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Lattice Vibrations

2.1 Monatomic Linear Chain

So far, in our discussion of the crystalline nature of solids we have assumed
that the atoms sat at lattice sites. This is not actually the case; even at the
lowest temperatures the atoms perform small vibrations about their equilib-
rium positions. In this chapter we shall investigate the vibrations of the atoms
in solids. Many of the significant features of lattice vibrations can be under-
stood on the basis of a simple one-dimensional model, a monatomic linear
chain. For that reason we shall first study the linear chain in some detail.
We consider a linear chain composed of N identical atoms of mass M
(see Fig.2.1). Let the positions of the atoms be denoted by the parameters
R;, i =1,2,...,N. Here, we assume an infinite crystal of vanishing surface
to volume ratio, and apply periodic boundary conditions. That is, the chain
contains N atoms and the Nth atom is connected to the first atom so that

Riyn =R;. (2.1)

The atoms interact with one another (e.g., through electrostatic forces, core
repulsion, etc.). The potential energy of the array of atoms will obviously be
a function of the parameters R;, i.e.,

U=U(Ry,Ra,...,RN). (2.2)
We shall assume that U has a minimum U (R(f, RY,... ,R?V) for some partic-
ular set of values (R(f, RY, ..., R?V), corresponding to the equilibrium state of

the linear chain. Define u; = R; — R? to be the deviation of the ¢th atom from
its equilibrium position. Now expand U about its equilibrium value to obtain

U Ry Royoo B) = U (R RS, RY) + 5, (0F))

1 o%U | 3U )
o1 i (aRi,aRj >0 witty + 31 > ik (8Ri8Rj8Rk>0 uiujug 4. (2.3)
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Fig. 2.1. Linear chain of N identical atoms of mass M

The first term is a constant which can simply be absorbed in setting the
zero of energy. By the definition of equilibrium, the second term must vanish
(the subscript zero on the derivative means that the derivative is evaluated at

Up, U, ..., u, = 0). Therefore, we can write
1 1
U(Rl, R, ... ,RN) = 91 Z CijUiUj + 31 Z dijkuiujuk + - (24)
i 0,4,k
where
()
K OROR; )’
02U
dii = . 2.5
ik (8Ri6Rj8Rk)0 (25)

For the present, we will consider only the first term in (2.4); this is called the
harmonic approzimation. The Hamiltonian in the harmonic approximation is

P2 1
H = zl: IM - 9 izj:cijuiuj. (26)
Here, P; is the momentum and u; the displacement from the equilibrium posi-
tion of the ith atom.
FEquation of Motion

Hamilton’s equations

. 0OH
Pi = 781},2' = fzj:cijuj,

_OH P

L — 2.
YT op, T M (2.7)
can be combined to yield the equation of motion
M’LLZ = 7ZCijUj. (28)
J

In writing down the equation for P;, we made use of the fact that ci;j actually
depends only on the relative positions of atoms ¢ and j, i.e., on |[i — j|. Notice
that —c;;u; is simply the force on the ith atom due to the displacement
u; of the jth atom from its equilibrium position. Now let RY = na, so that
RY—RO = (n—m)a. We assume a solution of the coupled differential equations
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of motion, (2.8), of the form
U (t) = £ el mawat), (2.9)
By substituting (2.9) into (2.8) we find

Muw? =" cpmeltm=me, (2.10)
m
Because ¢y, depends only on | = m — n, we can rewrite (2.10) as

N
Muw? =" c(l)elre. (2.11)
=1

Boundary Conditions

We apply periodic boundary conditions to our chain; this means that the
chain contains N atoms and that the Nth atom is connected to the first atom
(Fig. 2.2). This means that the (n + N)th atom is the same atoms as the nth
atom, so that u, = u,N. Since u, x elt the condition means that

eV — 1 (2.12)

)

or that ¢ = ]2\,’; X p where p = 0,+1, 42, .... However, not all of these values
of ¢ are independent. In fact, there are only NV independent values of ¢ since
there are only N degrees of freedom. If two different values of ¢, say ¢ and ¢’
give identical displacements for every atom, they are equivalent. It is easy to
see that

igna

elane — gia'na (2.13)
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Fig. 2.2. Periodic boundary conditions on a linear chain of N identical atoms
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for all values of n if ¢/ — ¢ = ?71, where | = 0,41,42, .... The set of inde-
pendent values of ¢ are usually taken to be the N values satisfying ¢ = 2L7T D,
where 71;7 <p< g . We will see later that in three dimensions the inde-
pendent values of q are values whose components (q1, 2, ¢3) satisfy ¢; = %” D,
and which lie in the first Brillouin zone, the Wigner—Seitz unit cell of the

reciprocal lattice.
Long Wave Length Limit

Let us look at the long wave length limit, where the wave number ¢ tends to
zero. Then u,(t) = e wa=ot for all values of n. Thus, the entire crystal is
uniformly displaced (or the entire crystal is translated). This takes no energy
if it is done very very slowly, so it requires Mw?(0) = Zfil e(l) = 0, or
w(g = 0) = 0. In addition, it is not difficult to see that since ¢(I) depends only
on the magnitude of [ that

Mw?*(—q) =Y c()e™' = "c(l")e' = Mw?(q). (2.14)
l 14

In the last step in this equation, we replaced the dummy variable [ by I’ and
used the fact that c(—1') = ¢(I'). Equation (2.14) tells us that w?(q) is an even
function of ¢ which vanishes at ¢ = 0. If we make a power series expansion
for small ¢, then w?(q) must be of the form

w(q) = s"¢" + - (2.15)
The constant s is called the velocity of sound.
Nearest Neighbor Forces: An Example

So far, we have not specified the interaction law among the atoms; (2.15)
is valid in general. To obtain w(q) for all values of ¢, we must know the
interaction between atoms. A simple but useful example is that of nearest
neighbor forces. In that case, the equation of motion is

1
Mw?(q) =Y el = c_1e79% + ¢y + c1e17, (2.16)

=1
Knowing that w(0) = 0 and that c¢_; = ¢; gives the relation ¢; = c_1 = —;co.

Therefore, (2.16) is simplified to

Mw?(q) = co [1 - (eiqa zeiqaﬂ . (2.17)

Since 1 — cosz = 2sin® £, (2.17) can be expressed as

2
w?(q) = 1\040 sin? q2a’ (2.18)

which is displayed in Fig.2.3. By looking at the long wave length limit, the

2Ms* where s is the velocity of

coupling constant is determined by co = =,

sound.
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Fig. 2.3. Dispersion relation of the lattice vibration in a monatomic linear chain

2.2 Normal Modes

The general solution for the motion of the nth atom will be a linear com-
bination of solutions of the form of (2.9). We can write the general solution

as
U (t) = Z [€el Tt e, (2.19)
a

where cc means the complex conjugate of the previous term. The form of (2.19)
assures the reality of u,(t), and the 2N parameters (real and imaginary parts
of &) are determined from the initial values of the position and velocity of
the N atoms which specify the initial state of the system.

In most problems involving small vibrations in classical mechanics, we seek
new coordinates p; and ¢ in terms of which the Hamiltonian can be written
as

1 * 1 *
H = Z H;, = Z [QMpkpk + QMWiqqu . (2.20)
k k

In terms of these normal coordinates pi and ¢, the Hamiltonian is a sum

of N independent simple harmonic oscillator Hamiltonians. Because we use

running waves of the form e'97*~wdt the new coordinates g, and pj can be

complex, but the Hamiltonian must be real. This dictates the form of (2.20).
The normal coordinates turn out to be

qr. = N*l/zzunefikna’ (2'21)

and

pp = N~1/2 ZPne‘Hk"“. (2.22)
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We will demonstrate this for ¢ and leave it for the student to do the same
for pr. We can write (2.19) as

Un(t) = a3 &), (2.23)
k

where §, is complex and satisfies £*, = £,. With this condition wu,(¢), given
by (2.23), is real and « is simply a constant to be determined. We can write
the potential energy U = é Y in CmnUmUy, in terms of the new coordinates
& as follows.

U— ; |a|ZZcmnngeikmazé~k/eik'na. (2.24)
mn k Y

Now, let us use k' = ¢ — k to rewrite (2.24) as

1 . .
U= 5 |04|2Z lz cmne‘k(m_”)“l Erq—re' ™. (2.25)

nkqg L m

From (2.10) one can see that the quantity in the square bracket in (2.25) is
equal to Mw,%. Thus, U becomes

1 * igna
U=, ol Mwigrgi e (2.26)

nkq

The only factor in (2.26) that depends on n is €l9"¢. It is not difficult to prove
that Zn elane — Nég0. We do this as follows: Define Sy =1+ + 24t
V=1 then Sy = x4+ 22 4 --- + 2V is equal to Sy — 1 + 2.

xSy = Sy — 1+ 2. (2.27)
Solving for Sy gives
sy L (2.28)
N7 :

Now, let = = !9%. Then, (2.28) says

N-1 ;
warn 1 — el
> (€)= | e (2.29)
n=0
Remember that the allowed values of ¢ were given by ¢ = ]%;; X integer.

Therefore, igaN = i3 aN x integer, and e'*N = e2mixinteger — 1 Therefore,
the numerator vanishes. The denominator does not vanish unless ¢ = 0. When
g =0, ¢4 =1 and the sum gives N. This proves that ) e'"* = Nd(q,0)

when g = 12\;; x integer. Using this result in (2.26) gives
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1 .
U=, o> > Mwi&&iN. (2.30)
k

Choosing & = N~'/2 puts U into the form of the potential energy for N
simple harmonic oscillators labeled by the k value. By assuming that P, is
proportional to kake*“"”a with p*, = pg, it is not difficult to show that

(2.22) gives the kinetic energy in the desired form )", p;}\z;i_ The inverse of
(2.21) and (2.22) are easily determined to be
up = N~1/2 Z qee*me, (2.31)
k
and
Py =N"123"preitna, (2.32)
k
Quantization

Up to this point our treatment has been completely classical. We quantize the
system in the standard way. The dynamical variables g; and p; are replaced
by quantum mechanical operators ¢ and py which satisfy the commutation
relation

[Pk, qw] = —ihdp - (2.33)
The quantum mechanical Hamiltonian is given by H = )", Hj,, where
PR S S
k= onp T o Mwidedy- (2.34)

]32 and (j,t are the Hermitian conjugates of pr and ¢, respectively. They are
necessary in (2.34) to assure that the Hamiltonian is a Hermitian operator.
The Hamiltonian of the one-dimensional chain is simply the sum of N indepen-
dent simple Harmonic oscillator Hamiltonians. As with the simple Harmonic
oscillator, it is convenient to introduce the operators a; and its Hermitian
conjugate aL, which are defined by

5 1/2 ;
qe = (Qka> (ak + a_k> , (2.35)

; hM 1/2
pkzl( 2‘”’“) (az—a_k). (2.36)

The commutation relations satisfied by the ax’s and a;’s are

[ak, aL}i = Ok and [ag, ap’]_ = [ai, aL,] = 0. (2.37)
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The displacement of the nth atom and its momentum can be written

1/2

1/2
7, = Ek:i <h°;’;VM) eikna (aL - a,k> . (2.39)

The Hamiltonian of the linear chain of atoms can be written

1
H= Z Tiwy (azak + 2) : (2.40)
k

and its eigenfunctions and eigenvalues are

aT - aT o
,MN) = (\/k;z' <\;:u>v' |0}, (2.41)

[ny,na, ...

and

1
By sy = O Bk, (n + 2) : (2.42)

In (2.41), |0 >= [0y > |02 > ---|0nx > is the ground state of the entire
system; it is a product of ground state wave functions for each harmonic
oscillator. It is convenient to think of the energy hwy as being carried by an
elementary excitations or quasiparticle. In lattice dynamics, these elementary
excitations are called phonons. In the ground state, no phonons are present
in any of the harmonic oscillators. In an arbitrary state, such as (2.41), ny
phonons are in oscillator ki, no in ks, ..., ny in ky. We can rewrite (2.41) as
[n1,m2,...,nN) = |n1 > |n2 > -+ |ny >, a product of kets for each oscillator.

2.3 Mossbauer Effect

With the simple one-dimensional harmonic approximation, we have the tools
necessary to understand the physics of some interesting effects. One example
is the Méssbauer effect.! This effect involves the decay of a nuclear excited
state via v-ray emission (see Fig.2.4). First, let us discuss the decay of a
nucleus in a free atom; to be explicit, let us consider the decay of the excited
state of Fe®” via emission of a 14.4keV ~-ray.

Fe® — Fe* + 4 (2.43)

The excited state of Fe®” has a lifetime of roughly 10~7s. The uncertainty
principle tells us that by virtue of the finite lifetime At = 7 = 10~ 7s, there

! R. L. Méssbauer, D.H. Sharp, Rev. Mod. Phys. 36, 410 (1964).
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Excited State m—

7y ray

Ground State s—

Source Absorber

Fig. 2.4. The exact transition energy is required to be reabsorbed because of the
very sharply defined nuclear energy states

is an uncertainty AE in the energy of the excited state (or a natural linewidth
for the v-ray) given by AE = Aht. Using At = 10~ 7s gives Aw = 107s~! or
A (hw) ~ 6 x 107%eV. Thus, the ratio of the linewidth Aw to the frequency
wis 49 ~4x 10715

In a resonance experiment, the v-ray source emits and the target reso-
nantly absorbs the y-rays. Unfortunately, when a ~-ray is emitted or absorbed
by a nucleus, the nucleus must recoil to conserve momentum. The momen-
tum of the ~y-ray is py = hg’, so that the nucleus must recoil with momentum

hK = p, or energy E(K) = h;\lf where M is the mass of the atom. The

recoil energy is given by F(K) = ;;f; = 2(1\/;?;));&' But mec? ~ 0.5 x 106eV
and the ratio of the mass of Fe®” to the electron mass m is ~2.3 x 10°, giv-
ing E(K) ~ 2 x 1073 eV. This recoil energy is much larger than the energy
uncertainty of the y-ray (6 x 1072 eV). Because of the recoil on emission and
absorption, the 7-ray is short by 4 x 1073 eV of energy necessary for reso-
nance absorption. Mossbauer had the idea that if the nucleus that underwent
decay was bound in a crystal (containing ~10%% atoms) the recoil of the entire
crystal would carry negligible energy since the crystal mass would replace
the atomic mass of a single Fe®” atom. However, the quantum mechanical
state of the crystal might change in the emission process (via emission of
phonons). A typical phonon has a frequency of the order of 103s~!, much
larger than Aw = 10”s~! the natural line width. Therefore, in order for res-
onance absorption to occur, the v-ray must be emitted without simultaneous
emission of phonons. This no phonon y-ray emission occurs a certain fraction
of the time and is referred to as recoil free fraction. We would like to estimate
the recoil free fraction.

As far as the recoil-nucleus is concerned, the effect of the y-ray emission
can be represented by an operator H’ defined by

H' = CeK Ry (2.44)

where C is some constant, i K is the recoil momentum, and Ry is the position
operator of the decaying nucleus. This expression can be derived using the
semiclassical theory of radiation, but we simply state it and demonstrate that
it is plausible by considering a free nucleus.
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Recoil of a Free Nucleus

The Hamiltonian describing the motion of the center of mass of a free atom
is
P2
Hy = . 2.4
07 oM (2.45)

The eigenstates of Hy are plane waves
|k> — V—l/Qeik~RN

whose energy is
hk?
T 2M
Operating on an initial state |k > with H’ gives a new eigenstate proportional
to |k + K >. The change in energy (i.e., the recoil energy) is

E(k)

h2

AE=E(k+K)-E(k) =,

(2k - K+ K?).

For a nucleus that is initially at rest, AE = h; 11\5127 exactly what we had given

previously.
Mossbauer Recoil Free Fraction

When the atom whose nucleus emits the ~-ray is bound in the crystal, the
initial and final eigenstates must describe the entire crystal. Suppose the initial

eigenstate is
—1/2 i
|n1,na,...,ny >= an / (‘IL) [0>.
i

In evaluating H’ operating on this state, we write Ry = R, +uy to describe
the center of mass of the nucleus which emits the y-ray. We can choose the
origin of our coordinate system at the position R%, and write

1/2
Ry =uny = Z <2M73\7wk) (ak + aik) . (2.46)
k

Because k is a dummy variable to be summed over, and because wy = w_g,
we can replace aT_k by a;i in (2.46).

The probability of a transition from initial state |n; >= |n1,na,...,ny >
to final state |mjy >= |mq, mo,...,my > is proportional to the square of the
matrix element (my|H'|n;). This result can be established by using time
dependent perturbation theory with H’ as the perturbation. Let us write this
probability as P(my, n;). Then P(my¢,n;) can be expressed as

P(myg,ni) = a|{my fC’eiK'RN f nl>f2 . (2.47)
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In (2.47) « is simply a proportional constant, and we have set H' =
Ce'®Ry_ Because P(my,n;) is the probability of going from |n; > to |m; >,
me P(my,n;) = 1. This condition gives the relation

alC[? Z {my |eiK'RN’ni>* {my |eiK'RN’ni> =1 (2.48)
my
Because e’ 'R~ is Hermitian, <mf feiK'RN | m>* is equal to <nz |e’iK'RN f mf>.

We use this result in (2.48) and make use of the fact that |my) is part of a
complete orthonormal set so that me |m ) (my] is the unit operator to obtain

o|CI? [{ni |e_iK'RN X eiK'RN’ nz>]2 =1.
This is satisfied only if a|C|? = 1, establishing the result

P(my,n;) = |<mf |eiK'RN | nl>|2 (2.49)

Fuvaluation of P(n;,n;)

The probability of v-ray emission without any change in the state of the lat-
tice is simply P(n;,n;). We can write Ry in (2.49) as

Ry =Y B (ak + al) ; (2.50)
k
1/2
where we have introduced 3y, = (ZM?VW) If we write [n; >=|nq > |ng >
-++|ny >, then
e i +
(ni |e‘K RN’nz-> = (n1] < ng|--- < ny|[e® Xr Pt n, > ny > - ny).

(2.51)
The operator ax and a;i operates only on the kth harmonic oscillator, so that
(2.51) can be rewritten

(i [ RN | ng) = T (ma el <Prtn oD ). (2.52)
k

Each factor in the product can be evaluated by expanding the exponential in
power series. This gives

(1K By)?

2!
(1K B)*
4!

; i
(nglefPran+allp,y =1 4 (nklaral, + afax|nk)

(ngl(ag +al)ng) +--- . (2.53)

The result for this matrix element is

E(K) nk+%

iK Bk (an+af) —1_
(rgle k) hoe N

+O(N7?). (2.54)
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We shall neglect terms of order N=2, N=3,..., etc. in this expansion. With
this approximation we can write

(iR ng) = [

k

[1_ E(K)ng+ 3 (2.55)

hwk N

To terms of order N1, the product appearing on the right-hand side of (2.55)

1
E(K) nE+s
N Xk

is equivalent to e "wr to the same order. Thus, for the recoil free

fraction, we find
5 B(K) np+ 3

P(ng,mn;) =e 258 Xk h (2.56)
Although we have derived (2.56) for a simple one-dimensional model, the
result is valid for a real crystal if sum over k is replaced by a three-dimensional
sum over all k and over the three polarizations. We will return to the evalua-
tion of the sum later, after we have considered models for the phonon spectrum
in real crystals.

2.4 Optical Modes

So far, we have restricted our consideration to a monatomic linear chain. Later
on, we shall consider three-dimensional solids (the added complication is not
serious). For the present, let us stick with the one-dimensional chain, but let
us generalize to the case of two atoms per unit cell (Fig. 2.5).

If atoms A and B are identical, the primitive translation vector of the
lattice is a, and the smallest reciprocal vector is K = 2;’. If A and B are
distinguishable (e.g. of slightly different mass) then the smallest translation
vector is 2a and the smallest reciprocal lattice vector is K = %Z = 7. In this
case, the part of the w vs. ¢ curve lying outside the region |¢| < [ must
be translated (or folded back) into the first Brillouin zone (region between
— o and 7 ) by adding or subtracting the reciprocal lattice vector . This
results in the spectrum shown in Fig. 2.6. Thus, for a non-Bravais lattice, the
phonon spectrum has more than one branch. If there are p atoms per primi-
tive unit cell, there will be p branches of the spectrum in a one-dimensional
crystal. One branch, which satisfies the condition that w(g) — 0 as ¢ — 0 is
called the acoustic branch or acoustic mode. The other (p — 1) branches are
called optical branches or optical modes. Due to the difference between the

fmmm e m—m - 1 <~—d—
cos A .;@ .;@ ® ® ® @ oo
""" L «—20 —>

Fig. 2.5. Linear chain with two atoms per unit cell



2.4 Optical Modes 49
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Fig. 2.6. Dispersion curves for the lattice vibration in a linear chain with two atoms
per unit cell

Fig. 2.7. Unit cells of a linear chain with two atoms per cell

pair of atoms in the unit cell when A # B, the degeneracy of the acoustic
and optical modes at ¢ = £,/ is usually removed. Let us consider a simple
example, the linear chain with nearest neighbor interactions but with atoms
of mass M7 and Ms in each unit cell. Let u, be the displacement from its
equilibrium position of the atom of mass M; in the nth unit cell; let v, be
the corresponding quantity for the atom of mass Ms. Then, the equations of
motion are

My, = K [('Un - un) - (un - 'Un—l)] y (257)
Mot,, = K [(un+1 - 'Un) - (Un - un)] . (258)

In Fig. 2.7, we show unit cells n and n + 1. We assume solutions of (2.57) and
(2.58) of the form

Uy = uqelq2an—lwqt’ (259)

Uy = vqeiq(2“"+“)*i“’qt. (2.60)

where u, and v, are constants. Substituting (2.59) and (2.60) into the equa-
tions of motion gives the following matrix equation.
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Fig. 2.8. Dispersion relations for the acoustical and optical modes of a diatomic
linear chain

—Miw? +2K —2K cosqa Ug |
[—2[( cos qa —Mow? + 2K ve | 0. (2.61)

The nontrivial solutions are obtained by setting the determinant of the 2 x 2

q

matrix multiplying the column vector {Z ] equal to zero. The roots are

q

wi(q) = Mf{Mg {Ml + My F [(Ml 4 M2)2 — 4M; M sin® qa]1/2} ;
(2.62)
We shall assume that M; < Ms. Then at ¢ = £J , the two roots are
wiplg = ) = ]2\2 and wic(g = J) = iﬁ At ¢ = 0, the two roots are
given by wis(q) ~ 1\42115—(3\2/12 ¢ and w3p(q) = 2K(J\IZIAZM2) {1 - (1\/;\;{'1‘!‘1]\(222)2 q2a2}.

The dispersion relations for both modes are sketched in Fig.2.8.

2.5 Lattice Vibrations in Three Dimensions

Now let us consider a primitive unit cell in three dimensions defined by the
translation vectors aj, az, and ag. We will apply periodic boundary conditions
such that N; steps in the direction a; will return us to the original lattice site.
The Hamiltonian in the harmonic approximation can be written as

P2 1
H:Z2M+22ui-cij-uj. (2.63)

i ij
Here, the tensor C; (¢ and j refer to the ith and jth atoms and C;jis a

three-dimensional tensor for each value of 7 and j) is given by

Ci; = [Vr Vr,UR1LRy,...)] (2.64)

RYRY "
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In obtaining (2.63) we have expanded U(Rq,Rq,...) in powers of u; =
R; — RY, the deviation from the equilibrium position, and we have used the
definition of equilibrium to eliminate the term that is linear in u;.

From Hamilton’s equation we obtain the equation of motion

Mi, ==Y Cj; ;. (2.65)
J

We assume a solution to (2.65) of the form
u, = &, Rkt (2.66)

Here, & is a vector whose magnitude gives the size of the displacement asso-
ciated with wave vector k and whose direction gives the direction of the
displacement. It is convenient to write

&k = €k Gk, (2.67)

where £x is a unit polarization vector (a unit vector in the direction of &)
and gy is the amplitude. Substituting the assumed solution into the equation
of motion gives

Motew = C,; - éie™ (RIRY), (2.68)
j

Because (2.68) is a vector equation, it must have three solutions for each value
of k. This is apparent if we define the tensor F(k) by

Fk) = — Z e (RI-RY (2.69)

Then, (2.68) can be written as a matrix equation

Mwlz(-i-Fng Fg;y Fa;z ékz
Fua Mw? + F,, F,. éxy | =0. (2.70)
F.. F.y Mwi + F,, fxs

The three solutions of the three by three secular equation for a given value of
k can be labeled by a polarization index . The eigenvalues of (2.70) will be
wfd and the eigenfunctions will be

Eix = (Eionr Ens i)

with A =1,2,3.
When we apply periodic boundary conditions, then we must have the
condition
etfilioi =1 (2.71)

satisfied for ¢ = 1,2, 3 the three primitive translation directions. In (2.71), k;
is the component of k in the direction of a; and N; is the period associated
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with the periodic boundary conditions in this direction. From the condition
(2.71), it is clear that the allowed values of the wave vector k must be of the
form

ny N9 ns
k=2 b1+ “ba+ b 2.72
7 (bt ot b)), (2.72)
where ny, no, and ng are integers, and by, bs, b3 are primitive translation
vectors of the reciprocal lattice. As in the one-dimensional case, not all of
the values of k given by (2.72) are independent. It is customary to chose as
independent values of k those which satisfy (2.72) and the condition

(2.73)

This set of k values is restricted to the first Brillouin zone, the set of all values
of k satisfying (2.72) that are closer to the origin in reciprocal space than to
any other reciprocal lattice point. The total number of k values in the first
Brillouin zone is N = N;NoNj3, and there are three normal modes (three
polarizations \) for each k value. This gives a total of 3N normal modes, the
number required to describe a system of N = N;N;N3 atoms each having
three degrees of freedom. For k values that lie outside the Brillouin zone,
one simply adds a reciprocal lattice vector K to obtain an equivalent k value
inside the Brillouin zone.

2.5.1 Normal Modes

As we did in the one-dimensional case, we can define new coordinates gx and
Pk as

u, = N—1/2 Z ék)\qk)\eik'Rg, (2.74)
kA

P, = N"123 gapie R, (2.75)
kA

The Hamiltonian becomes

1 1 9
H = ZHk)‘ = Z |:2Mpk)\p]iA -+ QMWkAQk/\qlt/\ . (276)
kA kA
It is customary to define the polarization vectors € to satisfy é_x\ = —&kn

and éxy - éxx = Oxn. Remembering that > oi(k—k') R},

see immediately that

= Nk x’, one can

N N i(k— . RO
Z EkM\ " Ek/N€ (k=k) Ry, — N(Sk,k’éAA’- (277)
n
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The conditions resulting from requiring P,, and u,, to be real are

Pix =P-kx and gy, = q—kx (2.78)

where prx = Exaprr and gy = £xkxqkx- The condition on the scalar quantities
prx and gy differs by a minus sign from the vector relation (2.78) because
€k changes sign when k goes to —k.

2.5.2 Quantization

To quantize, the dynamical variables pxy and gy are replaced by quantum
mechanical operators pxy and i which satisfy the commutation relations

[Prcx, Gn]_ = =ik dxn - (2.79)

It is again convenient to introduce creation and annihilation operators aL/\

and ay) defined by

5 1/2 )
_ _ 2.
[75Y (Qka/\> ((lkA aka) , (2.80)
(BM 1/2
P = i ( 2“’“) (aLA + am) . (2.81)

The differences in sign from one-dimensional case result from using scalar
quantities gy and pyxy in defining axy and a;rd. The operators axy and ays
satisfy the commutation relations

|:ak/\, aL/\,}7 = Ok OrN, (2.82)

[a’kA7 ak’A’], = |:air(/\’ air(//\l:|_ = 0 (283)

The Hamiltonian is given by

1
H=>"hw (aL\akA + 2) . (2.84)

kA

From this point on the analysis is essentially identical to that of the one-
dimensional case which we have treated in detail already. In the three-
dimensional case, we can write the displacement u,, and momentum P, of
the nth atom as the quantum mechanical operators given below:

h e ik-R? T
= g Hlselaty, — s 2.
v ZM <2Mka>\> ¢ (ak* a—“) (55)

(AMwo\Y?
P, = Zl < 2Nk)\> Ek\€ ik-Ry, (aL\ aF a,k,\> 0 (286)
kA
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Mean Squared Displacement of an Atom

As an example of how to use the quantum mechanical eigenstates and the
operator describing dynamical variables, let us evaluate the mean squared
displacement of an atom from its equilibrium position in a three-dimensional
crystal. We can write

h

—1/2 4 ~
u, -u, = Z <2MN> (wkkwk/k/) / EKN " EK/N (akA —|— aTk)\) (a,k/A/ —|— aTk,)\,>_
kA, k/ )\

(2.87)
Here, we have again chosen the origin at the equilibrium position of the n®
atom so that RQ = 0. Then, we can replace ék)\aJr_kA by fék)\al)\ in (2.85).
This was done in obtaining (2.87). If we assume the eigenstate of the lattice
iS [Py g s Mkora s - - - ), 16 18 nOt difficult to see the that

<lln> - <nk1/\17nk2)\27 cee |un| N1y koo - - > =0, (288)
and that
h
(u, - uy,) %;(2MNOJ1<>\>( ngx + 1) (2.89)

2.6 Heat Capacity of Solids

In the nineteenth century, it was known from experiment that at room tem-
perature the specific heat of a solid was given by the Dulong—Petit law which
said

Cy = 3R, (2.90)

where R = Nakp, and Npo = Avogadro number (=6.03 x 10?3 atoms,/mole)
and kg = Boltzmann’s constant (=1.38 x 10~ 16 ergs/°K). Recall that 1 calorie
= 4.18joule = 4.18 x 107 ergs. Thus, (2.90) gave the result

Cy ~ 6 cal/deg mole. (2.91)

The explanation of the Dulong—Petit law is based on the equipartition theo-
rem of classical statistical mechanics. This theorem assumes that each atom
oscillates harmonically about its equilibrium position, and that the energy of
one atom is

p2

:2m

1

1
o PR HP) 4 k(@ 4y 27). (2.92)

1
+ 2k;7“2 =

The equipartition theorem states that for a classical system in equilibrium
2

<§;‘1> = 3kpT. The same is true for the other terms in (2.92), so that the

energy per atom at temperature 7' is £ = 3kpT. The energy of 1 mole is
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Y

T

Fig. 2.9. Temperature dependence of the specific heat of a typical solid

U = 3NaksT = 3RT. (2.93)

It follows immediately that C., which is equal to (gg)v is given by (2.90). It
was later discovered that the Dulong—Petit law was valid only at sufficiently
high temperature. The temperature dependence of C for a typical solid was
found to behave as shown in Fig. 2.9.

2.6.1 Einstein Model

To explain why the specific heat decreased as the temperature was lowered,
Einstein made the assumption that the atomic vibrations were quantized.
By this we mean that if one assumes that the motion of each atom is
described by a harmonic oscillator, then the allowed energy values are given
by e, = (n + ;) hw, where n =0,1,2, ..., and w is the oscillator frequency.?
Einstein used a very simple model in which each atom vibrated with the same
frequency w. The probability p, that an oscillator has energy ¢, is propor-
tional to e~=»/#8T  Because p,, is a probability and ZSLOZO pn = 1, we find that
it is convenient to write

pp = Z e~ on/keT (2.94)

and to determine the constant Z from the condition Y -, p, = 1. Doing so
gives

7 — o—hw/2keT i (e*hw/k‘BT>” . (2.95)
n=0

1

The power series expansion of (1 —z)~! is equal to Y -, z". Making use of

this result in (2.95) gives

2 See Appendix A for a quantum mechanical solution of a harmonic oscillator
problem.
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o—hw/2ksT ohw/2ksT

Z (2.96)

T | _e-hw/ksT ~ ohw/keT _ 1"

The mean value of the energy of one oscillator at temperature T is given by
€ =), Enbn. Making use of (2.94) and (2.95) and the formula > n e ™" =

=05, e gives

h
F= ;Jrﬁhw. (2.97)
Here, 7 is the thermal average of n; it is given by
1
n= (2.98)

ehw/k‘BT _ 1,

and is called the Bose-FEinstein distribution function. The internal energy of
a lattice containing N atoms is simply U = 3Nhw (ﬁ + %), where 7 is given
by (2.98). If N is the Avogadro number, then the specific heat is given by

oUu hw
om (%) —atan (). o)

where the Einstein function Fg(z) is defined by

72

Fol®) = (e 1)1 — ey’

(2.100)
It is useful to define the Finstein temperature Ty by hw = kgTg. Then the x
appearing in Fg(z) is 7;?

In the high-temperature limit (7' > Tg), « is very small compared to unity.
Expanding Fg(z) for small x gives

Fpa) =1— a* 4, (2.101)

1 /Te\>
— 3N 1—
Gy =3 kBl 12<T) +

This agrees with the classical Dulong—Petit law at very high temperature and
it falls off with decreasing T'.

In the low temperature limit (T' < Tg), « is very large compared to unity.
In this limit,

and

(2.102)

Fr(r) ~ 2%e™", (2.103)

and

2
C, = 3Nkg (?) e Te/T, (2.104)
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The Einstein temperature was treated as a parameter to be determined by
comparison with experiment. The Einstein model reproduced the Dulong—
Petit law at high temperature and showed that C, decreased as the temper-
ature was lowered. Careful comparison of experimental data with the model
showed that the low temperature behavior was not quite correct. The exper-
imental data fit a 7% law at low temperature (i.e., Cy o T%) instead of
decreasing exponentially as predicted by the simple Einstein model.

2.6.2 Modern Theory of the Specific Heat of Solids

We know from our study of lattice vibrations that Einstein’s assumption that
each atom in the crystal oscillated at a single frequency w is too great a
simplification. In fact, the normal modes of vibration have a spectrum wqa,
where q is a wave vector restricted to the first Brillouin zone and X is a
label that defines the polarization of the mode. The energy of the crystal at
temperature T is given by

1
U=>" (nqA + 2) hwgh. (2.105)
qA

In (2.105), ngy is given by

1

R = s bl _ 1 (2.106)

From (2.105), the specific heat can be obtained; it is given by

h 2 fwg -1 _ g -t
() mE (R ) )

qA

To carry out the summation appearing in (2.107), we must have either more
information or some model describing how wqx depends on q and A is needed.

Density of States

Recall that the allowed values of q were given by

q=2w(”1b1+”2

n3
2.1
N1 N2 b2 + N3 b3) ) ( 08)

where b; were primitive translations of the reciprocal lattice, n; were integers,
and N; were the number of steps in the direction ¢ that were required before
the periodic boundary conditions returned one to the initial lattice site. For
simplicity, let us consider a simple cubic lattice. Then b; = a~'&;, where a is
the lattice spacing and Z; is a unit vector (in the z, y, or z direction). The
allowed (independent) values of q are restricted to the first Brillouin zone. In
this case, that implies that —%Ni <n; < éNi. Then, the summations over
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Gz, Gy, and g, can be converted to integrals as follows:

[ dg. Ly,
; = or/Noa = QW/dqx. (2.109)

Therefore, the three-dimensional sum > q becomes
L,L,L, 3 Vv / 3
= d’q = d’q. 2.110
2= Gy [ #0= g [ (2110)

In these equations L, L,, and L, are equal to the length of the crystal in
the z, y, and z directions, and V' = L,L,L, is the crystal volume. For any
function f(q), we can write

>_fla)= (2‘;)3 /dsq f() (2.111)

Now, it is convenient to introduce the density of states g(w) defined by

The number of normal modes per unit volume

whose frequency wqy satisfies w < wqy < w + dw. (2.112)

gle)do = {

From this definition, it follows that

1 1
g(w)dw = 1= . / d3q. 2.113
( ) Vv Z (27)3 Z)\: w<wgr <w+dw ( )

aqX
w<wq>\<w+dw

Let Sx(w) be the surface in three-dimensional wave vector space on which
wqx has the value w. Then dS)(w) is an infinitesimal element of this surface
of constant frequency (see Fig.2.10). The frequency change dw in going from
the surface Sy (w) to the surface Sy(w + dw) can be expressed in terms of dq,
an infinitesimal displacement in q space as

dw = dq - [Vqwqa]

or dw =dqy |Vqwqal (2.114)

Wgr=w wgr=w *

Here, dq, is the component of dq normal to the surface of constant frequency
Sy (w). The volume element d3q in wave vector space can be written d3q =
dq; dSy(w), and using (2.114) allows us to write

S, (w+ dw)

Fig. 2.10. Constant frequency surfaces in three-dimensional wave vector space
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dw

d3q =
|V qwaa|

dS(w). (2.115)

Wgr=w

With this result, we can express the density of states as

dSx(w
g(w) (2m)? Z/ |quq>\| (2.116)

In (2.116) the integration is performed over the surface of constant frequency
Sx(w). The denominator contains the magnitude of the gradient of wqy (with
respect to q) evaluated at wgy = w.

2.6.3 Debye Model

To evaluate (2.107) and obtain the specific heat, Debye® introduced a simple
assumption about the phonon spectrum. He took wqy = sy |q| for all values of
q in the first Brillouin zone. Then, the surfaces of constant energy are spheres

(i.e., Sx(w) is a sphere in q space of radius ¢ = ) In addition, Debye replaced
the Brillouin zone by a sphere of the same volume Since > qermpz L =N, we
can write 5
L VvV 4
N = ( ) / d3q = . (2.117)
21 ) Jigi<an (2m)3 377

In (2.117) we have introduced ¢p, the Debye wave vector. A sphere of radius
gp contains the N independent values of q associated with a crystal contain-
ing N atoms. From (2.117), ¢} = 67>N/V, where V is the volume of the
crystal.

The density of states for the Debye model is very simple since |V,
wgr| = sx. Substituting this result into (2.116) gives

9 =y Z {47“] } . (2.118)

q= :; <gp

If we introduce the unit step function 6(z) = 1 for x > 0 and 6(z) = 0 for
x < 0, g(w) can be expressed

g(w) = 2“;2 {H(SIICD; “) 29(Stk§ N w)} . (2.119)

5 53
Here, of course, s; and s; are the speed of a longitudinal and of a transverse
sound wave. Figure 2.11 shows the frequency dependence of the three-
dimensional density of states in the Debye model. Any summation over allowed
values of wave vector can be converted into an integral over frequency by using
the relation

3 P. Debye, Annalen der Physik 39, 789 (1912).
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A

g(w)

____ >
S
8,4p \SMD @

Fig. 2.11. Three-dimensional density of states in the Debye model

> Fwa) =V [ dwglfe) (2.120)
qA

Here, f(wqx) is an arbitrary function of the normal mode frequencies wqx.
Making use of (2.120), the expression for the specific heat [(2.107)] can be
written

Co =gV [dw (™ T (ere 1) (1 - ghere) !
= ks /w(e) (e 1) (1 e ) g(w).  (2.121)

Here, we have introduced © = kgT'. We define the Debye temperature T by
Op = kgTp = hs;gp. Remembering that V' = 67T2Nq53 and that the integral
[ dw goes from w = 0 to w = wp = s;gp for longitudinal waves and from w = 0
to w = syqp = Z wp for transverse waves, it is not difficult to demonstrate

that
1 ©p 2 5:0p
C, =3Nk Fi Fi , 2.122
i (9) i (Ne)) @
where the Debye function Fp(z) is defined by
3 [7 2t dz
F = . 2.12
20 = 43 ) e - 1 e (2129

Behavior at © > Op
In this limit, x which equals %’ or * %D is much smaller than unity. Therefore,
we can expand the exponentials for small argument to obtain

3 [T 2tdz
FD(m):xB/O IR (2.124)

In this limit, C, = 3Nkp, in agreement with the classical Dulong—Petit law.
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Behavior at © < Op

In this limit, x is much larger than unity, and because of the exponential in
the denominator of the integral little error arises from replacing the upper
limit by infinity. This gives

Fp(z) ~ 53 /OOO o - f)((liz_ ) (2.125)

The integral is simply a constant. Its value can be obtained analytically

e ztdz 4 4
— S 2.12
/0 (2 —1)(1—e=%) 15" (2.126)

The result for C| at very low temperature is

1+2<Z>3 <§D>3. (2.127)

This agrees with the observed behavior of the specific heat at very low
temperature, viz. Cy = AT3, where A is a constant.

4
CV = 57T4Nk‘B

2.6.4 Evaluation of Summations over Normal Modes
for the Debye Model

In our calculation of the recoil free fraction in the Mossbauer effect (See
(2.56)), and in the evaluation of (2.89), the mean square displacement (u,, - u,,)
of an atom from its equilibrium position, we encountered sums of the form

- 1
[=N1 Y T (2.128)

These sums can be performed by converting the sums to integrals through the
standard prescription

4 3
gf(wq)\) - (271')3 /d q f(wq/\)a (2129)
or by making use of the density of states g(w) and the result that

> Fwa) =V [ dwgllfe) (2.130)
qA

For simplicity, we will use a Debye model with the velocity of transverse and
longitudinal waves both equal to s. Then

3w?

= 5 lskn — ). (2.131)

g(w)
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The summation in (2.128) can then be written as

Vo[ev 3w?2 1 [1 1
1= . 2.132
N/O dw27r253 hw [2+ehw/9—1} (2.132)
Let z = &, and make use of kf = 6721 Then (2.132) can be rewritten
9 (O [ov/® 1,1
I = d . 2.133
Op (@D> /O ZZ[2+GZ_1] ( )

First, let us look at the high temperature limit of (2.133). If © > Op,
then for values of z appearing in the integrand 62171 ~ i This corresponds to
the classical equipartition of energy since the energy of a mode of frequency

wqn is given by

5 1 1 ~h (C] 1
War | ghoga/o _ 1 T 9| T W hquJrQ ’

and this is equal to © for every mode (the j is negligible if © > fiwqy) as
required by classical statistical mechanics. With this approximation

9 [ ©)\? [o0/® 90
I~ dz= 7. 2.134
©p (GD) /0 : Ch ( )

At very low temperature, © < Op, we can approximate the upper limit
by oo in the term proportional to (e* — 1)_1, since the contribution from very
large values of z is very small. This gives

9 02 > dz z ®o/®
I = d . 2.135
@D<@D> /0 ez—lJr/O 22 ( )
The first integral in the square bracket is a constant, while the second is

2 . .
}1 (%D) . The second term is much larger than the first for © < ©p, so it is
a reasonable approximation to take

I= . (2.136)

(see, for example, Fig.2.12).

2.6.5 Estimate of Recoil Free Fraction in Mossbauer Effect

Equation (2.56) gave the probability of starting in a lattice state |n; >=
[n1,m2,...,ny > and ending, after the y-ray emission, in the same state. If
we assume that the crystal is in thermal equilibrium at a temperature ©, then
(2.56) is simply

P(i;,71;) = e 2BUOL (2.137)
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0.25

Fig. 2.12. Behavior of an integral I for © < Op

where 7i; is the Bose—Einstein distribution function, E(K) is the recoil energy,
and I is given by (2.132). We have just evaluated I using a simplified Debye
model at both high (© > Op) and low (0 <« ©p) temperatures. If we use
_ 9B(K)

(2.134) and (2.137), we find that at (©p > ©), P ~e¢" *°p . Remember that
E(K) ~ 2 x 1072eV. For a typical crystal Op ~ 300K - kg ~ 2.5 x 1072 eV,
giving for P, P ~ e~ 3 ~ 0.7. This means that at very low temperature, 70%
of the v rays are emitted without any change in the number of phonons in the
crystal.

At high temperature (let us take © = 400K, larger than but not much

_9E(K)
larger than ©p ~ 300K) [ ~ 2)(;) giving P (n;,n;) ~ e 2©p &5 . This gives
D

P (7;,7;) at © = 400K of roughly 0.14, so that, even at room temperature
the Mdssbauer recoil free fraction is reasonably large.

2.6.6 Lindemann Melting Formula
The Lindemann melting formula is based on the idea that melting will occur

1/2
when the amplitude of the atomic vibrations (i.e., <((5R)2> ) becomes

equal to some fraction 7 of the interatomic spacing. Recall that (u, - u,) =

}EI where [ is given by (2.128) (see (2.89)). We can use the © > ©Op limit
for I to write

9h%0
5 2> ~ : 2.1
(OR?) = o (2.138)
. . . MO} 9 o
The melting temperature is assumed to be given by Owelting = o2 VT,

where r is the atomic spacing and v is a constant in the range (0.2 < v <
0.25). This result is only very qualitative since it is based on a very much
oversimplified model.
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Some Remarks on the Debye Model

One can obtain an intuitive picture of the temperature dependence of the
specific heat by applying the idea of classical equipartition of energy, but only
to modes for which fiw < ©. By this we mean that only modes whose energy
hw is smaller than ©® = kT can be thermally excited at a temperature © and
make a contribution to the internal energy U, and such modes contribute an
energy O. Thus, we can write for U

1 Vv O/hs )
U= %; (nq,\ + 2) hwgx =~ 3(27?)3 /0 O 4mq” dg. (2.139)

In writing (2.139) we have omitted the zero point energy since it does not
depend on temperature and put hw[n(w)] ~ O for all modes of energy less

than ©. This gives (using V' = 67N and hskp = Op)

kg,

o\?
U=3N ( ) o. (2.140)
Op

Differentiating with respect to T gives

o\?
O, = 12Nkg ( > . (2.141)
Op

This rough approximation gives the correct T3 temperature dependence,
but the coefficient is not correct as might be expected from such a simple
picture.

Ezxperimental Data

Experimentalists measure the specific heat as a function of temperature over
a wide range of temperatures. They often use the Debye model to fit their
data, taking the Debye temperature as an adjustable parameter to be deter-
mined by fitting the data to (2.122) or some generalization of it. Thus, if
you see a plot of ©Op as a function of temperature, it only means that at
that particular temperature T' one needs to take Op = Op(T) for that value
of T to fit the data to a Debye model. It is always found that at very low

1/3
; _ 672 N
T and at very high T the correct Debye temperature Op = hs ( iy )

agrees with the experiment. At intermediate temperatures these might be
fluctuations in ©p of the order of 10% from the correct value. The rea-
son for this is that g(w), the density of states, for the Debye model is
a considerable simplification of the actual of g(w) for real crystals. This
can be illustrated by considering briefly the critical points in the phonon
spectrum.
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2.6.7 Critical Points in the Phonon Spectrum

Remember that the general expression for the density of states was given by
(2.116). Points at which Vqwqgx = 0 are called critical points; the integrand
in (2.116) becomes infinite at such points.

Suppose that q. is a critical point in the phonon spectrum. Let &€ = q—qc;
then for points in the neighborhood of q. we can write

Wy = We + alff + 042{% + 043532), (2.142)

where &; are the components of £, and w. = w(q.). If a1, ae, and ag are all
negative, by substituting into the expression for g(w) and evaluating in the
neighborhood of ¢., one obtains

() = 0 if w > we, (2.143)
9= constant (we — w)1/2 if w < we. '

Thus, although g(w) is continuous at a critical point, its first derivative is
discontinuous.
In three dimensions there are four kinds of critical points:

1. Mazima: Points at which all three «; are negative.

Minima: Points at which all three «; are positive.

3. Saddle Points of the First Kind: Points at which two «a;’s are positive and
one is negative.

4. Saddle Points of the Second Kind: Points at which one «; is positive and
the other two are negative.

[\

The critical points all show up as points at which d%(:’) is discontinuous. A
rough sketch of g(w) vs. w showing several critical points is shown in Fig. 2.13.
It is not too difficult to demonstrate that in three dimensions the phonon spec-
trum must have at least one maximum, one minimum, three saddle points of

each kind. As an example, we look at the simpler case of two dimensions. Then

A

g

\MIN '/MAX

-

0

Fig. 2.13. Behavior of the density of states at various critical points
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Fig. 2.14. Behavior of critical points in two dimensions

the phonon spectrum must have at least one maximum, one minimum, and
two saddle points (there is only one kind of saddle point in two dimensions)
(see Fig.2.14). This can be demonstrated as follows:

1.

We know w, is a periodic function of q; values of q which differ by a
reciprocal lattice vector K give the same wj,.

. For a Brillouin zone of a two-dimensional square, we can consider w(qz, ¢y)

as a function of ¢, for a sequence of different fixed values of g,. Because
w(¢z, gy) is a periodic function of g, there must be at least one maximum
and one minimum on each line g, = constant.

Consider the locus of all maxima (represented by X’s in Fig.2.14). Along
this locus w(q) must have at least one maximum and one minimum as a
function of g,. These points will be an absolute maximum and a saddle
point.

. Doing the same for the locus of all minima (represented by O’s in Fig. 2.14)

gives one absolute minimum and another saddle point.

Because of the critical points, the phonon spectrum of a real solid looks

quite different from that of the Debye model. However, the Debye model is
constructed so that

1.

The low frequency behavior of g(w) is correct because for very small w,
wgr = S || is a very accurate approximation.

. The total area under the curve g(w) is correct since kp, the Debye wave

vector is chosen so that there are exactly the correct total number of modes
3N.

Because of this, the Debye model is good at very low temperature (where only
very low frequency modes are important) and at very high temperature (where
only the total number of modes and equipartition of energy are important).
In Fig.2.15 we compare g(w) for a Debye model with that of a real crystal.
We note that [ gpebye(w)dw = [ gactual(w)dw.
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Fig. 2.15. Comparison of the density of states g(w) for a Debye model and that of
a real crystal
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Fig. 2.16. Comparison of the potential felt by an atom and the harmonic approxi-
mation to it

2.7 Qualitative Description of Thermal Expansion

We have approximated the interatomic potential in a crystal by

V(R) =V (Ro) + Z ciju;uj + higher terms. (2.144)
]
In Fig.2.16 we show a sketch of the potential felt by one atom and the

harmonic approximation to it. There are two main differences in the two
potentials:

1. The true interatomic potential has a very strong repulsion at u = R — Ry
negative (i.e., close approach of the pair of atoms).

2. The true potential levels off as R becomes very large (i.e., for large
positive u).

For a simple one-dimensional model we can write x = zg + u, where x is the
equilibrium separation between a pair of atoms and u = x — xg is the deviation
from equilibrium. Then, we can model the behavior shown in Fig.2.16 by
assuming that

V(z) = Vo + cu? — gu® — fu?. (2.145)
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Here, g and f are positive constants. The fu? term simply accounts for the fact
that the harmonic approximation rises too quickly for large u. The gu® term
accounts for the asymmetry in the potential for u greater than or less than
zero. When u is negative, —gu? is positive making the short range repulsion
larger; when wu is positive, —gu? is negative softening the interatomic repulsion
for large R.

Now let us evaluate the expectation value of u at a temperature kT = 1.

75 duue™PV

u) = . 2.146

W =" v (2.146)

But, V = Vi + cu® — gu® — fu*, and we can expand e’@(g“3+f“4), for small
values of u, to obtain

eV = e FVoren®) (14 Bgu + Bfut) . (2.147)

The integrals in the numerator and denominator of (2.146) can be evaluated.
Because of the factor e*ﬁcuz, we do not have to worry about the behavior of
the integrand for very large values of |u| so there is little error in taking the
limit as u = +00. We can easily see that

/ due ™V = =% / du e=Bv’ (14 Bgu® + Bfu®). (2.148)

oo — 00

The Bgu® term vanishes because it is an odd function of u; the Bfu* gives a
small correction to the first term so it can be neglected. This results in

0 - 1/2
/ due PV ~ =PV ( ) . (2.149)
o Be

In writing down (2.149) we have made use of the result [~ dz e = NG
The integral in the numerator of (2.146) becomes

o0 o0
/ duwe PV =W / duu et (1+ Bgu® + ﬁfu4) . (2.150)
— 0o — 00

Only the Sgu® term in the square bracket contributes to the integral. The
result is

/ duue PV ~ e A% 3\iﬂﬂg (ﬁc)_5/2. (2.151)
In obtaining (2.151) we have made use of the result ffooo dzzte " = 3‘1”.
Substituting it back in (2.146) gives
1 3¢ 3g
= = kT 2.152
{u) B4c?  4Ac? B ( )

The displacement from equilibrium is positive and increases with temperature.
This suggests why a crystal expands with increasing temperature.
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2.8 Anharmonic Effects

To get some idea about how one would go about treating anharmonic effect,
let us go back to the simple one-dimensional model and include terms that
we have neglected (up to this time) in the expansion of the potential energy.
We can write H = Hyarmonic + H', where H' is given by

1 1
H — N Zdlmnulumun + 41 Z JimnpUitmtnty + -+ - . (2.153)

lmn lmnp

As a first approximation, let us keep only the cubic anharmonic term and make

use of
oo\ .
e E () s
k
Substituting (2.154) in (2.153) gives
no\3/2 "
Hy= 3 > dun (ZMN) (W) ™Y (2.155)
Ilmn kE' k"

. N R
> (ak + aik) (agﬁ + aik’) (ak” _i_a]:k”) elknaelk maelk la_

As before, dj,, does not depend on I, m,n individually, but on their relative
positions. We can, therefore, write djp,, = d(n — m,n — [). Now introduce
g=n—m and j =n — [ and sum over all values of g, j, and n instead of [,
m, and n. This gives for the cubic anharmonic correction to the Hamiltonian

. A 3/2 B
Hé = 31! Zd(g,j) Z <2MN> (wkwk/wku) 1/2 (2156)

ngj kk/k//
x (ak + aT_k> (ak’ + aT_k,> (ak” + aT_k,,> eifna ik’ (n=g)agik”(n=ja

(k+k +k" )na
)

The only factor depending on n is ¢! and

Zei(k+k/+k”)na = NS (k+k + k' K). (2.157)

Here, K is a reciprocal lattice vector; the value of K is uniquely determined
since k, k’, k" must all lie within the first Brillouin zone. Eliminate &’ remem-
bering that if —(k + k') lies outside the first Brillouin zone, one must add a
reciprocal lattice vector K to k" to satisfy (2.157). With this H} becomes

1 N\ —ik'ga i Nja h 3/2
H :NZ?)!Zd(g,j)e K gagi(h+h)i (QMN) (2.158)
kk’ 93

X (Wkwk,wk+k,)—1/2 (ak + aik) (Gk’ + aik') (af(kJrk’) + aJlchrk’) :
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Fig. 2.17. Scattering of phonons: (a) annihilation of three phonons, (b) annihilation
of two phonons and creation of a third phonon, (c¢) annihilation of one phonon and
creation of two phonons, (d) creation of three phonons

k

Now define

1/2

1 s I
Lk = d -\ ikja  ik'(j—g)a ) 2.1
Gk, ) !%: (9,)e'*i%e 2N Neopon e (2.159)

Then, H) is simply

Hj = ZG(k, k) (ak + G’T—k) (ak’ + aT—k’) (a—(k+k’) + a2+k') - (2.160)
Kk’

Feynman Diagrams

In keeping track of the results obtained by applying H' to a state of the har-
monic crystal, it is useful to use Feynman diagrams. A wavy line will represent
a phonon propagating to the right (time increases to the right). The interac-
tion (i.e., the result of applying H}) is represented by a point into (or out of)
which three wavy lines run. There are four fundamentally different kinds of
diagrams (see Fig.2.17):

arak a_ (45 annihilates three phonons (Fig.2.17a).
akakfal_s_k, annihilates two phonons and creates a third phonon (Fig. 2.17b).
akaik,a£+k/ annihilates a phonon but creates two phonons (Fig. 2.17¢).

aikaik,aiHc, creates three phonons (Fig.2.17d).

o=

Due to the existence of anharmonic terms (cubic, quartic, etc. in the dis-
placements from equilibrium) the simple harmonic oscillators which describe
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the normal modes in the harmonic approximation are coupled. This anhar-
monicity leads to a number of interesting results (e.g., thermal expansion,
phonon-phonon scattering, phonon lifetime, etc.) We will not have space to
take up these effects in this book. However, one should be aware that the har-
monic approximation is an approximation. It ignores all the interesting effects
resulting from anharmonicity.

2.9 Thermal Conductivity of an Insulator

When one part of a crystal is heated, a temperature gradient is set up. In
the presence of the temperature gradient heat will flow from the hotter to the
cooler region. The ratio of this heat current density to the magnitude of the
temperature gradient is called the thermal conductivity k.

In an insulating crystal (i.e., one whose electrical conductivity is very small
at low temperatures as a result of the absence of nearly free electrons) the
heat is transported by phonons. Let us define u(z) as the internal energy per
unit volume in a small region about the position x in the crystal. We assume
that u(x) depends on position because there is a temperature gradient gf in
the x-direction. Because the temperature T' depends on x, the local thermal
equilibrium phonon density f,, = [eh“’“/ ©_ 1]_1 will also depend on .
This takes a little explanation. In our discussion of phonons up until now, a
phonon of wave vector k was not localized anywhere in the crystal. In fact, all
of the atoms in the crystal vibrated with an amplitude uj, and different phases
elfna—iwrt Ty light of this, a phonon is everywhere in the crystal, and it seems
difficult to think about difference in phonon density at different positions. In
order to do so, we must construct wave packets with a spread in k values, Ak,
chosen such that (Akj)f1 is much larger than the atomic spacing but much
smaller than the distance Ax over which the temperature changes appreciably.
Then, by a phonon of wavenumber k& we will mean a wavepacket centered at
wavenumber k. The wavepacket can then be localized to a region Az of the
order (Ak)fl. If the temperature at position z is different from that at some
other position, the phonon will transport energy from the warmer to the cooler
region. The thermal current density at position x can be written

jr(x) = / st cos O u(x — lcosb). (2.161)
0

In this equation u(x) is the internal energy per unit volume at position z,
s is the sound velocity, [ is the phonon mean free path (I = s7, where 7 is
the average time between phonon collisions), and 6 is the angle between the
direction of propagation of the phonon and the direction of the temperature
gradient (see Fig.2.18). A phonon reaching position x at angle 6 (as shown
in Fig. 2.18) had its last collision, on the average, at 2’ = x — [ cos §. But the
phonons carry internal energy characteristic of the position where they had
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Fig. 2.18. Phonon propagation in the presence of a temperature gradient in the
z-direction

their last collision, so such phonons carry internal energy u(x—1I cos ). We can
expand u(z — [ cosf) as u(z) — 9* Lcos 6, and integrate over dQ2 = 27 sin 6df.
This gives the result

1 Ou
—_sl .

3 Ox
Of course the internal energy depends on x because of the temperature gra-
dient, so we cari 1write gz = g;ﬁ gz The result for the thermal conductivity
=i (22) "

jr(x) = (2.162)

1
-3
In (2.163), we have set | = s7 and g;i = C,, the specific heat of the solid.

KT s2rC,. (2.163)

2.10 Phonon Collision Rate

The collision rate 7=! of phonons depends on

1. Anharmonic effects which cause phonon—phonon scattering
2. Defects and impurities which can scatter phonons and
3. The surfaces of the crystal which can also scatter phonons

Only the phonon-phonon collisions are very sensitive to temperature, since
the phonon density available to scatter one phonon varies with temperature.
For a perfect infinite crystal, defects, impurities, and surfaces can be ignored.

Phonon-phonon scattering can degrade the thermal current, but at very
low temperature, where only low frequency (w < wp or k < kp) phonons
are excited, most phonon—phonon scattering conserves crystal momentum.
By this we mean that in the real scattering processes shown in Fig.2.19, no
reciprocal lattice vector K is needed in the conservation of crystal momentum,
and Fig.2.19a would contain a delta function d(ky + k2 — k3), Fig.2.19b a
0(k1 — ko — ks3), and Fig.2.19¢ a §(k; + k2 — ks — k4). This occurs because
each k-value is very small compared to the smallest reciprocal lattice vector
K. These scattering processes are called N-processes (for normal scattering
processes), and they do not degrade the thermal current.
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Fig. 2.19. Phonon-phonon scattering (a) Scattering of two phonons into one
phonon, (b) Scattering of one phonon into two phonons, (¢) Scattering of two pho-
nons into two phonons
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Fig. 2.20. Temperature dependence of the thermal conductivity of an insulator

At high temperatures phonons with k& values close to a reciprocal lattice
vector K will be thermally excited. In this case, the sum of k; and ky in
Fig. 2.19a might be outside the first Brillouin zone so that k3 = ki + ks — K.
It turns out that these processes, U-processes (for Umklapp processes) do
degrade the thermal current. At high temperatures it is found that 7 is
proportional to temperature to the —n power, where 1 < n < 2. The high tem-
perature specific heat is the constant Dulong—Petit value, so that according
to (2.163) kp o< T~™ at high temperature.

At low temperature, only U-processes limit the thermal conductivity (or
contribute to the thermal resistivity). But few phonons with k& =~ kp are
present at low temperature. A rough estimate would give e "“P/® for the
probability of U-scattering at low temperature. Therefore, 7y, the scattering
time for U-processes is proportional to e®/€. Since the low temperature
specific heat varies as T2, (2.163) would predict kT o T3e™/T for the thermal
conductivity at low temperature. The result for the temperature dependence
of thermal conductivity of an insulator is sketched in Fig. 2.20.

2.11 Phonon Gas

Landau introduced the concept of thinking of elementary excitations as par-
ticles. He suggested that it was possible to have a gas of phonons in a
crystal whose properties were analogous to those of a classical gas. Both the
atoms or molecules of a classical gas and the phonons in a crystal undergo
collisions. For the former, the collisions are molecule-molecule collisions or
molecule-wall of container collisions. For the latter they are phonon—phonon,
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phonon—imperfection or phonon—surface collisions. Energy is conserved in
these collisions. Momentum is conserved in molecule-molecule collisions in
a classical gas and in N-process phonon—phonon collisions in a phonon gas. Of
course, the number of particles is conserved in the molecule-molecule collisions
of a classical gas, but phonons can be created or annihilated in phonon—phonon
collisions, so their number is not a conserved quantity.

The sound waves of a classical gas are oscillations of the particle density.
They occur if wr < 1, so that thermal equilibrium is established very quickly
compared to the period of the sound wave. They also require that momentum
be conserved in the collision process.

Landau* called normal sound waves in a gas first sound. He proposed an
oscillation of the phonon density in a phonon gas that named second sound.
This oscillation of the phonon density (or energy density) occurred in a crystal
if wrw < 1 (as in first sound) but wry > 1 so that crystal momentum is
conserved. Second sound has been observed in He* and in a few crystals.

* L. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
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Problems

2.1. Consider a three-dimensional Einstein model in which each degree of
freedom of each atom has a vibrational frequency wy.

(a) Evaluate G(w), the number of modes per unit volume whose frequency
is less than w.

(b) Evaluate g(w) = dii‘”).

(¢) Make a rough sketch of both G(w) and g(w) as a function of w.

2.2. For a one-dimensional lattice a phonon of wave number k£ has frequency
Wk = wp sin “;‘a for a nearest neighbor coupling model. Now approximate this

model by a Debye model with w = s|k|.

(a) Determine the value of s, the sound speed, and kp, the Debye
wave vector.

(b) Sketch w as a function of k& for each model over the entire Brillouin
zone.

(c) Evaluate g(w) for each model and make a sketch of g(w) vs. w for each.

2.3. Consider a diatomic linear chain. Evaluate uq/v, for the acoustic and
optical modes at ¢ =0 and at ¢ = J .

2.4. Consider a linear chain with two atoms per unit cell (each of mass M)
located at 0 and ¢, where 6 < 3, a being the primitive translation vector. Let
C1 be the force constant between nearest neighbors and C5 the force constant
between next nearest neighbors. Determine w (k = 0) and wi (k= T7).

_a UNIT CELL
00 @0 00 @0 @O
0 Un Vn Un+1 Vn+1

2.5. Show that the normal mode density (for samll w) in a d-dimensional
harmonic crystal varies as w?~!. Use this result to determine the temperature
dependence of the specific heat.

2.6. In a linear chain with nearest neighbor interactions wy = wq sin |k2|a. Show
(2 1
that g(w) ~ (%)) ot

2.7. For a certain three-dimensional simple cubic lattice the phonon spectrum
is independent of polarization A and is given by

ky k k. 1/2
w(ke, ky, k) = wo {Sin2 ( 2a) + sin? ( ga) + sin? ( 2a)] -
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(a) Sketch a graph of w vs. k for
l.ky=k.=0and 0 <k, <7 (ie., along I' = X),

2.k, =0and ky =k, = \’/“2 for 0 <k < ‘/3” (i.e., along I' — K),

B.ky =ky=h.= b for0<k< V3T (i.e., along T' — L).

(b) Draw the w vs. k curve for the Debye approximation to these dispersion
curves as dashes lines on the diagram used in part (a).

(c) What are the critical points of this phonon spectrum? How many are
there?

(d) Make a rough sketch of the Debye density of states g(w). How will the
actual density of states differ from the Debye approximation?

(e) Using this example, discuss the shortcomings and the successes of the
Debye model in predicting the thermodynamic properties (like specific
heat) of solids.

2.8. For a two-dimensional crystal a simple Debye model takes w = sk for the
longitudinal and the single transverse modes for all allowed k values up to the
Debye wave number kp.

(a) Determine kp as a function of é\g, where N is the number of atoms
and L? is the area of the crystal.

(b) Determine g(w), the density of normal modes per unit area.

(c) Find the expression for the internal energy at a temperature T' as
an integral over the density of states times an appropriate function of
frequency and temperature.

(d) From the result of part (c) determine the specific heat ¢, .

(e) Evaluate ¢, for kgT < hwp = hskp.
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Summary

In this chapter, we discussed the vibrations of the atoms in solids. Quantum
mechanical treatment of lattice dynamics and dispersion curves of the normal
modes are described.

The Hamiltonian of a linear chain is written, in the harmonic approx-

2
imation, as H = ), QPM + %Zijcijuiuj, where P; is the momentum and
u; = R; — RY is the deviation of the ith atom from its equilibrium position.

A general dispersion relation of the normal modes is Mw] = Zf\il c(l)elale,
The normal coordinates are given by

Qe = N*l/ZZunefik:na; Pe = N71/22Pne+ikna.
n n

The inverse of g, and py, are u, = N~Y/23", ge*ne; P, = N=1/23, pre~ikna,
The quantum mechanical Hamiltonian is given by H = ", Hj, where

Aot
PPy Ly o
Hy = 9] + 2kaqqu.

The dynamical variables g and py are replaced by quantum mechanical oper-
ators g and Py which satisfy the commutation relation [px, qr] = —ihdg g . It

is convenient to rewrite ¢ and py in terms of the operators ax and al, which
are defined by

. 1/2 ) hMw, 1/2 )
o () oot (M) o).

The ay’s and a’s satisfy [ak, al/} = 0 and [ag, ar]_ = [al, az,} =0.

The displacement of the nth atom and its momentum can be written

Iz /2 ik i
Un = Zk (ZM]i/'wk) el (ak‘ +a-k) ’
1/2 .
P, = Zkz (hg’;VM) / g~ ikna (al — a_k) .

The Hamiltonian of the linear chain of atoms can be written
1
H = Zhwk (alak + 2) ,
k

and its eigenfunctions and eigenvalues are

™ i\
(k)" (ok)

V1! V!

[ni,ne,...,ny >= [0 >

and By, ny 0y = Zz hewg, (ni + é)
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In the three-dimensional case, the Hamiltonian is given by
1
H=Y"h f :
%}\: WK (ak/\ak)\ + 2>

The allowed values of k are given by k = 27 (X,ll by + 173,22 by + K,‘Z b3> . The

displacement u,, and momentum P, of the nth atom are written, respectively,

as 7 1/2 RO ;
we= (QMka)\> e (aa — Ly )

kA
. AMw 1/2 . ik
P, = Zl ( 2Nk/\) EkAC ik-R;, (aL)\ + a_k)\) .
kA

The energy of the crystal is given by U = ZqA (ﬁqA + %) hwgy, where ngy
is given by figy = R /1k_BT o The lattice heat capacity is written as
o -

oUu hwq)\ 2 F:"qA -1 _ hegx -1
= = BT — 1 1— kT .
&= (or), -2 (r) ( :

The density of states g(w) defined by

The number of normal modes per unit volume
g(w)dw = {whose frequency wqy satisfies w < wgy < w + dw.

Then we have g(w) = (2717)3 S S ‘gfzi‘;’t. Here, dSy(w) is an infinitesi-
mal element of the surface of constant frequency in three-dimensional wave
vector space on which wgy has the value w. Near a critical point q., at which
Vgwgxr = 0, in the phonon spectrum, we can write

wg = we + 1 &f + ol + asé3,

where &; are the components of £ = q — q., and w. = w(g.). In three
dimensions, there are four kinds of critical points:

1. Mazxima: points at which all three «; are negative.

2. Minima: points at which all three a; are positive.

3. Saddle Points of the First Kind: Points at which two «;’s are positive and
one is negative.

4. Saddle Points of the Second Kind: Points at which one «; is positive and
the other two are negative.

The density of states for the Debye model is expressed as

w? [0(sikp — w) n 20(stkp — w)

9(w) = 27?2 s} s3

Here, s; and s; are the speed of a longitudinal and of a transverse sound wave.
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