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Perception of sound

The perception of sound incidents requires the presence of some simple phys-
ical effects. A sound source oscillates and brings the surrounding air into
motion. The compressability and mass of the air cause these oscillations to be
transmitted to the listener’s ear.

Small pressure fluctuations, referred to as sound pressure p, occur in air
(or gas or fluid) and which are superimposed to the atmospheric pressure
po. A spatially distributed sound field radiates from the source with different
instantaneous sound pressures at each moment. The sound pressure is the
most important quantity to describe sound fields and os always space- and
time-dependent.

The observed sound incident at a point has two main distinguishing at-
tributes: ‘timbre’ and ‘loudness’. The physical quantity for loudness is sound
pressure and the quantity for timbre is frequency f, measured in cycles per
second, or Hertz (Hz). The frequency range of technical interest covers more
than the range that is audible by the human ear, which is referred to as hear-
ing level. The hearing range starts at about 16 Hz and ranges up to 16000 Hz
(or 16kHz). The infrasound, which is located below that frequency range,
is less important for air-borne sound problems, but becomes relevant when
dealing with vibrations of structures (e.g. in vibration control of machinery).
Ultrasound begins above the audible frequency range. It is used in applica-
tions ranging from acoustic modelling techniques to medical diagnosis and
non-destructive material testing.

The boundaries of the audible frequency range dealt with in this book
cannot be defined precisely. The upper limit varies individually, depending on
factors like age, and also in cases of extensive workplace noise exposure or the
misuse of musical devices. The value of 16 kHz refers to a healthy, human being
who is about 20 years old. With increasing age, the upper limit decreases by
about 1kHz per decade.

The lower limit is likewise not easy to define and corresponds to flickering.
At very low frequencies a series of single sound incidents (e.g. a series of
impulses) can be distinguished as well. If the frequency increases above the
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2 1 Perception of sound

flickering frequency of (about) 16 Hz, single incidents are no longer perceived
individually, but seem to merge into a single noise. This transition can be
found, for example, when it slowly starts to rain: the knocking of single rain
drops at the windows can be heard until the noise at a certain density of
rain merges into a continuous crackling. Note that the audible limit for the
perception of flickering occurs at the same frequency at which a series of single
images in a film start to appear as continuous motion.

The term ‘frequency’ in acoustics is bound to pure tones, meaning a si-
nusoidal wave form in the time-domain. Such a mathematically well-defined
incident can only rarely be observed in natural sound incidents. Even the
sound of a musical instrument contains several colourations: the superposi-
tion of several harmonic (pure) tones produces the typical sound of the in-
strument (see Fig. 1.1 for examples). An arbitrary wave form can generally be
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Fig. 1.1. Sound spectra of a violin played at different notes (from: Meyer, J.:
” Akustik und musikalische Auffithrungspraxis”. Verlag Erwin Bochinsky, Frankfurt
1995). Relative sound pressure level versus frequency.

represented by its frequency components extracted through spectrum analy-
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sis, similar to the analysis of light. Arbitrary signals can be represented by
a sum of harmonics (with different amplitudes and frequencies). The associ-
ation of decomposed time signals directly leads to the representation of the
acoustic properties of transducers by their frequency response functions (as,
for example, those of walls and ceilings in building acoustics, see Chap. 8).
If, for instance, the frequency-dependent transmission loss of a wall is known,
it is easy to imagine how it reacts to the transmission of certain sound in-
cidents like, for example, speech. The transmission loss is nearly always bad
at low frequencies and good at high frequencies: speech is therefore not only
transmitted ‘quieter’ but also ‘dull’ through the wall. The more intuitive as-
sociation that arbitrary signals can be represented by their harmonics will be
sufficient throughout this book in the aforementioned hypothetical case. The
expansion of a given signal into a series of harmonics, the so-called Fourier
series and Fourier integrals, is based on a solid mathematical foundation of
proof (see the last chapter of this book).

The subjective human impression of the sound pitch is perceived in such
a way that a tonal difference of two pairs of tones is perceived equally if the
ratio (and not the difference) of the two frequency pairs is equal. The tonal
difference between the pair made of f,; and f,2 and the pair made of fi,; and
fbo is perceived equally if the ratio

fa _
fa2 fb2

is valid. The transition from 100 Hz to 125 Hz and from 1000 Hz to 1250 Hz is,
for example, perceived as an equal change in pitch. This law of ‘relative tonal
impression’ is reflected in the subdivision of the scale into octaves (a doubling
in frequency) and other intervals like second, third, fourth and fifth, etc. used
for a long time in music. All of these stand for the ratio in frequency and not
for the ‘absolute increase in Hz’.

This law of ‘tonal impression,” which more generally means that a stimulus
R has to be increased by a certain percentage to be perceived as an equal
change in perception, is not restricted to the tonal impression of the human
being. It is true for other human senses as well. In 1834, Weber conducted
experiments using weights in 1834 and found that the difference between two
masses laid on the hand of a test subject was only perceived equally, when a
mass of 14 g was increased by 1 g and a mass of 28 g was increased by 2 g. This
experiment and the aforementioned tonal perception leads to the assumption
that the increment of a perception AE for these and other physical stimuli is
proportional to the ratio of the absolute increase of the stimulus AR and the
stimulus R

AR

AE =k 7 (1.1)
where k is a proportionality constant. For the perception of pitch the stimulus
R = f represents the frequency, for the perception of weight R = m represents
the mass on the hand.
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This law of relative variation (1.1) is also true for the perception of loud-
ness. If a test subject is repeatedly presented with sound incidents consisting
of pairs of sound pressure incidents p and 2p and 5p and 10p respectively, the
perceived difference in loudness should be equal. The perception of both pitch
and loudness should at least roughly follow the law of relative variation (1.1).

As mentioned earlier (1.1), there is a relativity law which governs varia-
tions in stimulus AR and in perception AFE. It is, of course, also interesting to
examine the relation between R and E. Given that it is, at best, problematic, if
not presumably impossible, to quantify perceptions, the principal characteris-
tics of the E(R) function should be clarified. These ‘perception characteristics’
are easily constructed from the variation law, if two points of stimulus R and
perception E are chosen as shown in Fig. 1.2. A threshold stimulus Ry is
defined, at which the perception starts: stimuli R < Ry below the threshold
are not perceivable. A minimal stimulus is needed to achieve perception at
all. The second point is chosen arbitrarily to be twice the threshold R = 2Ry
and the (arbitrary) perception Ej is assigned. The further characteristics re-

o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R/R,

Fig. 1.2. Qualitative relation between stimulus R and perception E

sult from examining the perceptions 2Fq, 3Ey, 4Fy, etc. The perception 2Fj
is assigned twice the stimulus of Ej, therefore related to R = 4Ry. Just as
E = 3Ej is related to the stimulus R = 8Ry the perception 4F, is related
to R = 16Ry, etc. As can be seen from Fig. 1.2 the gradient of the curve
E = E(R) decreases with increasing stimulus R. The greater the perception,
the greater the increase of the stimulus has to be to achieve another increment
of perception (for example Ej).
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The functional relation E = E(R) can certainly be determined from the
variation law (1.1) by moving towards infinitesimal small variations dE and
dR:

dR
dE =k— .
R
Integration yields
E =23klg(R/Ry). (1.2)

Bare in mind that the logarithms of different bases are proportional, e.g.
Inz = 2.3lgz. The perception of loudness is therefore proportional to the
logarithm of the physical stimulus —in this case, sound pressure. This relation,
validated at least roughly by numerous investigations, is also known as the
Weber-Fechner-Law.

The sensual perception according to a logarithmic law (for the character-
istics see Fig. 1.2 again) is a very sensible development of the ‘human species’.
Stimuli close to the threshold R = Ry are emphasized and therefore ‘well per-
ceivable’, whereas very large stimuli are highly attenuated in their perception;
the logarithmic characteristics act as a sort of ‘overload protection’. A wide
range of physical values can thus be experienced (without pain) and several
decades of physical orders of magnitude are covered. The history of the species
shows that those perceptions necessary to survive in the given environment,
which also cover a wide range of physical values, follow the Weber-Fechner-
Law. This is not true for the comparatively smaller range of temperature
perception. Variations of a tenth or a hundredth of a degree are by no means
of interest to the individual. In contrast, the perception of light needs to cover
several decades of order of magnitude. Surviving in the darkest night is as im-
portant as the ability to see in the sunlight of a very bright day. And the
perception of weight covers a range starting from smallest masses of about 1 g
up to loads of several 10000 g. The perception of loudness follows the loga-
rithmic Weber-Fechner-Law, because the human ear is facing the problem of
perceiving very quiet sounds, like the falling of the leaves in quiet surround-
ings, as well as very loud sounds, like the roaring sound of a waterfall in close
vicinity. As a matter of fact, humans are able to perceive sound pressures
in the range of 20 - 107N /m? to approximately 200 N/m?, where the upper
limit roughly depicts the pain threshold. About ten decades of loudness are
covered, which represents an exceedingly large physical interval. To illustrate,
this range in equivalent distances would cover an interval between 1 mm and
10km. The amazing ear is able to perceive this range. Imagine the impossi-
bility of an optical instrument (like a magnifying glass), to be able to operate
in the millimeter range as well as in the kilometer range!

When technically quantifying sound pressure, it is more handy to use a
logarithmic measure instead of the physical sound pressure itself to represent
this wide range. The sound pressure level L is internationally defined as

2
L=201g <p> =10lg <p> : (1.3)
Po Po
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with po = 201075N/m?, as an expressive and easy to use measure. The
reference value py roughly corresponds to the hearing threshold (at a frequency
of 1kHz, because the hearing threshold is frequency-dependent, as will be
shown in the next section), so that 0 dB denotes the ‘just perceivable’ or ‘just
not perceivable’ sound event. If not otherwise stated, the sound pressure p
stands for the root mean square (rms-value) of the time domain signal. The
specification in decibels (dB) is not related to a specific unit. It indicates the
use of the logarithmic law. The factor 20 (or 10) in (1.3) is chosen in such
a way that 1dB corresponds to the difference threshold between two sound
pressures: if two sound incidents differ by 1dB they can just be perceived
differently.

The physical sound pressure covering 7 decades is mapped to a 140dB
scale by assigning sound pressure levels, as can be seen in Table 1.1. Some
examples for noise levels occurring in situations of every day life are also
shown.

Table 1.1. Relationship between absolute sound pressure and sound pressure level

Sound pressure  Sound pressure level  Situation/description
p (N/m?, rms) L (dB)

21075 0 hearing threshold

21074 20 forest, slow winds

2 10*2 40 library

210" 60 office

21071 80 busy street

210° 100 pneumatic hammer, siren
210* 120 jet plane during take-off

2107 140 threshold of pain, hearing loss

It should be noted that sound pressures related to the highest sound pres-
sure levels are still remarkably smaller than the static atmospheric pressure
of about 10° N/m?2. The rms value of the sound pressure at 140dB is only
200 N/m? and therefore 1/500 of atmospheric pressure.

The big advantage when using sound pressure levels is that they roughly
represent a measure of the perceived loudness. However, think twice when
calculating with sound pressure levels and be careful in your calculations. For
instance: How high is the total sound pressure level of several single sources
with known sound pressure levels? The derivation of the summation of sound
pressure levels (where the levels are in fact mot summed) gives an answer
to the question for incoherent sources (and can be found more detailed in
Appendix A)

N
Liot = 101g (Z 10"/ 10) , (1.4)

i=1
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where N is the total number of incoherent sources with level L;. Three ve-
hicles, for example, with equal sound pressure levels produce a total sound
pressure level

Lot = 101g (3 10“/10) — 101g10%/1° 4 101g3 = L; + 4.8dB

which is 4.8 dB higher than the individual sound pressure level (and not three
times higher than the individual sound pressure level).

1.1 Octave and third-octave band filters

In some cases a high spectral resolution is needed to decompose time domain
signals. This may be the case when determining, for example, the possibly
narrow-banded resonance peaks of a resonator, where one is interested in the
actual bandwidth of the peak (see Chap. 5.5). Such a high spectral resolution
can, for example, be achieved by the commonly used FFT-Analysis (FFT: Fast
Fourier Transform). The FFT is not dealt with here, the interested reader can
find more details for example in the work of Oppenheim and Schafer ”Digital
Signal Processing” (Prentice Hall, Englewood Cliffs New Jersey 1975).

In most cases, a high spectral resolution is neither desired nor necessary. If,
for example, an estimate of the spectral composition of vehicle or railway noise
is needed, it is wise to subdivide the frequency range into a small number of
coarse intervals. Larger intervals do not express the finer details. They contain
a higher random error rate and cannot be reproduced very accurately. Using
broader frequency bands ensures a good reproducibility (provided that, for
example, the traffic conditions do not change). Broadband signals are also
often used for measurement purposes. This is the case in measurements of
room acoustics and building acoustics, which use (mainly white) noise as
excitation signal. Spectral details are not only of no interest, they furthermore
would divert the attention from the validity of the results.

Measurements of the spectral components of time domain signals are re-
alized using filters. These filters are electronic circuits which let a supplied
voltage pass only in a certain frequency band. The filter is characterized by
its bandwidth Af, the lower and upper limiting frequency f; and f,, respec-
tively and the center frequency f. (Fig. 1.3). The bandwidth is determined
by the difference of f, and f;, Af = f, — fi. Only filters with a constant
relative bandwidth are used for acoustic purposes. The bandwidth is propor-
tional to the center frequency of the filter. With increasing center frequency
the bandwidth is also increasing. The most important representatives of filters
with constant relative bandwidth are the octave and third-octave band filters.
Their center frequency is determined by

fc =V fl.fu

The characteristic filter frequencies are known, if the ratio of the limiting
frequencies f; and f, is given.



8 1 Perception of sound

2
S.51 lower upper i
2 limit limit
3
[}
T
S
g stopband stopband 1
:‘_;-
£
©
3]
Zosl pass |
: band
0 .

Frequency f

Fig. 1.3. Typical frequency response function of a filter (bandpass)

Octave bandwidth

fu:2fl7
which results in f, = v2f; and Af = f, — fi = fi = f./V2.

Third-octave bandwidth

fu=V2fi =126f,

which results in f. = v/2f; = 1.12f; and Af = 0.26f;.

The third-octave band filters are named that way, because three adjacent
filters form an octave band filter (/2+/2+/2 = 2). The limiting frequencies are
standardized in the international regulations EN 60651 and 60652.

When measuring sound levels one must state which filters were used dur-
ing the measurement. The (coarser) octave band filters have a broader pass
band than the (narrower) third-octave band filters which let contributions of
a higher frequency range pass. Therefore octave band levels are always greater
than third-octave band levels. The advantage of third-octave band measure-
ments is the finer resolution (more data points in the same frequency range)
of the spectrum.

By using the level summation (1.4), the octave band levels can be calcu-
lated using third-octave band measurements. In the same way, the levels of
broader frequency bands may be calculated with the aid of level summation
(1.4). The (non-weighted) linear level is often given. It contains all attributes
of the frequency range between 16 Hz and 20000 Hz and can either be mea-
sured directly using an appropriate filter or determined by the level addition
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of the third-octave or octave band levels in the frequency band (when con-
verting from octave bands, N = 11 and the center frequencies of the filters
are 16 Hz, 31.5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1kHz, 2kHz, 4kHz, 8kHz
and 16 kHz). The linear level is always higher than the individual levels, by
which it is calculated.

1.2 Hearing levels

Results of acoustic measurements are also often specified using another single
value called the ‘A-weighted sound pressure level’. Some basic principles of the
frequency dependence of the sensitivity of human hearing are now explained,
as the measurement procedure for the A-weighted level is roughly based on
this.
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Fig. 1.4. Hearing levels

The sensitivity of the human ear is strongly dependent on the tonal pitch.
The frequency dependence is depicted in Fig. 1.4. The figure is based on
the findings from audiometric testing. The curves of perceived equal loud-
ness (which have the unit ‘phon’) are drawn in a sound pressure level versus
frequency plot. One can imagine the development of these curves as follows:
a test subject compares a 1kHz tone of a certain level to a second tone of
another frequency and has to adjust the level of the second tone in such a
way that it is perceived with equal loudness. The curve of one hearing level
is obtained by varying the frequency of the second tone and is simply defined
by the level of the 1kHz tone. The array of curves obtained by varying the
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level of the 1kHz tone is called hearing levels. It reveals, for example, that a
50 Hz tone with an actual sound pressure level of 80 dB is perceived with the
same loudness as a 1kHz tone with 60dB. The ear is more sensitive in the
middle frequency range than at very high or very low frequencies.

1.3 A-Weighting

The relationship between the objective quantity sound pressure or sound pres-
sure level, respectively, and the subjective quantity loudness is in fact quite
complicated, as can be seen in the hearing levels shown in Fig. 1.4. The fre-
quency dependence of the human ear’s sensitivity, for example, is also level-
dependent. The curves with a higher level are significantly flatter than the
curves with smaller levels. The subjective perception ‘loudness’ is not only
depending on frequency, but also on the bandwidth of the sound incident.
The development of measurement equipment accounting for all properties of
the human ear could only be realized with a very large effort.
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Fig. 1.5. Frequency response functions of A-; B-, C- and D-weighting filters

A frequency-weighted sound pressure level is used both nationally and
internationally, which accounts for the basic aspects of the human ear’s sen-
sitivity and can be realized with reasonable effort. This so-called ‘A-weighted
sound pressure level’ includes contributions of the whole audible frequency
range. In practical applications the dB(A)-value is measured using the A-
filter. The frequency response function of the A-filter is drawn in Fig. 1.5.
The A-filter characteristics roughly represent the inverse of the hearing level
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curve with 30 dB at 1kHz. The lower frequencies and the very high frequen-
cies are devaluated compared to the middle frequency range when determining
the dB(A)-value. As a matter of fact, the A-weighted level can also be deter-
mined from measured third-octave band levels. The levels given in Fig. 1.5
are added to the third-octave band levels and the total sound pressure level,
now A-weighted, is calculated according to the law of level summation (1.4).
The A-weighting function is standardized in EN 60651.
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Fig. 1.6. Third-octave band, non-weighted and A-weighted levels of band-limited
white noise

A practical example for the aforementioned level summation is given in
Fig. 1.6 by means of a white noise signal. The third-octave band levels, the
non-weighted (Lin) and the A-weighted (A) total sound pressure level are
determined. The third-octave band levels increase by 1dB for each band with
increasing frequency. The linear (non-weighted) total sound pressure level is
higher than each individual third-octave band level, the A-weighted level is
only slightly smaller than the non-weighted level.

It should be noted that exceptions for certain noise problems (especially
for vehicle and aircraft noise) exist, where other weighting functions (B, C
and D) are used (see also Fig. 1.5). Regulations by law still commonly insist
on the dB(A)-value.

Linearly determined single-number values, regardless of the filter used to
produce them, are somewhat problematic, because considerable differences in
individual perceptions do not become apparent. Fig. 1.4 clearly shows, for
example, that 90dB of level difference are needed at 1kHz to increase the
perception from 0 to 90 phon; at the lower frequency limit at 20 Hz only 50 dB
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are needed. A simple frequency weighting is not enough to prevent certain
possible inequities. On the other hand, simple and easy-to-use evaluation pro-
cedures are indispensable.

1.4 Noise fluctuating over time

It is easy to determine the noise level of constant, steady noise, such as from
an engine with constant rpm, a vacuum cleaner, etc. Due to their uniform
formations, such noise can be sufficiently described by the A-level (or third-
octave level, if so desired.)

How, on the other hand, can one measure intermittent signals, such as
speech, music or traffic noise? Of course, one can use the level-over-time nota-
tion, but this description falls short, because a notation of various noise events
along a time continuum makes an otherwise simple quantitative comparison
of a variety of noise scenarios, such as traffic on different highways, quite dif-
ficult. In order to obtain simple comparative values, one must take the mean
value over a realistic average time period.

The most conventional and simplest method is the so-called ’energy-
equivalent continuous sound level’ L.,. It reflects the sound pressure square
over a long mean time

T

T
1 [ P24(t) 1
Leg =101g f/ f;fg dt = 101g f/mLWlO dt (1.5)
0

0

(po = 20 107 N/m?). Hereby p.ss(t) indicates the time domain function of
the rms-value and L(t) = 10lg(pesf(t)/po)?, the level gradient over time. The
square of a time-dependent signal function is also referred to as ’signal en-
ergy’, the energy-equivalent continuous sound level denotes the average signal
energy; this explains the somewhat verbose terminology. For sound pressure
signals obtained using an A-filter, third-octave filters, or the like, we use an
A-weighted energy-equivalent level.

Depending on the need or application, any amount of integration time T
can be used, ranging from a few seconds to several hours. There are com-
prehensive bodies of legislation which outline norms set by a maximum level
L4, which is permissible over a certain time reference period ranging up
to several hours. For instance, the reference time period ’night’ is normally
between the hours of 10 p.m. and 6 a.m., an eight-hour time period. Nor-
mally, for measuring purposes, a much smaller mean time frame is used in
order to reduce the effect of background noise. The level L., is then recon-
structed based on the number of total noise events and applied over a longer
period of time. For example, let L., be an energy-equivalent sound level to
be verified for a city railway next to a street. The mean time period for this
measurement would then be approximately how long it takes for the train
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to pass by the street. That is, we are looking for the energy-equivalent con-
tinuous sound level for an average period that corresponds to the time it
takes for the train to pass by the street, such as of 30 seconds L., (30s).
Suppose the train passes by every 5 minutes without a break. In this case,
we can easily calculate the long-term L., (measured over several hours, as
may correspond to the reference periods ’day’ or ’night’, for instance) by
Ley(long) = Leg(30s) — 10lg(5min/30s) = L¢y(30s) — 10dB.

Applying mean values is often the most sensible and essential method for
determining or verifying maximum permissible noise levels. However, mean
values, per definition, omit single events over a time-based continuum and can
thus blur the distinctions between possibly very different situations. A light
rail train passing by once every hour could well emit similar sound levels L.,
as characterized by the permanent noise level of a busy street over a very long
reference period, for example. The long-term effects of both sources combined
may, in fact, result in one of the sources being completely obliterated from
the L4 altogether (refer to Exercise 5).

The energy-equivalent continuous sound level serves as the simplest way to
characterize sound levels fluctuating over time. Cumulative frequency levels
can be determined by the peak time-related characteristic measurements, a
method which is instrumental in the statistical analysis of sound levels.

1.5 Summary

Sound perception is governed by relativity. Changes are perceived to be the
same when the stimulus increases by a certain percentage. This has led to
the conclusion of the Weber-Fechner law, according to which perception is
proportional to the logarithm of the stimulus. The physical sound pressures are
therefore expressed through their logarithmic counterparts using sound levels
of a pseudo-unit, the decibel (dB). The entire span of sound pressure relevant
for human hearing, encompassing about 7 powers of ten, is reflected in a clearly
defined scale from about 0 dB (hearing threshold) up to approximately 140 dB
(threshold of pain). A-weighting is scaled to the human ear in order to roughly
capture the frequency response function of hearing. A-weighted sound levels
are expressed in the pseudo-unit dB(A).

Sounds at intermittent time intervals are quantified using mean time val-
ues. One such quantification method approximates ’energy-equivalent perma-
nent sound levels.’

1.6 Further reading

Stanley A. Gelfand’s ”Hearing — an Introduction to Psychological and Physi-
ological Acoustics” (Marcel Dekker, New York 1998) is a physiologically ori-
ented work and contains a detailed description of the anatomy of the human
ear and the conduction of stimuli.
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1.7 Practice exercises

Problem 1

An A-weighted sound level of 50 dB(A) originating from a neighboring factory
was registered at an emission control center. A pump is planned for installation
50m away from the emission control center. How high can the A-weighted
decibel level, resulting from the pump alone, be registered at the emission
control center so that the overall sound level does not exceed 55 dB(A)?

Problem 2

A noise contains only the frequency components listed in the table below:

f/HZ LThirdoctave/dB Az/dB

400 78 4,8
500 76 3,2
630 74 1,9
800 75 0,8
1000 74 0

1250 73 0,6

Calculate

both non-weighted octave levels
the non-weighted overall decibel level and
the A-weighted overall decibel level.

The corresponding A-weights are given in the last column of the table.

Problem 3

A noise consisting of what is known as white noise is defined by a 1dB-
increase from third-octave to third-octave (see Figure 1.6). How much does
the octave level increase from octave to octave? How much higher is the overall
decibel level in proportion to the smallest third-octave when N third-octaves
are contained in the noise? State the numerical value for N = 10.

Problem 4

A noise consisting of what is known as pink noise is defined by equal decibel
levels for all the third-octaves it contains. How much does the octave level
increase from octave to octave and what are their values? How much higher
is the overall decibel level when there are N thirds contained in the noise?
State the numerical value for N = 10.
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Problem 5

The energy-equivalent permanent sound level is registered at 55 dB(A) at an
emission control center near a street during the reference time period ’day,’
lasting 16 hours. A new high-speed train track is scheduled to be constructed
near the sight. The 2-minute measurement of a sound level L., of a passing
train is 75 dB(A). The train passes by every 2 hours.

How high is the energy-equivalent permanent sound level measured over a
longer period of time (in this case, reference time interval ’day’)

e a) of the train alone and
e b) of both sound sources combined?

Problem 6

A city train travels every 5 minutes from 6 a.m. to 10 p.m. At night, between
10 p.m. and 2 a.m., it travels every 20 minutes, with a break from 2-6 a.m. in
between. A single train passes within 30 seconds and for this time duration,
the sound level registers at L.,(30s) = 78dB(A). How high is the energy-
equivalent permanent sound level for the reference time intervals ’day’ and
‘night’?

Problem 7

The sound pressure level L of a particular event, such as the emission of a
city train as in the previous example, can under certain circumstances only be
measured against a given background noise, such as traffic. Assume that the
background noise differs from the sound event to be measured at a decibel level
AL. How high is the actual combined noise level? State the general equation
for measuring errors and the numerical value for AL = 6dB, AL = 10dB
and AL = 20dB.

Problem 8

As in Problem 7, sound emission is to be measured in the presence of a noise
disturbance. How far away does the the noise source have to be in order to
obtain a measuring error of 0.1dB?

Problem 9

Sometimes filters of a relatively constant bandwidth are employed to take
finer measurements in sixth-octaves increments as opposed to the customary
third-octave increments. State the equations for

e the consecutive center frequencies
e the bandwidth and
e the limiting frequencies.
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Problem 10

In a calculated measurement where an octave and all of its constituent thirds
are given, it appears that one of the thirds may have been a measurement
error. How can the result be checked against the other three values that are
assumed to be correct?
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