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Lattice Vibrations

2.1 Monatomic Linear Chain

So far, in our discussion of the crystalline nature of solids we have assumed
that the atoms sat at lattice sites. This is not actually the case; even at the
lowest temperatures the atoms perform small vibrations about their equilib-
rium positions. In this chapter we shall investigate the vibrations of the atoms
in solids. Many of the significant features of lattice vibrations can be under-
stood on the basis of a simple one-dimensional model, a monatomic linear
chain. For that reason we shall first study the linear chain in some detail.

We consider a linear chain composed of N identical atoms of mass M
(see Fig. 2.1). Let the positions of the atoms be denoted by the parameters
Ri, i = 1, 2, . . . , N . Here, we assume an infinite crystal of vanishing surface
to volume ratio, and apply periodic boundary conditions . That is, the chain
contains N atoms and the Nth atom is connected to the first atom so that

Ri+N = Ri. (2.1)

The atoms interact with one another (e.g., through electrostatic forces, core
repulsion, etc.). The potential energy of the array of atoms will obviously be
a function of the parameters Ri, i.e.,

U = U(R1, R2, . . . , RN ). (2.2)

We shall assume that U has a minimum U
(
R0

1, R
0
2, . . . , R

0
N

)
for some partic-

ular set of values
(
R0

1, R
0
2, . . . , R

0
N

)
, corresponding to the equilibrium state of

the linear chain. Define ui = Ri−R0
i to be the deviation of the ith atom from

its equilibrium position. Now expand U about its equilibrium value to obtain

U (R1, R2, . . . , RN ) = U
(
R0

1, R
0
2, . . . , R

0
N

)
+
∑

i

(
∂U
∂Ri

)

0
ui

+ 1
2!

∑
i,j

(
∂2U

∂Ri∂Rj

)

0
uiuj + 1

3!

∑
i,j,k

(
∂3U

∂Ri∂Rj∂Rk

)

0
uiujuk + · · · . (2.3)
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Fig. 2.1. Linear chain of N identical atoms of mass M

The first term is a constant which can simply be absorbed in setting the
zero of energy. By the definition of equilibrium, the second term must vanish
(the subscript zero on the derivative means that the derivative is evaluated at
u1, u2, . . . , un = 0). Therefore, we can write

U(R1, R2, . . . , RN ) =
1
2!

∑

i,j

cijuiuj +
1
3!

∑

i,j,k

dijkuiujuk + · · · , (2.4)

where

cij =
(

∂2U

∂Ri∂Rj

)

0

,

dijk =
(

∂3U

∂Ri∂Rj∂Rk

)

0

. (2.5)

For the present, we will consider only the first term in (2.4); this is called the
harmonic approximation. The Hamiltonian in the harmonic approximation is

H =
∑

i

P 2
i

2M
+

1
2

∑

i,j

cijuiuj. (2.6)

Here, Pi is the momentum and ui the displacement from the equilibrium posi-
tion of the ith atom.

Equation of Motion

Hamilton’s equations

Ṗi = −∂H
∂ui

= −
∑

j

cijuj,

u̇i =
∂H

∂Pi
=
Pi
M

(2.7)

can be combined to yield the equation of motion

Müi = −
∑

j

cijuj . (2.8)

In writing down the equation for Ṗi, we made use of the fact that cij actually
depends only on the relative positions of atoms i and j, i.e., on |i− j|. Notice
that −cijuj is simply the force on the ith atom due to the displacement
uj of the jth atom from its equilibrium position. Now let R0

n = na, so that
R0
n−R0

m = (n−m)a. We assume a solution of the coupled differential equations
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of motion, (2.8), of the form

un(t) = ξqei(qna−ωqt). (2.9)

By substituting (2.9) into (2.8) we find

Mω2
q =

∑

m

cnmeiq(m−n)a. (2.10)

Because cnm depends only on l = m− n, we can rewrite (2.10) as

Mω2
q =

N∑

l=1

c(l)eiqla. (2.11)

Boundary Conditions

We apply periodic boundary conditions to our chain; this means that the
chain contains N atoms and that the Nth atom is connected to the first atom
(Fig. 2.2). This means that the (n+N)th atom is the same atoms as the nth
atom, so that un = un+N . Since un ∝ eiqna, the condition means that

eiqNa = 1, (2.12)

or that q = 2π
Na × p where p = 0,±1,±2, . . . . However, not all of these values

of q are independent. In fact, there are only N independent values of q since
there are only N degrees of freedom. If two different values of q, say q and q′

give identical displacements for every atom, they are equivalent. It is easy to
see that

eiqna = eiq′na (2.13)

Fig. 2.2. Periodic boundary conditions on a linear chain of N identical atoms
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for all values of n if q′ − q = 2π
a l, where l = 0,±1,±2, . . . . The set of inde-

pendent values of q are usually taken to be the N values satisfying q = 2π
L p,

where −N
2 ≤ p ≤ N

2 . We will see later that in three dimensions the inde-
pendent values of q are values whose components (q1, q2, q3) satisfy qi = 2π

Li
p,

and which lie in the first Brillouin zone, the Wigner–Seitz unit cell of the
reciprocal lattice.

Long Wave Length Limit

Let us look at the long wave length limit, where the wave number q tends to
zero. Then un(t) = ξ0e−iωq=0t for all values of n. Thus, the entire crystal is
uniformly displaced (or the entire crystal is translated). This takes no energy
if it is done very very slowly, so it requires Mω2(0) =

∑N
l=1 c(l) = 0, or

ω(q = 0) = 0. In addition, it is not difficult to see that since c(l) depends only
on the magnitude of l that

Mω2(−q) =
∑

l

c(l)e−iqla =
∑

l′
c(l′)eiql′a = Mω2(q). (2.14)

In the last step in this equation, we replaced the dummy variable l by l′ and
used the fact that c(−l′) = c(l′). Equation (2.14) tells us that ω2(q) is an even
function of q which vanishes at q = 0. If we make a power series expansion
for small q, then ω2(q) must be of the form

ω2(q) = s2q2 + · · · (2.15)

The constant s is called the velocity of sound.

Nearest Neighbor Forces: An Example

So far, we have not specified the interaction law among the atoms; (2.15)
is valid in general. To obtain ω(q) for all values of q, we must know the
interaction between atoms. A simple but useful example is that of nearest
neighbor forces. In that case, the equation of motion is

Mω2(q) =
1∑

l=1

cleiqla = c−1e−iqa + c0 + c1eiqa. (2.16)

Knowing that ω(0) = 0 and that c−l = cl gives the relation c1 = c−1 = − 1
2c0.

Therefore, (2.16) is simplified to

Mω2(q) = c0

[
1 −

(
eiqa + e−iqa

2

)]
. (2.17)

Since 1 − cosx = 2 sin2 x
2 , (2.17) can be expressed as

ω2(q) =
2c0
M

sin2 qa

2
, (2.18)

which is displayed in Fig. 2.3. By looking at the long wave length limit, the
coupling constant is determined by c0 = 2Ms2

a2 , where s is the velocity of
sound.
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ππ

ω

Fig. 2.3. Dispersion relation of the lattice vibration in a monatomic linear chain

2.2 Normal Modes

The general solution for the motion of the nth atom will be a linear com-
bination of solutions of the form of (2.9). We can write the general solution
as

un(t) =
∑

q

[
ξqeiqna−iωt + cc

]
, (2.19)

where cc means the complex conjugate of the previous term. The form of (2.19)
assures the reality of un(t), and the 2N parameters (real and imaginary parts
of ξq) are determined from the initial values of the position and velocity of
the N atoms which specify the initial state of the system.

In most problems involving small vibrations in classical mechanics, we seek
new coordinates pk and qk in terms of which the Hamiltonian can be written
as

H =
∑

k

Hk =
∑

k

[
1

2M
pkp

∗
k +

1
2
Mω2

kqkq
∗
k

]
. (2.20)

In terms of these normal coordinates pk and qk, the Hamiltonian is a sum
of N independent simple harmonic oscillator Hamiltonians. Because we use
running waves of the form eiqna−iωqt the new coordinates qk and pk can be
complex, but the Hamiltonian must be real. This dictates the form of (2.20).

The normal coordinates turn out to be

qk = N−1/2
∑

n

une−ikna, (2.21)

and

pk = N−1/2
∑

n

Pne+ikna. (2.22)
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We will demonstrate this for qk and leave it for the student to do the same
for pk. We can write (2.19) as

un(t) = α
∑

k

ξk(t)eikna, (2.23)

where ξk is complex and satisfies ξ∗−k = ξk. With this condition un(t), given
by (2.23), is real and α is simply a constant to be determined. We can write
the potential energy U = 1

2

∑
mn cmnumun in terms of the new coordinates

ξk as follows.

U =
1
2
|α|2

∑

mn

cmn
∑

k

ξkeikma
∑

k′
ξk′eik′na. (2.24)

Now, let us use k′ = q − k to rewrite (2.24) as

U =
1
2
|α|2

∑

nkq

[
∑

m

cmneik(m−n)a

]

ξkξq−keiqna. (2.25)

From (2.10) one can see that the quantity in the square bracket in (2.25) is
equal to Mω2

k. Thus, U becomes

U =
1
2
|α|2

∑

nkq

Mω2
kξkξ

∗
k−qe

iqna. (2.26)

The only factor in (2.26) that depends on n is eiqna. It is not difficult to prove
that

∑
n eiqna = Nδq,0. We do this as follows: Define SN = 1 + x+ x2 + · · ·+

xN−1; then xSN = x+ x2 + · · · + xN is equal to SN − 1 + xN .

xSN = SN − 1 + xN . (2.27)

Solving for SN gives

SN =
1 − xN

1 − x
. (2.28)

Now, let x = eiqa. Then, (2.28) says

N−1∑

n=0

(
eiqa

)n
=

1 − eiqaN

1 − eiqa
. (2.29)

Remember that the allowed values of q were given by q = 2π
Na × integer.

Therefore, iqaN = i 2π
NaaN × integer, and eiqaN = e2πi×integer = 1. Therefore,

the numerator vanishes. The denominator does not vanish unless q = 0. When
q = 0, eiqa = 1 and the sum gives N . This proves that

∑
n eiqna = Nδ(q, 0)

when q = 2π
Na × integer. Using this result in (2.26) gives
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U =
1
2
|α|2

∑

k

Mω2
kξkξ

∗
kN. (2.30)

Choosing α = N−1/2 puts U into the form of the potential energy for N
simple harmonic oscillators labeled by the k value. By assuming that Pn is
proportional to

∑
k pke

−ikna with p∗−k = pk, it is not difficult to show that
(2.22) gives the kinetic energy in the desired form

∑
k
pkp
∗
k

2M . The inverse of
(2.21) and (2.22) are easily determined to be

un = N−1/2
∑

k

qkeikna, (2.31)

and

Pn = N−1/2
∑

k

pke−ikna. (2.32)

Quantization

Up to this point our treatment has been completely classical. We quantize the
system in the standard way. The dynamical variables qk and pk are replaced
by quantum mechanical operators q̂k and p̂k which satisfy the commutation
relation

[pk, qk′ ] = −ih̄δk,k′ . (2.33)

The quantum mechanical Hamiltonian is given by H =
∑

kHk, where

Hk =
p̂kp̂

†
k

2M
+

1
2
Mω2

kq̂k q̂
†
k. (2.34)

p̂†k and q̂†k are the Hermitian conjugates of p̂k and q̂k, respectively. They are
necessary in (2.34) to assure that the Hamiltonian is a Hermitian operator.
The Hamiltonian of the one-dimensional chain is simply the sum ofN indepen-
dent simple Harmonic oscillator Hamiltonians. As with the simple Harmonic
oscillator, it is convenient to introduce the operators ak and its Hermitian
conjugate a†k, which are defined by

qk =
(

h̄

2Mωk

)1/2 (
ak + a†−k

)
, (2.35)

pk = i
(
h̄Mωk

2

)1/2 (
a†k − a−k

)
. (2.36)

The commutation relations satisfied by the ak’s and a†k’s are
[
ak, a

†
k′

]

−
= δk,k′ and [ak, ak′ ]− =

[
a†k, a

†
k′

]

−
= 0. (2.37)



44 2 Lattice Vibrations

The displacement of the nth atom and its momentum can be written

un =
∑

k

(
h̄

2MNωk

)1/2

eikna
(
ak + a†−k

)
, (2.38)

Pn =
∑

k

i
(
h̄ωkM

2N

)1/2

e−ikna
(
a†k − a−k

)
. (2.39)

The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

h̄ωk

(
a†kak +

1
2

)
, (2.40)

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN〉 =

(
a†k1

)n1

√
n1!

· · ·
(
a†kN

)nN

√
nN !

|0〉, (2.41)

and

En1,n2,...,nN =
∑

i

h̄ωki

(
ni +

1
2

)
. (2.42)

In (2.41), |0 >= |01 > |02 > · · · |0N > is the ground state of the entire
system; it is a product of ground state wave functions for each harmonic
oscillator. It is convenient to think of the energy h̄ωk as being carried by an
elementary excitations or quasiparticle. In lattice dynamics, these elementary
excitations are called phonons. In the ground state, no phonons are present
in any of the harmonic oscillators. In an arbitrary state, such as (2.41), n1

phonons are in oscillator k1, n2 in k2, . . ., nN in kN . We can rewrite (2.41) as
|n1, n2, . . . , nN〉 = |n1 > |n2 > · · · |nN >, a product of kets for each oscillator.

2.3 Mössbauer Effect

With the simple one-dimensional harmonic approximation, we have the tools
necessary to understand the physics of some interesting effects. One example
is the Mössbauer effect.1 This effect involves the decay of a nuclear excited
state via γ-ray emission (see Fig. 2.4). First, let us discuss the decay of a
nucleus in a free atom; to be explicit, let us consider the decay of the excited
state of Fe57 via emission of a 14.4 keV γ-ray.

Fe57∗ −→ Fe57 + γ (2.43)

The excited state of Fe57 has a lifetime of roughly 10−7 s. The uncertainty
principle tells us that by virtue of the finite lifetime Δt = τ = 10−7 s, there
1 R. L. Mössbauer, D.H. Sharp, Rev. Mod. Phys. 36, 410 (1964).
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rayγ

Fig. 2.4. The exact transition energy is required to be reabsorbed because of the
very sharply defined nuclear energy states

is an uncertainty ΔE in the energy of the excited state (or a natural linewidth
for the γ-ray) given by ΔE = h̄

Δt . Using Δt = 10−7 s gives Δω = 107 s−1 or
Δ (h̄ω) � 6 × 10−9 eV. Thus, the ratio of the linewidth Δω to the frequency
ω is Δω

ω � 4 × 10−13.
In a resonance experiment, the γ-ray source emits and the target reso-

nantly absorbs the γ-rays. Unfortunately, when a γ-ray is emitted or absorbed
by a nucleus, the nucleus must recoil to conserve momentum. The momen-
tum of the γ-ray is pγ = h̄ω

c , so that the nucleus must recoil with momentum
h̄K = pγ or energy E(K) = h̄2K2

2M where M is the mass of the atom. The

recoil energy is given by E(K) = h̄2ω2

2Mc2 = (h̄ω)2

2(M/m)mc2 . But mc2 � 0.5× 106 eV
and the ratio of the mass of Fe57 to the electron mass m is ∼2.3 × 105, giv-
ing E(K) � 2 × 10−3 eV. This recoil energy is much larger than the energy
uncertainty of the γ-ray (6 × 10−9 eV). Because of the recoil on emission and
absorption, the γ-ray is short by 4 × 10−3 eV of energy necessary for reso-
nance absorption. Mössbauer had the idea that if the nucleus that underwent
decay was bound in a crystal (containing ∼1023 atoms) the recoil of the entire
crystal would carry negligible energy since the crystal mass would replace
the atomic mass of a single Fe57 atom. However, the quantum mechanical
state of the crystal might change in the emission process (via emission of
phonons). A typical phonon has a frequency of the order of 1013 s−1, much
larger than Δω = 107 s−1 the natural line width. Therefore, in order for res-
onance absorption to occur, the γ-ray must be emitted without simultaneous
emission of phonons. This no phonon γ-ray emission occurs a certain fraction
of the time and is referred to as recoil free fraction. We would like to estimate
the recoil free fraction.

As far as the recoil-nucleus is concerned, the effect of the γ-ray emission
can be represented by an operator H ′ defined by

H ′ = CeiK·R̂N , (2.44)

where C is some constant, h̄K is the recoil momentum, and R̂N is the position
operator of the decaying nucleus. This expression can be derived using the
semiclassical theory of radiation, but we simply state it and demonstrate that
it is plausible by considering a free nucleus.
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Recoil of a Free Nucleus

The Hamiltonian describing the motion of the center of mass of a free atom
is

H0 =
P 2

2M
. (2.45)

The eigenstates of H0 are plane waves

|k〉 = V −1/2eik·RN

whose energy is

E(k) =
h̄2k2

2M
.

Operating on an initial state |k > with H ′ gives a new eigenstate proportional
to |k +K >. The change in energy (i.e., the recoil energy) is

ΔE = E(k +K) − E(k) =
h̄2

2M
(
2k ·K +K2

)
.

For a nucleus that is initially at rest, ΔE = h̄2K2

2M , exactly what we had given
previously.

Mössbauer Recoil Free Fraction

When the atom whose nucleus emits the γ-ray is bound in the crystal, the
initial and final eigenstates must describe the entire crystal. Suppose the initial
eigenstate is

|n1, n2, . . . , nN >=
∏

i

n
−1/2
i

(
a†ki

)ni |0 > .

In evaluating H ′ operating on this state, we write RN = R0
N +uN to describe

the center of mass of the nucleus which emits the γ-ray. We can choose the
origin of our coordinate system at the position R0

N and write

RN = uN =
∑

k

(
h̄

2MNωk

)1/2 (
ak + a†−k

)
. (2.46)

Because k is a dummy variable to be summed over, and because ωk = ω−k,
we can replace a†−k by a†k in (2.46).

The probability of a transition from initial state |ni >= |n1, n2, . . . , nN >
to final state |mf >= |m1,m2, . . . ,mN > is proportional to the square of the
matrix element 〈mf |H ′|ni〉. This result can be established by using time
dependent perturbation theory with H ′ as the perturbation. Let us write this
probability as P (mf , ni). Then P (mf , ni) can be expressed as

P (mf , ni) = α
∣
∣〈mf

∣
∣CeiK·RN

∣
∣ni

〉∣∣2 . (2.47)
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In (2.47) α is simply a proportional constant, and we have set H ′ =
CeiK·RN . Because P (mf , ni) is the probability of going from |ni > to |mf >,∑

mf
P (mf , ni) = 1. This condition gives the relation

α|C|2
∑

mf

〈
mf

∣
∣eiK·RN

∣
∣ni

〉∗ 〈
mf

∣
∣eiK·RN

∣
∣ni

〉
= 1. (2.48)

Because eiK·RN is Hermitian,
〈
mf

∣
∣eiK·RN

∣
∣ni

〉∗ is equal to
〈
ni
∣
∣e−iK·RN

∣
∣mf

〉
.

We use this result in (2.48) and make use of the fact that |mf 〉 is part of a
complete orthonormal set so that

∑
mf

|mf 〉〈mf | is the unit operator to obtain

α|C|2 [〈ni
∣
∣e−iK·RN × eiK·RN

∣
∣ni

〉]2
= 1.

This is satisfied only if α|C|2 = 1, establishing the result

P (mf , ni) =
∣
∣〈mf

∣
∣eiK·RN

∣
∣ni

〉∣∣2 . (2.49)

Evaluation of P (ni, ni)

The probability of γ-ray emission without any change in the state of the lat-
tice is simply P (ni, ni). We can write RN in (2.49) as

RN =
∑

k

βk

(
ak + a†k

)
, (2.50)

where we have introduced βk =
(

h̄
2MNωk

)1/2

. If we write |ni >= |n1 > |n2 >

· · · |nN >, then
〈
ni
∣
∣eiK·RN

∣
∣ni

〉
= 〈n1| < n2| · · · < nN |[eiK

∑
k βk(ak+a†k)]|n1 > |n2 > · · · |nN〉.

(2.51)
The operator ak and a†k operates only on the kth harmonic oscillator, so that
(2.51) can be rewritten

〈
ni
∣∣eiK·RN

∣∣ni
〉

=
∏

k

〈nk|eiKβk(ak+a†k)|nk〉. (2.52)

Each factor in the product can be evaluated by expanding the exponential in
power series. This gives

〈nk|eiKβk(ak+a†k)|nk〉 = 1 +
(iKβk)2

2!
〈nk|aka†k + a†kak|nk〉

+
(iKβk)4

4!
〈nk|(ak + a†k)

4|nk〉 + · · · . (2.53)

The result for this matrix element is

〈nk|eiKβk(ak+a†k)|nk〉 = 1 − E(K)
h̄ωk

nk + 1
2

N
+O(N−2). (2.54)
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We shall neglect terms of order N−2, N−3, . . ., etc. in this expansion. With
this approximation we can write

〈ni|eiK·RN |ni〉 �
∏

k

[
1 − E(K)

h̄ωk

nk + 1
2

N

]
. (2.55)

To terms of order N−1, the product appearing on the right-hand side of (2.55)

is equivalent to e−
E(K)

N

∑
k

nk+1
2

h̄ωk to the same order. Thus, for the recoil free
fraction, we find

P (ni, ni) = e−2E(K)
N

∑
k

nk+ 1
2

h̄ωk . (2.56)

Although we have derived (2.56) for a simple one-dimensional model, the
result is valid for a real crystal if sum over k is replaced by a three-dimensional
sum over all k and over the three polarizations. We will return to the evalua-
tion of the sum later, after we have considered models for the phonon spectrum
in real crystals.

2.4 Optical Modes

So far, we have restricted our consideration to a monatomic linear chain. Later
on, we shall consider three-dimensional solids (the added complication is not
serious). For the present, let us stick with the one-dimensional chain, but let
us generalize to the case of two atoms per unit cell (Fig. 2.5).

If atoms A and B are identical, the primitive translation vector of the
lattice is a, and the smallest reciprocal vector is K = 2π

a . If A and B are
distinguishable (e.g. of slightly different mass) then the smallest translation
vector is 2a and the smallest reciprocal lattice vector is K = 2π

2a = π
a . In this

case, the part of the ω vs. q curve lying outside the region |q| ≤ π
2a must

be translated (or folded back) into the first Brillouin zone (region between
− π

2a and π
2a ) by adding or subtracting the reciprocal lattice vector π

a . This
results in the spectrum shown in Fig. 2.6. Thus, for a non-Bravais lattice, the
phonon spectrum has more than one branch. If there are p atoms per primi-
tive unit cell, there will be p branches of the spectrum in a one-dimensional
crystal. One branch, which satisfies the condition that ω(q) → 0 as q → 0 is
called the acoustic branch or acoustic mode. The other (p − 1) branches are
called optical branches or optical modes. Due to the difference between the

Α Α Α Α ΑΒ Β Β Β

UNIT CELL
2

Fig. 2.5. Linear chain with two atoms per unit cell
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0

ACOUSTIC
        BRANCH

OPTICAL
 BRANCH

ππ
2
π

2
π

ω

Fig. 2.6. Dispersion curves for the lattice vibration in a linear chain with two atoms
per unit cell

Fig. 2.7. Unit cells of a linear chain with two atoms per cell

pair of atoms in the unit cell when A �= B, the degeneracy of the acoustic
and optical modes at q = ± q

2a is usually removed. Let us consider a simple
example, the linear chain with nearest neighbor interactions but with atoms
of mass M1 and M2 in each unit cell. Let un be the displacement from its
equilibrium position of the atom of mass M1 in the nth unit cell; let vn be
the corresponding quantity for the atom of mass M2. Then, the equations of
motion are

M1ün = K [(vn − un) − (un − vn−1)] , (2.57)
M2v̈n = K [(un+1 − vn) − (vn − un)] . (2.58)

In Fig. 2.7, we show unit cells n and n+ 1. We assume solutions of (2.57) and
(2.58) of the form

un = uqeiq2an−iωqt, (2.59)

vn = vqeiq(2an+a)−iωqt. (2.60)

where uq and vq are constants. Substituting (2.59) and (2.60) into the equa-
tions of motion gives the following matrix equation.
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Fig. 2.8. Dispersion relations for the acoustical and optical modes of a diatomic
linear chain

[−M1ω
2 + 2K −2K cos qa

−2K cos qa −M2ω
2 + 2K

] [
uq
vq

]
= 0. (2.61)

The nontrivial solutions are obtained by setting the determinant of the 2× 2

matrix multiplying the column vector
[
uq
vq

]
equal to zero. The roots are

ω2
±(q) =

K

M1M2

{
M1 +M2 ∓

[
(M1 +M2)2 − 4M1M2 sin2 qa

]1/2}
.

(2.62)

We shall assume that M1 < M2. Then at q = ± π
2a , the two roots are

ω2
OP(q = π

2a ) = 2K
M1

and ω2
AC(q = π

2a ) = 2K
M2

. At q ≈ 0, the two roots are

given by ω2
AC(q) � 2Ka2

M1+M2
q2 and ω2

OP(q) = 2K(M1+M2)
M1M2

[
1 − M1M2

(M1+M2)2 q
2a2

]
.

The dispersion relations for both modes are sketched in Fig. 2.8.

2.5 Lattice Vibrations in Three Dimensions

Now let us consider a primitive unit cell in three dimensions defined by the
translation vectors a1, a2, and a3. We will apply periodic boundary conditions
such that Ni steps in the direction ai will return us to the original lattice site.
The Hamiltonian in the harmonic approximation can be written as

H =
∑

i

P2
i

2M
+

1
2

∑

i,j

ui · Cij · uj . (2.63)

Here, the tensor Cij (i and j refer to the ith and jth atoms and Cij is a
three-dimensional tensor for each value of i and j) is given by

Cij =
[∇Ri∇RjU(R1,R2, . . .)

]
R0

iR
0
j

. (2.64)
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In obtaining (2.63) we have expanded U(R1,R2, . . .) in powers of ui =
Ri − R0

i , the deviation from the equilibrium position, and we have used the
definition of equilibrium to eliminate the term that is linear in ui.

From Hamilton’s equation we obtain the equation of motion

M ün = −
∑

j

Cij · uj . (2.65)

We assume a solution to (2.65) of the form

un = ξk eik·R0
n−iωkt. (2.66)

Here, ξk is a vector whose magnitude gives the size of the displacement asso-
ciated with wave vector k and whose direction gives the direction of the
displacement. It is convenient to write

ξk = ε̂k qk, (2.67)

where ε̂k is a unit polarization vector (a unit vector in the direction of ξk)
and qk is the amplitude. Substituting the assumed solution into the equation
of motion gives

Mω2
kεk =

∑

j

Cij · ε̂keik·(R0
j−R0

i ). (2.68)

Because (2.68) is a vector equation, it must have three solutions for each value
of k. This is apparent if we define the tensor F (k) by

F (k) = −
∑

j

eik·(R0
j−R0

i )Cij . (2.69)

Then, (2.68) can be written as a matrix equation
⎛

⎝
Mω2

k + Fxx Fxy Fxz
Fyx Mω2

k + Fyy Fyz
Fzx Fzy Mω2

k + Fzz

⎞

⎠

⎛

⎝
ε̂kx
ε̂ky
ε̂kz

⎞

⎠ = 0. (2.70)

The three solutions of the three by three secular equation for a given value of
k can be labeled by a polarization index λ. The eigenvalues of (2.70) will be
ω2

kλ and the eigenfunctions will be

ε̂kλ = (ε̂xkλ, ε̂
y
kλ, ε̂

z
kλ)

with λ = 1, 2, 3.
When we apply periodic boundary conditions, then we must have the

condition
eikiNiai = 1 (2.71)

satisfied for i = 1, 2, 3 the three primitive translation directions. In (2.71), ki
is the component of k in the direction of ai and Ni is the period associated
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with the periodic boundary conditions in this direction. From the condition
(2.71), it is clear that the allowed values of the wave vector k must be of the
form

k = 2π
(
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3

)
, (2.72)

where n1, n2, and n3 are integers, and b1, b2, b3 are primitive translation
vectors of the reciprocal lattice. As in the one-dimensional case, not all of
the values of k given by (2.72) are independent. It is customary to chose as
independent values of k those which satisfy (2.72) and the condition

− Ni
2

≤ ni ≤ Ni
2
. (2.73)

This set of k values is restricted to the first Brillouin zone, the set of all values
of k satisfying (2.72) that are closer to the origin in reciprocal space than to
any other reciprocal lattice point. The total number of k values in the first
Brillouin zone is N = N1N2N3, and there are three normal modes (three
polarizations λ) for each k value. This gives a total of 3N normal modes, the
number required to describe a system of N = N1N2N3 atoms each having
three degrees of freedom. For k values that lie outside the Brillouin zone,
one simply adds a reciprocal lattice vector K to obtain an equivalent k value
inside the Brillouin zone.

2.5.1 Normal Modes

As we did in the one-dimensional case, we can define new coordinates qkλ and
pkλ as

un = N−1/2
∑

kλ

ε̂kλqkλeik·R0
n , (2.74)

Pn = N−1/2
∑

kλ

ε̂kλpkλe−ik·R0
n . (2.75)

The Hamiltonian becomes

H =
∑

kλ

Hkλ =
∑

kλ

[
1

2M
pkλp

∗
kλ +

1
2
Mω2

kλqkλq
∗
kλ

]
. (2.76)

It is customary to define the polarization vectors ε̂kλ to satisfy ε̂−kλ = −ε̂kλ
and ε̂kλ · ε̂kλ′ = δλλ′ . Remembering that

∑
n ei(k−k′)·R0

n = Nδk,k′ , one can
see immediately that

∑

n

ε̂kλ · ε̂k′λ′ei(k−k′)·R0
n = Nδk,k′δλλ′ . (2.77)
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The conditions resulting from requiring Pn and un to be real are

p∗
kλ = p−kλ and q∗

kλ = q−kλ (2.78)

where pkλ = ε̂kλpkλ and qkλ = ε̂kλqkλ. The condition on the scalar quantities
pkλ and qkλ differs by a minus sign from the vector relation (2.78) because
ε̂kλ changes sign when k goes to −k.

2.5.2 Quantization

To quantize, the dynamical variables pkλ and qkλ are replaced by quantum
mechanical operators p̂kλ and q̂kλ which satisfy the commutation relations

[p̂kλ, q̂k′λ′ ]− = −ih̄δkk′δλλ′ . (2.79)

It is again convenient to introduce creation and annihilation operators a†kλ
and akλ defined by

qkλ =
(

h̄

2Mωkλ

)1/2 (
akλ − a†−kλ

)
, (2.80)

pkλ = i
(
h̄Mωkλ

2

)1/2 (
a†kλ + a−kλ

)
. (2.81)

The differences in sign from one-dimensional case result from using scalar
quantities qkλ and pkλ in defining akλ and a†kλ. The operators akλ and ak′λ′

satisfy the commutation relations
[
akλ, a

†
k′λ′

]

−
= δkk′δλλ′ , (2.82)

[akλ, ak′λ′ ]− =
[
a†kλ, a

†
k′λ′

]

−
= 0. (2.83)

The Hamiltonian is given by

H =
∑

kλ

h̄ωkλ

(
a†kλakλ +

1
2

)
. (2.84)

From this point on the analysis is essentially identical to that of the one-
dimensional case which we have treated in detail already. In the three-
dimensional case, we can write the displacement un and momentum Pn of
the nth atom as the quantum mechanical operators given below:

un =
∑

kλ

(
h̄

2MNωkλ

)1/2

ε̂kλeik·R0
n

(
akλ − a†−kλ

)
, (2.85)

Pn =
∑

kλ

i
(
h̄Mωkλ

2N

)1/2

ε̂kλe−ik·R0
n

(
a†kλ + a−kλ

)
. (2.86)
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Mean Squared Displacement of an Atom

As an example of how to use the quantum mechanical eigenstates and the
operator describing dynamical variables, let us evaluate the mean squared
displacement of an atom from its equilibrium position in a three-dimensional
crystal. We can write

un ·un =
∑

kλ,k′λ′

(
h̄

2MN

)
(ωkλωk′λ′)

−1/2
ε̂kλ · ε̂k′λ′

(
akλ + a†kλ

)(
ak′λ′ + a†k′λ′

)
.

(2.87)
Here, we have again chosen the origin at the equilibrium position of the nth

atom so that R0
n = 0. Then, we can replace ε̂kλa

†
−kλ by −ε̂kλa†kλ in (2.85).

This was done in obtaining (2.87). If we assume the eigenstate of the lattice
is |nk1λ1 , nk2λ2 , . . . 〉, it is not difficult to see the that

〈un〉 = 〈nk1λ1 , nk2λ2 , . . . |un|nk1λ1 , nk2λ2 , . . .〉 = 0, (2.88)

and that

〈un · un〉 =
∑

kλ

(
h̄

2MNωkλ

)
(2nkλ + 1) . (2.89)

2.6 Heat Capacity of Solids

In the nineteenth century, it was known from experiment that at room tem-
perature the specific heat of a solid was given by the Dulong–Petit law which
said

Cv = 3R, (2.90)

where R = NAkB, and NA = Avogadro number (=6.03 × 1023 atoms/mole)
and kB = Boltzmann’s constant (=1.38×10−16 ergs/◦K). Recall that 1 calorie
= 4.18 joule = 4.18 × 107 ergs. Thus, (2.90) gave the result

Cv � 6 cal/deg mole. (2.91)

The explanation of the Dulong–Petit law is based on the equipartition theo-
rem of classical statistical mechanics. This theorem assumes that each atom
oscillates harmonically about its equilibrium position, and that the energy of
one atom is

E =
p2

2m
+

1
2
kr2 =

1
2m

(
p2
x + p2

y + p2
z

)
+

1
2
k
(
x2 + y2 + z2

)
. (2.92)

The equipartition theorem states that for a classical system in equilibrium〈
p2x
2m

〉
= 1

2kBT . The same is true for the other terms in (2.92), so that the
energy per atom at temperature T is E = 3kBT . The energy of 1 mole is
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3
V
C

Fig. 2.9. Temperature dependence of the specific heat of a typical solid

U = 3NAkBT = 3RT. (2.93)

It follows immediately that Cv, which is equal to
(
∂U
∂T

)
v

is given by (2.90). It
was later discovered that the Dulong–Petit law was valid only at sufficiently
high temperature. The temperature dependence of Cv for a typical solid was
found to behave as shown in Fig. 2.9.

2.6.1 Einstein Model

To explain why the specific heat decreased as the temperature was lowered,
Einstein made the assumption that the atomic vibrations were quantized.
By this we mean that if one assumes that the motion of each atom is
described by a harmonic oscillator, then the allowed energy values are given
by εn =

(
n+ 1

2

)
h̄ω, where n = 0, 1, 2, . . . , and ω is the oscillator frequency.2

Einstein used a very simple model in which each atom vibrated with the same
frequency ω. The probability pn that an oscillator has energy εn is propor-
tional to e−εn/kBT . Because pn is a probability and

∑∞
n=0 pn = 1, we find that

it is convenient to write
pn = Z−1e−εn/kBT , (2.94)

and to determine the constant Z from the condition
∑∞
n=0 pn = 1. Doing so

gives

Z = e−h̄ω/2kBT
∞∑

n=0

(
e−h̄ω/kBT

)n
. (2.95)

The power series expansion of (1 − x)−1 is equal to
∑∞

n=0 x
n. Making use of

this result in (2.95) gives

2 See Appendix A for a quantum mechanical solution of a harmonic oscillator
problem.
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Z =
e−h̄ω/2kBT

1 − e−h̄ω/kBT
=

eh̄ω/2kBT

eh̄ω/kBT − 1
. (2.96)

The mean value of the energy of one oscillator at temperature T is given by
ε̄ =

∑
n εnpn. Making use of (2.94) and (2.95) and the formula

∑
n n e−nx =

− ∂
∂x

∑
n e−nx gives

ε̄ =
h̄ω

2
+ n̄h̄ω. (2.97)

Here, n̄ is the thermal average of n; it is given by

n̄ =
1

eh̄ω/kBT − 1
, (2.98)

and is called the Bose–Einstein distribution function. The internal energy of
a lattice containing N atoms is simply U = 3Nh̄ω

(
n̄+ 1

2

)
, where n̄ is given

by (2.98). If N is the Avogadro number, then the specific heat is given by

Cv =
(
∂U

∂T

)

v

= 3NkBFE

(
h̄ω

kBT

)
, (2.99)

where the Einstein function FE(x) is defined by

FE(x) =
x2

(ex − 1)(1 − e−x)
. (2.100)

It is useful to define the Einstein temperature TE by h̄ω = kBTE. Then the x
appearing in FE(x) is TE

T .
In the high-temperature limit (T � TE), x is very small compared to unity.

Expanding FE(x) for small x gives

FE(x) = 1 − 1
12
x2 + · · · , (2.101)

and

Cv = 3NkB

[

1 − 1
12

(
TE

T

)2

+ · · ·
]

. (2.102)

This agrees with the classical Dulong–Petit law at very high temperature and
it falls off with decreasing T .

In the low temperature limit (T � TE), x is very large compared to unity.
In this limit,

FE(x) � x2e−x, (2.103)

and

Cv = 3NkB

(
TE

T

)2

e−TE/T . (2.104)
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The Einstein temperature was treated as a parameter to be determined by
comparison with experiment. The Einstein model reproduced the Dulong–
Petit law at high temperature and showed that Cv decreased as the temper-
ature was lowered. Careful comparison of experimental data with the model
showed that the low temperature behavior was not quite correct. The exper-
imental data fit a T 3 law at low temperature (i.e., Cv ∝ T 3) instead of
decreasing exponentially as predicted by the simple Einstein model.

2.6.2 Modern Theory of the Specific Heat of Solids

We know from our study of lattice vibrations that Einstein’s assumption that
each atom in the crystal oscillated at a single frequency ω is too great a
simplification. In fact, the normal modes of vibration have a spectrum ωqλ,
where q is a wave vector restricted to the first Brillouin zone and λ is a
label that defines the polarization of the mode. The energy of the crystal at
temperature T is given by

U =
∑

qλ

(
n̄qλ +

1
2

)
h̄ωqλ. (2.105)

In (2.105), n̄qλ is given by

n̄qλ =
1

eh̄ωqλ/kBT − 1
. (2.106)

From (2.105), the specific heat can be obtained; it is given by

Cv =
(
∂U

∂T

)

v

= kB

∑

qλ

(
h̄ωqλ

kBT

)2 (
e

h̄ωqλ
kBT − 1

)−1(
1 − e−

h̄ωqλ
kBT

)−1

. (2.107)

To carry out the summation appearing in (2.107), we must have either more
information or some model describing how ωqλ depends on q and λ is needed.

Density of States

Recall that the allowed values of q were given by

q = 2π
(
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3

)
, (2.108)

where bi were primitive translations of the reciprocal lattice, ni were integers,
and Ni were the number of steps in the direction i that were required before
the periodic boundary conditions returned one to the initial lattice site. For
simplicity, let us consider a simple cubic lattice. Then bi = a−1x̂i, where a is
the lattice spacing and x̂i is a unit vector (in the x, y, or z direction). The
allowed (independent) values of q are restricted to the first Brillouin zone. In
this case, that implies that − 1

2Ni ≤ ni ≤ 1
2Ni. Then, the summations over
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qx, qy, and qz can be converted to integrals as follows:

∑

qx

⇒
∫

dqx
2π/Nxa

⇒ Lx
2π

∫
dqx. (2.109)

Therefore, the three-dimensional sum
∑

q becomes

∑

q

=
LxLyLz
(2π)3

∫
d3q =

V

(2π)2

∫
d3q. (2.110)

In these equations Lx, Ly, and Lz are equal to the length of the crystal in
the x, y, and z directions, and V = LxLyLz is the crystal volume. For any
function f (q), we can write

∑

q

f (q) =
V

(2π)3

∫
d3q f (q). (2.111)

Now, it is convenient to introduce the density of states g(ω) defined by

g(ω)dω =
{

The number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω. (2.112)

From this definition, it follows that

g(ω)dω =
1
V

∑

qλ
ω < ωqλ < ω + dω

1 =
1

(2π)3
∑

λ

∫

ω<ωqλ<ω+dω

d3q. (2.113)

Let Sλ(ω) be the surface in three-dimensional wave vector space on which
ωqλ has the value ω. Then dSλ(ω) is an infinitesimal element of this surface
of constant frequency (see Fig. 2.10). The frequency change dω in going from
the surface Sλ(ω) to the surface Sλ(ω+ dω) can be expressed in terms of dq,
an infinitesimal displacement in q space as

dω = dq · [∇qωqλ]ωqλ=ω or dω = dq⊥ |∇qωqλ|ωqλ=ω . (2.114)

Here, dq⊥ is the component of dq normal to the surface of constant frequency
Sλ(ω). The volume element d3q in wave vector space can be written d3q =
dq⊥dSλ(ω), and using (2.114) allows us to write

dq

q( )Sλ ω ( )S dλ ω+ ω

Fig. 2.10. Constant frequency surfaces in three-dimensional wave vector space
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d3q =
dω

|∇qωqλ|ωqλ=ω

dSλ(ω). (2.115)

With this result, we can express the density of states as

g(ω) =
1

(2π)3
∑

λ

∫
dSλ(ω)

|∇qωqλ|ω
. (2.116)

In (2.116) the integration is performed over the surface of constant frequency
Sλ(ω). The denominator contains the magnitude of the gradient of ωqλ (with
respect to q) evaluated at ωqλ = ω.

2.6.3 Debye Model

To evaluate (2.107) and obtain the specific heat, Debye3 introduced a simple
assumption about the phonon spectrum. He took ωqλ = sλ |q| for all values of
q in the first Brillouin zone. Then, the surfaces of constant energy are spheres
(i.e., Sλ(ω) is a sphere in q space of radius q = ω

sλ
). In addition, Debye replaced

the Brillouin zone by a sphere of the same volume. Since
∑
q∈1stBZ 1 = N , we

can write

N =
(
L

2π

)3 ∫

|q|<qD
d3q =

V

(2π)3
4
3
πq3D. (2.117)

In (2.117) we have introduced qD, the Debye wave vector. A sphere of radius
qD contains the N independent values of q associated with a crystal contain-
ing N atoms. From (2.117), q3D = 6π2N/V , where V is the volume of the
crystal.

The density of states for the Debye model is very simple since |∇q

ωqλ| = sλ. Substituting this result into (2.116) gives

g(ω) =
1

(2π)3
∑

λ

[
4πq2

sλ

]

q= ω
sλ

≤qD
. (2.118)

If we introduce the unit step function θ(x) = 1 for x > 0 and θ(x) = 0 for
x < 0, g(ω) can be expressed

g(ω) =
ω2

2π2

[
θ(slkD − ω)

s3l
+

2 θ(stkD − ω)
s3t

]
. (2.119)

Here, of course, sl and st are the speed of a longitudinal and of a transverse
sound wave. Figure 2.11 shows the frequency dependence of the three-
dimensional density of states in the Debye model. Any summation over allowed
values of wave vector can be converted into an integral over frequency by using
the relation

3 P. Debye, Annalen der Physik 39, 789 (1912).
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Fig. 2.11. Three-dimensional density of states in the Debye model

∑

qλ

f (ωqλ) = V

∫
dω g(ω)f (ω). (2.120)

Here, f (ωqλ) is an arbitrary function of the normal mode frequencies ωqλ.
Making use of (2.120), the expression for the specific heat [(2.107)] can be
written

Cv = kBV

∫
dω

(
h̄ω

Θ

)2 (
eh̄ω/Θ − 1

)−1 (
1 − e−h̄ω/Θ

)−1

g(ω). (2.121)

Here, we have introduced Θ = kBT . We define the Debye temperature TD by
ΘD = kBTD = h̄slqD. Remembering that V = 6π2Nq−3

D and that the integral∫
dω goes from ω = 0 to ω = ωD = slqD for longitudinal waves and from ω = 0

to ω = stqD = st

sl
ωD for transverse waves, it is not difficult to demonstrate

that

Cv = 3NkB

[
1
3
FD

(
ΘD

Θ

)
+

2
3
FD

(
stΘD

slΘ

)]
, (2.122)

where the Debye function FD(x) is defined by

FD(x) =
3
x3

∫ x

0

z4 dz
(ez − 1)(1 − e−z)

. (2.123)

Behavior at Θ � ΘD

In this limit, x which equals ΘD
Θ or stΘD

slΘ
is much smaller than unity. Therefore,

we can expand the exponentials for small argument to obtain

FD(x) � 3
x3

∫ x

0

z4 dz
z2

≈ 1. (2.124)

In this limit, Cv = 3NkB, in agreement with the classical Dulong–Petit law.
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Behavior at Θ � ΘD

In this limit, x is much larger than unity, and because of the exponential in
the denominator of the integral little error arises from replacing the upper
limit by infinity. This gives

FD(x) � 3
x3

∫ ∞

0

z4 dz
(ez − 1)(1 − e−z)

. (2.125)

The integral is simply a constant. Its value can be obtained analytically
∫ ∞

0

z4 dz
(ez − 1)(1 − e−z)

=
4
15
π4. (2.126)

The result for Cv at very low temperature is

Cv =
4
5
π4NkB

[

1 + 2
(
sl
st

)3
](

Θ
ΘD

)3

. (2.127)

This agrees with the observed behavior of the specific heat at very low
temperature, viz. Cv = AT 3, where A is a constant.

2.6.4 Evaluation of Summations over Normal Modes
for the Debye Model

In our calculation of the recoil free fraction in the Mössbauer effect (See
(2.56)), and in the evaluation of (2.89), the mean square displacement 〈un · un〉
of an atom from its equilibrium position, we encountered sums of the form

I = N−1
∑

qλ

n̄qλ + 1
2

h̄ωqλ
. (2.128)

These sums can be performed by converting the sums to integrals through the
standard prescription

∑

q

f (ωqλ) → V

(2π)3

∫
d3q f (ωqλ), (2.129)

or by making use of the density of states g(ω) and the result that

∑

qλ

f (ωqλ) = V

∫
dω g(ω)f (ω). (2.130)

For simplicity, we will use a Debye model with the velocity of transverse and
longitudinal waves both equal to s. Then

g(ω) =
3ω2

2π2s3
θ(skD − ω). (2.131)
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The summation in (2.128) can then be written as

I =
V

N

∫ ωD

0

dω
3ω2

2π2s3
1
h̄ω

[
1
2

+
1

eh̄ω/Θ − 1

]
. (2.132)

Let z = h̄ω
Θ , and make use of k3

D = 6π2N
V . Then (2.132) can be rewritten

I =
9

ΘD

(
Θ
ΘD

)2 ∫ ΘD/Θ

0

dz z
[
1
2

+
1

ez − 1

]
. (2.133)

First, let us look at the high temperature limit of (2.133). If Θ � ΘD,
then for values of z appearing in the integrand 1

ez−1 � 1
z . This corresponds to

the classical equipartition of energy since the energy of a mode of frequency
ωqλ is given by

h̄ωqλ

[
1

eh̄ωqλ/Θ − 1
+

1
2

]
� h̄ωqλ

[
Θ

h̄ωqλ
+

1
2

]
,

and this is equal to Θ for every mode (the 1
2 is negligible if Θ � h̄ωqλ) as

required by classical statistical mechanics. With this approximation

I � 9
ΘD

(
Θ
ΘD

)2 ∫ ΘD/Θ

0

dz =
9Θ
Θ2

D

. (2.134)

At very low temperature, Θ � ΘD, we can approximate the upper limit
by ∞ in the term proportional to (ez − 1)−1, since the contribution from very
large values of z is very small. This gives

I =
9

ΘD

(
Θ
ΘD

)2
[∫ ∞

0

dz z
ez − 1

+
∫ ΘD/Θ

0

dz
z

2

]

. (2.135)

The first integral in the square bracket is a constant, while the second is
1
4

(
ΘD
Θ

)2
. The second term is much larger than the first for Θ � ΘD, so it is

a reasonable approximation to take

I =
9

4ΘD
. (2.136)

(see, for example, Fig. 2.12).

2.6.5 Estimate of Recoil Free Fraction in Mössbauer Effect

Equation (2.56) gave the probability of starting in a lattice state |ni >=
|n1, n2, . . . , nN > and ending, after the γ-ray emission, in the same state. If
we assume that the crystal is in thermal equilibrium at a temperature Θ, then
(2.56) is simply

P (n̄i, n̄i) = e−2E(K)I , (2.137)
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Θ Θ

Θ

Fig. 2.12. Behavior of an integral I for Θ ≤ ΘD

where n̄i is the Bose–Einstein distribution function, E(K) is the recoil energy,
and I is given by (2.132). We have just evaluated I using a simplified Debye
model at both high (Θ � ΘD) and low (Θ � ΘD) temperatures. If we use

(2.134) and (2.137), we find that at (ΘD � Θ), P � e−
9E(K)
2ΘD . Remember that

E(K) � 2 × 10−3 eV. For a typical crystal ΘD � 300K · kB ≈ 2.5 × 10−2 eV,
giving for P , P � e−

1
3 ≈ 0.7. This means that at very low temperature, 70%

of the γ rays are emitted without any change in the number of phonons in the
crystal.

At high temperature (let us take Θ = 400 K, larger than but not much

larger than ΘD � 300 K) I � 9Θ
Θ2

D
giving P (n̄i, n̄i) � e−

9E(K)
2ΘD

4Θ
ΘD . This gives

P (n̄i, n̄i) at Θ = 400 K of roughly 0.14, so that, even at room temperature
the Mössbauer recoil free fraction is reasonably large.

2.6.6 Lindemann Melting Formula

The Lindemann melting formula is based on the idea that melting will occur

when the amplitude of the atomic vibrations
(

i.e.,
〈
(δR)2

〉1/2
)

becomes

equal to some fraction γ of the interatomic spacing. Recall that 〈un · un〉 =
h̄2

M I where I is given by (2.128) (see (2.89)). We can use the Θ � ΘD limit
for I to write

〈
(δR)2

〉
� 9h̄2Θ
MΘ2

D

. (2.138)

The melting temperature is assumed to be given by ΘMelting = MΘ2
D

9h̄2 γ2r20,
where r0 is the atomic spacing and γ is a constant in the range (0.2 ≤ γ ≤
0.25). This result is only very qualitative since it is based on a very much
oversimplified model.
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Some Remarks on the Debye Model

One can obtain an intuitive picture of the temperature dependence of the
specific heat by applying the idea of classical equipartition of energy, but only
to modes for which h̄ω < Θ. By this we mean that only modes whose energy
h̄ω is smaller than Θ = kBT can be thermally excited at a temperature Θ and
make a contribution to the internal energy U , and such modes contribute an
energy Θ. Thus, we can write for U

U =
∑

qλ

(
n̄qλ +

1
2

)
h̄ωqλ � 3

V

(2π)3

∫ Θ/h̄s

0

Θ 4πq2 dq. (2.139)

In writing (2.139) we have omitted the zero point energy since it does not
depend on temperature and put h̄ω[n̄(ω)] � Θ for all modes of energy less
than Θ. This gives (using V = 6π2N

k3
D

and h̄skD = ΘD)

U = 3N
(

Θ
ΘD

)3

Θ. (2.140)

Differentiating with respect to T gives

Cv = 12NkB

(
Θ
ΘD

)3

. (2.141)

This rough approximation gives the correct T 3 temperature dependence,
but the coefficient is not correct as might be expected from such a simple
picture.

Experimental Data

Experimentalists measure the specific heat as a function of temperature over
a wide range of temperatures. They often use the Debye model to fit their
data, taking the Debye temperature as an adjustable parameter to be deter-
mined by fitting the data to (2.122) or some generalization of it. Thus, if
you see a plot of ΘD as a function of temperature, it only means that at
that particular temperature T one needs to take ΘD = ΘD(T ) for that value
of T to fit the data to a Debye model. It is always found that at very low

T and at very high T the correct Debye temperature ΘD = h̄s
(

6π2N
V

)1/3

agrees with the experiment. At intermediate temperatures these might be
fluctuations in ΘD of the order of 10% from the correct value. The rea-
son for this is that g(ω), the density of states, for the Debye model is
a considerable simplification of the actual of g(ω) for real crystals. This
can be illustrated by considering briefly the critical points in the phonon
spectrum.
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2.6.7 Critical Points in the Phonon Spectrum

Remember that the general expression for the density of states was given by
(2.116). Points at which ∇qωqλ = 0 are called critical points; the integrand
in (2.116) becomes infinite at such points.

Suppose that qc is a critical point in the phonon spectrum. Let ξ = q−qc;
then for points in the neighborhood of qc we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 , (2.142)

where ξi are the components of ξ, and ωc = ω(qc). If α1, α2, and α3 are all
negative, by substituting into the expression for g(ω) and evaluating in the
neighborhood of qc, one obtains

g(ω) =
{

0 if ω > ωc,

constant (ωc − ω)1/2 if ω < ωc.
(2.143)

Thus, although g(ω) is continuous at a critical point, its first derivative is
discontinuous.

In three dimensions there are four kinds of critical points:

1. Maxima: Points at which all three αi are negative.
2. Minima: Points at which all three αi are positive.
3. Saddle Points of the First Kind : Points at which two αi’s are positive and

one is negative.
4. Saddle Points of the Second Kind : Points at which one αi is positive and

the other two are negative.

The critical points all show up as points at which dg(ω)
dω is discontinuous. A

rough sketch of g(ω) vs. ω showing several critical points is shown in Fig. 2.13.
It is not too difficult to demonstrate that in three dimensions the phonon spec-
trum must have at least one maximum, one minimum, three saddle points of
each kind. As an example, we look at the simpler case of two dimensions. Then

Fig. 2.13. Behavior of the density of states at various critical points
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Fig. 2.14. Behavior of critical points in two dimensions

the phonon spectrum must have at least one maximum, one minimum, and
two saddle points (there is only one kind of saddle point in two dimensions)
(see Fig. 2.14). This can be demonstrated as follows:

1. We know ωq is a periodic function of q; values of q which differ by a
reciprocal lattice vector K give the same ωq.

2. For a Brillouin zone of a two-dimensional square, we can consider ω(qx, qy)
as a function of qx for a sequence of different fixed values of qy. Because
ω(qx, qy) is a periodic function of qx there must be at least one maximum
and one minimum on each line qy = constant.

3. Consider the locus of all maxima (represented by X’s in Fig. 2.14). Along
this locus ω(q) must have at least one maximum and one minimum as a
function of qy. These points will be an absolute maximum and a saddle
point.

4. Doing the same for the locus of all minima (represented by O’s in Fig. 2.14)
gives one absolute minimum and another saddle point.

Because of the critical points, the phonon spectrum of a real solid looks
quite different from that of the Debye model. However, the Debye model is
constructed so that

1. The low frequency behavior of g(ω) is correct because for very small ω,
ωqλ = sλ |q| is a very accurate approximation.

2. The total area under the curve g(ω) is correct since kD, the Debye wave
vector is chosen so that there are exactly the correct total number of modes
3N .

Because of this, the Debye model is good at very low temperature (where only
very low frequency modes are important) and at very high temperature (where
only the total number of modes and equipartition of energy are important).
In Fig. 2.15 we compare g(ω) for a Debye model with that of a real crystal.
We note that

∫
gDebye(ω)dω ≈ ∫

gActual(ω)dω.
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ω
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ω

Fig. 2.15. Comparison of the density of states g(ω) for a Debye model and that of
a real crystal

Fig. 2.16. Comparison of the potential felt by an atom and the harmonic approxi-
mation to it

2.7 Qualitative Description of Thermal Expansion

We have approximated the interatomic potential in a crystal by

V (R) = V (R0) +
∑

ij

cijuiuj + higher terms. (2.144)

In Fig. 2.16 we show a sketch of the potential felt by one atom and the
harmonic approximation to it. There are two main differences in the two
potentials:

1. The true interatomic potential has a very strong repulsion at u = R −R0

negative (i.e., close approach of the pair of atoms).
2. The true potential levels off as R becomes very large (i.e., for large

positive u).

For a simple one-dimensional model we can write x = x0 + u, where x0 is the
equilibrium separation between a pair of atoms and u = x−x0 is the deviation
from equilibrium. Then, we can model the behavior shown in Fig. 2.16 by
assuming that

V (x) = V0 + cu2 − gu3 − fu4. (2.145)
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Here, g and f are positive constants. The fu4 term simply accounts for the fact
that the harmonic approximation rises too quickly for large u. The gu3 term
accounts for the asymmetry in the potential for u greater than or less than
zero. When u is negative, −gu3 is positive making the short range repulsion
larger; when u is positive, −gu3 is negative softening the interatomic repulsion
for large R.

Now let us evaluate the expectation value of u at a temperature kBT = β−1.

〈u〉 =

∫∞
−∞ du u e−βV
∫∞
−∞ du e−βV

. (2.146)

But, V = V0 + cu2 − gu3 − fu4, and we can expand eβ(gu
3+fu4), for small

values of u, to obtain

e−βV = e−β(V0+cu
2) (1 + βgu3 + βfu4

)
. (2.147)

The integrals in the numerator and denominator of (2.146) can be evaluated.
Because of the factor e−βcu

2
, we do not have to worry about the behavior of

the integrand for very large values of |u| so there is little error in taking the
limit as u = ±∞. We can easily see that

∫ ∞

−∞
du e−βV = e−βV0

∫ ∞

−∞
du e−βcu

2 (
1 + βgu3 + βfu4

)
. (2.148)

The βgu3 term vanishes because it is an odd function of u; the βfu4 gives a
small correction to the first term so it can be neglected. This results in

∫ ∞

−∞
du e−βV � e−βV0

(
π

βc

)1/2

. (2.149)

In writing down (2.149) we have made use of the result
∫∞
−∞ dz e−z

2
=

√
π.

The integral in the numerator of (2.146) becomes
∫ ∞

−∞
du u e−βV = e−βV0

∫ ∞

−∞
du u e−βcu

2 (
1 + βgu3 + βfu4

)
. (2.150)

Only the βgu3 term in the square bracket contributes to the integral. The
result is ∫ ∞

−∞
du u e−βV � e−βV0

3
√
π

4
βg (βc)−5/2 . (2.151)

In obtaining (2.151) we have made use of the result
∫∞
−∞ dz z4 e−z

4
= 3

√
π

4 .
Substituting it back in (2.146) gives

〈u〉 =
1
β

3g
4c2

=
3g
4c2

kBT. (2.152)

The displacement from equilibrium is positive and increases with temperature.
This suggests why a crystal expands with increasing temperature.
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2.8 Anharmonic Effects

To get some idea about how one would go about treating anharmonic effect,
let us go back to the simple one-dimensional model and include terms that
we have neglected (up to this time) in the expansion of the potential energy.
We can write H = HHarmonic +H ′, where H ′ is given by

H ′ =
1
3!

∑

lmn

dlmnulumun +
1
4!

∑

lmnp

flmnpulumunup + · · · . (2.153)

As a first approximation, let us keep only the cubic anharmonic term and make
use of

um =
∑

k

(
h̄

2MNωk

)1/2 (
ak + a†−k

)
eikma. (2.154)

Substituting (2.154) in (2.153) gives

H ′
3 = 1

3!

∑

lmn

dlmn
∑

kk′k′′

(
h̄

2MN

)3/2

(ωkω′
kω

′′
k )

−1/2 (2.155)

×
(
ak + a†−k

)(
a′k + a†−k′

)(
ak′′ + a†−k′′

)
eiknaeik′maeik′′la.

As before, dlmn does not depend on l,m, n individually, but on their relative
positions. We can, therefore, write dlmn = d(n − m,n − l). Now introduce
g = n −m and j = n − l and sum over all values of g, j, and n instead of l,
m, and n. This gives for the cubic anharmonic correction to the Hamiltonian

H ′
3 = 1

3!

∑

ngj

d(g, j)
∑

kk′k′′

(
h̄

2MN

)3/2

(ωkωk′ωk′′ )
−1/2 (2.156)

×
(
ak + a†−k

)(
ak′ + a†−k′

)(
ak′′ + a†−k′′

)
eiknaeik′(n−g)aeik′′(n−j)a.

The only factor depending on n is ei(k+k′+k′′)na, and
∑

n

ei(k+k′+k′′)na = Nδ (k + k′ + k′′,K) . (2.157)

Here, K is a reciprocal lattice vector; the value of K is uniquely determined
since k, k′, k′′ must all lie within the first Brillouin zone. Eliminate k′′ remem-
bering that if −(k + k′) lies outside the first Brillouin zone, one must add a
reciprocal lattice vector K to k′′ to satisfy (2.157). With this H ′

3 becomes

H ′
3 = N

∑

kk′

1
3!

∑

gj

d(g, j)e−ik′gaei(k+k′)ja
(

h̄

2MN

)3/2

(2.158)

× (ωkωk′ωk+k′ )
−1/2

(
ak + a†−k

)(
ak′ + a†−k′

)(
a−(k+k′) + a†k+k′

)
.
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Fig. 2.17. Scattering of phonons: (a) annihilation of three phonons, (b) annihilation
of two phonons and creation of a third phonon, (c) annihilation of one phonon and
creation of two phonons, (d) creation of three phonons

Now define

G(k, k′) =
1
3!

∑

gj

d(g, j)eikjaeik′(j−g)a
(

h̄3

23M3Nωkωk′ωk+k′

)1/2

. (2.159)

Then, H ′
3 is simply

H ′
3 =

∑

kk′
G(k, k′)

(
ak + a†−k

)(
ak′ + a†−k′

)(
a−(k+k′) + a†k+k′

)
. (2.160)

Feynman Diagrams

In keeping track of the results obtained by applying H ′ to a state of the har-
monic crystal, it is useful to use Feynman diagrams. A wavy line will represent
a phonon propagating to the right (time increases to the right). The interac-
tion (i.e., the result of applying H ′

3) is represented by a point into (or out of)
which three wavy lines run. There are four fundamentally different kinds of
diagrams (see Fig. 2.17):

1. akak′a−(k+k′) annihilates three phonons (Fig. 2.17a).
2. akak′a

†
k+k′ annihilates two phonons and creates a third phonon (Fig. 2.17b).

3. aka
†
−k′a

†
k+k′ annihilates a phonon but creates two phonons (Fig. 2.17c).

4. a†−ka
†
−k′a

†
k+k′ creates three phonons (Fig. 2.17d).

Due to the existence of anharmonic terms (cubic, quartic, etc. in the dis-
placements from equilibrium) the simple harmonic oscillators which describe
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the normal modes in the harmonic approximation are coupled. This anhar-
monicity leads to a number of interesting results (e.g., thermal expansion,
phonon–phonon scattering, phonon lifetime, etc.) We will not have space to
take up these effects in this book. However, one should be aware that the har-
monic approximation is an approximation. It ignores all the interesting effects
resulting from anharmonicity.

2.9 Thermal Conductivity of an Insulator

When one part of a crystal is heated, a temperature gradient is set up. In
the presence of the temperature gradient heat will flow from the hotter to the
cooler region. The ratio of this heat current density to the magnitude of the
temperature gradient is called the thermal conductivity κT.

In an insulating crystal (i.e., one whose electrical conductivity is very small
at low temperatures as a result of the absence of nearly free electrons) the
heat is transported by phonons. Let us define u(x) as the internal energy per
unit volume in a small region about the position x in the crystal. We assume
that u(x) depends on position because there is a temperature gradient ∂T

∂x in
the x-direction. Because the temperature T depends on x, the local thermal
equilibrium phonon density n̄qλ =

[
eh̄ωqλ/Θ − 1

]−1
will also depend on x.

This takes a little explanation. In our discussion of phonons up until now, a
phonon of wave vector k was not localized anywhere in the crystal. In fact, all
of the atoms in the crystal vibrated with an amplitude uk and different phases
eikna−iωkt. In light of this, a phonon is everywhere in the crystal, and it seems
difficult to think about difference in phonon density at different positions. In
order to do so, we must construct wave packets with a spread in k values, Δk,
chosen such that (Δk)−1 is much larger than the atomic spacing but much
smaller than the distance Δx over which the temperature changes appreciably.
Then, by a phonon of wavenumber k we will mean a wavepacket centered at
wavenumber k. The wavepacket can then be localized to a region Δx of the
order (Δk)−1. If the temperature at position x is different from that at some
other position, the phonon will transport energy from the warmer to the cooler
region. The thermal current density at position x can be written

jT(x) =
∫

dΩ
4π

s cos θ u(x− l cos θ). (2.161)

In this equation u(x) is the internal energy per unit volume at position x,
s is the sound velocity, l is the phonon mean free path (l = sτ , where τ is
the average time between phonon collisions), and θ is the angle between the
direction of propagation of the phonon and the direction of the temperature
gradient (see Fig. 2.18). A phonon reaching position x at angle θ (as shown
in Fig. 2.18) had its last collision, on the average, at x′ = x− l cos θ. But the
phonons carry internal energy characteristic of the position where they had
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Fig. 2.18. Phonon propagation in the presence of a temperature gradient in the
x-direction

their last collision, so such phonons carry internal energy u(x−l cos θ). We can
expand u(x− l cos θ) as u(x) − ∂u

∂x l cos θ, and integrate over dΩ = 2π sin θdθ.
This gives the result

jT(x) = −1
3
sl
∂u

∂x
. (2.162)

Of course the internal energy depends on x because of the temperature gra-
dient, so we can write ∂u

∂x = ∂u
∂T

∂T
∂x . The result for the thermal conductivity

κT = −jT
(
∂T
∂x

)−1
is

κT =
1
3
s2τCv. (2.163)

In (2.163), we have set l = sτ and ∂u
∂T = Cv, the specific heat of the solid.

2.10 Phonon Collision Rate

The collision rate τ−1 of phonons depends on

1. Anharmonic effects which cause phonon–phonon scattering
2. Defects and impurities which can scatter phonons and
3. The surfaces of the crystal which can also scatter phonons

Only the phonon–phonon collisions are very sensitive to temperature, since
the phonon density available to scatter one phonon varies with temperature.
For a perfect infinite crystal, defects, impurities, and surfaces can be ignored.

Phonon-phonon scattering can degrade the thermal current, but at very
low temperature, where only low frequency (ω � ωD or k � kD) phonons
are excited, most phonon–phonon scattering conserves crystal momentum.
By this we mean that in the real scattering processes shown in Fig. 2.19, no
reciprocal lattice vector K is needed in the conservation of crystal momentum,
and Fig. 2.19a would contain a delta function δ(k1 + k2 − k3), Fig. 2.19b a
δ(k1 − k2 − k3), and Fig. 2.19c a δ(k1 + k2 − k3 − k4). This occurs because
each k-value is very small compared to the smallest reciprocal lattice vector
K. These scattering processes are called N-processes (for normal scattering
processes), and they do not degrade the thermal current.
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Fig. 2.19. Phonon–phonon scattering (a) Scattering of two phonons into one
phonon, (b) Scattering of one phonon into two phonons, (c) Scattering of two pho-
nons into two phonons

Tκ

Fig. 2.20. Temperature dependence of the thermal conductivity of an insulator

At high temperatures phonons with k values close to a reciprocal lattice
vector K will be thermally excited. In this case, the sum of k1 and k2 in
Fig. 2.19a might be outside the first Brillouin zone so that k3 = k1 + k2 −K.
It turns out that these processes, U-processes (for Umklapp processes) do
degrade the thermal current. At high temperatures it is found that τ is
proportional to temperature to the −n power, where 1 ≤ n ≤ 2. The high tem-
perature specific heat is the constant Dulong–Petit value, so that according
to (2.163) κT ∝ T−n at high temperature.

At low temperature, only U-processes limit the thermal conductivity (or
contribute to the thermal resistivity). But few phonons with k ≈ kD are
present at low temperature. A rough estimate would give e−h̄ωD/Θ for the
probability of U-scattering at low temperature. Therefore, τU, the scattering
time for U-processes is proportional to eΘD/Θ. Since the low temperature
specific heat varies as T 3, (2.163) would predict κT ∝ T 3eTD/T for the thermal
conductivity at low temperature. The result for the temperature dependence
of thermal conductivity of an insulator is sketched in Fig. 2.20.

2.11 Phonon Gas

Landau introduced the concept of thinking of elementary excitations as par-
ticles. He suggested that it was possible to have a gas of phonons in a
crystal whose properties were analogous to those of a classical gas. Both the
atoms or molecules of a classical gas and the phonons in a crystal undergo
collisions. For the former, the collisions are molecule–molecule collisions or
molecule–wall of container collisions. For the latter they are phonon–phonon,
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phonon–imperfection or phonon–surface collisions. Energy is conserved in
these collisions. Momentum is conserved in molecule–molecule collisions in
a classical gas and in N-process phonon–phonon collisions in a phonon gas. Of
course, the number of particles is conserved in the molecule–molecule collisions
of a classical gas, but phonons can be created or annihilated in phonon–phonon
collisions, so their number is not a conserved quantity.

The sound waves of a classical gas are oscillations of the particle density.
They occur if ωτ � 1, so that thermal equilibrium is established very quickly
compared to the period of the sound wave. They also require that momentum
be conserved in the collision process.

Landau4 called normal sound waves in a gas first sound. He proposed an
oscillation of the phonon density in a phonon gas that named second sound.
This oscillation of the phonon density (or energy density) occurred in a crystal
if ωτN � 1 (as in first sound) but ωτU � 1 so that crystal momentum is
conserved. Second sound has been observed in He4 and in a few crystals.

4 L. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
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Problems

2.1. Consider a three-dimensional Einstein model in which each degree of
freedom of each atom has a vibrational frequency ω0.

(a) Evaluate G(ω), the number of modes per unit volume whose frequency
is less than ω.

(b) Evaluate g(ω) = dG(ω)
dω .

(c) Make a rough sketch of both G(ω) and g(ω) as a function of ω.

2.2. For a one-dimensional lattice a phonon of wave number k has frequency
ωk = ω0 sin |k|a

2 for a nearest neighbor coupling model. Now approximate this
model by a Debye model with ω = s|k|.

(a) Determine the value of s, the sound speed, and kD, the Debye
wave vector.

(b) Sketch ω as a function of k for each model over the entire Brillouin
zone.

(c) Evaluate g(ω) for each model and make a sketch of g(ω) vs. ω for each.

2.3. Consider a diatomic linear chain. Evaluate uq/vq for the acoustic and
optical modes at q = 0 and at q = π

2a .

2.4. Consider a linear chain with two atoms per unit cell (each of mass M)
located at 0 and δ, where δ < a

2 , a being the primitive translation vector. Let
C1 be the force constant between nearest neighbors and C2 the force constant
between next nearest neighbors. Determine ω±(k = 0) and ω±(k = π

a ).

d

2.5. Show that the normal mode density (for samll ω) in a d-dimensional
harmonic crystal varies as ωd−1. Use this result to determine the temperature
dependence of the specific heat.

2.6. In a linear chain with nearest neighbor interactions ωk = ω0 sin |k|a
2 . Show

that g(ω) � (
2
πa

)
1√

ω2
0−ω2

.

2.7. For a certain three-dimensional simple cubic lattice the phonon spectrum
is independent of polarization λ and is given by

ω(kx, ky, kz) = ω0

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)
+ sin2

(
kza

2

)]1/2

.
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(a) Sketch a graph of ω vs. k for
1. ky = kz = 0 and 0 ≤ kx ≤ π

a (i.e., along Γ → X),
2. kz = 0 and kx = ky = k√

2
for 0 ≤ k ≤

√
2π
a (i.e., along Γ → K),

3. kx = ky = kz = k√
3

for 0 ≤ k ≤
√

3π
a (i.e., along Γ → L).

(b) Draw the ω vs. k curve for the Debye approximation to these dispersion
curves as dashes lines on the diagram used in part (a).

(c) What are the critical points of this phonon spectrum? How many are
there?

(d) Make a rough sketch of the Debye density of states g(ω). How will the
actual density of states differ from the Debye approximation?

(e) Using this example, discuss the shortcomings and the successes of the
Debye model in predicting the thermodynamic properties (like specific
heat) of solids.

2.8. For a two-dimensional crystal a simple Debye model takes ω = sk for the
longitudinal and the single transverse modes for all allowed k values up to the
Debye wave number kD.

(a) Determine kD as a function of N
L2 , where N is the number of atoms

and L2 is the area of the crystal.
(b) Determine g(ω), the density of normal modes per unit area.
(c) Find the expression for the internal energy at a temperature T as

an integral over the density of states times an appropriate function of
frequency and temperature.

(d) From the result of part (c) determine the specific heat cv.
(e) Evaluate cv for kBT � h̄ωD = h̄skD.
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Summary

In this chapter, we discussed the vibrations of the atoms in solids. Quantum
mechanical treatment of lattice dynamics and dispersion curves of the normal
modes are described.

The Hamiltonian of a linear chain is written, in the harmonic approx-
imation, as H =

∑
i
P 2

i

2M + 1
2

∑
i,j cijuiuj, where Pi is the momentum and

ui = Ri − R0
i is the deviation of the ith atom from its equilibrium position.

A general dispersion relation of the normal modes is Mω2
q =

∑N
l=1 c(l)e

iqla.
The normal coordinates are given by

qk = N−1/2
∑

n

une−ikna; pk = N−1/2
∑

n

Pne+ikna.

The inverse of qk and pk are un=N−1/2
∑

k qke
ikna; Pn = N−1/2

∑
k pke

−ikna.
The quantum mechanical Hamiltonian is given by H =

∑
kHk, where

Hk =
p̂kp̂

†
k

2M
+

1
2
Mω2

kq̂k q̂
†
k.

The dynamical variables qk and pk are replaced by quantum mechanical oper-
ators q̂k and p̂k which satisfy the commutation relation [pk, qk′ ] = −ih̄δk,k′ . It
is convenient to rewrite q̂k and p̂k in terms of the operators ak and a†k, which
are defined by

qk =
(

h̄

2Mωk

)1/2 (
ak + a†−k

)
; pk = ı

(
h̄Mωk

2

)1/2 (
a†k − a−k

)
.

The ak’s and a†k’s satisfy
[
ak, a

†
k′

]

−
= δk,k′ and [ak, ak′ ]− =

[
a†k, a

†
k′

]

−
= 0.

The displacement of the nth atom and its momentum can be written

un =
∑

k

(
h̄

2MNωk

)1/2

eikna
(
ak + a†−k

)
,

Pn =
∑

k ı
(
h̄ωkM

2N

)1/2
e−ikna

(
a†k − a−k

)
.

The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

h̄ωk

(
a†kak +

1
2

)
,

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN >=

(
a†k1

)n1

√
n1!

· · ·
(
a†kN

)nN

√
nN !

|0 >

and En1,n2,...,nN =
∑

i h̄ωki(ni + 1
2 ).
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In the three-dimensional case, the Hamiltonian is given by

H =
∑

kλ

h̄ωkλ

(
a†kλakλ +

1
2

)
.

The allowed values of k are given by k = 2π
(
n1
N1

b1 + n2
N2

b2 + n3
N3

b3

)
. The

displacement un and momentum Pn of the nth atom are written, respectively,
as

un =
∑

kλ

(
h̄

2MNωkλ

)1/2

ε̂kλeik·R0
n

(
akλ − a†−kλ

)

Pn =
∑

kλ

i
(
h̄Mωkλ

2N

)1/2

ε̂kλe−ik·R0
n

(
a†kλ + a−kλ

)
.

The energy of the crystal is given by U =
∑

qλ

(
n̄qλ + 1

2

)
h̄ωqλ, where n̄qλ

is given by n̄qλ = 1

eh̄ωqλ/kBT −1
. The lattice heat capacity is written as

Cv =
(
∂U

∂T

)

v

= kB

∑

qλ

(
h̄ωqλ

kBT

)2(
e

h̄ωqλ
kBT − 1

)−1(
1 − e−

h̄ωqλ
kBT

)−1

.

The density of states g(ω) defined by

g(ω)dω =
{

The number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω.

Then we have g(ω) = 1
(2π)3

∑
λ

∫ dSλ(ω)
|∇qωqλ|ω . Here, dSλ(ω) is an infinitesi-

mal element of the surface of constant frequency in three-dimensional wave
vector space on which ωqλ has the value ω. Near a critical point qc, at which
∇qωqλ = 0, in the phonon spectrum, we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 ,

where ξi are the components of ξ = q − qc, and ωc = ω(qc). In three
dimensions, there are four kinds of critical points:

1. Maxima: points at which all three αi are negative.
2. Minima: points at which all three αi are positive.
3. Saddle Points of the First Kind : Points at which two αi’s are positive and

one is negative.
4. Saddle Points of the Second Kind : Points at which one αi is positive and

the other two are negative.

The density of states for the Debye model is expressed as

g(ω) =
ω2

2π2

[
θ(slkD − ω)

s3l
+

2 θ(stkD − ω)
s3t

]
.

Here, sl and st are the speed of a longitudinal and of a transverse sound wave.
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