c.start

until c.after loop
next := minimax (p.moved (c.item), l + 1),)
Result := better (next, Result, l)

end
end

end

← The parts not high-
lighted are unchanged
from minimax, page
466 (departing from
the convention of the
rest of this chapter,
which highlights
recursive branches).

guarantee: INTEGER

or better (guarantee, Result, l – 1)
Result

better (guarantee, Result, l – 1)

§14.6 FROM LOOPS TO RECURSION 471

14.6 FROM LOOPS TO RECURSION

Back to the general machinery of recursion.

We have seen that some recursive algorithms — Fibonacci numbers, search
and insertion for binary search trees — have a loop equivalent. What about the
other way around?

It is indeed not hard to replace any loop by a recursive routine. Consider an
arbitrary loop, given here without its invariant and variant (although we will see
their recursive counterparts later):

We may replace it by

with the procedure

In functional languages (such as Lisp, Scheme, Haskell, ML), the recursive
form is the preferred style, even if loops are available. We could use it too in our
framework, replacing for example the first complete example of the discussion
of loops, which animated a Metro line by moving a red dot, with

from Init until Exit loop Body end

Init
loop_equiv

loop_equiv
--Emulate a loop of exit condition Exit and body Body.

do
if not Exit then

Body

end
end

Line8.start
animate_rest (Line8)

Loop_equiv

← “Functional pro-
gramming and func-
tional languages”,
page 324.

← Page 168.

RECURSION AND TREES §14.6472

relying on the auxiliary routine

(A more complete version should restore the cursor to its original position.)

The recursive version is elegant, but there is no particular reason in our
framework to prefer it to the loop form; indeed we will continue to use loops.

The conclusion might be different if we were using functional programming
languages, where systematic reliance on recursive routines is part of a distinctive
style of programming.

Even if just for theoretical purposes, it is interesting to know that loops are
conceptually not needed if we have routines that can be recursive. As an
example, recursion gives us a more concise version of the loop-based routine
paradox demonstrating the unsolvability of the Halting Problem:

Knowing that we can easily emulate loops with recursion, it is natural to ask
about the reverse transformation. Do we really need recursive routines, or could
we use loops instead?

We have seen straightforward cases: Fibonacci as well as has and put for
binary search trees. Others such as hanoi, height, print_all do not have an
immediately obvious recursion-free equivalent. To understand what exactly
can be done we must first look more closely into the meaning and properties
of recursive routines.

animate_rest (line: LINE)
-- Animate stations of line from current cursor position on

do
if not line.after then

show_spot (line.item.location)
line.forth

end
end

recursive_paradox
-- Terminate if and only if not.

do
if terminates ("C:\your_project") then

end
end

animate_rest (line)

← “An application:
proving the undecid-
ability of the halting
problem”, page 223.

recursive_paradox

§14.7 MAKING SENSE OF RECURSION 473

14.7 MAKING SENSE OF RECURSION

The experience of our first few recursive schemes allows us to probe a bit deeper
into the meaning of recursive definitions.

Vicious circle?

First we go back to the impolite but inevitable question: does the recursive
emperor have any clothes? That is to say, does a recursive definition mean
anything at all? The examples, especially those of recursive routines, should by
now be sufficiently convincing to suggest a positive answer, but we should still
retain a healthy dose of doubt. After all we keep venturing dangerously close to
definitions that make no sense at all — vicious circles. With recursion we try to
define a concept in terms of itself, but we cannot just define it as itself. If I say

I have not defined anything at all, just stated a tautology; not one of those
tautologies of logic, which are things to prove and hence possibly interesting,
just a platitude. If I refine this into

I have added some usable elements but still not produced a satisfactory
definition. Recursive routines can, similarly, be obviously useless, as:

which for any value of the argument would execute forever, never producing
any result.

“Forever” in this case means, for a typical compiler’s implementation of recursion
on an actual computer, “until the stack overflows and causes the program to crash”.
So in practice, given the speed of computers, “forever” does not last long. — you
can try the example for yourself.

How do we avoid such obvious misuses of recursion? If we attempt to
understand why the recursive definitions seen so far seem intuitively to make
sense, we can nail down three interesting properties:

“Computer science is the study of computer science”

“Computer science is the study of programming, data structures, algorithms,
applications, theories and other areas of computer science”

p (x: INTEGER)
-- What good is this?

do end

← “Definition: Tau-
tology”, page 78.

p (x)

→ You can see an
example of the result
on page 665.

RECURSION AND TREES §14.7474

For a recursive routine, the change of “context” (R2) may be that the call

uses a different argument, as will a call r (n–1) in a routine r (n: INTEGER);

that it applies to a different target, as in a call x.r (n) where x is not the

current object; or that it occurs after the routine has changed at least one field

of at least one object.

The recursive routines seen so far satisfy these requirements:

• The body of Hanoi (n, …) is of the form if n > 0 then … end where the

recursive calls are in the then part, but there is no else part, so the routine

does nothing for n = 0 (R1). The recursive calls are of the form

Hanoi (n–1, …), changing the first argument and also switching the order

of the others (R2). Replacing n by n–1 brings the context closer to the

non-recursive case n = 0 (R3).

• The recursive has for binary search trees has non-recursive cases for

x = item, as well as for x < item if there is no left subtree, and x > item if there

is no right subtree (R1). It calls itself recursively on a different target, left or

right rather than the current object (R2); every such call goes to the left or

right subtree, closer to the leaves, where the recursion terminates (R3). The

same scheme governs other recursive routines on binary trees, such

as height.

• The recursive version of the metro line traversal, animate_rest, has a

non-recursive branch (R1), doing nothing, for a cursor that is after. The

recursive call does not change the argument, but it is preceded by a call

line.forth which changes the state of the line list (R2), moving the cursor

closer to a state satisfying after and hence to the non-recursive case (R3).

Touch of Methodology:
Well-formed recursive definition

A useful recursive definition should ensure that:
R1 There is at least one non-recursive branch.
R2 Every recursive branch occurs in a context that differs from the original.
R3 For every recursive branch, the change of context (R2) brings it closer to

at least one of the non-recursive cases (R1).

← Page 443.

← Page 457.

← Page 452.

← Page 472.

§14.7 MAKING SENSE OF RECURSION 475

R1, R2 and R3 also hold for recursive definitions of concepts other than routines:

• The mini-grammar for Instruction has the non-recursive case Assignment.

• All our recursively defined data structures, such as STOP, are recursive
through references (never through expanded values), and references can be
void; in linked structures, void values serve as terminators.

In the case of recursive routines, combining the above three rules suggests a
notion of variant similar to the loop variants through which we guarantee that
loops terminate:

The variant may involve the arguments of the routine, as well as other parts of
its environment such as attributes of the current object or of other objects. In the
examples just reviewed:

• For Hanoi (n, …), the variant is n.

• For has, height, print_all and other recursive traversals of binary trees, the
variant is node_height, the longest length of a path from the current node to
a leaf.

• For animate_rest, the variant is, as for the corresponding loop, Line8.count
– Line8.index + 1.

There is no special syntax for recursion variants, but we will use a comment of
the following form, here for hanoi:

Touch of Methodology:
Recursion Variant

Every recursive routine should be declared with an associated recursion
variant, an integer quantity associated with any call, such that:
• The routine’s precondition implies that the variant is non-negative.

• If an execution of the routine starts with a value v for the variant, the value
v’ of the variant for any recursive call satisfies 0 ≤ v’ < v.

-- variant n

← Page 437.

← Page 437.

← “Loop termination
and the halting prob-
lem”, page 161.

← Page 168.

RECURSION AND TREES §14.7476

Boutique cases of recursion

The well-formedness rules seem so reasonable that we might think they are
necessary, not just sufficient, to make a recursive definition meaningful. Such is
indeed the case with the first two properties:

• R1: if all branches of a definition are recursive, it cannot ever yield any instance
we do not already know. In the case of a recursive routine, execution will not
terminate, except in practice through a crash following memory exhaustion.

• R2: if a recursive branch applies to the original context, it cannot ever yield
an instance we do not already know. For a recursive routine — say p (x: T)
with a branch that calls p (x) for the same x with nothing else changed —
this means that the branch, if taken, would lead to non-termination. For
other recursive definitions, it means the branch is useless.

The story is different for R3, if we take this rule as requiring a clearly visible
recursion variant such as the argument n for Hanoi. Some recursive routines which
do terminate violate this property. Here are two examples. They have no practical
application, but highlight general properties of which you must be aware.

McCarthy’s 91 function was devised by John McCarthy, a professor at
Stanford University, designer of the Lisp programming language (where
recursion plays a prominent role) and one of the creators of Artificial
Intelligence. We may write it as follows:

The value for n > 100 is clearly n – 10, but it is far less obvious — from a
computation shrouded in two nested recursive calls — that for any integer up to
99, including negative values, the result will be 91, explaining the function’s
name. The computation indeed terminates on every possible integer value. Yet
it has no obvious variant; mc_carthy (mc_carthy (n + 11)) actually uses as
argument of the innermost recursive call a higher value than the original!

mc_carthy (n: INTEGER): INTEGER
-- McCarthy’s 91 function.

do
if n > 100 then

Result := n – 10
else

Result := mc_carthy (mc_carthy (n + 11))
end

end

← See “Functional
programming and
functional lan-
guages”, page 324
(with photograph of
McCarthy).

§14.7 MAKING SENSE OF RECURSION 477

Here is another example, also a mathematical oddity:

This uses the operator // for rounded down integer division (5 // 2 and 4 // 2 are
both 2), and a boolean expression even (n) to denote whether n is an even
integer; even (n) can also be expressed as n \\ 2 = 0, using the integer remainder
operator \\. The two occurrences of a // division in the algorithm apply to even
numbers, so they are exact.

Clearly, if this function gives any result at all, that result can only be 1, the
value produced by the sole non-recursive branch. Less clear is whether it will
give this result — that is to say, terminate — for any possible argument. The
answer seems to be yes; if you write the program, and try it on sample values,
including large ones, you will be surprised to see how fast it converges. Yet there
is no obvious recursion variant; here too the change seems to go in the wrong
direction: the new argument in the second recursive branch, (3 ∗ n + 1) // 2, is
actually larger than n, the previous value.

These are boutique examples, but we must take their existence into account
in any general understanding of recursion. They mean that some recursive
definitions exist that do not satisfy the seemingly reasonable methodological
rules discussed above — and still yield well-defined results.

Note that such examples, if they terminate for every possible argument, do
have a variant: since for any execution of the routine the number of remaining
recursive calls is entirely determined by the program’s state at the time of the
call; it is a function of the state, and can serve as a variant. Rather, it could serve
as a variant if we knew how to express it. If we don’t, its theoretical existence
does not help us much.

bizarre (n: INTEGER): INTEGER
-- A function that can yield only a 1.

require
positive: n >= 1

do
if n = 1 then

Result := 1
elseif even (n) then

Result := bizarre (n // 2)
else -- i.e. for n odd and n > 1

Result := bizarre ((3 ∗ n + 1) // 2)
end

end

n / 2, using the other
division operator /,
would give a REAL
result; for example 5 /2
is 2.5.

RECURSION AND TREES §14.7478

You will have noted that it is not possible to determine automatically — through
compilers or any other program analysis tools — whether a routine has a recursive
variant, even less to derive such a variant automatically: that would mean that we
can solve the Halting Problem.

In practice we dismiss such examples and limit ourselves to recursive
definitions that possess properties R1, R2 and R3, guaranteeing that they are
safe. In particular, whenever you write a recursive routine, you must always —
as in the examples of the rest of this chapter — explicitly list a recursive variant.

Keeping definitions non-creative

Even with well-formedness rules and recursion variants, we are not yet off the
hook in our attempts to use recursion and still sleep at night. The problem is that
a recursive “definition” is not a definition in the usual sense because it can
be creative.

An axiom in mathematics is creative: it tells us something that we cannot
deduce without it, for example (in the standard axioms for integers) that n < n’
holds for any integer n, where n’ is the next integer. The basic laws of natural
sciences are also creative, for example the rule that nothing can travel faster than
the speed of light.

Theorems in mathematics, and specific results in physics, are not creative:
they state properties that can be deduced from the axioms or laws. They are
interesting on their own, and may start us on the path to new theorems; but they
do not add any assumptions, only consequences of previous assumptions.

A definition too should be non-creative. It gives a new name for an object
of our world, but all statements we can express with the definition could be
expressed without it. We do not want to express them without it — otherwise
we would not introduce the definition — but we trust that in principle we could.
If I say

I have not added anything to mathematics; I am just allowing myself to use the

new notation e2, for any expression e, in lieu of the multiplication. Any property
that can be proved using the new form could also be proved — if more clumsily
— using the form that serves to define it.

The symbol , which we have taken to mean “is defined as” (starting with
BNF productions), assumes this principle of non-creativity of definitions. But
now consider a recursive definition, of the form

Define x2, for any x, as x ∗ x

f some_expression [1]

← “An application:
proving the undecid-
ability of the halting
problem”, page 223.

=Δ

← From page 298 on.

=Δ

§14.7 MAKING SENSE OF RECURSION 479

where some_expression involves f. It does not satisfy the principle any more! If
it did we could replace any occurrence of f by some_expression; this involves f
itself, so we would have to do it again, and so on ad infinitum. We have not
really defined anything.

Until we have solved this issue — by finding a convincing, non-creative
meaning for “definitions” such as [1] — we must be careful in our terminology.
We will reserve the symbol for non-recursive definitions; a property such as
[1] will be expressed as an equality

which simply states a property of the left and right sides. (We may also view it
as an equation, of which f must be a solution.) To be safe when talking about
recursive “definitions”, we will quarantine the second word in quotes.

The bottom-up view of recursive definitions

To sanitize recursion and bring it out of the quarantined area, it is useful to take
a bottom-up view of recursive routines and, more generally, recursive
“definitions”. I hope this will remove any feeling of dizziness that you may still
experience when seeing concepts or routines defined — apparently — in terms
of themselves.

In a recursive “definition”, the recursive branches are written in a top-down
way, defining the meaning of a concept in terms of the meaning of the same
concept for a “smaller” context — smaller in the sense of the variant. For
example, Fibonacci for n is expressed in terms of Fibonacci for n – 1 and n – 2;
the moves of Hanoi for n are expressed in terms of those for n – 1; and the syntax
for Instruction involves a Conditional that contains a smaller Instruction.

The bottom-up view is a different interpretation of the same definition,
treating it the other way around: as a mechanism that, from known values, gives
new ones. Here is how it works, first on the example of a function. For any
function f we may build the graph of the function: the set of pairs [x, f (x)] for
every applicable x. The graph of the Fibonacci function is the set

consisting of all pairs [n, Fibonacci (n)] for all non-negative integers n. This
graph contains all information about the function. You may prefer to think of it
in the following visual representation:

f some_expression [2]

F =Δ {[0, 0], [1, 1], [2, 1], [3, 2], [4, 3], [5, 5], [6, 8], [7, 13] …} [3]

=Δ

=

The quarantine ends
on page 482.

RECURSION AND TREES §14.7480

The top row lists possible arguments to the function; for each of them, the
bottom row gives the corresponding fibonacci number.

To give the function a recursive “definition” is to say that its graph F — as
a set of pairs — satisfies a certain property

for a certain function h applicable to such sets of pairs. This is like an equation
that F must satisfy, and is known as a fixpoint equation. A fixpoint equation
expresses that a certain mathematical object, here a function, remains invariant
under a certain transformation, here h.

For example to “define” the Fibonacci function recursively as

is to state that its graph F — the above set of pairs [3] — satisfies the fixpoint
equation F = h (F) [4] where h is the function that, given such a set of pairs,
yields a new one containing the following pairs:

G1 Every pair already in F.

G2 [0, 0]. -- The pair for n = 0: [0, fib (0)]

G3 [0, 1]. -- The pair for n = 0: [1, fib (1)]

G4 Every pair of the form [i, a + b] for some i such that F contains both a pair
of the form [i – 1, a] and another of the form [i – 2, b].

We can use this view to give any recursive “definition” a clear meaning, free of
any recursive mystery. We start from the function graph F0 that is empty (it
contains no pair). Next we define

F = h (F) [4]

fib (0) = 0
fib (1) = 1
fib (i) = fib (i – 1) + fib (i – 2)-- For i > 1

F1 =Δ h (F0)

INTEGER …

INTEGER …

0 1 1 3 82 5 13

0 1 2 4 63 5 7 A function graph
(for the Fibonacci
function)

§14.7 MAKING SENSE OF RECURSION 481

meaning, since G1 and G4 are not applicable in this case (as F0 has no pair), that
F1 is simply {[0, 0], [1, 1]}, with the two pairs given by G2 and G3. Next we
apply h once more to get

Here and in subsequent steps G2 and G3 give us nothing new, since the pairs
[0, 0] and [1, 1] are already in F1, but G4, applied to these two pairs from F1,
adds to F2 the pair [2, 1]. Continuing like this, we define a sequence of graphs:
F0 is empty, and each Fi+1 for i > 0 is defined as h (Fi). Now consider the infinite
union F of all the Fi for every natural integer i: F0 ∪ F1 ∪ F2 ∪ …, more
concisely written

where N is the set of natural integers. It is easy to see that this F satisfies the
property F = h (F) [4].

This is the non-recursive interpretation — the semantics — we give to the
recursive “definition” of Fibonacci.

In the general case, a fixpoint equation of the form [4] on function graphs,
stating that F must be equal to h (F), admits as a solution the function graph

where Fi is a sequence of function graphs defined as above:

This fixpoint approach is the basis of the bottom-up interpretation of recursive
computations. It removes the apparent mystery from these definitions because
it no longer involves defining anything “in terms of itself”: it simply views a
recursive “definition” as a fixpoint equation, and admits a solution obtained as
the union (similar to the limit of a sequence in mathematical analysis) of a
sequence of function graphs.

F2 =Δ h (F1)

F =Δ

F0 =Δ { } -- Empty set of pairs

Fi =
Δ h (Fi – 1) -- For i > 0

∪
i ∈N

Fi

∪
i ∈N

Fi

The empty set can, of
course, be written also
as ∅. The notation { }
emphasizes that it is a
set of pairs.

RECURSION AND TREES §14.7482

This immediately justifies the requirement that any useful recursive “definition”
must have a non-recursive branch: if not, the sequence, which starts with the empty
set of pairs F0 = { }, never gets any more pairs, because all the cases in the definition
of h are like G1 and G4 for Fibonacci, giving new pairs deduced from existing ones,
but there are no pairs to begin with.

This technique reduces recursive “definitions”, with all the doubts they raise as
to whether they define anything at all, to the well-known, traditional notion of
defining a sequence by induction.

The Fibonacci function is a good example for understanding the concepts,
but perhaps not sufficient to get really excited: after all, its usual definition in
mathematics textbooks already involves induction; only computer scientists
look at the function in a recursive way. What we saw is that we can treat its
recursive “definition” as an inductive definition — a good old definition,
without the quotes — of the function’s graph. We did not learn anything about
the function itself, other than a new viewpoint. Let us see whether the bottom-up
view can teach us something about a few of our other examples.

Bottom-up interpretation of a construct definition

Understood in a bottom-up spirit, the recursive definition of “type” has a clear
meaning. As you will remember, it said that a is either:

T1 A non-generic class, such as INTEGER or STATION.

T2 A generic derivation, of the form C [T], where C is a generic class and T
a .

T1 is the non-recursive case. The bottom-up perspective enables us to
understand the definition as building the set of types as a succession of layers.
Limiting for simplicity the number of possible generic parameters to one:

• Layer L0 has all the types defined by non-generic classes: INTEGER,
STATION and so on.

• Layer L1 has all the types of the form C [X], where C is a generic class and
X is at level L0: LIST [INTEGER], ARRAY [STATION] etc.

• More generally, layer Ln for any n > 0, has all the types of the form C [X],

where X is at level Li for i < n.

This way we get all possible types, generically derived or not.

← R1, page 474.

This is the end of the
“quarantine” decreed
on page 479.

← “Definitions: Class
type, generically
derived, base class”,
page 370.

type

type

§14.7 MAKING SENSE OF RECURSION 483

The towers, bottom-up

Now consider the Tower of Hanoi solution from a bottom-up perspective. We
may understand the routine as recursively defining a sequence of moves. Let’s
denote such a sequence — move a disk from the top of needle A to B, then one
from C to A and so on — as <A → B, C → Α, …>. The empty sequence of
moves will be < > and the concatenation of sequences will use a simple “+”, so
that <A → B, C → Α> + <B → A> is <A → B, C → Α, B → A>.

Then we may express the recursive solution to the Towers of Hanoi problem
as a function han with four arguments (an integer and three needles), yielding
sequences of moves, and satisfying the fixpoint equation

defined only when the values of s, t, o (short for source, target, other) are
different — we take them as before to range over 'A', 'B', 'C' — and n is positive.

The bottom-up construction of the function that solves this equation is simple.
[5] lets us initialize the function’s graph to all pairs for n = 0, each of the form

for s, t, o ranging over all permutations of 'A', 'B', 'C'. Let us call H0 this first part
of the graph, made of six pairs.

Now we may use [6] to obtain the next part H1, containing all the values for
n = 1; they are all of the form

since for any sequence x the concatenation < > + x or x + < > is x itself. The next
iteration of [6] gives us H2, whose pairs are of the form

for all s, t, o such that H1 contains both a pair of the form [(1, s, o, t), f1] and one
of the form [(1, o, t, s), g1].

han (n, s, t, o) =
< > -- If n = 0 [5]

han (n – 1, s, o, t) + + han (n – 1, o, t, s) -- If n > 0 [6]

[(, s, t, o),]

[(, s, t, o),]

[(, s, t, o), f1 + + g1]

<s → t>

0 < >

1 <s → t>

2 <s → t>

RECURSION AND TREES §14.7484

Iterating again will give us H3 and subsequent elements of the graph. The
complete graph — infinite of course, since it includes pairs for all possible
values of n — is the set of all pairs in all elements of the sequence, .

Here I strongly suggest that you get a concrete grasp of the bottom-up view
of recursive computation by writing a program that actually builds the graph:

A related exercise asks you to determine (without programming) the
mathematical properties of the graph.

Another important exercise directs you to apply a similar analysis to binary
tree traversals. You will have to devise a model for representing the solution,
similar to the one we have used here; instead of sequences of moves you will
simply use sequences of nodes.

Grammars as recursively defined functions

The bottom-up view is particularly intuitive for a recursive grammar, as in our
small example:

distilled even further here: ifc represents “if Condition then” and ast represents
Assignment, both treated as terminals for this discussion.

It is easy to see how to generate successive sentences of the language by
interpreting these productions in a bottom-up, fixpoint-equation style:

and so on. You can also look again, in light of the notion of bottom-up recursive
computation, at the earlier discussion of the little Game language.

It is possible to generalize this approach to arbitrary grammars by taking a
matrix view of a BNF description.

Programming time:
Producing the graph of a function

Write a program (not using recursion) that produces successive elements H0,
H1, H2 … of the function graph for the recursive Hanoi solution.

Instruction =Δ ast | Conditional

Conditional =Δ ifc Instruction end

ast
ifc ast end
ifc ifc ast end end
ifc ifc ifc ast end end end

∪
i ∈N

Hi

→ Details in exercise
14-E.11, page 503.

→ 14-E.10, page 503.

→ 14-E.12, page 503.

← Actual version
on page 437.

← “Recursive gram-
mars”, page 307.

→ Exercise 14-E.17,
page 504.

§14.8 CONTRACTS FOR RECURSIVE ROUTINES 485

14.8 CONTRACTS FOR RECURSIVE ROUTINES

We have learned to equip our classes and their features with contracts stating
their correctness properties: routine preconditions, routine postconditions, class
invariants; the same concerns applied to algorithms gave us loop variants and
loop invariants. How does recursion affect the picture?

We have already seen the notion of recursion variant. If a routine is
recursive directly or indirectly, you should include a mention of its variant. As
noted, we do not have specific language syntax for this but add a clause

to the routine’s header comment.

A recursive routine may have a precondition and postcondition like any
other routine. Because ensuring a precondition is always the responsibility of
the caller, and here the routine is its own caller, the novelty is that you must
ensure that all calls within the routine (or, for indirect recursion, in associated
routines) satisfy the precondition.

Here is the Towers of Hanoi routine with more complete contracts; the new
clauses, expressed as comments, are highlighted.

-- variant: integer_expression

hanoi (n: INTEGER; source, target, other: CHARACTER)
-- Transfer n disks from source to target, using other as intermediate
-- storage, according to rules of Tower of Hanoi puzzle.

require
non_negative: n >= 0
different1: source /= target
different2: target /= other
different3: source /= other

do
if n > 0 then

hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end
ensure

end

← “Touch of Method-
ology: Recursion Vari-
ant”, page 475.

← The original was on
page 443.

-- invariant: disks on each needle are piled in decreasing size.
-- variant: n

-- source has n disks; any disks on target and other are all
-- larger than all the disks on source.

-- Disks previously on source are now on target, in same order,
-- on top of those previously there if any; other is as before.

RECURSION AND TREES §14.9486

A properly specified recursive routine has a recursion invariant: a set of
properties that must hold both before and after each execution. In the absence
of a specific language mechanism they will just appear twice, in the
precondition as well as in the postcondition; for clarity you may also, as here,
include them in the header comment under the form

This is not a language construct but relies on the following convention:

• If the recursion invariant is just pseudocode expressed as a comment, as in
this example, do not repeat it in the precondition and postcondition; here
this means omitting from the precondition and postcondition the property
that any disks on the affected needles are piled up in decreasing size.

• Any recursion invariant clause that is formal (a boolean expression) should
be included in the precondition and postcondition, since there is no other
way to express it formally.

14.9 IMPLEMENTATION OF RECURSIVE ROUTINES

Recursive programming works well in certain problem areas, as illustrated by
the examples in this chapter. When recursion facilitates your job you should not
hesitate to use it, since in modern programming languages you can take
recursion for granted.

Since there is usually no direct support for recursion in machine code,
compilers for high-level languages must map a recursively expressed algorithm
into a non-recursive one. The applicable techniques are obviously important for
compiler writers, but even if you do not expect to become one it is useful to
know the basic ideas, both to gain further insight into recursion (complementing
the perspectives opened by previous sections) and to understand the potential
performance cost of using recursive algorithms.

We will look at some recursive schemes and ask ourselves how, if the
language did not permit recursion, we could devise non-recursive versions, also
called iterative, achieving the same results.

-- invariant: integer_expression

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 487

A recursive scheme

Consider a routine r that calls itself:

There might be several recursive calls, but we look at just one. What does it
mean — if we revert to a top-down view — to execute that call?

The presence of recursion implies that neither the beginning of the routine’s
code nor its end are just what they pretend to be:

• When code_before executes, this is not necessarily the beginning of a call
a.r (y) or r (y) executed by some client routine: it could result from an
instance of r calling itself recursively.

• When code_after terminates, this is not necessarily the end of the r story: it
may simply be the termination of one recursively called instance; execution
should resume for the last instance started and not terminated.

Routines and their execution instances

The key novelty in the last observation is the concept of instance (also called
activation) of a routine. We know that classes have instances — the “objects”
of object-oriented program execution — but we have not yet thought of routines
in a similar way.

At any moment during a program’s execution, the state of the computation is
characterized by a call chain as pictured above: the root procedure p has called
q which has called r… When an execution of a routine in the chain, say r,
terminates, the suspended execution of the calling routine, here q, resumes just
after the place where it had called r.

r (x: T)
do

code_before

code_after
end

r (y)

p
A call chain,
without recursion

calls

q
calls

r

RECURSION AND TREES §14.9488

In the absence of recursion, we did not need to make the concept of routine
instance explicit since any routine had, at any time, at most one active instance.
With recursion, the call chain may include two or more instances of the same
routine. Under direct recursion they will be contiguous:

For example a call hanoi (2, s, t, o) immediately starts a call hanoi (1, s, o, t)
which starts a call hanoi (0, s, t, o); at that stage we have three instances of the
procedure in the call chain.

A similar situation arises with indirect recursion:

Preserving and restoring the context

All instances of a routine share their program code; what distinguishes them is
their execution context. We have seen that in a useful case of recursion the
context of every call must differ by at least one element. The context elements
characterizing a routine instance (rather than object states) are:

• The values of the actual routine arguments, if any, for the particular call.

• The values of the local variables, if any.

• The location of the call in the text of the calling routine, defining where
execution should continue once the call completes.

As we saw when studying how stacks support the execution of programs in
modern languages, a data structure representing such a routine execution
context is called an activation record.

p
Call chain with
direct recursionq

r
r

r

p
Call chain with
indirect recursionq

s
q

s
q

s

← R2, page 474.

← “Using stacks”,
page 421.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 489

Assume a programming language that does not support recursion. Since at
any time during execution there is at most one instance of any routine, the
compiler-generated program can use a single activation record per routine. This
is known as static allocation, meaning that the memory for all activation
records can be allocated once and for all at the beginning of execution.

With recursion each activation of the routine needs its own context. This
leaves two possibilities for implementation:

I1 We can resort to dynamic allocation: whenever a routine instance starts,
create a fresh activation record to hold the routine’s context. Use this
activation record whenever the routine execution needs to access an
argument or local variable; use it too on instance termination, to determine
where execution must continue in the caller’s code. Resuming the caller’s
execution implies going back to its own activation record.

I2 To save space, we may note that the reason for keeping context information
in an activation record is to be able to restore it when an execution resumes
after a recursive call. An alternative to saving that information is to
recompute it. This is possible when the change performed by the recursive
call is invertible. The recursive calls in procedure hanoi (, …) are of the
form hanoi (, …); rather than storing the value of n into an activation
record, creating a new record holding the value n – 1, then restoring the
previous record on return, we may use a single location for n in all recursive
instances, as with static allocation: at call time, we decrease the value by
one; at return time, we increase the value by one.

The two techniques are not exclusive: you can save space by using I2 for values
whose transformation in calls (such as replacing n by n – 1) admits an easily
implemented inverse, and retain an activation record for the rest of the context.
The decision may involve a space-time tradeoff if the inverse transformation,
unlike the n := n + 1 example, is computationally expensive.

Using an explicit call stack

Of the two strategies for handling routine contexts let us look first at I1, which
relies on explicit activation records.

Like activation records, objects are created dynamically, as a result of
create instructions. The program memory area devoted to dynamically
allocated objects is known as the heap. But for activation records of routines we
do not need to use the heap since the patterns of activation and deactivation are
simple and predictable:

n
n – 1

← “Creating simple
objects”, 6.4, page 118.

RECURSION AND TREES §14.9490

• A call to a routine requires a new activation record.
• On returning from that call, we may forget this activation record (it will

never be useful again, since any new call will need its own values), and we
must restore the caller’s activation record.

This is a last-in, first-out pattern for which we have a ready-made data structure:
stacks. The stack of activation records will reflect the call chain, pictured here
going up:

We have encountered the stack of activation records before: it is the call stack
which keeps track of routine calls during execution. If you are programming in
a language supporting recursion, the call stack is the responsibility of the code
generated by the compiler. Here we are looking at how to manage it ourselves.

You can use an explicit stack of activation records to produce an iterative
equivalent of a recursive routine:
• To access local variables and arguments of the current routine: always use

the corresponding positions in the activation record at the top of the stack.
• Instead of a recursive call: create a new activation record; initialize it with

the value of the call’s arguments and the position of the call; push it on the
stack; and branch back (goto) to the beginning of the routine’s code.

• Instead of a return: return only if the stack is empty (no suspended call is
pending); otherwise, restore the arguments and local variables from the
activation record at the top of the stack, pop the stack, and branch to the
appropriate instruction based on the call position information found in the
activation record.

Note that both translation schemes involve goto instructions. That is fine if we
are talking about the machine code to be generated by a compiler; but when it
is a manual simulation of recursion in a high-level language we have learned to
avoid the goto and in fact Eiffel has no such instruction. We will have to write
gotos temporarily, then replace them by appropriate control structures.

← “Stacks”, 13.11,
page 420.

Call chain and the
corresponding call
stack

Top of stack

Activation record for p

Activation record (1) for q

Activation record (2) for s

Activation record (2) for q

Activation record (1) for s

p

q

q

s

s

← “Using stacks”,
page 421.

“Iterative”, defined
on page 486, means
non-recursive.

← “The goto instruc-
tion”, page 183.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 491

Recursion elimination essentials

Let us see how the scheme works for the body of hanoi with its two recursive
calls. We use a stack of activation records, called just stack:

with a small auxiliary class RECORD to describe activation records:

(Instead of a full-fledged class we could also just use tuples.) An instance of the
class represents the context of a call: the number of disks being moved (count),
the three needles in the order used by the call, and call telling us whether this
execution, if coming from a recursive call, came from the first or second call in

We use the stack of activation records to provide a non-recursive version of the
procedure, temporarily relying on gotos, as shown on the following page.

stack: STACK [RECORD]

note
description: "Data associated with a routine instance"

class RECORD create
make

feature -- Initialization
make (n: INTEGER; c: INTEGER; s, t, o: CHARACTER)

-- Initialize from count n, call c, source s, target t, intermediary o.
do

count := n ; call := c; source := s ; target := t ; other := o
end

feature -- Access
count: INTEGER.

-- Number of disks.

call: INTEGER
-- Identifies a recursive call: 1 for the first, 2 for the second.

source, target, other: CHARACTER -- First call
-- Needles.

end

hanoi (n: INTEGER; source, target, other: CHARACTER)
do

if n > 0 then
hanoi (n–1, source, other, target)
move (source, target)
hanoi (n–1, other, target, source)

end
end

-- First call

-- Second call

RECURSION AND TREES §14.9492

iterative_hanoi (n: INTEGER; source, target, other: CHARACTER)
local -- We need locals representing arguments to successive calls:

count: INTEGER
x, y, z, t: CHARACTER
call: INTEGER
top: RECORD

do -- Initialize locals to values of arguments in original call:
count := n; x := source; y := target; z := other

start: if count > 0 then
-- Translation of hanoi (n–1, source, other, target):

after_1: move (,)

-- Translation of hanoi (n–1, other, target, source):

end

-- Translation of routine return:

end

Warning: because of
the goto instructions
and labels this is not
legal Eiffel. The gotos
will be removed next.

This block is referred to
below as
SAVE_AND_ADAPT_1

stack.put (create {RECORD}. make (count, 1, x, y, z))
count := count – 1
t := y ; y := z ; z := t
goto start

Referred to below as
MOVE

x y

Referred to below as
SAVE_AND_ADAPT_2

stack.put (create {RECORD}. make (count, 2, x, y, z))
count := count – 1
t := x ; x := z ; z := t
goto start

Referred to below as
RETRIEVE

after_2: if not stack.is_empty then
top := stack.item -- Top of stack
count := top.count
x := top.source ; y := top.target ; z := top.other
call := top.call ; stack.remove
if call = 2 then

goto after_2
else

goto after_1
end

end
-- No else clause: the routine terminates when
-- (and only when) the stack is empty.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 493

The body of iterative_hanoi derives from hanoi through systematic application
of recursion elimination techniques:

D1 For every argument, introduce a local variable. The example uses a simple
naming convention: x for source and so on.

D2 Assign on entry the value of the argument to the local variable, then work
exclusively on that variable. This is necessary because a routine may not
change the value of its arguments (n := some_new_value is invalid).

D3 Give a label, here start, to the routine’s original first instruction (past the
local variable initializations added by D2).

D4 Introduce another local variable, here call, with values identifying the
different recursive calls in the body. Here there are two recursive calls, so
call will have two possible values, arbitrarily chosen as 1 and 2.

D5 Give a label, here after_1 and after_2, to the instructions immediately
following each recursive call.

D6 Replace every recursive call by instructions which:

• Push onto the stack an activation record containing the values of the
local variables.

• Set the values of the locals representing arguments to the values of the
call’s actual arguments; here the recursive call replaces n by n – 1 and
swaps the values of other and target, using the local variable swap for
that purpose.

• Branch to the first instruction.

D7 At the end of the routine, add instructions which terminate the routines’
execution only if the stack is empty, and otherwise:

• Restore the values of all local variables from the activation record at the
top of the stack.

• Also from that record, obtain the call identification

• Branch to the appropriate post-recursive-call label among those set in D5.

This is the general scheme applicable to the derecursification of any recursive
routine, whether a programmer is carrying it out manually, as we are now doing,
or — the more common situation — compilers include it in the code they
generate for routine calls.

We will see next how to simplify it — including goto removal — with the
help of some deeper understanding of the program structure; in the meantime,
make sure you fully understand this example of brute-force derecursification.

RECURSION AND TREES §14.9494

If, as I hope, you do find the transformation (if not the result)
simple and clear, you may enjoy, as a historical aside, an anecdote
reminding us that what is standard today was not always obvious. It is
told by Jim Horning, a computer scientist well known for his own
contributions, in particular to the area of formal methods:

The reference to independent inventions of the notion of call stack is
probably to Friedrich Bauer from Munich, who used the term Keller
(cellar), and Edsger Dijkstra from Holland, when implementing his
own Algol 60 compiler.

Simplifying the iterative version

The code given above looks formidable, especially against the simplicity
of the original recursive version. Indeed, with a truly recursive algorithm
like this one an iterative version will never reach the same elegance. But
we can get close by reviewing the sources of complication:
• We may replace the gotos by structured programming constructs.
• By identifying invertible operations, we may limit the amount of information

to be stored into and retrieved from the stack.
• In some cases (tail recursion) we may bypass the stack altogether.

Touch of History:
When recursion was thought impossible

(as told by Jim Horning)

In the summer of 1961 I attended a lecture in Los Angeles by a little-known
Danish computer scientist. His name was Peter Naur and his topic was the
new language Algol 60. In the question period, the man next to me stood up.
“It seems to me that there is an error in one of your slides.”
Peter was puzzled, “No, I don’t think so. Which slide?”
“The one that shows a routine calling itself. That’s impossible to implement.”
Peter was even more puzzled: “But we have implemented the whole language,
and run all the examples through our compiler.”
The man sat down, still muttering to himself, “Impossible! Impossible!”. I
suspect that much of the audience agreed with him.
At the time it was fairly common practice to allocate statically the memory for
a routine’s code, its local variables and its return address. The call stack had
been independently invented at least twice in Europe, under different names,
but was still not widely understood in America.

Naur & Horning
(2006)

Slightly abridged from
Jim Horning’s blog at
horningtales.blogspot.
com/2006/07/recur-
sion.html. Reproduced
with permission.

Bauer (2005)

← See I2, page 489.

http://horningtales.blogspot.com/2006/07/recursion.html

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 495

The last two kinds of simplification can also be important for performance,
since all this pushing and popping takes time, as well as space on the stack.

On the Hanoi example let us start by getting rid of the goto eyesores. To
abstract from the details of the code we express the body of iterative_hanoi as

with SAVE_AND_ADAPT_1 representing the storing of information into the
stack and change of values before the first call, SAVE_AND_ADAPT_2 the same
for the second call, RETRIEVE the retrieval from the stack of local variables
including call, MOVE the basic move operation, and INIT the initialization of
local variables from the arguments.

This is the example of goto structure that served (with abstract names for
the instructions and conditions, I1, C1 etc.) as illustration in the discussion of
goto removal. The result was

which we can immediately simplify, getting rid in particular of the stop
boolean variable:

INIT
start: if count > 0 then

SAVE_AND_ADAPT_1
goto start

end
after_2: if not stack.is_empty then

RETRIEVE
if call = 2 then goto after_2 else goto after_1 end

end

from INIT until over loop
from until count <= 0 loop

SAVE_AND_ADAPT_1
end
from stop := stack.is_empty until stop loop

RETRIEVE
stop := (stack.is_empty or (call /= 2))

end
over := (stack.is_empty and (call = 2))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

← From page 492.

count is an integer
variable; the instruc-
tions I0, I1 and I2 can
change its value.

after_1: MOVE
SAVE_AND_ADAPT_2
goto start

← “Appendix: an
example of goto
removal”, page 205.
The resulting goto-less
structure appears on
page 206. The local
variable over is initial-
ized to False.

RECURSION AND TREES §14.9496

The simplifications result from an analysis of possible changes to the values of
the variables:

• Since count can never become negative because of the precondition of
hanoi and the test conditioning recursive calls, it is legitimate to replace that
test, count <= 0, by count = 0.

• To get rid of stop we note that any value call gets out of RETRIEVE can only
be 1 or 2, since these are the possible values stored onto the stack; so we can
replace call /= 2 by call = 1, then set call to 2 the first time around so that
this particular condition is only taken into account for the second and later
iterations if any.

Tail recursion

A standard technique that helps reduce the overhead of stack pushing and
popping relies on the observation that it is not necessary to store context
information, and later retrieve it, if the algorithm does not need this information
any more; this is the case in particular for a recursive call that is the last
operation executed by an instance of the recursive routine.

This simplification applies to the hanoi example. The second recursive call
is the last instruction executed by an activation of the routine. This means that
SAVE_AND_ADAPT_2 is not necessary, or more precisely that the only
information it must preserve is call, since in getting back from a call you need
to know whether it was an instance of the first or the second one: in the first case
you need to pop the other values (count, x, y, z), in the second you don’t.

A good compiler can detect tail recursion and apply this optimization to
improve the performance of a recursive algorithm.

In the hanoi case it is superseded by another optimization, which almost
entirely gets rid of the stack and which we will now see. You should, however,
practice tail recursion elimination by implementing the above algorithm and
removing the unneeded push operations.

from INIT until over loop
from until count = 0 loop SAVE_AND_ADAPT_1 end
from call := 2 until stack.is_empty or call = 1 loop RETRIEVE end
over := (stack.is_empty and (call = 0))
if not over then MOVE ; SAVE_AND_ADAPT_2 end

end

→ Exercise 14-E.14,
page 504.

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 497

Taking advantage of invertible functions

Using a stack to store the values before a call and retrieve them afterwards is the
default technique and always works, but we saw earlier that an alternative
exists: reverting the transformation of arguments. In the hanoi case this turns out
to be possible for all arguments:

• The transformation of count prior to each call, count := count 1, has an
obvious inverse: count := count 1.

• For the other arguments, representing needles, the transformation is swap23

for the first call and swap12 for the second, if we call swapij the operation

that swaps the variables representing the i-th and j-th needles (for example
swap23 is t := y ; y := z ; z := t). But every swapij is its own inverse: applying

it a second time restores the original values.

So we do not actually need to store any of count, x, y and z on the stack: it
suffices, at the time of a RETRIEVE, to apply the appropriate inverse operation.
Specifically, RETRIEVE becomes:

A stack remains necessary, but only to record and retrieve the values of call. The
simplification becomes even more dramatic if we notice that call only has two
possible values, 1 and 2, which were just a convention to identify the two
recursive calls. Let us instead call them 1 and 0. There is a simple representation
for a stack of 0/1 (or boolean) values: if you know for certain that the stack’s
height plus one cannot exceed the bit size of an integer — typically 64 on
modern computers, until recently 32 —, just use a single integer, say s, for the
stack. It is a matter of considering the 0s and the 1s of the binary representation,
even if you do not know the details of number representation on your computer.
The operations are:

“Retrieve the value of call”
count := count + 1
if call = 1 then swap23 else swap13 end

s = 1 -- Is the stack empty?
s := 1 -- Initialize to an empty stack
s := 2 ∗ s -- Push a 0
s := 2 ∗ s + 1 -- Push a 1
b := s \\ 2 -- Obtain (into b) the top of the stack (\\ is remainder)
s:= s // 2 -- Pop the stack (// is integer division)

← I2, page 489.

–
+

The first is a boolean
expression, the others
are instructions.

RECURSION AND TREES §14.9498

Here is the result of a typical sequence of such instructions:

The binary representation of integers, shown in the last column, has the largest
weights on the left (“big-endian” convention). The top of a non-empty stack is
0 if the number is even, 1 if it is odd.

This technique of using a single integer to represent a stack of boolean
values can be used safely whenever you have a guaranteed limit on the stack

size. In the hanoi example this is not a problem since 263 or even 231 are more
moves than can be handled in any reasonable time.

Combining the previous observations leads to a simpler and more efficient
form of the iterative_hanoi algorithm with arguments n, source, target, other:

Instruction Goal Result Binary representation of s
(leftmost zeroes omitted)

s := 1

s := 2 ∗ s

s := 2 ∗ s + 1

s := 2 ∗ s + 1

s := 2 ∗ s

s:= s // 2

b := s \\ 2

-- Start empty

-- Push a 0

-- Push a 1

-- Push a 1

-- Push a 0

-- Pop

-- Get top

s = 1

s = 2

s = 5

s = 11

s = 22

s = 11

b = 1

from
count := n ; x := source ; y := target ; z := other ; s := 1

until over loop

end

1

0

0

1

1
1

01

101

1101
1101

 over is initialized to
False as usual.

-- Go down left
-- (H1, see next page)

-- Go back up
-- (H2)

-- Visit node,
-- go down right
-- (H3)

from until count = 0 loop
swap23 ; s := 2 ∗ s + 1 ; count := count – 1

end

from call := 0 until s = 1 or call = 1 loop
call := s \\ 2 ; s := s // 2 ; count := count + 1
if call = 1 then swap23 else swap13 end

end
over := ((s = 1) and (call = 0))

if not over then
move (x, y)
swap13 ; s := 2 ∗ s ; count := count – 1

end

§14.9 IMPLEMENTATION OF RECURSIVE ROUTINES 499

Although this is the result of a systematic transformation and not the kind of
program that you would normally write (recursion is simpler and clearer), it is
interesting to follow the execution on this form too, relating it to the original
recursive version and specifically to the binary execution tree from the
beginning of this chapter, showing the execution as an inorder traversal:

As noted next to the algorithm, it has three components:

H1 Go down left, as far as possible, until you reach a leaf. The leaves are at
n = 0 (count = 0 in this version), although earlier figures showing this tree
stopped at 1 since nothing visible from the outside happens at level 0.

H2 Go back up. As long as you are coming from the right just continue going
up, since this corresponds to the second recursive call and there is nothing
more to do with this instance of the routine.

H3 Having gone up one left branch, perform the visiting operation (move one
disk from x to y, and go down one right branch).

This is repeated until, coming up from the right (H2), you find the stack empty.

When going down (H1, H3), you decrement count and swap y and z if going
left (H1), x and z if going right (H3); when coming back up (H2), you restore
the original values by incrementing count and doing the appropriate swap
depending on whether you are coming back from the left or from the right —
which you find out by looking at the top of the stack, meaning the parity of s as
given by call.

3 A B C Hanoi binary
tree traversal
(From pages 450 and
454)

2 A C B 2 C B A

1 A B C 1 B C A 1 C A B 1 A B C

Go down left

Go

Go down right,
one step

0 A C B 0 C B A 0 B A C 0 A C B 0 C B A 0 B A C 0 A C B 0 C B A

back up

The last step
(H1)

(H3)

(H2)

(H2)

H2 H1

RECURSION AND TREES §14.10500

14.10 KEY CONCEPTS LEARNED IN THIS CHAPTER

• It is often convenient to define a concept recursively, meaning that the
definition uses one or more other instances of the concept itself.

• For the definition to be useful, any occurrence of the concept in its definition
must apply it to a smaller target, and there must be at least one case for
which the definition is non-recursive, so that any application of the
definition reduces in the end to a combination of elementary cases.

• Recursive definitions can be useful in particular for routines, data structures
and grammars.

• Any loop can be expressed in an equivalent recursive form, through a
simple transformation.

• The other way around, any recursive algorithm has a recursion-free
equivalent, but the transformation is more delicate; it requires changing the
control flow, and recording the value of local information prior to every
recursive call so as to retrieve it later, either by using a stack or by spotting
invertible transformations.

New vocabulary

14-E EXERCISES

14-E.1 Vocabulary

Give a precise definition of each of the terms in the above vocabulary list.

14-E.2 Too much recursion?

Is the definition of “recursive definition” a recursive definition?

14-E.3 Binary search trees with repetitions

For every binary search tree routine in this chapter, rewrite the declaration (if
needed) to permit multiple occurrences of a given item value in a tree as
discussed after the initial definition.

Activation Activation record Alpha-beta
Backtracking Binary tree Call chain
Depth-first Direct recursion Indirect recursion
Inorder Iterative Instance (of a routine)
Minimax Non-creative Postorder
Preorder Recursion Recursive
Recursive definition Traversal

← Page 435.

← Page 455.

§14-E EXERCISES 501

14-E.4 A programming language without program texts

This exercise addresses language processing techniques seen in an earlier
chapter; the solution requires recursion.

The goal is to write an interpreter and a compiler for an elementary
programming language. To avoid dealing with concrete syntax, the tools will
directly manipulate data structures rather than texts.

Our little language is called WASO (acronym for With Abstract Syntax
Only) and has the following properties:

• The only data type is “integer”.

• Variables, all of integer type, do not need to be declared. A variable name is
an arbitrary string.

• Integer constants can be used, such as 1.

• Integer expressions can be formed with addition, subtraction, multiplication
and integer division.

• There are two kinds of instruction: assigning an expression to a variable,
and printing the value of a variable.

• A WASO program consists of a sequence of assignments and a sequence of
print instructions, either or both of which can be empty.

• The execution of a program consists of initializing all variables to zero,
executing the assignments in sequence, and executing the print instructions
in sequence.

So a typical program — written out here as if WASO had a textual
representation (concrete syntax), although this is not part of the language
definition — is:

The execution of this program prints the single value 8.

The concrete syntax is only one of many possible choices. Another would use the
keyword print instead of then and in the second clause list only the variables to be
printed, without repeating print.

assign
x := 3
y := 5
x := 2 ∗ (x + (y // 3))

then
print x
print z

end

→ See also exercises
16-E.4, page 617 to
16-E.6, page 618 in the
inheritance chapter.

This is only one possi-
ble concrete syntax.

RECURSION AND TREES §14-E502

The assignment:
1 Write a set of classes, including PROGRAM, ASSIGNMENT, PRINT and

EXPRESSION, with the associated features including creation procedures,
to build abstract syntax trees representing WASO programs.

2 Add a class with a procedure that uses these classes and features to create
an abstract syntax tree representing the above example program.

3 Add to class PROGRAM a procedure write_out that produces a textual
(concrete) representation of a WASO program, as given out for the example.
Run it on the example tree from step 2 and check that the output is the above
text. Hint: you need a recursive procedure performing a traversal, similar to
those introduced for binary trees in this chapter.

4 Write a WASO interpreter, in the form of a procedure interpret in class
PROGRAM which executes the program and produces the expected output.
Run it on the example and check the result (which as noted should be the
single value 8).

5 Write a WASO-to-Eiffel compiler, in the form of a procedure compile in class
PROGRAM which produces an Eiffel system implementing the semantics of
the source WASO program: a root class with an appropriate creation
procedure, and any other classes needed. Run it on the example; use Eiffel
Studio to Eiffel-compile the output; run it on the example and check the result.

Terminology note: the result of step 5 is an unparser, producing a text
representation from an internal representation such as an abstract syntax tree —
the reverse of what a parser does.

14-E.5 Non-recursive insertion

Write a version of put for binary search trees using a loop rather than recursion.
(Hint: you may use for inspiration the non-recursive version of the search
function has.)

14-E.6 Recursive reversal

Retaining the same assumptions (a list of stops is known through its first cell, of
type STOP, giving access to the rest through repeated application of next),
rewrite the function reversed from the discussion of references so that it uses
recursion rather than a loop. (See also the next exercise.)

14-E.7 Reversing a list, functional style

Write a recursive function that produces the reverse of a linked list (the
argument and the result should be of type LINKED_LIST [G], from EiffelBase).
Keep pointer manipulations to a minimum and remain as close as possible to the
style of the reversed function given as an example of Haskell programming.
Analyze the time and space complexity of your solution.

← Page 458.

← Page 261.

← “Functional pro-
gramming and func-
tional languages”,
page 324.

§14-E EXERCISES 503

14-E.8 Backtracking curtailed

Adapt the general backtracking algorithm so that it keeps track of previously
explored positions and discards any path leading to such a position. You may
assume that PATH has a query position defining a path’s terminal position.

14-E.9 Cycles despised

Adapt the general backtracking algorithm so that it does not explore paths
longer than path_cutoff, a given integer value.

14-E.10 Properties of a function graph

(This exercise calls for mathematical analysis, not a programming solution.) In
the successive approximations Hi of the graph of the Towers of Hanoi function,
assuming three needles 'A', 'B', 'C':
1 What is the number of pairs in Hi?
2 Give a mathematical formula for Hi.

14-E.11 Programming a function graph bottom-up

1 Devise a class of which every instance represents an arguments-result pair,
of the form [(n, s, t, o], <…>], for the Towers of Hanoi function graph.

2 Based on the preceding class, devise another to represent the function graph
as a whole.

3 From this class and the rules [5] and [6] defining the function graph in the
bottom-up interpretation of recursion, write a program that produces the i-th
approximation of the graph, Hi, for any i. The algorithm may use loops, but
it may not use recursion.

4 Use this program to print out sequences of moves (with source 'A' and target
'B’) for a few values of i; check that the results coincide with those of the
recursive procedure.

14-E.12 Bottom-up view of binary tree algorithms

Consider a recursive algorithm for binary tree traversal; you may choose
preorder, inorder or postorder.
1 Taking inspiration from the bottom-up analysis of the Towers of Hanoi

solution, devise a model to interpret the traversal as a function returning a
sequence of nodes.

2 Write a recursive “definition” of this function.
3 Express this “definition” as a fixpoint equation on the function graph, using

Ti as the name of the graph for binary trees of height i.
4 Use the definition to produce (either manually or by writing a small

program) H5 for the example binary tree, and the resulting traversal order.

← Page 461.

← Page 461.

← “The towers, bot-
tom-up”, page 483.

← “The towers, bot-
tom-up”, page 483.

← “The towers, bot-
tom-up”, page 483.

← From the figure on
page 447.

RECURSION AND TREES §14-E504

14-E.13 Recursion without optimization

(This exercise requires access to a compiler for a programming language such
as C or C++ with support for goto instructions.) Implement and test the direct
iterative translation of the hanoi procedure, in its initial version using gotos and
a stack without optimization.

14-E.14 Saving on stack saving

1 Implement and test the goto-free iterative, stack-based version of the Tower
of Hanoi problem.

2 Improve the solution through tail recursion optimization, avoiding
unnecessary saves in the second call.

3 (Only if you have solved the previous exercise.) Apply the same
optimization to the version using goto instructions.

14-E.15 Traversal without a stack

We saw that implementing recursion only requires a technique to invert the
transformation of arguments in recursive calls; a stack is just one possible way to
satisfy this requirement. Using a suitable inversion technique, implement binary
tree traversal, for example inorder, non-recursively and without any stacks except
possibly a stack of boolean values (or, equivalently, a bit in every node).

Hint: temporarily overwrite tree links to remember where you came from.
Counter-hint: you could find a solution by running Web searches for the words

Deutsch, Schorr and Waite (names of authors of a famous algorithm based on this
idea). Don’t; rather, design an algorithm, then look up existing references if you wish.

14-E.16 Transitive closure

(This exercise refers to a later chapter.) Restate the definition of transitive
closure as a recursive definition.

14-E.17 Matrix algebra on BNF productions

(This exercise requires basic knowledge of linear algebra.) Consider a BNF
production, such as the small example used in this chapter, or more extensive ones
from earlier chapters, involving only Concatenation and Choice productions (no
Repetition, as it can be replaced by combinations of the other two).
1 Treating concatenation of tokens as “multiplication” and alternative choices

as “addition”, show that it is possible to express the grammar as a matrix
equation X = A ∗ X + B, where X is the vector of nonterminals, A is a matrix
of terminals and nonterminals, and B is a vector.

2 Discuss ways of solving this equation by following the model discussed for
fixpoint equations.

← iterative_hanoi,
page 492.

← Algorithm on page
495.

← “Implementation of
recursive routines”,
14.9, page 486.

→ Page 513.

http://www.springer.com/978-3-540-92145-5

